Complexity of Colored Graph Covers I.
Colored Directed Multigraphs.
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Abstract. A covering projection from a graph G onto a graph H is
a “local isomorphism”: a mapping from the vertex set of G onto the
vertex set of H such that, for every v € V(G), the neighborhood of v
is mapped bijectively onto the neighborhood (in H) of the image of v.
We continue the investigation of the computational complexity of the
H-cover problem — deciding if a given graph G covers H. We introduce
a more general notion of covers of directed colored multigraphs (cdm-
graphs) and show that a complete characterization of the complexity
of covering of simple undirected graphs would necessarily resolve the
complexity of covering of cdm-graphs as well. On the other hand, we
introduce reductions that will enable to consider only multigraphs with
minimum degree > 3. We illustrate the methodology by presenting a
complete characterization of the complexity of covering problems for two-
vertex cdm-graphs.

1 Motivation and Overview

For a fixed graph H, the H-cover problem admits a graph G as input and asks
about the existence of a “local isomorphism”: a labeling of the vertices of G
by vertices of H so that the label set of the neighborhood of every v € V(G)
is equal to the neighborhood (in H) of the label of v and each neighbor of v
is labeled by a different neighbor of the label of v. Such a labeling is referred
to as a covering projection from G onto H. We trace this concept to Biggs’
construction of highly symmetric graphs in [4], and to Angluin’s discussion of
“local knowledge” in distributed computing environment in [2]. More recently,
Abello et al. [1] raised the question of computational complexity of H-cover
problems, noting that there are both polynomial-time solvable (easy) and NP-
complete (difficult) versions of this problem depending on the parameter graph
H. We have studied the question of complexity of graph covering problems in
[8], where one of our main results was a complete catalogue of the complexity of
this problem for simple graphs on at most 6 vertices. In [9], we proved that the
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H-cover problem is NP-complete for any k-regular graph H, provided k& > 2 and
H is k-edge colorable or (1+ |£])-edge connected. This is a significant headway
towards the more general conjecture stating that the H-cover problem is NP-
complete for every k-regular graph, k£ > 2. In particular, it follows that there are
infnitely many rigid graphs for which the covering problem is NP-complete.

In this paper we introduce covers of colored directed multigraphs (cdm-
graphs). Though this notion may seem too general at first sight, it is readily
seen that covers of colored directed multigraphs can be encoded in terms of cov-
ers of simple graphs. On the other hand the language of cdm-graphs enables
more compact description of the results. We will show that it suffices to consider
covers of cdm-graphs with minimum degree > 3.

2 Colored Directed Multigraphs

In this paper, we consider colored directed multigraphs, shortly cdm-graphs. A
directed multigraph with vertex set V has edge set £ = D U F U L, where D is
the set of directed edges (including directed loops), F' is the set of undirected
edges and L is the set of undirected loops. A function g : E — (V xV)U (‘2/) uv

describes the incidencies, i.e., for an undirected edge e € F, u(e) € (‘2/) is the pair
of vertices connected by e, for a loop e € L, u(e) € V is the vertex hosting the
loop e and for a directed edge e € D, p(e) € V x V is the ordered pair of vertices
connected by e. Vertices and edges are colored by a coloring C : VUE — C(VUE)
(this coloring need not be proper in the sense that adjacent vertices and/or edges
may receive the same color). Since vertices, directed and undirected edges may
be distinguished regardless the color, we may assume that C(V), C(D) and
C(F U L) are disjoint. A cdm-graph is uncolored if C(V'), C(D) and C(F U L)
are one-element set each.
For an edge-color ¢, the c-colored degree of a vertex z € V(G) is defined as

degs(x) = l{e : 2 € p(e),e € F(G)H +2M{e o = p(e), e € L(G), Cle) = c}|
for ce C(FUL), and
deg(z) = (degg (z), degg" (2))
where
degg (z) = |{e: p(e) = (z,u) for some u,e € D(G),C(e) = ¢}
and
deg& (z) = |{e : p(e) = (u,z) for some u,e € D(G),C(e) = c}|.
The total degree of a vertex u is

deggu = Z deg®(u) + Z (deg®* (u) + deg®™ (u)).
c€C(FUL) cec(D)



Definition 1. A covering projection of a cdm-graph G onto a cdm-graph H is a
mapping f: V(G) U E(G) — V(H) U E(H) such that

(1) f(u) € V(H) and C(f(u)) = C(u) for every u € V(G),

(2) f(e) € D(H), C(f(e)) = C(e) and u(f(e)) = (f(u),f(v)) for every
e € D(G) such that u(e) = (u,v),

(3) fe) € F(H) U L(H), C(f(e)) = C(e) and pu(f(e)) = {f(u), f(v)} for
every e € F(G) U L(G) such that p(e) = {u, v},

(4) for every u € V(G) and every e € D(H) such that p(e) = (f(u),w)
(u(e) = (w, f(u))) for some w, there is exactly one arc ¢’ € D(G) such that
ue') = (u,w') (p(e') = (w',u), respectively) for some w' and f(e') = e,

(5) for every u € V(G) and every e € F(H) such that f(u) € u(e), there is
exactly one edge €' € F(G) such that u € u(e') and f(e') =

(6) for every u € V(G) and every e € L(H) such that u(e) = f(u), there
is either exactly one loop e € L(G) such that u(e’) = u and f( 'Y = e, or
there are exactly two edges e',e" € F(G) such that u € p(e'),u € p(e") and

fe)=F(") =e.

The above definition follows the usual definition of topological covering spaces.
It is somewhat lengthy because of the presence of edges of different types. Note
that (3) implies that every undirected loop of G is mapped (in a covering pro-
jection) again onto a loop in H, however the preimage of a loop need not be a
loop itself. In general, the preimage of a loop in H is a disjoint union of cycles
in G. In the case of simple undirected graphs a covering projection is obviously
uniquely determined by its restriction to the vertex set. Theorem 3 shows that
as far as the existence of a covering projection is concerned, this is true also for
cdm-graphs.

Definition 2. A vertex-covering projection is a mapping g : V(G) — V(H) such
that
(1’) C(g9(u)) = C(u) for every u € V(G),

(4’) for every u € V(G), w € V(H) and every edge color ¢ € C(D),
[{e € D(G) : p(e) = (u,7),9(x) = w,C(e) = c}| =
{e' € D(H) : p(e') = (9(u),w),C(e') = c}|

and
[{e € D(G) : p(e) = (z,u), 9(z) =w,C(e) = c}| =
[{e' € D(H) : p(€’) = (w,g(u)),C(e') = c}|
(5”) for every u € V(G), w € V(H) such that w # g(u), and every ¢ € C(FUL),
{e € F(G) : p(e) = {z,u},g(z) =w,C(e) = c}| =
l{e' € F(H) : p(e') = {w,g(u)},C(€') = c}|



(6”) for every u € V(@) and every c € C(F U L),

{e € F(G) : ple) = {z,u}, g(x) = g(u),C(e) = c}|+
2l{e € L(G) : ple) = u,C(e) = c}| =
2[{e’ € L(H) : p(€') = g(u), C(e') = c}|.

Theorem 3. A cdm-graph G covers a cdm-graph H if and only if there ezists a
vertex-covering projection of G onto H.

Proof. If f is a covering projection of G onto H then the restriction of f to the
vertex set of G is a color-preserving projection satisfying (4’-6’).

Suppose on the other hand that g : V(@) — V(H) is a color preserving
mapping satisfying (4’-6’). In particular, (1) is fulfilled for g. We will show how
to extend g to a mapping f defined also on the edges of G so that (2-6) are
fulfilled as well.

Fix an edge-color, say ¢, and consider only the edges of color ¢ (in G and
in H as well). Suppose first that the edges of color ¢ are undirected. Consider
a vertex u € V(H) and let there be k loops l1,1s,...,I; of color ¢ around u in
H. Let G" be the subgraph of G induced by the vertices mapped onto v and
edges among them of color c. (Le., V(G%*) = g~!(u) and F(G*)U L(G*) = {e €
F(G)UL(G) : C(e) = c,u(e) C g~ (u)}.) It follows from (6’) that G¥ is a 2k-
regular multigraph, and by Petersen theorem, G is 2-factorable. Let F;, ..., Ey
be a collection of 2-factors that partitions F/(G*) U L(G*). We define

f(e) =1;iffe € E;.

Straightforwardly, (6) is satisfied for f.

Next consider vertices u # v € V(H) and let there be k edges ej, ez, ..., ex of
color ¢ in H such that u(e;) = {u,v}. Let G** be the subgraph of G induced by
the vertices mapped onto u or v and edges among them of color ¢. (Le., V(G*) =
9 1 ({u,v}) and F(G*) = {e € F(G) : C(e) = ¢, u(e) = {z,y} for some z €
9 Y (u),y € g7 (v)}.) It follows from (5°) that G* is a k-regular multigraph, and
since it is also bipartite, G*? is 1-factorable (Konig-Hall theorem). Let F, ..., Ej
be a collection of perfect matchings that partitions F'(G*?). We define

f(e) =¢; iff e € E;.

Straightforwardly, (5) is satisfied for f.

Now suppose that the edges of color ¢ are directed. Though we formally do not
distinguish directed edges and directed loops, we need to make the distinction
for this proof. Consider a vertex v € V(H) and let there be k directed loops
l1,12,...,1} of color c around u in H. Let G* be the subgraph of G induced by the
vertices mapped onto u and edges among them of color c. (Le., V(G*) = g~ (u)
and D(G*) = {e € D(G) : C(e) = c,u(e) € g7 (u) x g71(u)}.) It follows from
(4’) that G* has all indegrees and outdegrees k. Similarly as in the undirected



case, the edge set of G* can be partitioned into sets Fi, ..., E, each of which
is a disjoint union of directed cycles. We then set

f(e) =1I;iff e € E;.

For non-loop directed edges, consider vertices u # v € V(H) and let there
be k directed edges e1,es,..., e of color ¢ in H such that p(e;) = (u,v). Let
G"" be the subgraph of G induced by the vertices mapped onto u or v and edges
D(G*) = {e € D(G) : C(e) = ¢, ule) € g7*(u) x g~ (v)}.) It follows from (4’)
that each vertex of G"? is either a sink of indegree k or a source of outdegree
k. Thus G** is bipartite and, by K&nig-Hall theorem, G*? is 1-factorable. Let
E, ..., Ey be a collection of perfect matchings that partitions F/(G*?). We set

fle)=¢; iff e € E;.

Straightforwardly, (4) is satisfied for f.

It follows from the construction that f preserves also the edge-colors and that
the mapping of the edges is compatible with the mapping of their endpoints, i.e.,
f satisfies (2-3) as well.

Let us note that the existence of a vertex-covering projection is an obvious
necessary condition for a cdm-graph G to cover a cdm-graph H. Thus Theorem 3
describes an “oncas” situation (“obvious necessary conditions are sufficient”).

It is clear that a nonconnected cdm-graph G covers H if and only if every
connected component of G covers H, and a connected G covers a nonconnected
H if and only if G covers at least one connected component of H. Therefore we
assume in the rest of the paper that both G and H are connected. It is then easy
to see that the preimages of the vertices of H have the same size, and every cdm-
graph G that covers H is an h-fold cover for some h (h = [{z € V(G) : g(z) = u}|
for any u € V(H)).

Definition 4. The degree partition of a cdm-graph G is the coarsest partition of

V(@) into monochromatic equivalence classes By, ..., By such that there exist
numbers rfj,dfj‘-",dfj_ (1,7 =1,2,...,k,c€ C(D)UC(F)UC(L)) such that

(i) for every ¢, and every u € B;,

{e € D(G) : wle) € {u} x B}, Cle) = c}| = df,

(ii) for every %, j and every u € B;,
{e € D(G) : p(e) € {u} x B;,C(e) =c}| =di;

i

(iii) for every i # j and every u € B;,

l{e € F(G) :u € ple), u(e) \ {u} € Bj,C(e) = c}| = i,



(iv) for every i and every u € B;,
l{e € F(G) : u € ple), u(e) \ {u} € Bi,C(e) = c}|+
2{e € L(G) : p(e) = u,C(e) = c}| = rf;.

The collection r¢;,d5+, d5s (i,5 = 1,2,...,k, ¢ € C(D) U C(F)UC(L)) is then

ig2 g 0 g
called the degree refinement of G.

As in the case of simple undirected graphs, also for cdm-graphs, the degree
partition is unique and can be determined in polynomial time (starting with the
partition into vertex-color classes and refining this partition iteratively). The
following is a direct corollary of Theorem 3:

Corollary 5. If a cdm-graph G covers a cdm-graph H then G and H have the
same degree refinements. Moreover, if By,..., By is the degree partition of G
and By, ..., B} the degree partition of H (indexed so that r{; = ri5, dff = d;?"’
and di; = d~ for all i,j = 1,2,...,k and ¢ € C(D) U C(F) UC(L)) then
f(B;) = B} for every i and every covering projection f : G — H.

Proof. If g : V(G) — V(H) is a vertex-covering projection and B},i =1,2,...,k
the degree partition of H, define B; = {u € V(G) : g(u) € Bj},i =1,2,...,k.
It follows from Theorem 3 that B;,7 = 1,2,...,k is the degree partition of G
and has the same degree refinement. The uniqueness of the degree partition of
G implies that this partition is the same for every covering projection g.

3 Degree Reductions

In this section we show two reductions that can be performed on both the cover-
ing graph and covered graph and for which the existence of a covering projection
is an invariant. These reductions enable us to consider graphs without small de-
grees. Recall that the degree of a vertex in a mixed graph is the number of
undirected edges containing that vertex plus twice the number of undirected
loops around that vertex plus the number of directed edges leaving and entering
that vertex.
A cycle in a mixed graph is a sequence u1,e;,us, €, ..., U, € such that

plei) = {ui,uip1} or p(e;) = (ui, uiy1) or p(e;) = (witr,us)

for every i = 1,2,...,k (upt1 = u1).

3.1 Reduction I - Tree Liquidation

Definition 6. Given a cdm-graph G, denote by Z(G) the maximal subgraph
with all degrees greater than 1. Then Z'(G) = (V(G),E(Z'(G)) = E(G) \
E(Z(@))) is acyclic, i.e., a disjoint union of trees. Each of these trees intersects
the vertex set of Z(@G) in exactly one vertex. For every u € V(Z(G)), denote by



T, the connected component of Z'(G) containing u. Let 7(u) be the isomorphism
type of Ty, as a colored tree rooted in u (i.e., 7(u) = 7(v) iff there exists a color
preserving isomorphism of T,, and T, mapping u onto v). Redefine the coloring
of the vertices of Z(G) by setting C(u) = 7(u). The graph Z(G) with this new
coloring will be called the dearborization of G and denoted by T(G) (edges of
T(QG) are colored as in G).

Given a cdm-graph G, its dearborization can be found in polynomial time.
One may want to see an argument why Z'(G) is acyclic: Since G is connected,
any cycle @ in Z'(G) would be connected to Z(G) by some path, say P. Then
Z(G)UQUP would have all degrees > 2 and would be larger than Z(G). Similarly,
one may argue that each component of Z'(G) intersects Z(G) in exactly one
vertex: Since G is connected, every component does intersect Z(G). On the
other hand, if a component @ intersected Z(G) in two vertices, say u,v, then @
would contain a path connecting u and v, say P. Then Z(G) U P would have all
degrees > 2 and would be larger than Z(G).

Theorem 7. For any two cdm-graphs G and H, G covers H if and only if T(G)
covers T'(H).

Proof. Let f: G — H be a covering projection of G onto H. Since a connected

graph covers a tree only if it is isomorphic to the tree itself, for every vertex

u € Z(H) and every v € V(G) such that f(v) = u, we observe that v € Z(G)

and T&Ty. Thus 7(u) = 7(v) and the restriction of f to Z(G) is a covering
projection of T(G) onto T'(H).

On the other hand, suppose that f : T'(G) — T(H) is a covering projection.

Then T\, = Ty for every u € T(G), and let ¢, : T, — Tty be an isomorphism.
Then g : G — H defined by

g(z) = ¢y () for every z € T, and every u € T'(G)

is a vertex-covering projection of G onto H. By Theorem 3, G covers H.

3.2 Reduction IT - Dumping Small Degrees

A path in a mixed graph is a sequence u1, e1,us,€2,...,u; such that

plei) = {ui,uip1} or p(e;) = (ug, uip1) or p(e;) = (vitr,uq)
foreveryi=1,2,...,k— 1.

Definition 8. Given a cdm-graph G of minimum degree > 1, denote by W(G)
the subgraph induced by the vertices of degrees greater than 2. Let W/(G) be
the subgraph induced by V(G)\W(G). Then W'(G) has all degrees < 2, i.e., it is
a disjoint union of paths. Since G is connected, the end vertices of each of these
paths are connected to W(G) by one edge each. Replace each such extended
path P leading from a vertex u to a vertex v (it may be v = v) by and edge
ep with p(ep) = {u,v} (if P is symetric), or with p(ep) = (u,v) if P is not



symetric (in the latter case we decide ad hoc a generic orientation of the edge
obtained from a non-symetric path). We denote by 7(ep) the isomorphism type
of P. Denote the resulting cdm-graph by S(G), again we assume that the newly
added edges are colored via m, the original edges of G that remain as edges of
S(G) retain their original colors. Note that S(G) can be found in polynomial
time.

Theorem 9. For any two cdm-graphs G and H, G covers H if and only if S(G)
covers S(H).

Proof. Let f : G — H be a covering projection of G onto H. Since a connected
graph covers a path if and only if it is isomorphic to the path itself, every path
P connecting vertices u and v in G maps onto a path P’ connecting vertices
f(u) and f(v) in H, and P and P’ are isomorphic. Thus n(ep) = n(ep') and
the restriction of f to W(QG) is a vertex-covering projection of S(G) onto S(H).

On the other hand, suppose that f : S(G) — S(H) is a covering projection.
Consider an edge ep for a path P = w,...,v of G. Let P’ be a path in H
such that f(ep) = epr (f(ep) ¢ E(W(H)) because of its color). Then ep: is
connecting vertices f(u) and f(v), and since w(ep) = w(ep:), P = P'. Let ¢p
be an isomorphism of P and P’. Then g: V(G) — V(H) defined by

9(z) = ¢p(z) iff z € P

is a vertex-covering projection of G onto H and G covers H.

3.3 Simple Graphs Versus cdm-graphs

It follows from Theorems 7 and 9 that in order to give a complete characteriza-
tion of the computational complexity of the H-cover problem for cdm-graphs,
it suffices to consider graphs H of minimum degree > 3. On the other hand,
if we are given a cdm-graph G as an input graph for a question if G covers a
fixed cdm-graph H, we may encode the colors and directions of egdes by simple
subgraphs: We assign a different tree 7, to every vertex color ¢, and both in G
and H pend an isomorphic copy of T, to each vertex u such that C'(u) = ¢. Then
we assign a different number n. > 1 to every edge color ¢, and we replace every
undirected edge of color ¢ by a path of length n.. Colors coresponding to directed
edges will have assigned n. > 2, and we pend a new tree on the second vertex
of each path of length n, (second from the tail determined by the orientation of
the edge). In this way we obtain simple undirected graphs U(G) and U(H) such
that G covers H if and only if U(G) =2 U(H). See Figure 1 for an example. Thus
we may conclude:

Corollary 10. To achieve a complete characterization of the complexity of graph
covering problems for simple undirected graphs, it is necessary and sufficient
to give a complete characterization of the H-cover problem for colored directed
multigraphs H of minimum degree > 3.



Fig. 1. A 21-vertex simple graph A encoded as a 2-vertex cdm-graph C, and vice-versa.
Pending trees in graph A correspond to colored vertices in graph B. Paths of degree
two in graph B correspond to colored directed edges and loops in graph C.

4 Two-vertex Graphs

To illustrate the methodology, we will now give a complete characterization of
the complexity of the H-cover problem for cdm-graphs H with two vertices.
(The case of H having one vertex only is straightforward - in such a case G
covers H if and only if it has the same degree refinement as H.) Suppose H has
two vertices, say L and R. For any edge color ¢, let I (r¢) be the number of
loops of color ¢ around the vertex L (R, respectively), let m® be the number of
edges of color ¢ between L and R when edges of color ¢ are undirected and let
m§ (m¢) be the number of directed edges of color ¢ starting in L and ending
in R (starting in R and ending in L) when edges of color ¢ are directed. (Thus
deg°L = 2]°+m°, deg° R = 2r° +m¢ in case of edges of color ¢ being undirected,
and deg®™ L = I°+mf, deg®™ R = r°4+m¢, deg®" L = I°+m¢, deg°t R = r°+mf in
case of edges of color ¢ being directed.) We denote by H¢ the subgraph induced
by the edges and loops of color c.

Theorem 11. If

(a) C(L) # C(R), or

(b) I¢ # ¢ or m§ # mS for some color ¢, or

(c)m® =0 (mf=ml =0)orl°=r°=0o0rl°=r°=mf=mé =1 for
every color ¢
then the H -cover problem is polynomially solvable. It is NP-complete in all other
cases.



In other words, assuming P # N P, the H-cover problem is polynomial iff H¢
is non-regular for some color ¢ or each H, is either bipartite, or disconnected,
or is regular of indegree 2 and outdegree 2. Rewording once more, the H-cover
problem is NP-complete iff H¢ is regular for every ¢ and there is a color ¢ for
which H¢ is connected nonbipartite and of degree at least 3 (resp. both indegree
and outdegree at least 3). We will prove this result in several Lemmas. Note
that it also follows that in the case of two-vertex cdm-graphs H, the H-cover
problem is NP-complete if and only if H¢-cover is NP-complete for at least one
edge-color c.

4.1 The Polynomial Cases

Lemma12. If
(a) C(L) # C(R), or
(b) 1€ # ¢ or m§ # m& for some color c,
then the H-cover problem is polynomially solvable.

Proof. In both cases the vertices L and R are distinguishable in the degree
partition of H. (This is trivial in case (a) as then they are distinguished by their
colors. For case (b), note that deg®L = 21°+m* = 2r°+m° = deg®R implies [° =
r¢ if ¢ is a color of undirected edges, while deg®™ L = [°+m{ = r°+m{ = deg°™ R
and deg®" L = I° + m¢ = r° + m{ = deg°t R imply m{ = m¢ and consequently
¢ =rc if ¢ is a color of directed edges.) It follows that G covers H if and only if
G has the same degree refinement as H, and this can be decided in polynomial
time.

The following lemma is a special case of a more general theorem [10]. We
include a brief sketch of the proof for the sake of completeness.

Lemma1l3. If

(i) C(L) = C(R), and

for every color c,

(1) 1° = r° and m{ = m¢, and

(i) mc =0 (m{f =mS =0) orI°=r°=0o0rl°=r*=mf=ml =1
then the H-cover problem is polynomially solvable.

Proof. In this case H is symmetric and the degree partitions of G and H have
each only one block. In particular, for any covering projection of G onto H,
the mapping that interchanges the target vertices L and R is again a covering
projection.

We will show how to reduce the H-cover problem to 2-SAT (which is well
known to be solvable in polynomial time). Given a graph G which has the same
degree refinement as H, we introduce a variable z,, for every vertex u € V(G). We
then construct a formula #(G) over these variables so that G covers H if and only
if #(G) is satisfiable, and in particular a covering projection f : V(G) — V(H)
would correspond to a satisfying truth assignment so that x,, is true iff f(u) = L.



Our &(G) will be a conjuction of subformulas #(G) = &, A $o A P3 defined as
follows:

For every edge color ¢ such that m® =0 (or m{ = m§ = 0 in case of directed
color), ¢, will contain clauses

(Zw V 2zy) A (mzy V )

for any pair of vertices u,v € V(G) connected by an edge e € F(G) U L(G) (or
e € D(Q)) of color ¢ (i.e., u(e) = {u,v} resp. p(e) = (u,v)). Indeed, these two
clauses guarantee that f maps u and v onto the same vertex of H.

For every edge color ¢ such that [° = r® = 0, &5 will contain clauses

(y V ) A (g V "2y)

for any pair of vertices u,v € V(G) connected by an edge e € F(G) U L(G)
(or e € D(@)) of color ¢ (i.e., u(e) = {u,v} resp. p(e) = (u,v)). These clauses
guarantee that f maps u and v onto distinct vertices of H.
Finally, for every directed edge color ¢ such that I =r° =mj =m{ =1, &,
will contain clauses
(T V Zy) A (0T V )

for any pair of vertices u,v € V(G) connected by directed edges e,e’ € D(G)
of color ¢ to a common neighbor z so that u(e) = (u, 2) and p(e') = (v,2) (or
u(e) = (z,u) and p(e') = (z,v)). These clauses guarantee that f maps u and v
onto distinct vertices of H.

If G covers H then @ is obviously satisfiable. On the other hand, a satisfying
truth assignment yields a vertex-covering projection of G onto H. It follows from
Theorem 3 that G covers H in such a case.

4.2 The NP-complete Cases

For the NP-complete cases, we assume that H is symmetric, i.e., C(L) = C(R),
I° = r° and m§ = m¢ for every edge color ¢ (the last equality is required for
directed edge colors only). The impact of the first lemma is that we may study
color-induced subgraphs separately.

Lemma 14. The problem H-cover for two-vertex cdm-graphs is NP-complete
provided HC-cover is NP-complete for some edge color c.

Proof. Given a graph G subject to the question of the existence of a covering
projection from G to H¢, we construct G from two copies of G (say G and Ga
with vertices named u; resp. ug for u € V(G)). For every edge color € # ¢, we
add [ = r© loops of color € to every vertex of G , and for every vertex u € V(G),
we add m® undirected edges of color ¢ joining u; and us (in case of an undirected
edge color €) and we add m; = m$ directed edges of color ¢ from u; to up and
the same number from us to u; (in case of a directed edge color ¢). Since H
is symmetric, fo : V(G2) — V(H) defined by fa(u2) # fi(u1) is a covering
projection of G onto H® whenever f; : V(G1) — V(H) is a covering projection

from Gy. It follows that G covers H if and only if G covers H®.
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Fig. 2. Base NP-complete cdm-graphs.

In view of Lemmas 12, 13 and 14, it suffices to show that H-cover is NP-
complete for monochromatic H such that

(1) I=r>1and m > 1 (in case of undirected graph H), or

(2)l=r>1andm; =m, >1and l+m; > 3 (in case of directed H). We will
show the NP-completeness by induction, starting with the graphs depicted in
Fig. 2. For the sake of simplicity, we introduce notation H (I, m) for an undirected
graph with [ loops around L and R and m edges joining L and R, and H(I,m)
for a directed graph with [ directed loops around L and R and m directed edges
from L to R and m directed edges from R to L.

Proposition 15. [1] The H(1,1)-cover problem is NP-complete.

Though the NP-completeness result shown in [1] concerns multigraphs on
the input, it is not difficult to show that the problem is NP-complete even if the
input graph is simple, i.e., it is NP-complete to decide if the vertices of a simple
cubic graph may be colored by two colors so that every vertex has two neighbors
of the same color and one neighbor of the opposite color. This modification will
be used in the sequel.

Lemma16. The H(1,2)-cover problem is NP-complete.

Proof. Let G be a cubic graph subject to the question if G covers H(1,1). Take
two copies of G, say G1 and Go (with vertices u; resp. us for every u € V(G))
and construct G from G1 U G2 by connecting each pair ui,us by a copy of
the connector graph depicted in Fig. 3. This figure also shows a coloring of the
connector graph such that every vertex has two black and two white neighbors.
If f: G — H(1,1) is a covering projection, define f : G — H(1,2) so that

f(u1) = f(uz) = f(u) for u € V(G) and f(z) = f(u) if 2 is an inner vertex



of the connector connecting u; and up marked black in Fig. 3. This f~is then a
covering projection of G onto H(1,2).

(5 U2

Fig. 3. Connector gadget for H(1,2)-cover.

Suppose on the other hand that f : G — H (1,2) is a covering projection.
One can easily check that (upto the color reversal) the coloring depicted in
Fig. 3 is the only coloring such that every inner vertex has two black and two
white neighbors. Hence every vertex u; has two neighbors of its own color and
one neighbor of the opposite color in Gy, and f : G — H(1,1) defined by
f(u) = f(uy) is a covering projection of G onto H(1,1).

Lemma 17. The H(1,m)-cover problem is NP-complete for every m > 3.

Proof. Let G be a cubic graph subject to the question if G covers H(1,1). Take
two copies of G, say G1 and G2 (with vertices u; resp. us for every u € V(G))
and construct G from G1 U G4 by connecting each pair u;,us by m — 1 parallel
edges. o

If f: G — H(1,1) is a covering projection, define f : G — H(1,m) so that
flu) = f(u), Fluz) # F(u) for u € V(G). Since interchanging the values in
a covering projection onto H(1,1) results again in a covering projection, the
restrictions of f to Gy and Gs are both covering projections onto H(1,1). Each
uy (u2) has other m — 1 neighbors of the opposite color in G2 (resp. G1). Hence
this f is a covering projection of G onto H (1,m).

Suppose on the other hand that f G- H (1,m) is a covering projection.
The pairs u;,us are the only pairs of vertices joined by parallel edges, and so
f(uy) # f(us) for every u € V(G). Hence every vertex u; has two neighbors of
its own color and one neighbor of the opposite color in G1, and f: G — H(1,1)
defined by f(u) = f(u1) is a covering projection of G onto H(1,1).

Proposition18. The H (I, m)-cover problem is NP-complete for everyl > 1,m >
1.

Proof. Let G be a multigraph subject to the question if G covers H(1,m). Con-
struct G from G by adding [—1 loops to each vertex of G. Any f : V(G) — {L, R}



is a covering projection of G onto H(1,m) if and only if it is also a covering pro-
jection of G onto H (I, m).

This concludes the case of undirected graphs. For the rest of the section, we
assume that H is directed.

Proposition 19. [7] It is NP-complete to decide if the vertices of a simple cubic
graph may be colored by two colors so that every vertex has exactly one neighbor
of its own color.

Lemma 20. The H(1,2)-cover problem is NP-complete.

Proof. Let G be a simple cubic graph and let G be the symmetric orientation of
G (i-e., every edge e of G is replaced by two directed edges joining the endpoints
of e in opposite directions). Obviously, G covers H(1,2) if and only if G allows
a coloring described in Proposition 19.

Lemma 21. The H(1,3)-cover problem is NP-complete.

Proof. Take 6 copies of a cubic graph G, say G;,i = 1,2,...,6 (with vertices
named u; € V(G;),i = 1,2,...,6 for u € V(G)). Construct a 4-regular graph
G from their disjoint union by adding connector graphs depicted in Fig. 4. We
claim that the vertices of G can be colored by two colors so that each vertex has
exactly one neighbor of its own color and three neighbors of the opposite color
if and only if the vertices of G' can be colored by two colors so that each vertex
has exactly one neighbor of its own color.

Ui Uy

uy O «—> 942 us
Uy ug

us Ug

Fig. 4. Connector gadget for H(1, 3)-cover.

Indeed, suppose the vertices of G are colored so that each vertex has 3 neigh-
bors of the opposite color. Then the middle two vertices of the connector graph
have to get different colors. It follows that u; has the same color as ug, and
hence u; gets different color then u;. Therefore u; has exactly one neighbor of
its own color and 2 neighbors of the opposite color in G;. Thus the restriction
of this coloring to G yields a coloring of G that satisfies Proposition 19.

On the other hand, if G admits such a coloring, we color the vertices of
G1,G2,G3 accordingly and the vertices of G4,G5 and Gg with the colors in-
terchanged. It is seen from the coloring depicted in Fig. 4 that this coloring



of Ule G, can be extended to a coloring of G in which every vertex has one
neighbor of its own color and 3 neighbors of the opposite color.

Finally, we let G’ be the symmetric orientation of G. It follows that G’ covers
H(1,3) if and only if G allows coloring satisfying Proposition 19, and it follows
from this proposition that H(1, 3)-cover is NP-complete.

Lemma 22. The H(1,m)-cover problem is NP-complete for every m > 4.

Proof. Let G be a directed graph subject to the question if G covers H(1, 2). Take
two copies of G, say G1 and G2 (with vertices u; resp. ug for every u € V(G))
and construct G from G1 U G5 by connecting each pair uy,us by m — 2 parallel
edges directed from u; to us and m — 2 edges directed from us to u;.

If f: G — H(1,2) is a covering projection, define f : G — H(1,m) so that
fluy) = F(uw), Flug) # f(u) for u € V(G). Since interchanging the values in
a covering projection onto H(1,2) results again in a covering projection, the
restrictions of f to Gy and G are both covering projections onto H(1,2). Each
u1 (u2) has other m — 2 neighbors of the opposite color in G (resp. G1). Hence
this f is a covering projection of G onto H(1,m).

Suppose on the other hand that f : G — H(1,m) is a covering projection.
The pairs ui,us are the only pairs of vertices joined by parallel edges, and so
f(u1) # f(u2) for every u € V(G). Hence every vertex u; has one neighbor of its
own color and two neighbors of the opposite color in G, and f : G — H(1,2)

defined by f(u) = f(u1) is a covering projection of G onto H(1, 2).
Lemma 23. The H(2,1)-cover problem is NP-complete.

Proof. Let G be a simple cubic graph and let G be the symmetric orientation
of G. Then G covers H(2,1) if and only if G allows a coloring such that every
vertex has two neighbors of its own color and one neighbor of the opposite color,
i.e., if G covers H(1,1). Thus the statement follows from Propostion 15.

Proposition 24. The H(l,m)-cover problem is NP-complete for everyl > 1,m >
1 such that Il +m > 3.

Proof. Consider first the case m > 1. Let G be a directed multigraph subject
to the question if G covers H(1,m). Construct G from G by adding [ — 1 loops
to each vertex of G. Any f : V(G) — {L, R} is a covering projection of G onto
H(1,m) if and only if it is also a covering projection of G onto H(I,m). The
statement then follows from Lemmas 20, 21 and 22.

If m =1, we have [ > 2. Again, let G be obtained from G by adding [ — 2
loops to each vertex of G. Any f: V(G) — {L, R} is then a covering projection
of G onto H(2,1) if and only if it is also a covering projection of G onto H(I, 1).
The statement then follows from Lemma 23.



5 Conclusion and Further Research

The primary purpose of this paper was to introduce covers of colored directed
multigraphs, and to justify their introduction by showing that the discussion of
their complexity is necessary for a complete solution of the complexity of covers
of simple undirected graphs. We then illustrated our methodology by showing a
complete discussion of the complexity of cdm-graph covers for two-vertex graphs
(note that this classification contains as a proper substatement the classification
of all simple graphs with exactly two vertices of degree higher than 2). Several
of the lemmas used in the proof of this classification theorem can be actually
stated in more general form, we have decided to state the simplified versions in
order to keep the length of the paper reasonable. A full version of Lemma, 13 will
appear in [10]. It is rather a coincidence that all NP-complete 2-vertex graphs
are symmetric. This is not the case for 3-vertex graphs. There the classification
is more involved, as shown in [11]. In particular, it is no more true for 3-vertex
cdm-graphs that H-cover is NP-complete if and only if H¢-cover is NP-complete
for some edge color c.
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