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Abstract

For a fixed graph H, the H-cover problem asks whether an input graph G al-
lows a degree preserving mapping f : V(G) — V(H) such that for every v € V(G),
f(Ng(v)) = Ng(f(v)). In this paper we design efficient algorithms for certain graph
covering problems according to two basic techniques. The first is based in part on a
reduction to the 2-SAT problem. The second technique exploits necessary and sufficient
conditions for the partition of a graph into 1-factors and 2-factors. For other infinite
classes of graph covering problems we derive N'P-completeness results by reductions
from graph coloring problems. We illustrate this methodology by classifying the com-
plexity of all H-cover problems defined by simple graphs H with at most 6 vertices.

1 Motivation and overview

For a fixed graph H, the H-cover problem admits a graph G as input and asks about the
existence of a “local isomorphism”: a labeling of vertices of G by vertices of H so that for
every vertex v € V(G) the multiset of labels of its neighbors is equal to the neighborhood
(in H) of the label of v. We trace this concept to Conway and Biggs’ construction of infinite
classes of highly symmetric graphs, see Chapter 19 of [3]. Graph coverings are special cases of
covering spaces from algebraic topology [15] and have many applications in topological graph
theory [6]. In an algorithmic framework, graph coverings have been applied by Angluin to
study “local knowledge” in distributed computing environments [2] and by Courcelle and
Métivier [4] to show that nontrivial minor closed classes of graphs cannot be recognized
by local computations. Abello et al. [1] raised the question of computational complexity
of H-cover problems, noting that there are both polynomial-time solvable (easy) and N P-
complete (difficult) versions of this problem for different graphs H. In [10] we initiated a
general study of the computational complexity of H-cover problems. In a later paper [11]
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we made significant headway on the conjecture that H-cover problems are N P-complete
for k-regular graphs whenever £ > 3. A very recent paper investigates the complexity of
the graph covering problem for colored graphs [12].

In this paper, we extend and complete the methodology introduced in [10] to analyze
the complexity of certain graph covering problems. The paper is organized as follows. First,
we introduce our vocabulary by giving the necessary definitions in Section 2. In designing
efficient algorithms that solve easy graph covering problems, we reduce those problems to
regular factorization problems and/or to the 2-SAT problem. We present the corresponding
results in Section 3. To prove N P-completeness of the difficult graph covering problems,
we use polynomial time reductions from known N P-complete restrictions of vertex and
edge coloring problems and also reductions between covering problems. These latter N P-
completeness results are based on properties of the automorphism groups of the relevant
graphs. We set up a paradigm to construct such reductions and present our findings in
Section 4. In the appendix, we give a catalogue of the complexity of the H-cover problem
for all simple graphs H with at most 6 vertices. There are 208 such graphs, with about
100 defining covering problems with non-trivial polynomial time solution algorithms and
36 defining N'P-complete covering problems (the remaining graphs defining trivial covering
problems).

2 Definitions

We use standard graph terminology [7], and consider simple, undirected graphs only. For
a vertex v € V(G) of a graph G, let Ng(v) = {u : wv € E(G)} be the set of neighbors of v
and degg(v) = |Ng(v)| its degree. For S C V(G) let G[S] denote the graph induced in G by
S, and let G\ S = G[V(G)\ S]. For F C E(G), we denote by G \ F the spanning subgraph
of G with edges {uv € E(G) : wv ¢ F}. If E(G) = 0 then G is called a discrete graph.
The graph G has vertices V(G) and edges {uv : uwv € E(G)}. Aut(G) is the automorphism
group of G. By a 2-path we mean a path whose inner vertices have degree 2 and whose end
vertices (not necessarily distinct) have degrees greater than 2; the number of edges in the
2-path is its length.

A graph @G is said to cover a graph H if there is a function (called covering projection)
f : V(G) — V(H) which preserves the identity of the neighborhood of any vertex v of
G, {f(u)|u € Ng(v)} = Ng(f(v)) with degg(v) = degy(f(v)). Fixing the graph H, and
allowing any graph G as the input, one can pose the question: “Does G cover H?” The
computational complexity of this problem, called the H-cover problem for the particular
graph H, is the subject of this paper.

The degree partition of a graph is the partition of its vertices into the minimum number
of blocks Bi,...,B; for which there are constants r;; such that for each 4,5 (1 <14,j <t)
each vertex in B; is adjacent to exactly r;; vertices in B;j. The t x t matrix R (R[4, j] = 7;)
is called the degree refinement.

The degree partition and degree refinement of a graph are easily computed by a stepwise
refinement procedure. Start with vertices partitioned by their degree values and keep refin-
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Figure 1: G labeled by a covering projection onto H, their common degree refinement R
and the degree partition of H.

ing the partition until any two nodes in the same block have the same number of neighbors
in any other given block. See Figure 1 for an example. Graph coverings are related to
degree partitions and degree refinements (see, for instance, Leighton [13]):

Fact 2.1 If f is a covering projection from G onto H then H and G have the same degree
refinement and have degree partitions By, Ba, ..., By and By, B}, .., B} so that for everyv € B;
we have f(v) € By, i = 1,2,...,t.

Without loss of generality, we will consider only connected graphs, because of the fol-
lowing observations (whose proofs are left to the reader.)

Fact 2.2 Given a connected graph H, a graph G covers H if and only if every connected
component of G covers H.

Fact 2.3 For a disconnected graph H, the H-cover problem is polynomially solvable (N'P-
complete) if and only if the H;-cover problem is polynomially solvable (N'P-complete) for
every (for some) connected component H; of H.

3 Efficient algorithms

For a given graph G and a fixed graph H, it is easy to compare degree partitions and degree
refinements in polynomial time. Surprisingly, for many graphs H, the necessary condition
for the existence of a covering given by Fact 2.1 is also sufficient. For many other graphs H
(including some infinite classes of graphs), for which those conditions are not sufficient, we
are able to design an efficient solution algorithm paradigm by constructing an equivalent
instance of the 2-SAT problem, and/or by reducing to a factorization problem in a regular
graph. Before we present these results, we note that the only cover of a tree is a graph
isomorphic to it, and the only covers of a cycle are cycles with lengths divisible by the
length of the cycle. The following observation follows indirectly.



Fact 3.1 For a graph H with at most one cycle, the H-cover problem is solvable in poly-
nomial time.

3.1 Factorization

A spanning subgraph H of a graph G is a k-factor if all vertices of H have degree k. When
k = 1, the 1-factor is often referred to as a perfect matching. The existence of perfect
matchings in bipartite graphs is a subject of the celebrated Konig-Hall theorem. A graph
G is k-factorable if its edges can be partitioned into k-factors. An application of the Ko6nig-
Hall marriage theorem states that a regular bipartite graph is 1-factorable. A classical
result of Petersen states that any 2k-regular graph is 2-factorable. We will use these facts
to show that the obvious necessary conditions are also sufficient for a class of graph covering
problems.

Theorem 3.2 Let H be a graph with all but two vertices of degree 2, and let these two
vertices of higher degree be L and R. Further suppose that for every i > 1, H has l; cycles
of length © which contain L but not R, r; cycles of length © which contain R but not L, and
m; paths of length i between L and R. Then a graph G covers H if and only if the vertices
of degree > 2 in G can be partitioned into classes U and V so that for every 1,

1) every vertezx of U is incident with m; 2-paths of length i ending in V,

2) every vertex of U is incident with 2l; 2-paths of length i ending in U (a cycle through
one vertez of U is counted as two 2-paths),

3) every vertex of V is incident with m; 2-paths of length i ending in U,

4) every vertex of V is incident with 2r; 2-paths of length i ending in V.

Proof. Suppose f is a covering projection of G onto H. Set U = f~}(L) and V = f~1(R),
conditions 1-4) then obviously hold. We will prove that these obvious necessary conditions
are also sufficient.

Suppose on the other hand that (U, V) is a partition satisfying 1-4). We will set f(z) = L
for z € U and f(z) = R for z € V. It remains to show that the vertices of degree 2 can
be also covered properly. Consider a particular value of ¢ and the subgraph of G induced
by U,V and the vertices of degree 2 on the 2-paths of length i. We construct an auxiliary
multigraph G* with vertex set U UV and with an edge edge zy € E(G?) iff z and y
are connected by a 2-path of length ¢ in G. It follows from 1) and 3) that the bipartite
multigraph G*(U, V) induced in G by the edges between U and V is m;-regular. Similarly,
2) implies that the subgraph G*(U) induced on U is 2I;-regular, and 4) implies that G*(V)
is 2r;-regular.

The factorization theorems of Petersen yield that G(U) can be partitioned into I; 2-
factors, G*(V) into r; 2-factors and G*(U, V) into m; 1-factors. The vertices of the k-th
2-factor in G*(U) (resp. G*(V')) will map in the obvious way onto the k-th cycle around L
(resp. R). The vertices of the k-th 1-factor of G*(U, V) will map onto the vertices of the
k-th 2-path between L and R. =



Theorem 3.3 Let H be a graph as in Theorem 3.2. If

a) l; # r; for some 1, or

b) m; =0 for every i such that l; =7; >0
then there is at most one partition (U,V) satisfying (1-4) of Theorem 3.2 and it can be
found, if it exists, in polynomial time. Consequently, the H-cover problem is polynomially
solvable.

Proof. We may assume that the input graph G has the same degree refinement as H (this
can be checked in polynomial time). Each of the conditions a) and b) implies that the
partition of the vertices of degree > 2 in G into U and V is unique: In case a), L and R
belong to different classes of the degree partition of H and therefore are distinguishable in
G as well. In case b), we may assume that I; = r; for every i. Then every path of length
i such that I; # 0 connects vertices from the same class of the partition and every path of
length j such that m; # 0 connects vertices from different classes. The uniqueness of the
(U, V) partition then follows from the connectedness of G, and this partition can be found
by breadth first search through G starting in an arbitrary vertex. =

Corollary 3.4 Let H be a graph as in the assumption of Theorem 3.2 and let H' be a graph
obtained from H by pending trees T, Tr rooted in vertices L and R, respectively. If

a) the rooted trees Ty, Tr are nonisomorphic, or

b) l; # r; for some i, or

c) m; =0 for every i such thatl; =7; >0
then there is at most one partition (U,V') satisfying (1-4) of Theorem 3.2 and it can be
found, if it exists, in polynomial time. Consequently, the H'-cover problem is polynomially
solvable.

Proof. As noted in the beginning of Section 3, the only cover of a tree is the tree itself,
and this observation holds true also for rooted trees. Thus given G, one first locates all
pending subtrees isomorphic to Ty, or Tr. If T, % Tg, L and R belong to different (and
hence 1-element) blocks of the degree partition of H'. Thus the subtrees in G determine
the partition into U and V which satisfies (1-4) of Theorem 3.2 (if such a partition exists
at all). If Tf, = Tg, their isomorphic copies in G pend on vertices that would map onto L
or R anyway. We may thus forget about the pending subtrees and follow Theorem 3.3. =

3.2 2-satisfiability

The 2-SAT problem (where clauses have at most two variables) is solvable in polynomial
time. We can solve a large class of H-covering problems by a polynomial-time reduction to
an instance of the 2-SAT problem.

Theorem 3.5 [10] The H-COVER problem is solvable in polynomial time if every block of
the degree partition of H contains at most two vertices.



Proof. Denote the vertices of the i-th block B; of H by L;, R; (or L; only, if B; is a
singleton). Suppose that G has the same degree refinement as H and its degree partition is
B, Bj, ..., Bj, where the blocks are numbered so that every covering projection sends B,
onto B;, 1 <1 < t. This structure of G can be checked in polynomial time, and G does not
cover H unless it satisfies these assumptions.

The crucial part of the algorithm is to decide which vertices of B; should map onto L;
and which onto R;. This can be done via 2-SAT. For every vertex u of G, introduce a
variable z,,. In a truth assignment ¢, these variables would encode

_ true if f(u) =1L,
¢zu) = { false  if f(u) = R 1)

for a corresponding covering projection f (here ¢ is such that u € B]). We construct a
formula ® as a conjunction of the following subformulas:

1. (zy) for every u € B] such that B; is a singleton;

2. (zy Vay) A (—zy V ) for any pair of adjacent vertices u,v which belong to the
same block B; (i.e., L;R; € E(H));

3. (zy V ) A (mzy V ) if v and v belong to distinct blocks (say u € B; and
v € Bj) and there are exactly the two edges L;L;, R;R; between B; and B; in H;

4. (zy V &) A (g V ) if w and v belong to distinct blocks (say u € Bj and
vE B;) and there are exactly the two edges L;R;, R;L; between B; and B; in H;

5. (zw V &y) A (0 V 12y) if v and w belong to the same block (say B;) and are
both adjacent to u which belongs to a block (say B;) such that L;L;, L;R; € E(H).

Note that in case 2, every u € B has exactly one neighbor v in the same block, in cases
3 and 4, every u € B; has exactly one neighbor v € By, and in case 5, every u € B; has
exactly two neighbors v,w € B;.

It is clear that ® is satisfiable if and only if f defined by (1) is a covering projection
from G onto H. The clauses derived from 2 guarantee, if L;R; € E(H), that every vertex
mapped on L; has a neighbor which maps onto R; and vice versa, the clauses from 3-5 control
adjacencies to vertices from different blocks, and the technical clauses from 1 control the
singletons. =

Using a similar technique we can actually solve a larger class of problems, as exemplified
by the next theorem.

Theorem 3.6 Let H be a graph with all but 4 vertices of degree 2. Let these four vertices
be a,b,c,d. For every i > 1, let ni(zy) be the number of 2-paths of length i between z and
y (z,y € {a,b,c,d}). Suppose that for every i, one of the following holds

1) ni(aa) = ni(bb) = ni(cc) = ni(dd) and n;(zy) =0 otherwise;



2) ni(ab) = n;(cd) # 0 and n;(zy) = 0 otherwise;
3) ni(ac) = n;i(bd) # 0 and n;(zy) = 0 otherwise;
4) ni(ad) = n;(bc) # 0 and ni(zy) = 0 otherwise;
5) ni(ab) = ni(bc) = ni(cd) = ni(ad) = 1 and n;(xy) = 0 otherwise.

Then the H-cover problem is solvable in polynomial time.

Proof. Given a graph G subject to the question if G covers H, we first check if G has the
same degree refinement as H. In the affirmative case denote by X the set of vertices of G of
degree greater than 2. Note that the vertices a, b, c,d form a block of the degree partition
of H, and hence X is a block of the degree partition of G. The graph G consists of these
vertices (which will map onto a, b, c or d) and of 2-paths connecting these vertices. Every
vertex of X is incident with >, 2n;(aa) +n;(ab) + n;(ac) +n;(ad) 2-paths leading to other
vertices of X. -

For each z € X, introduce two boolean variables, ¢(z) and 1(z). The encoding of the
truth values will be

¢(z) = true iff f(z) € {a,c}, (2)
P(z) = true iff f(z) € {a, b}, (3)

for a tentative covering projection f.
We construct a boolean formula as follows. For every ¢ such that 1) holds, ®; will
contain the conjuction of subformulas

(@(2) V =9(y)) A (=(2) V 8(y)) A (%(z) V ~(y)) A (~(z) V $(y))

for all pairs of vertices z,y € X connected by a 2-path of length ¢ in G.
For every i such that 2) holds, ®; will contain the conjuction of subformulas

(@(x) V ¢(y)) A (=g(z) V ~6(y)) A ($(z) V ~(y)) A (~(z) V $(y))

for all pairs of vertices z,y € X connected by a 2-path of length ¢ in G.
For every i such that 3) holds, ®3 will contain the conjuction of subformulas

(¢(z) V =¢(y)) A (=d(z) V $(y)) A ($(z) V 9 (y)) A (=(z) V ~9(y))

for all pairs of vertices z,y € X connected by a 2-path of length ¢ in G.
For every ¢ such that 4) holds, ®4 will contain the conjuction of subformulas

(¢(z) V o(y)) A (=(2) V =9(y)) A ($(z) V ¢ (y)) A (—(z) V ~4(y))

for all pairs of vertices z,y € X connected by a 2-path of length 7 in G.
For every i such that 5) holds, ®5 will contain the conjuction of subformulas

(¢(z) Vv ¢(y) A (—g(z) V —4(y))



for pairs z,y € X connected by 2-paths of length ¢, and

(9(2) Vo (y)) A (=9(2) V =(y))

for pairs y, z € X connected by 2-paths of length i to the same third vertex in G.

We claim that ® = &1 A &3 A 3 A &4 A P35 is satisfiable if and only if G covers H.

Given a covering projection f : G — H, a truth valuation defined by (2) and (3) satisfies
®. Indeed, ®, is satisfied iff ¢(z) = ¢(y) and ¥(z) = ¥(y), ie., if f(z) = f(y), for every
pair z,y € X connected by a 2-path of length 7 in G. One can easily check that ®s,...,®5
are satisfied as well.

Suppose on the other hand that @ is satisfied by some truth valuation of its variables.
Let f: X — {a,b,c,d} be a mapping derived from this valuation via (2) and (3). For the
remainder of the proof let z € X be a vertex such that f(z) = a (the cases f(z) = b,c or
d are similar). If 7 is such that 1) holds, it follows from ®; that f(y) = a for every y € X
connected to z by a 2-path of length 7. Hence z is incident to 2n;(aa) 2-paths of length i
leading to vertices mapped onto a (cycles through z are counted as two paths).

If 2) holds for i, 5 guarantees that ¢(z) # ¢(y) and ¥(z) = ¢¥(y), i.e., f(y) = b, for
every y € X connected to z via a 2-path of length i. Hence z is incident to n;(ab) 2-paths
of length 7 leading to vertices mapped onto b. Similar arguments work for 3) and 4).

If 5) holds for i, ®5 guarantees that ¢(z) Z ¢(y) and ¢(z) Z ¢(z) for y, z connected to =
via 2-paths of length . Thus f(y), f(z) € {b,d}. But ®5 also guarantees that ¥ (z) # ¥(y),
i.e., f(y) # f(z). Hence z is incident to one 2-path of length i leading to a vertex mapped
onto b and to one 2-path of length ¢ leading to a vertex mapped onto d. This shows that
the vertices of X are mapped properly, and an argument analogous to the argument in the
proof of Theorem 3.2 shows that the vertices of degree 2 can be mapped onto the vertices
of degree 2 in H so that the entire mapping is a covering projection.

It remains to note that all clauses in ® have size 2, hence the satisfiability of ® is an
instance of 2-SAT and thus solvable in polynomial time. =

4 NP-completeness

In this section, we show the inherent difficulty of H-cover problems for certain classes of
graphs H. Since it is easy to verify a purported solution to the problem, the H-cover
problem is in NP, for any graph H. We first mention some earlier results.

Theorem 4.1 [9] For every k > 4, the Kj-cover problem is N'P-complete.

Theorem 4.2 [11] For every fized k > 2 and every k-regular graph H, the H-cover problem
is NP-complete if

H is (1+ | %])-edge connected, or

H is k-edge colorable.



4.1 Reductions from coloring problems

In this section, we construct reductions to H-cover (for different classes of H) from several
known NP-complete problems: edge coloring, vertex coloring and H-coloring. The H-
coloring problem asks for the existence of a labeling of vertices of G by vertices of H,
h : V(G) — V(H), which preserves adjacencies, uv € E(G) = h(u)h(v) € E(H). This
problem is easy if H is bipartite but AP-complete otherwise, as shown by Hell and Nesetiil
[8]. In this setting, the vertex k-coloring problem is equivalent to the Kj-coloring problem.
The edge k-coloring problem asks if each edge of a graph can be assigned one of k colors
so that no two edges incident with the same vertex are assigned the same color. For k > 2,
edge k-coloring of k-regular graphs is N'P-complete [14]. The following observation on
automorphisms of H with the composition of f and 7 being 7 o f(v) = 7(f(v)) is used in
our reductions.

Fact 4.3 If G covers H by f : V(G) — V(H) and m € Aut(H) then wo f is also a covering
projection from G onto H.

For fixed H, the reductions are by vertex and edge gadget construction, yelding a graph
G' which covers H if and only if a given graph G can be colored appropriately. The general
outline of the construction is as follows:

1. Define vertex gadget for a vertex v € V(G) by a subgraph of a graph that covers H,
with degg(v) “ports” (interfaces with edge gadgets). Reductions from edge coloring
require that a covering projection onto H distinguishes between different ports and
allows for the property of automorphisms of H as per Fact 4.3. Reductions from
k-vertex coloring require that a covering projection onto H acts equivalently on each
port but provides k distinct mappings on the vertex gadget.

2. Define edge gadget connecting two ports of adjacent vertex gadgets in G’ by a subgraph
of a graph that covers H so that the “only if” property of the reduction is fulfilled.
This amounts to ensuring that a covering projection onto H acts on the two ports
equivalently in the case of a reduction from edge coloring, and distincly in the case of
vertex coloring.

3. Neighborhoods left unspecified are completed, possibly with added vertices, so that
the “if” direction of the reduction is met (this amounts to extending any partial
covering projection defined in step 2 to a cover of H).

Theorem 4.4 Let Q) be a block in the degree-partition of a graph H and let there exist
an S C V(H) such that for every v € Q, N(v) \ Q@ = S. Then the H-cover problem is
NP-complete in each of the following cases.

(a) H[Q)] is a discrete graph, |Q| > 3 and |S| > 3;

(b) H|Q] is a perfect matching, |Q| > 4 and |S| > 2;

(c) H[Q] is a cycle, |Q| > 3 and |S| > 1;

(d) H[Q] is a complete graph, |Q| > 4.
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Figure 2: Gadgets for case H[Q)] discrete, |Q| = 3, with vertices of @ marked ¢

The proofs of cases (a),(b) and (c) appear immediately below, while the proof of case (d)
appears as a corollary to Theorem 4.8 in the next section.

Proof. (a) H[Q] is a discrete graph on |Q| = k£ > 3 vertices, each of them adjacent to
the same set S of at least three vertices. For a given k-regular graph GG, we construct a
graph G’ such that G’ covers H if and only if G is k-edge colorable. Let {z,y,2} C S and
Q = {q1,---,qx}. The vertex gadget V, for a vertex v € V(G) will consist of an almost
complete copy of H but lacking the edges connecting =z and @, zqi,...,zqr. The edge
gadget for an edge uv € E(G) will consist of two almost complete copies of H, call them
Eyy, Eyy, each lacking the edges zq; and yqo,-..,yqr.- The edges yqo, ..., yqr will instead
connect together E,, and E,, by a total of 2(k — 1) edges, ensuring that in a successful
cover of H we have both copies of ¢, in E,, and E,,, labeled by the same vertex (the
copy of y in E,, is adjacent to the copy of ¢; in E,, and all its other adjacencies in Q
are in F,,. The vertex z of E,, has all its Q-neighbors in E,,, and so the @Q vertices of
E,, map bijectively onto @ of H. Thus the only non-adjacency of y € E,, among @ in
E,,, namely the copy of ¢;, must have the same label as ¢; in E,,.) The edge gadget is
connected to the vertex gadgets by an edge from z of V,, to ¢; of E,, and an edge from x of
E,, to one of the Q-vertices of V,, say q,, (the other Q-vertices of V,, are connected to the
remaining edge gadgets adjacent to V,,). Similar edges zq; and zq,, are added for E,,,V,,
completing the construction of G'. See Figure 2 for an example where |Q| = 3. Note that
in a covering projection from G’ onto H the two copies of g; in the gadget of edge uv and
Qa.» 9a, in vertex gadgets of v and u, respectively, all receive the same label, corresponding
to the unique color of edge (u,v).

Assuming G is k-edge colorable with the edge uv being assigned the color ¢ € {1, ..., k}
we label both copies of g; of the edge gadget of (u,v) by g.. Since any permutation of V (H)
which moves only @ is an automorphism of H, this labeling is easily extended to make a
cover from G’ onto H.
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In the other direction, suppose G’ covers H. Since @ is a block in the degree partition
of H and the vertex gadget contains y € S adjacent to all Q)-vertices of the gadget, all
Q-vertices of V,, map onto distinct vertices of H. Thus if we color edge uv of G by the label
of both copies of ¢; in the edge gadget of uv the result is a coloring of E(G) such that edges
incident with the same vertex receive distinct colors. =

Proof. (b) H[Q] is a perfect matching (|Q| > 4) with each vertex of @ adjacent to the
same set S of at least 2 vertices. For |Q| > 6, a reduction from edge J%—coloraubility similar
to the one from case (a) can be easily performed. Therefore we concentrate on |Q| = 4.
Let @ = {a1,b1,a2,b2} with (g) N E(G) = {a1b1,a2b3}. For a given graph G, we construct
a graph G’ such that G can be vertex 4-colored if and only if G’ covers H. Let v € V(G)
with degg(v) = d. The gadget of vertex v contains 2(d + 1) copies of H[Q] and also of
an arbitrarily chosen vertex A € S, call these copies My,..., Ma441 and Ag, A1, ..., A2dy1,
respectively. Let the four vertices of M; be NW;, NE;, SW;, SE;, with edges NW; N E; and
SW;SE;. The copies of H[Q] and A will form a cycle of 6-cycles by having the vertex A;,
for every i, connected to NE;, SE;, NW;.1,SW; 1 (addition modulo 2d + 2). The vertex
gadget contains also d + 2 copies of H \ Q, Lo, L1,Ls,Ls, ..., Lagr1, where L;, contains
the previously described vertex A; for odd 7 and ¢ = 0. Let S; be the copy of S in L;.
Ly and L; play distinct roles and we describe their remaining connections first. Vertices
z € Sp\ Ag are connected to NWy, SWy, NW1, SW1, while vertices z € S1\ A1 are connected
to NEy, SEy, NE1,SE;. Since @ is a block in the vertex partition of H, in a cover of H
the edges of M;, for every i, are sent to edges of H[Q]. Moreover, Ly and L; enforce that
to satisfy neighborhoods of Ay and any = € Sy \ A all edges in My;, for every i, must be
sent to a single edge of H[Q)], while edges of My; 1, for every i, are sent to the other edge of
H[Q]. Vertices z € S;\ A; for i = 3,5, ...,2d — 1 are connected to SE; 1, SW;, SE;, SW;.1,
while any « € Sa441 \ A2441 is connected to SEoq, SWagi1,SFE2411, SWa. This completes
the description of the vertex gadget. Figure 3 gives the construction for a special case of H
a 6-vertex graph, where L; is the graph induced by B; and A;. In a covering projection onto
H, NWy; and NWa;, 2, for every i, must cover the same vertex, since otherwise a vertex
z € Soi41 \ A2iy1 will have two neighbors with the same label. Thus we have a unique label
for NWo;, for every i, which will correspond to the color of v € V(@) for the instance G
of the vertex 4-coloring problem. Note however, that the label of an NWy;,; vertex is not
fixed.

In the vertex gadget the only vertices lacking connections are Ag;, NWa;, NEa;, NWai11,N Egi11
for i =1,2,...,d. The edge gadget for an edge uv consists of two copies of H \ Q, Ly and
LEg, and will provide the remaining connections for some My, , Ma,,+1 from u’s gadget and
Moy, , Moy, 11 from v’s gadget. As,, from u’s gadget and A, from v’s gadget are already
contained in Ly and Lg, one in each. Additionaly, any z € Sw \ Aw is connected to the
four NW vertices of these four copies of H[Q] and any = € Sg \ Ag is connected to the four
NE vertices. This ensures that labels of the NW vertex of M>,, and Mjy,, will differ while
still allowing for any other combination from {a1, by, as,bs}.
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Figure 3: Case H[Q] a matching. Vertex gadget for a vertex v of degree k and color a;
at bottom, edge gadget vertices BW, BE, connected to a vertex colored a2 at top. For
it = 1.k, My; and My;;1 are connected through an edge gadget to another vertex gadget.
Expanding copies of Bz will give the general case H[Q] a matching on 2 edges.

The construction of G’ is completed, see Figure 3. If G' covers H then we color G
using the four colors {a1,b1,az,b2}, with vertex v receiving the same color as the label of
the NWj; vertices in its gadget. By the observations made above, this constitutes a vertex
4-coloring of G. Conversely, if G is vertex colorable by colors {a1, b1, a2,b2}, we label the
NWy; vertices of vertex gadgets accordingly. This labeling can be extended to a covering
projection from G’ onto H, see Figure 3 for an example where the adjacent vertices have
colors a; and ag. =

Proof. (c) H[Q] is a k-cycle (k > 3) with each vertex of @ adjacent to the same set S
of at least one vertex. For a given graph G, we construct a graph G’ such that G can be
vertex k-colored if and only if G’ covers H. The gadget for a vertex v is a cycle C,, of length
degg(v) x k. In the case of a positive answer C, will cover H[Q]. C, is broken naturally
into degg(v) consecutive paths of length &, one for each edge incident with v, so that the
first endpoint of each path receives the same label in any cover from C, onto H[Q]. We
call these endpoints the designated vertices of the gadget, with their label providing the
corresponding color of vertex v. The gadget for an edge uv hooks up with one of these paths,
say c{,...,ci from C, and also with cf,...,c} from C,. The edge gadget itself consists of
k-cycles C1,...,C;_2, cycle C; having consec;clti2ve vertices ct, ..., ct, together with (H \ Q)-
1.2 -

copies Ry, ...,Ry. Vertices ¢, c},c;,cj,...,c;” = are given all their remaining adjacencies
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vl v2
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The graph H

Figure 4: Case H[Q] a 4-cycle. Vertex gadgets C, and C, and an edge gadget consisting of
R1, Ro, R3, R4, C1,(C2, labeled so that vertices v and u are colored v1 and v3, respectively.

(S-neighbors) from R;, for i = 1,...,k. This also satisfies R; locally and completes the
description of G, see Figure 4 for an example.

Assume f : V(G) — V(H) is a covering projection and let uv € V(G) as above. Since
Q is a block in the degree partition of H, the vertices of vertex gadgets must be sent to Q.
The designated vertices ¢} and ¢} share a neighbor in R; (|S| > 1) and hence f(c}) # f(c}).
Hence we use the labels of the designated vertices of vertex gadgets as a vertex k-coloring
of the graph G.

Assume G can be colored with colors 1,2, ..., k, with @ = {v1, ..., vx}. A vertex v colored
¢ has its designated vertices labeled v, in a covering projection from its vertex gadget onto
H[Q]. In the gadget for an edge uv the (H \ Q)-copies naturally cover H \ Q. The k-
cycles in the edge gadget are labeled uniquely to cover H[Q] while satisfying neighborhoods
of (H \ Q)-copies. This will result in a labeling where c?,c¥, c}, cZ, ...,ci-“*2, with naming

conventions as above, are given k distinct labels from @, with G’ covering H. See Figure 4
for an example. =

The k-starfish graph has k vertices of degree two and k vertices of degree four with
the vertices of degree four inducing a cycle and any two consecutive vertices of this cycle
sharing a neighbor of degree two, see Figure 5.

Theorem 4.5 For every i > 1 the (2i + 1)-starfish-cover problem is N'P-complete.

Proof. Let £ = 2: + 1. Given a graph G, we construct a graph G’ such that G is Cj-
colorable if and only if G’ covers the k-starfish. The vertex gadget C, for v € V(G) consists
of a cycle of length k x degg(v), broken naturally into degg(v) consecutive paths of length
k. The first endpoints of the paths, the designated vertices of this gadget, receive the same
label in any cover of a Ci-cycle. The edge gadget for uv € E(G) hooks up with two such
paths, say Fy = c{,c),...,c) from C, and Fy = c},c},...,ci from C,. The edge gadget
contains the degree-2 vertices v; fori =0,2,...,k—1and j = 1,2,...,k and also contains
k — 2 k-cycles, call them Fy, F3, ..., F},_1, with F; having consecutive vertices c}, ch, ...,c}'c.

13
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Figure 5: Case 5-starfish, with vertex gadgets C, and C, connected by an edge gadget.

Fy, Fy, ..., F,_1 are hooked up by the degree-2 vertices to form a cycle, with cé- adjacent to

v;'- and to vj-“ mod ki completes the description of G', see Figure 5.

Let f be a cover of k-starfish by G', and let wv € E(G), with naming conventions as
above. Since the designated vertices ¢} from C, and ¢} from C, have a common degree-2
neighbor, we must have f(c?)f(ci) an edge in the k-starfish. Thus, we construct a Cj-
coloring of G by focusing on the k-cycle induced by degree-4 vertices in the k-starfish, and
sending u € V(G) to the f-label of the designated vertex in its vertex gadget.

For the other direction of the proof we reverse this process, labeling designated vertices
by the Cg-coloring induced on the degree-4 vertices of the k-starfish, see Figure 5 for an

example. =

4.2 Reductions from covering problems

Theorem 4.6 The 2k-starfish-cover problem is N"P-complete whenever the k-starfish-cover
problem is N'P-complete.

Proof. Let G be a connected graph for which we test if G covers k-starfish. In particular,
G contains vertices of degrees 2 and 4 only, every vertex of degree 2 is adjacent to 2 vertices
of degree 4 and every vertex of degree 4 has 2 neighbors of degree 2 and 2 neighbors of
degree 4. We will construct a graph H such that H covers 2k-starfish if and only if G covers
k-starfish.

Let X be the set of vertices of degree 4 in G. We first construct G’ as follows:

- G' contains the vertices X,

- for every edge zy € E(G), z,y € X, we add a vertex A(zy) adjacent to z and y, and

- for every pair of vertices z,y € X connected in G by a common neighbor of degree 2,
we add a vertex B(zy) and connect it by 2-paths to z and y via two newly added vertices
of degree 2.

14
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Figure 6: The construction in Theorem 4.6 with vertices of degree two (four) in black
(white). Part of the input graph G on the left and the connections between subgraphs
i_1,Gj, Gi 1 of the constructed graph H on the right.

Then we take 2k copies of G, called G},7 = 1,2,...,2k. Vertices in G} will be denoted
by z;, A;(zy) and B;(zy) in the obvious way. The constructed graph H consists of these
2k copies of G' plus additional edges and vertices of degree 2: The vertices A;(zy) and
A;11(zy) will be connected by a path of length 2 via a newly added vertex of degree 2 (here
and later on, the addition in subscripts is modulo 2k, i.e., Agg1(zy) = A1(zy)). Similarly,
an edge between B;(zy) and B;;1(zy) will be added to H (thus for every such pair z,y,
H contains a 2k-cycle Bi(zy)Ba(zy) ... Bak(zy)). See Figure 6. The construction of H is
clearly polynomial.

Let f be a covering projection from H to the 2k-starfish (again, we assume that the
2k-cycle connecting the degree four vertices in the 2k-starfish is 1,2,...,2k, and similarly,
the k-cycle connecting the degree four vertices in the k-starfish is 1,2,...,k). We may
assume without loss of generality that for some z € X, f(z1) is even. It follows from the
connectedness of G that f(z1) is even for every « € X (while f(A;(zy)) and f(B1(zy)) are
odd). Hence, the mapping g defined by g(z) = ! (;1) induces a covering projection of G
onto the k-starfish.

15



On the other hand, let g be a covering projection of G onto the k-starfish. We define f
on the degree 4 vertices of H as follows

flz))=29(z)+i— 1,z € X,i=1,2,...,2k

f(Ai(zy)) = g(z) +9(y) +i— 1L, z,y € X,zy € E(G),i =1,2,...,2k,
F(Bi(zy)) =g(z)+g(y) +i—-Lz,ye X,i=1,2,...,2k.

This f induces a covering projection of H onto the 2k-starfish. (Every z € X has neighbors
y and z in X such that g(y) = g(z) — 1 and g(z) = g(z) + 1, and is connected via vertices
of degree 2 to vertices u and v such that g(u) = g(z) — 1 and g(v) = g(z) + 1. Thus
for every i, x; in H is adjacent to A;(zy) with f(A;(zy)) = f(z;) — 1 and to A;(zz) with
f(Ai(zz)) = f(z;) + 1, and it is connected via vertices of degree 2 to vertices B;(zu) with
f(Bi(zu)) = f(z;) — 1 and to B;(zv) with f(B;(zv)) = f(x;) + 1. Vertex A;(zxy) has
neighbors y; and z; with f(y;) = f(Ai(zy)) —1 and f(z;) = f(A4i(zy)) + 1 and is connected
via vertices of degree 2 to vertices A;_1(zy) and A;11(zy) with f(A4;-1(zy)) = f(A4i(zy))—1
and f(Ai+1(zy)) = f(Ai(zy)) + 1. Similarly, B;(zu) is connected via vertices of degree 2
to u; and z; with f(u;) = f(Bi(zu)) — 1 and f(z;) = f(Bi(zu)) + 1 and is adjacent to
vertices B;_1(zu) and Bji1(zu) with f(B;_1(zu)) = f(Bi(zu)) — 1 and f(Bji1(zu)) =
f(Bi(zu))+1.) =

Note that the 4-starfish-cover problem is solvable in polynomial time by Theorem 3.6.
Our conjecture is that the k-starfish-cover problem is NP-complete for all other & > 3.
To confirm the conjecture it would suffice, in light of Theorems 4.5 and 4.6, to solve the
following open problem.

Problem 4.7 Show that the 8-starfish-cover problem is N'P-complete.

A graph H may have an induced subgraph H' for which the H'-cover problem is N'P-
complete. In general, the H-cover problem could itself be easy. Our next theorem is a
non-trivial extension of a result appearing in [10], and shows NP-completeness for the
H-cover problem whenever the graph H’ satisfies some general conditions

Theorem 4.8 The H-cover problem is N'P-complete if for some block Q = {v1,...,v5} in
the degree partition of H the H[Q]-cover problem is N'P-complete and there exists a graph
F with vertices V(F) = Fo U Fr and a k by kh matriz (h = |V(F)|/|V(H)|) over Q whose
columns are elements of Aut(H|[Q]) and whose rows can be extended to h-fold covering
projections of F' onto H \ E(H|[Q)]) that send Fg to Q.

Proof. We reduce from the H[Q]-cover problem. Given a graph G, we construct a graph
G' such that G covers H[Q] if and only if G’ covers H. Let V(G) = {z1,...,z,}, Fg =
{y1, -, ypn} and V(H) = QUR. G’ will contain kh copies of G (G4, ..., Gxp) and n copies of
F[Fg] (Ry, ..., Ry). A vertex z; € V(G) thus has kh copies z}, 2, ...,z}" in G’ (z] € V(G;)),

272"

which will be used as the remaining neighbors for vertices of R;. We let the vertex z! play
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The graph H

Figure 7: Case H|Q] = K4, F = H \ E(H|[Q)]) and the graph G’ constructed in Theorem
4.8

the role of vertex y; € Fp and connect vertices of R; to its remaining neighbors, as specified
by F, using {z},...,z¥"}, thereby completing the construction of the graph G’. Note the
construction of G’ is such that G’ and H have the same degree refinement. Note that since
F covers H \ E(H|[Q])) with Fy mapping to Q we have E(F[Fg]) = 0. See Figure 7 for a
simple example.

Suppose G’ covers H by a covering projection p. Let B; = Q, Ba, ..., B;, be the blocks
of H. We know there exists a covering projection f from F to H \ E(H[Q]). Let Fi,..., F,
be the n copies of F' in G’ (these are the components of G’ after removal of edges of G).
Applying f to each copy of F' let Bj,..., Bl be the vertices sent to By, ..., By, respectively.
Note that V(G') = Uy<i<m Bi- Since f sends F to @ we have B] = Uj<;<in V(Gi). The
blocks in the degree refinement of G’ must be B, ..., B!, since it could not be a refinement
of this and it should have degree refinement identical to H. Therefore p must map each
copy of G to H[Q].

For the other direction, suppose f : V(G) — @ is a covering projection from G onto
H|[Q]. Let Ay, Ao, ..., Agp, be the columns of the matrix mentioned in the statement of the
theorem and let my, o, ..., 7, be its rows. Since A; € Aut(H[Q)]) for every i, we have by
Fact 4.3 that Aj o f,...,Agp o f are also covering projections of G onto H|[Q] and we label
the vertices of the copy G of G by A; o f. By construction we have that R; is connected
to vertices z},z2,...,zf". Assuming that f(z;) = v; € @ we label vertices of R; by the
respective labels Aj(v;), Az(vj), ..., Agn(vj), corresponding to some m,. Since 7, can be
extended to a covering projection from F' to H \ E(H|[Q]), we can send V(R;) to R by this
covering projection, locally getting a covering projection from R; to H[R] and with correct
labels for remaining neighbors of R; as well. The same is done for all n copies Ry, ..., R,
of F[FR] resulting in a mapping of V(G’) to V(H) where each copy of G covers H[Q] and
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each copy of F[Fg] covers H[R| and the remaining neighbors of copies of both G and F|[Fg|
have correct labels, hence we have a covering projection from G’ to H. =

We give an example of the simplest kind of application of this result, namely when h = 1
so the fixed graph F' is isomorphic to H \ E(H|[Q]), see Figure 7. Consider the graph H
consisting of a block @ = {v1,v2,vs3,v4} inducing a K4 and another block on two vertices
{vs,v6}, one of these adjacent to {v1,v2} and the other adjacent to {vs,vs}. Note that
the Ky4-cover problem is N'P-complete by Theorem 4.1. Moreover, for the following 4 by 4
matrix
V1 V2 V3 U4
v2 U1 V4 V3
U3 V4 U1 V2
V4 V3 V2 V1

both its rows and columns are projections onto @ of elements of Aut(H), so by Theorem 4.8
the H-cover problem is N'P-complete.

Proof. (of case (d) Theorem 4.4) H[Q] is a complete graph, with |Q| > 4. By Theo-
rem 4.1 the H[Q]-cover problem is N'P-complete and Aut(H)|q is the symmetric group on
|Q| points, so the conditions in Theorem 4.8 are easily satisfied. =

5 Conclusion

We have presented a methodology to analyze the complexity of graph covering problems.
The presented results suffice to classify all simple graphs whose components have at most six
vertices. However, we are still not able to give the general classification. Allthough all N'P-
completeness reductions in this paper relied on nontrivial automorphisms of the fixed graph
H, the result of Theorem 4.2 [11] encompasses many rigid graphs, so the classification cannot
depend solely on the automorphism group of the fixed graph. Likewise, the classification
cannot depend solely on the degree refinement of the fixed graph, as exemplified by the
k-starfish graphs that all share the same degree refinement, but for which the covering
problem is N'P-complete whenever k is not a power of 2 and solvable in polynomial time
when k& = 4. In Figure 8 see two graphs with the same degree refinement and size of
degree partitions, the right graph polynomial by Theorem 3.6 while the left graph contains
a subdivision of K4 and is N'P-complete by a reduction similar to Theorem 4.8.

Resolving the complexity of graph covering problems is tightly connected to pure combi-
natorics. For example, Theorem 4.8 opens for the possibility of showing NP-completeness
results by simply applying existing results from graph covering theory, or developing new
such results. Those results should show that for certain H[Q] and supergraphs H, the cov-
ering graphs F' required in Theorem 4.8 always exist. Indeed, the proof technique in [11] is
of this kind.

18



N

Figure 8: Two graphs with the same degree refinement but different complexity classification
for the covering problem.
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Appendix

We list every connected, simple graph H on at most six vertices and at least two cycles,
showing the complexity of the H-covering problem. Covering of simple graphs with at most
one cycle is easy by Fact 3.1. By Fact 2.3 this resolves also the complexity of disconnected
graphs having components on at most six vertices. The listing thus completes pages 1 <
p < 6 of the book on the complexity of the covering problem for simple graphs on p vertices.
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