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Abstract

We generalize the family of (σ, ρ) problems and locally checkable vertex partition problems
to their distance versions, which naturally captures well-known problems such as Distance-r
Dominating Set and Distance-r Independent Set. We show that these distance problems
are in XP parameterized by the structural parameter mim-width, and hence polynomial-time
solvable on graph classes where mim-width is bounded and quickly computable, such as k-
trapezoid graphs, Dilworth k-graphs, (circular) permutation graphs, interval graphs and their
complements, convex graphs and their complements, k-polygon graphs, circular arc graphs,
complements of d-degenerate graphs, and H-graphs if given an H-representation. We obtain
these results by showing that taking any power of a graph never increases its mim-width by
more than a factor of two. To supplement these findings, we show that many classes of (σ, ρ)
problems are W[1]-hard parameterized by mim-width + solution size.

We show that powers of graphs of tree-width w − 1 or path-width w and powers of graphs
of clique-width w have mim-width at most w. These results provide new classes of bounded
mim-width. We prove a slight strengthening of the first statement which implies that, surprisingly,
Leaf Power graphs which are of importance in the field of phylogenetic studies have mim-width
at most 1.
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1 Introduction

Telle and Proskurowski [30] defined the (σ, ρ)-domination problems, or (σ, ρ) problems for short,
and the more general locally checkable vertex partitioning problems (LCVP). In (σ, ρ)-domination
problems, feasible solutions are vertex sets with constraints on how many neighbors each vertex
of the graph has in the set. The framework generalizes important and well-studied problems such
as Maximum Independent Set and Minimum Dominating Set, as well as Perfect Code,
Minimum subgraph with minimum degree d and a multitude of other problems. See Table
1. Bui-Xuan, Telle and Vatshelle [7] showed that (σ, ρ)-domination and locally checkable vertex
partitioning problems can be solved in time XP parameterized by mim-width, if we are given a
corresponding decomposition tree. Roughly speaking, the structural parameter mim-width measures
how easy it is to decompose a graph along vertex cuts inducing a bipartite graph with small
maximum induced matching size [31].

In this paper, we consider distance versions of problems related to independence and domination,
such as Distance-r Independent Set and Distance-r Dominating Set. The Distance-r
Independent Set problem, also studied under the names r-Scattered Set and r-Dispersion
(see e.g. [2] and the references therein), asks to find a set of at least k vertices whose vertices have
pairwise distance strictly longer than r. Agnarsson et al. [1] pointed out that it is identical to the
original Independent Set problem on the r-th power1 graph Gr of the input graph G, and also
showed that for fixed r, it can be solved in linear time for interval graphs, and circular arc graphs.
The Distance-r Dominating Set problem was introduced by Slater [29] and Henning et al. [15].
They as well observed that it is identical to solve the original Dominating Set problem on the
r-th power graph. Slater presented a linear-time algorithm to solve Distance-r Dominating Set
problem on forests.

We generalize all of the (σ, ρ)-domination and LCVP problems to their distance versions, which
naturally captures Distance-r Independent Set and Distance-r Dominating Set. While
the original problems put constraints on the size of the immediate neighborhood of a vertex, we
consider the constraints to be applied to the ball of radius r around it. Consider for instance the
Minimum Subgraph with Minimum Degree d problem; where the original problem is asking for
the smallest (in terms of number of vertices) subgraph of minimum degree d, we are instead looking
for the smallest subgraph such that for each vertex there are at least d vertices at distance at least
1 and at most r. In the Perfect Code problem, the target is to choose a subset of vertices such
that each vertex has exactly one chosen vertex in its closed neighborhood. In the distance-r version
of the problem, we replace the closed neighborhood by the closed r-neighborhood. This problem is
known as Perfect r-Code, and was introduced by Biggs [4] in 1973.

We show that all these distance problems are in XP parameterized by mim-width if a decompo-
sition tree is given. One of the main results of the paper is of structural nature, namely that for
any positive integer r the mim-width of a graph power Gr is at most twice the mim-width of G. It
follows that we can reduce the distance-r version of a (σ, ρ)-domination problem to its non-distance
variant by taking the graph power Gr, while preserving small mim-width.

One negative aspect of the mim-width parameter is that we do not know an XP algorithm
computing mim-width. The problem of deciding whether a given graph has a decomposition tree
of mim-width w is NP-complete in general and W[1]-hard parameterized by w. Determining the

1For a graph G and an integer r, the r-th power of G, denoted by Gr, is the graph that has the same vertex set as
G, with each pair of distinct vertices being adjacent if their distance in G is at most r.
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optimal mim-width is not in APX unless NP = ZPP, making it unlikely to have a polynomial-time
constant-factor approximation algorithm [28].

However, for several graph classes we are able to find a decomposition tree of constant mim-width
in polynomial time, using the results of Belmonte and Vatshelle [3]. These include; permutation
graphs, convex graphs and their complements, interval graphs and their complements (all of which
have linear mim-width 1); (circular k-) trapezoid graphs, circular permutation graphs, Dilworth-k
graphs, k-polygon graphs, circular arc graphs and complements of d-degenerate graphs. Fomin,
Golovach and Raymond [13] showed that we can find linear decomposition trees of constant
mim-width for the very general class of H-graphs in polynomial time, given an H-representation
of the input graph.2 For all of the above graph classes, our results imply that the distance-r
(σ, ρ)-domination and LCVP problems are polynomial time solvable.

Graphs represented by intersections of objects in some model are often closed under taking powers.
For instance, interval graphs, and generally d-trapezoid graphs [1, 12], circular arc graphs [1, 27],
and leaf power graphs (by definition) are such graphs. We refer to [5, Chapter 10.6] for a survey of
such results. For these classes, we already know that the distance-r version of a (σ, ρ)-domination
problem can be solved in polynomial time. However, this closure property does not always hold; for
instance, permutation graphs are not closed under taking powers. Our result implies that to obtain
such algorithmic results, we do not need to know that these classes are closed under taking powers;
it is sufficient to know that classes have bounded mim-width. To the best of our knowledge, for the
most well-studied distance-r (σ, ρ)-domination problem, Distance-r Dominating Set, we obtain
the first polynomial time algorithms on Dilworth k-graphs, convex graphs and their complements,
complements of interval graphs, k-polygon graphs, H-graphs (given an H-representation of the
input graph), and complements of d-degenerate graphs.

We give results that expand our knowledge of the expressive power of mim-width. We show
that powers of graphs of tree-width w − 1 or path-width w and powers of graphs of clique-width
w have mim-width at most w. In fact, the statement we prove is a slight strengthening, namely:
Given a nice tree decomposition of width w, all of whose join bags have size at most w, or a
clique-width w-expression of a graph, one can output a decomposition tree of mim-width w of
its k-th power in polynomial time. The former implies that leaf power graphs, of importance in
the field of phylogenetic studies [8], have mim-width 1. These graphs are known to be strongly
chordal and there has recently been interest in delineating the difference between strongly chordal
graphs and leaf power graphs, on the assumption that this difference was not very big [22, 24]. Our
result actually implies a large difference, as it was recently shown by Mengel that there are strongly
chordal split graphs of mim-width linear in the number of vertices [23].

The natural question to ask after obtaining an XP algorithm is whether we can do better, e. g.
can we show that for all fixed r, the distance-r (σ, ρ)-domination problems are in FPT? Fomin
et al. [13] answered this in the negative by showing that (the standard, i.e. distance-1 variants
of) Maximum Independent Set, Minimum Dominating Set and Minimum Independent
Dominating Set problems are W[1]-hard parameterized by (linear) mim-width + solution size.
We modify their reductions to extend these results to several families of (σ, ρ)-domination problems,
including the maximization variants of Induced Matching, Induced d-Regular Subgraph and
Induced Subgraph of Max Degree ≤ d, the minimization variants of Total Dominating Set
and d-Dominating Set and both the maximization and the minimization variant of Dominating

2For a formal definition of H-graphs, see Definition 18. We would like to remark that it is NP-complete to decide
whether a graph is an H-graph whenever H is not a cactus [9].
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Induced Matching.
The remainder of the paper is organized as follows. In Section 2 we introduce the (σ, ρ)-

domination problems and define their distance-r generalization, and we give a short introduction to
mim-width. In Section 3 we show that the mim-width of a graph grows by at most a factor 2 when
taking (arbitrary large) powers and prove bounds on the mim-width of powers of graphs of bounded
tree-width and clique-width. We discuss algorithmic consequences for (σ, ρ) problems and more
generally, LCVP problems, in Section 4, and in Section 5 we present the above mentioned lower
bounds. Finally, we give some concluding remarks in Section 6.

2 The Main Concepts

In this section, we introduce the main concepts of the paper. That is, in Section 2.2 we introduce
the family of distance-r (σ, ρ)-domination problems, and in Section 2.3 we give a short introduction
to the graph parameter mim-width and several of its aspects that are of importance to this work.
Before we proceed, we introduce the basic terminology and notation used throughout the paper.

2.1 Preliminaries

We let the set of natural numbers be N = {0, 1, 2, . . .}, and the positive natural numbers be
N+ = N \ {0}. For a set S and a given property ψ, we denote by Sψ the biggest subset of S where
ψ is satisfied for all elements. For instance, N+

≤k denotes the set {1, 2, . . . k}. For this particular

property, we also use the shorthand [k] ..= N+
≤k. For a set X, we denote by

(
X
k

)
the set of all size-k

subsets of X.

Basic Notation for Graphs. A graph G is a pair of a vertex set V (G) and an edge set
E(G) ⊆

(
V (G)
2

)
. For an edge {u, v} ∈ E(G), we use the shorthand notation ‘uv’. For a set of

edges F ⊆ E(G), we denote by V (F ) the set of vertices that are contained in the edges of F , i.e.
V (F ) ..=

⋃
uv∈F {u, v}. A cut of a graph is a 2-partition of its vertex set.

(Induced) Subgraphs. For graphs G and H we say that H is a subgraph of G, denoted by
H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a vertex set X, we denote by G[X] the subgraph
of G induced by X, i.e. G[X] ..= (X,E(G) ∩

(
X
2

)
). We use the notation G − X ..= G[V (G) \ X]

and for a set of edges F ⊆ E(G), G − F ..= (V (G), E(G) \ F ). For a vertex v ∈ V (G) (an edge
e ∈ E(G)), we use the shorthand G− x ..= G− {x} (G− e ..= G− {e}).
Neighborhoods. Let G be a graph. For a vertex v ∈ V (G), we denote by NG(v) the open
neighborhood of v, i.e. NG(v) ..= {w | vw ∈ E(G)}, and by NG[v] the closed neighborhood of v, i.e.
NG[v] ..= {v} ∪NG(v). The degree of v is the size of its open neighborhood, i.e. degG(v) ..= |NG(v)|.
For a set of vertices X ⊆ V (G), we let NG(X) ..=

⋃
v∈X NG(x) \X and NG[X] ..= NG(X) ∪X. We

use the shorthand notations ‘N ’ and ‘deg’ for ‘NG’ and ‘degG’, respectively, if G is clear from the
context.

Connectivity/Distance. A graph G is called connected if for each 2-partition (X,Y ) of V (G)
with X 6= ∅ and Y 6= ∅, there is an edge xy ∈ E(G) such that x ∈ X and y ∈ Y . A connected graph
all of whose vertices have degree two is called a cycle. A graph that does not contain a cycle as a
subgraph is called a forest and a connected forest is a tree. The vertices of degree one in a tree are
called the leaves and the remaining vertices the internal vertices. A tree of maximum degree two
is called a path and the leaves of a path are called endpoints. A tree T is called a caterpillar if it
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contains a subgraph P ⊆ T such that P is a path and each vertex in V (T ) \ V (P ) has a neighbor in
V (P ). The length of a path P is |E(P )|, i.e. the number of its edges. Given a graph G and two
of its vertices u, v ∈ V (G), the distance from u to v in G, denoted by distG(u, v), is the smallest
length of any path P ⊆ G with endpoints u and v.

Matchings. A set of edges M ⊆ E(G) is called a matching, if no pair of edges in M shares an
endpoint. A matching is called induced if G[V (M)] = (V (M),M), i.e. if there are no other edges
than the edges in M in the subgraph of G induced by V (M).

Cliques/Independence/Domination/Bipartite Graphs. A graph G is called complete, if
E(G) =

(
V (G)
2

)
. A set of vertices C ⊆ V (G) is called a clique if G[C] is a complete graph. A set

of vertices I ⊆ V (G) is called an independent set if E(G[I]) = ∅. A set of vertices D ⊆ V (G) is
called a dominating set if NG[D] = V (G). A graph G is called bipartite if there is a 2-partition
(X,Y ) of V (G) such that X and Y are independent sets, and we call a bipartite graph G with
partition (X,Y ) complete bipartite if E(G) = {xy | x ∈ X, y ∈ Y }. For two disjoint vertex
sets X, Y ⊆ V (G), we denote by G[X,Y ] the bipartite subgraph of G induced by (X,Y ), i.e.
G[X,Y ] ..= (X ∪ Y,E(G) ∩ {xy | x ∈ X, y ∈ Y }).
Multigraphs/Subdivisions. Let G and H be two graphs. A bijection ϕ : V (G)→ V (H) is called
an isomorphism from G to H if for all u, v ∈ E(G), uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H). If
there is an isomorphism from G to H then say that G and H are isomorphic.

A multigraph is a pair of a set of vertices V (G) and a multiset of size-2 subsets of V (G), called the
edges of G and denoted by E(G). For a (multi-) graph H, we let |H| ..= |V (G)| and ||H|| ..= |E(G)|.
Let G be a (multi-) graph. An edge subdivision of an edge e ∈ E(G) with endpoints u and v is the
operation of adding to G a new vertex x and replacing the edge e by a path with endpoints u and
v, consisting of an edge between u and x and an edge between x and v. We call the vertex x a
subdivision vertex. A graph G′ is called a subdivision of G if it can be obtained from G by a series
of edge subdivisions.

2.2 Distance-r (σ, ρ)-Domination Problems

Let σ and ρ be finite or co-finite subsets of the natural numbers σ, ρ ⊆ N. For a graph G, a vertex
set S ⊆ V (G) is a (σ, ρ)-dominating set, or simply (σ, ρ) set if

- for each vertex v ∈ S it holds that |N(v) ∩ S| ∈ σ, and

- for each vertex v ∈ V (G) \ S it holds that |N(v) ∩ S| ∈ ρ.

For instance, a ({0},N) set is an independent set as there are no edges between the vertices in
the set, and we do not care about adjacencies between S and V (G) \ S. For another example, a
(N,N+)-set is a dominating set as we require that for each vertex in V (G) \ S, it has at least one
neighbor in S.

There are three types of (σ, ρ)-domination problems: minimization, maximization, and existence.
We denote the problem of finding a minimum (maximum) (σ, ρ) set as the Min-(σ, ρ) Domination
(Max-(σ, ρ) Domination) problem, or simply Min-(σ, ρ) (Max-(σ, ρ)) problem, and we refer to
Table 1 for examples of well-studied problems expressible in this framework.

We naturally generalize (σ, ρ)-domination problems to their distance-r version: For a graph G
and a vertex v ∈ V (G), let N r

G(v) denote the ball of radius r around v, i. e.

N r
G(v) ..= {w ∈ V (G) \ {v} | distG(v, w) ≤ r}.
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σ ρ d Standard name W[1]-Hard

{0} N 1 Independent set ◦max

N N+ 1 Dominating set ◦min

{0} N+ 1 Maximal Independent set ◦min

N+ N+ 1 Total Dominating set ?min

{0} {0, 1} 2 Strong Stable set or 2-Packing
{0} {1} 2 Perfect Code or Efficient Dom. set
{0, 1} {0, 1} 2 Total Nearly Perfect set
{0, 1} {1} 2 Weakly Perfect Dominating set
{1} {1} 2 Total Perfect Dominating set
{1} N 2 Induced Matching ?max

{1} N+ 2 Dominating Induced Matching ?max, ?min

N {1} 2 Perfect Dominating set
N {d,d+ 1,...} d d-Dominating set ?min

{d} N d+ 1 Induced d-Regular Subgraph ?max

{d,d+ 1,...} N d Subgraph of Min Degree ≥ d
{0, 1,..., d} N d+ 1 Induced Subg. of Max Degree ≤ d ?max

Table 1: Some vertex subset properties expressible as (σ, ρ)-sets, with N = {0, 1, ...} and N+ =
{1, 2, ...}. Column d shows d = max(d(σ), d(ρ)). For each problem, at least one of the minimization,
the maximization and the existence problem is NP-complete. For problems marked with ?max (?min)
in the rightmost column, W[1]-hardness of the maximization (minimization) problem parameterized
by mim-width + solution size is shown in the present paper. For problems marked with ◦max (◦min)
the W[1]-hardness of maximization (minimization) in the same parameterization was shown by
Fomin et al. [13].

Let σ and ρ be finite or co-finite subsets of N. Then, a vertex set S ⊆ V (G) is called a distance-r
(σ, ρ)-dominating set, if

- for each vertex v ∈ S it holds that |N r(v) ∩ S| ∈ σ, and

- for each vertex v ∈ V (G) \ S it holds that |N r(v) ∩ S| ∈ ρ.

We associate with these sets minimization, maximization, and existence problems in the natural
way.

The d-value of a distance-r (σ, ρ) problem is a constant which will ultimately affect the runtime
of the algorithm. For a set µ ⊆ N, the value d(µ) should be understood as the highest value in N we
need to enumerate in order to describe µ. Hence, if µ is finite, it is simply the maximum value in µ,
and if µ is co-finite, it is the maximum natural number not in µ (1 is added for technical reasons).

Definition 1 (d-value). Let d(N) = 0. For every non-empty finite or co-finite set µ ⊆ N, let
d(µ) = 1 + min(max{x | x ∈ µ},max{x | x ∈ N \ µ}).

For a given distance-r (σ, ρ) problem Πσ,ρ, its d-value is defined as d(Πσ,ρ) ..= max{d(σ), d(ρ)},
see column d in Table 1.
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2.3 Mim-width and Applications

Maximum induced matching width, or mim-width for short, was introduced in the Ph. D. thesis
of Vatshelle [31], used implicitly by Belmonte and Vatshelle [3], and is a structural graph param-
eter defined over decomposition trees (sometimes called branch decompositions), similar to graph
parameters such as rank-width and module-width. Decomposition trees naturally appear in divide
and conquer style algorithms where one recursively partitions the pieces of a problem into two
parts. When the algorithm is at the point where it combines solutions of its subproblems to form
a full solution, the structure of the cuts are (unsurprisingly) important to the runtime; this is
especially true for dynamic programming when one needs to store multiple partial solutions at
each intermediate node. We will briefly introduce the necessary machinery here, but for a more
comprehensive introduction we refer the reader to [31].

A graph of maximum degree at most 3 is called subcubic. A decomposition tree for a graph G is
a pair (T,L) where T is a subcubic tree and L : V (G)→ L(T ) is a bijection between the vertices of
G and the leaves of T . Each edge e ∈ E(T ) naturally represents a cut of G, i. e. a 2-partition of
V (G): Let T e1 and T e2 denote the two connected components of T − e. For i ∈ [2], let Aei denote
the set of vertices that are mapped to leaves in T ei via L. Then, (Ae1, A

e
2) is a cut of G which in

the following we refer to as the cut associated with e. One way to measure the complexity of a cut
is by considering the maximum size of an induced matching in the bipartite subgraph of G that
it induces. For a vertex set A ⊆ V (G), we let mimG(A) denote the maximum size of an induced
matching in G[A, V (G)\A], the bipartite subgraph of G induced by (A, V (G)\A). Note that mimG

is symmetric, i.e. mimG(A) = mimG(V (G) \A).

Definition 2 (mim-width). Let G be a graph, and let (T,L) be a decomposition tree for G. The
mim-width of (T,L) is defined as

mimwG(T,L) ..= max
e∈E(T )

mimG(Ae1),

where for an edge e ∈ E(T ), (Ae1, A
e
2) denotes the cut associated with e. The mim-width of the

graph G, denoted mimw(G), is the minimum value of mimwG(T,L) over all possible decomposition
trees (T,L). The linear mim-width of the graph G is the minimum value of mimwG(T,L) over all
possible decomposition trees (T,L) where T is a caterpillar.

Note that the definition of a decomposition tree (T,L) allows T to have nodes of degree two.
Suppose there is a node t ∈ V (T ) of degree two with incident edges e1 and e2. Then, up to renaming
the sets, we have that Ae11 = Ae21 and Ae12 = Ae22 , where for i ∈ [2], (Aei1 , A

ei
2 ) is the cut associated

with ei. Let ti denote the endpoint of ei other than t. The observation we just made implies that
the decomposition tree (T ′,L), where T ′ is obtained from T by removing t and making t1 and
t2 adjacent, is equivalent to (T,L) both in terms of their mim-width, as well as their structural
properties. To that end, for ease of exposition, we will assume in algorithmic applications that a
decomposition tree does not have degree two nodes, while when proving bounds on the mim-width
of some decomposition tree, we may allow them to have degree two nodes.

Given a decomposition tree, one can subdivide an arbitrary edge and let the newly created
vertex be the root of T , in the following denoted by r. For two nodes t, t′ ∈ V (T ), we say that
t′ is a descendant of t if t lies on the path from r to t′ in T . For t ∈ V (T ), we denote by Vt the
set of vertices that are mapped to a leaf that is a descendant of t, i.e. Vt ..= {v ∈ V (G) | L(v) =
t′ where t′ is a leaf descendant of t in T}. We let Vt ..= V (G) \ Vt and Gt ..= G[Vt].
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In previous work, Bui-Xuan et al. [7] and Belmonte and Vatshelle [3] showed that all (σ, ρ)
problems can be solved in time nO(w) where w denotes the mim-width of a decomposition tree that
is provided as part of the input. As we state the runtime bounds more tightly than what can be
read from the statements in the original works, we provide a sketch of the proof of the following
result due to [3, 7], mainly focusing on aspects that affect the runtime rather than the correctness
of the algorithms.

Proposition 3 ([3, 7]). There is an algorithm that given a graph G and a decomposition tree (T,L)
of G with w ..= mimwG(T,L) solves each (σ, ρ) problem Π with d ..= d(Π)

(i) in time O(n4+2d·w), if T is a caterpillar, and

(ii) in time O(n4+3d·w), otherwise.

Sketch of the Proof. For a positive integer d, and a set A ⊆ V (G), we call two subsets X ⊆ A and
Y ⊆ A d-neighbor equivalent w.r.t. A, and we write X ≡dA Y , if

∀v ∈ V (G) \A : min(d, |X ∩N(v)|) = min(d, |Y ∩N(v)|).

We denote by nec(≡dA) the number of equivalence classes of ≡dA, and for X ⊆ A, by repdA(X) an
equivalence class representative for X.

The crucial insight that makes the dynamic programming algorithm work within the claimed
runtime bound is: when tabulating the partial solutions with respect to a node t ∈ V (T ), it suffices
to store one optimum partial solution for each pair (Rt, Rt), where Rt is an equivalence class
representative for ≡dVt and Rt is an equivalence class representative for ≡d

Vt
. In this way, an upper

bound on nec(≡dA) gives an upper bound on the number of table entries to be considered.
Now, let ` be a leaf of T and v ∈ V (G) be such that L(v) = `. Then, there are two equivalence

classes for ≡d{v}, and d+1 equivalence classes for ≡dV (G)\{v}, so we only have O(d) partial solutions to

consider. For an internal node t ∈ V (T ) with children a and b, we can compute the necessary partial
solutions in the following way. For each triple (Ra, Rb, Rt) of an equivalence class representative Ra
of ≡dVa , an equivalence class representative Rb of ≡dVb , and an equivalence class representative Rt
of ≡d

Vt
, compute Rt = repdVt(Ra ∪Rb), Ra = repd

Va
(Rb ∪Rt), and Rb = repd

Vb
(Ra ∪Rt), and update

the table entry for (Rt, Rt) according to the partial solution obtained from combining the partial
solution stored for (Ra, Ra) with the one stored for (Rb, Rb).

Let necd(T,L) = maxt∈V (T ) max{nec(≡dVt),nec(≡d
Vt

)}. We argue that for each internal node

t ∈ V (T ), all table entries can be computed in time O(necd(T,L)3 · n3). It can be shown [7, Lemma
1] that for a set A ⊆ V (G), a set of canonical equivalence class representatives of ≡dA can be
enumerated in time O(nec(≡dA) · log(nec(≡dA)) · n2), and given a set X ⊆ A, one can find a pointer
to repdA(X) in time O(log(nec(≡dA)) · |X| · n).

The former computation is invoked once, taking time at most O(necd(T,L) · log(necd(T,L)) ·n2).
Next, there are at most necd(T,L)3 triples of equivalence class representatives to consider, and the
remaining computations take time at most O(n3), applying the latter of the two aforementioned
tasks (finding a pointer to an equivalence class representative), and noting that each representative
is of size at most O(n), and that log(necd(T,L)) ≤ O(n). Therefore, we compute all table entries
for t ∈ V (T ) in time at most O(necd(T,L)3 · n3) . As |V (T )| = O(n), and the computation for a
leaf node takes constant time, the whole algorithm takes time at most O(necd(T,L)3 · n4).
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In [3, Lemma 2] it is shown that nec(≡dA) ≤ nd·mim(A). Hence the dynamic programming
algorithms that we sketched above run in time O(n4+3d·w), where w = mimw(T,L), proving item
(ii). For item (i), we observe that for an internal node t ∈ V (T ) with children a and b such that b
is a leaf node, the number of triples to consider reduces to O(necd(T,L)2), as there are only O(1)
many equivalence class representatives to consider for ≡dVb . If T is a caterpillar, then each internal

node of T is of that shape, implying that in this case, the algorithms run in time O(n4+2d·w).

3 Mim-width on Graph Powers

In this section we discuss the structural results of this work, regarding the mim-width of graph
powers. These are formally defined as follows.

Definition 4 (The r-th Power of a Graph). Let r be a positive integer and let G = (V,E) be a
graph. The r-th power of G, denoted Gr, is the graph obtained from G by adding, for each pair of
distinct non-adjacent vertices u, v ∈ V (G) with distG(u, v) ≤ r, the edge uv.

We show in Section 3.1 that taking an (arbitrarily large) power of a graph only increases its
mim-width by a factor of at most two. In Section 3.2 we prove results concerning powers of graphs
of bounded tree-width and clique-width.

3.1 Arbitrary Graphs

Theorem 5. Let r be a positive integer and let G be a graph. Then, mimw(Gr) ≤ 2 ·mimw(G).
Moreover, any decomposition tree of G of mim-width w has mim-width at most 2w for Gr.

Proof. Assume that there is a decomposition tree of mim-width w for the graph G. We show that
the same decomposition tree has mim-width at most 2w for Gr.

We consider a cut (A,A) associated with some edge of the decomposition tree. Let M be a
maximum induced matching across the cut for Gr. To prove our claim, it suffices to construct an
induced matching across the cut M ′ in G such that |M ′| ≥ |M |2 .

We begin by noticing that for an edge uv ∈M , the distance between u and v is at most r in G.
For each such edge uv ∈M , we let Puv denote some shortest path between u and v in G (including
the endpoints u and v).

Claim 5.1. Let uv,wx ∈M be two distinct edges of the matching. Then Puv and Pwx are vertex
disjoint.

Proof. We may assume that u,w ∈ A and v, x ∈ A. Now assume for the sake of contradiction there
exists a vertex y ∈ V (Puv) ∩ V (Pwx). Because both paths have length at most r, we have that
distG(u, y) + distG(y, v) ≤ r, and distG(w, y) + distG(y, x) ≤ r. Adding these together, we get

distG(u, y) + distG(y, v) + distG(w, y) + distG(y, x) ≤ 2r.

Since uv and wx are both in M , there cannot exist edges ux and wv in Gr. Hence, their distance
in G is strictly greater than r, i.e. distG(u, y) + distG(y, x) ≥ distG(u, x) > r, and distG(w, y) +
distG(y, v) > r. Putting these together, we obtain our contradiction:

distG(u, y) + distG(y, x) + distG(w, y) + distG(y, v) > 2r

This concludes the proof of the claim. y
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Figure 1: Structure of two paths Puv and Pwx when the edge u′x′ exists in G. Dashed edges appear
in Gr, solid edges appear in G, squiggly lines are (shortest) paths existing in G (possibly of length
0, and possibly crossing back and forth across the cut).

Because for each uv ∈M , one endpoint of Puv lies in A and the other one lies in A, there must
exist at least one point at which the path crosses from A to A. For each uv ∈M with u ∈ A and
v ∈ A, we let u′v′ ∈ E(Puv) denote an edge in G such that u′ ∈ A and v′ ∈ A.

We plan to construct our matching M ′ by picking a subset of such edges. However, we cannot
simply take all of them, since some pairs may be incompatible in the sense that they will not form an
induced matching across the cut (A,A). We examine the structures that arise when two such edges
u′v′ and w′x′ are incompatible, and cannot both be included in the same induced matching across
the cut. For easier readability, we let αd be a shorthand notation for distG(α, α′) for α ∈ {u, v, w, x}.

Claim 5.2. Let uv,wx ∈M with {u,w} ⊆ A and {v, x} ⊆ A be two distinct edges of M and let u′v′

and w′x′ be edges on the shortest paths as defined above. If there is an edge u′x′ ∈ E(G), then all
of the following hold. See Figure 1.

(a) ud + xd = r

(b) ud + vd = wd + xd = r − 1

(c) wd = ud − 1

Proof. (a) Since ux is not an edge in Gr, the distance between u and x must be at least r + 1 in
G, and so ud + xd must be at least r. It remains to show that ud + xd ≤ r for equality to hold.
Similarily to the proof of Claim 5.1, we know that Puv and Pwx both are of length at most r. We get

ud + vd + wd + xd ≤ 2r − 2 (1)

The ‘−2’ at the end is because we do not include the length contributed by edges u′v′ and w′x′ in
our sum. Now assume for the sake of contradiction that ud + xd ≥ r + 1. Then we get that

vd + wd ≤ 2r − 2− r − 1 = r − 3

Because distG(v′, w′) ≤ 3 (follow the edges u′v′ → u′x′ → w′x′), this implies that distG(v, w) ≤ r,
and the edge vw would hence exist in Gr. This contradicts that uv and wx were both in the same
induced matching M .

(b) Assume for the sake of contradiction that ud + vd ≤ r − 2. Then, rather than Equation 1,
we get the following bound

ud + vd + wd + xd ≤ 2r − 3

By (a) we know that ud + xd = r, so by a similar argument as above we get that vd + wd ≤ r − 3,
obtaining a contradiction. An analogous argument holds for wd + xd.

(c) This follows immediately by substituting (a) into (b). y
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We will now construct our induced matching M ′. (Recall for the following arguments that u ∈ A
and v /∈ A.) We construct two candidates for M ′, and we will pick the biggest one. First, we
construct M ′0 by including u′v′ for each edge uv ∈M where distG(u, u′) is even. Symetrically, M ′1
is constructed by including u′v′ if distG(u, u′) is odd. Clearly, at least one of M ′0 and M ′1 contains

at least |M |2 edges. It remains to show that M ′ indeed forms an induced matching across the cut
(A,A) in G.

Consider two distinct edges u′v′ and w′x′ from M ′. By Claim 5.1, the corresponding paths Puv
and Pwx are vertex disjoint. If there is an edge violating that u′v′ and w′x′ are both in the same
induced matching, it must be either u′x′ or v′w′. Without loss of generality we may assume it
is an edge of the type u′x′. By Claim 5.2(c), we then have that the parities of distG(u, u′) and
distG(w,w′) are different. However, by the construction of M ′, this is not possible. This concludes
the proof.

3.2 Graphs of Bounded Tree-Width or Clique-Width

In [31, Section 4.2], it is shown that any graph of clique-width w or tree-width w− 1 has mim-width
at most w. Theorem 5 hence implies that any power of a graph of clique-width w or tree-width
w − 1 has mim-width at most 2w. In this section we give tighter bounds on the mim-width of
powers of graphs of bounded clique-width and powers of graphs of bounded tree-width.

In particular, we show that r-th powers of graphs of tree-width w − 1, path-width w, or clique-
width w all have mim-width at most w. We begin by proving the bound for graphs of bounded
tree-width with the following lemma capturing the essential property used in the proof.

Lemma 6. Let r and w be positive integers and let (A,B,C) be a vertex partition of graph G such
that there are no edges between A and C and B has size w. Let H ..= Gr. Then, mimH(A∪B) ≤ w.

Proof. Let B ..= {b1, b2, . . . , bw}. It is clear that for v ∈ A ∪ B and z ∈ C, distG(v, z) ≤ r if and
only if there exists i ∈ {1, 2, . . . , w} such that distG(v, bi) + distG(z, bi) ≤ r.

Suppose for a contradiction that mimH(A ∪ B) > w. Let {y1z1, y2z2, . . . , ytzt} be an induced
matching of size t ≥ w + 1 in H[A ∪B,C]. There are distinct integers t1, t2 ∈ {1, 2, . . . , t} and an
integer j ∈ {1, 2, . . . , w} such that

distG(yt1 , bj) + distG(zt1 , bj) ≤ r and distG(yt2 , bj) + distG(zt2 , bj) ≤ r.

Then we have either distG(yt1 , bj) + distG(zt2 , bj) ≤ r or distG(yt2 , bj) + distG(zt1 , bj) ≤ r,
which contradicts the assumption that yt1zt2 and yt2zt1 are not edges in H. We conclude that
mimH(A ∪B) ≤ w.

Definition 7. A tree decomposition of a graph G is a pair (T,B) consisting of a tree T and a family
B = {Bt}t∈V (T ) of sets Bt ⊆ V (G), called bags, satisfying the following three conditions:

(i) V (G) =
⋃
t∈V (T )Bt,

(ii) for every edge uv of G, there exists a node t of T such that u, v ∈ Bt, and

(iii) for t1, t2, t3 ∈ V (T ), Bt1 ∩Bt3 ⊆ Bt2 whenever t2 is on the path from t1 to t3 in T .

11



The width of a tree decomposition (T,B) is max{|Bt| − 1 : t ∈ V (T )}. The tree-width of G is the
minimum width over all tree decompositions of G. A tree decomposition (T,B = {Bt}t∈V (T )) is a
nice tree decomposition with root node r ∈ V (T ) if T is a rooted tree with root node r, and every
node t of T is one of the following:

(1) A leaf node, i.e. t is a leaf of T and Bt = ∅.

(2) An introduce node, i.e. t has exactly one child t′ and Bt = Bt′ ∪ {v} for some v ∈ V (G) \Bt′ .

(3) A forget node, i.e. t has exactly one child t′ and Bt = Bt′ \ {v} for some v ∈ Bt′ .

(4) A join node, i.e. t has exactly two children t1 and t2, and Bt = Bt1 = Bt2 .

Theorem 8. Let r and w be positive integers and G be a graph that admits a nice tree decomposition
of width w, all of whose join bags are of size at most w. Then the r-th power of G has mim-width
at most w. Furthermore, given such a nice tree decomposition, we can output a decomposition tree
of mim-width at most w in polynomial time.

Proof. Let H ..= Gr, and let (T,B = {Bt}t∈V (T )) be a nice tree decomposition of G of width w,
all of whose join bags have size at most w, with root node r. We may assume that Br = ∅ and
subsequently that r is a forget or a join node. (Otherwise, we add a path of forget nodes on top of r
and make the last node the new root of T .)

We obtain a decomposition tree (T ′,L) as follows:

- Let T ′′ be the tree obtained from T by, for each forget node t ∈ V (T ) forgetting a vertex v,
attaching a leaf node `v to t, and assigning L(v) ..= `v.

- We obtain T ′ from T ′′ by deleting degree 1 nodes that are not assigned by L.

Since r is either a forget node or a join node in (T,B), r has not been removed in the second step, so
r ∈ V (T ′), and r has degree 2 in T ′. Furthermore, since for each vertex v ∈ V (G), there is a unique
forget node forgetting v in (T,B), and all leaves that are not assigned by L have been removed, the
map L constructed above is a bijection. Thus, (T ′,L) is a (rooted) decomposition tree with root
node r.

We consider a cut (Vt, Vt) for some node t ∈ V (T ′) in the rooted decomposition tree. If t is a leaf
node, then mimH(Vt) ≤ 1. Assume t is an internal node, then t also appears in (T,B). Note that Vt
consists precisely of all vertices that have been forgotten below t in (T,B). We argue that we can
find a set of at most w vertices S ⊆ Vt such that S separates Vt from Vt \ S which by Lemma 6 will
yield the claim.

Let S ..= N(Vt)∩ Vt and consider a vertex x ∈ S. By definition, x is a neighbor of some vertex y
that has been forgotten below t. By (ii) of the definition of a tree decomposition there is a node,
say t′, such that Bt′ contains both x and y. Since y has been forgotten below t, t′ is below t. As
x ∈ Vt, there is also a node above t, say t′′, such that Bt′′ contains x (e.g. the bag below the one
that forgets x). Since t lies on the path between t′ and t′′ in T , we have by property (iii) of the
definition of a tree decomposition that x ∈ Bt. We have that S ⊆ Bt.

Furthermore, S separates Vt from Vt \ S. If t is a forget node, then by definition |Bt| ≤ w
and hence |S| ≤ w. If t is a join node, then by assumption |Bt| ≤ w and hence |S| ≤ w. If t is
an introduce node introducing a vertex u ∈ V (G), then u cannot have any neighbor in Vt, since
all vertices in Vt have been forgotten below t. Hence, S ⊆ Bt \ {u} and we can conclude that
|S| ≤ w.
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It is well-known (see e.g. [21]) that any tree decomposition can be transformed in polynomial
time to a nice tree decomposition of the same width. As in a tree decomposition of width w − 1,
all bags (in particular bags at join nodes) have size at most w, the previous theorem implies the
following. Note that the bound for pathwidth is slightly tighter than the one for tree-width, as in a
path decomposition there are no join nodes.

Corollary 9. Let r and w be positive integers and let G be a graph of tree-width w − 1 (path-width
w). Then the r-th power of G has mim-width at most w and given a tree decomposition (path
decomposition) of G of width w − 1 (w), one can compute a decomposition tree of mim-width w in
polynomial time.

The following notions are of importance in the field of phylogenetic studies, i.e. the reconstruction
of ancestral relations in biology, see e.g. [8]. A graph G is a leaf power if there exists a threshold r
and a tree T , called a leaf root, whose leaf set is V (G) such that uv ∈ E if and only if the distance
between u and v in T is at most r. Similarly, G is called a min-leaf power if uv ∈ E if and only
if the distance between u and v in T is more than r. Thus, G is a leaf power if and only if its
complement is a min-leaf power. It is easy to see that trees admit nice tree decompositions all of
whose join bags have size 1 and since every leaf power graph is an induced subgraph of a power of
some tree, it has mim-width at most 1 by Theorem 8. Together with [31, Lemma 3.7.3], stating
that the mim-width of a graph is 1 if and only if the mim-width of its complement is 1, we have the
following result.

Corollary 10. The leaf powers and min-leaf powers have mim-width at most 1 and given a leaf
root, we can compute in polynomial time a decomposition tree witnessing this.

Next, we consider powers of graphs of bounded clique-width. A graph is w-labeled if there is
a labeling function f : V (G)→ [w], and we call f(v) the label of v. For a w-labeled graph G, we
call the set of all vertices with label i the label class i of G. The following can be thought as a
generalization of Lemma 6.

Lemma 11. Let r and w be positive integers and let (A,B) be a vertex partition of graph G such
that G[A] is w-labeled and for every pair of vertices x, y in the same label class of G[A], x and y
have the same neighborhood in B. Let H ..= Gr. Then, mimH(A) ≤ w.

Proof. Suppose for contradiction that mimH(A) > w. Let {y1z1, y2z2, . . . , ytzt} be an induced
matching of size at least w + 1 in H[A,B]. For i ∈ {1, 2, . . . , t}, there is a path Pi of length at most
r from yi to zi in G. Let A∗ ⊆ A be the set of vertices in A that have a neighbor in B. Let Qi be
the subpath of Pi from the last vertex in A∗ to zi, and qi be the endpoint of Qi different from zi,
and let Ri be the subpath of Pi from yi to qi. Let ai be the length of Ri and bi be the length of Qi.
By construction, ai + bi ≤ r.

(For an illustration of the following argument, see Figure 2.) Since t ≥ w + 1, there are two
integers t1, t2 ∈ {1, 2, . . . , t} such that qt1 and qt2 are contained in the same label class of G[A].
Since at1 + bt1 ≤ r and at2 + bt2 ≤ r, we either have that at1 + bt2 ≤ r or at2 + bt1 ≤ r.

Assume at1 + bt2 ≤ r. In this case, we show that the distance from yt1 to zt2 in G is at most r,
which contradicts the assumption that yt1zt2 is not an edge of H. Note that two vertices in a label
class of G[A] have the same neighborhood in B. Let x denote the vertex on Qt2 that is adjacent
to qt2 . Then, as qt1 and qt2 are in the same label class of G[A], we have that qt1 is also adjacent
to x. Therefore, G[V (Rt1) ∪ (V (Qt2) \ {qt2})] contains a path of length at most r from yt1 to zt2 .
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Figure 2: Illustration of the situation in the proof of Lemma 11.

Analogously we can show that if at2 + bt1 ≤ r, then G[V (Rt2) ∪ (V (Qt1) \ {qt1})] contains a path of
length at most r from yt2 to zt1 . But this is a contradiction and we conclude that mimH(A) ≤ w.

Definition 12. The clique-width of a graph G is the minimum number of labels needed to construct
G using the following four operations:

(1) Creation of a new vertex v with label i (denoted by i(v)).

(2) Disjoint union of two labeled graphs G and H (denoted by G⊕H).

(3) Joining by an edge each vertex with label i to each vertex with label j (i 6= j, denoted by ηi,j).

(4) Renaming label i to j (denoted by ρi→j).

A string of operations given in the previous definition is called a clique-width w-expression or
shortly a w-expression if it uses at most w distinct labels. We can represent this expression as a
tree-structure and such trees are known as syntactic trees associated with w-expressions. An easy
observation is that for a node t in a syntactic tree associated with a w-expression, and the vertex
set Vt consisting of vertices introduced in some descendants of t, G[Vt] is a w-labeled graph where
two vertices in the same label class has the same neighborhood in V (G) \ Vt.

Theorem 13. Let r and w be positive integers and G be a graph of clique-width w. Then the r-th
power of G has mim-width at most w. Furthermore, given a clique-width w-expression, we can
output a decomposition tree of mim-width at most w in polynomial time.

Proof. Let H be the r-th power of G and let φ be the given clique-width w-expression defining G,
and T be the syntactic tree of φ with root node r. We can assume that G contains at least two
vertices which implies that T has at least one join node. Let r′ be the join node in T with minimum
distT (r, r′). Note that if r itself is a join node, then r′ = r. Note also that for every vertex v of
G, there is a node of T creating v, see the first operation in the definition of clique-width. In the
following, we call such a node an introduce node. We obtain a decomposition tree (T ′,L) as follows:

- We obtain T ′ from T as follows: If r 6= r′, we first remove all vertices in the path from r′ to r
in T other than r′. We fix r′ to be the root node of T ′.

- For each introduce node `v introducing a vertex v, we assign L(v) ..= `v.

For the first step, note that if the root r of T is not a join node, then it must have degree one in
T . This implies that T ′ is connected, and that each introduce node is a descendant of r′. Consider
a cut (Vt, Vt) for some t ∈ V (T ′), where Vt is the set of vertices that are introduced below t in T ,
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and note that by construction this is also the set of vertices of G that are mapped to leaves in the
subtree of T ′ rooted at t. If t is a leaf node, then mimH(Vt) ≤ 1. Assume t is an internal node.
Then t also appears in T .

We observe that G[Vt] is a w-labeled graph such that for any pair of vertices x, y in the same
label class, x and y have the same neighborhood in V (G) \ Vt. So we can apply Lemma 11 to
conclude that we have mimH(Vt) ≤ w which implies that H has mim-width at most w.

4 Algorithmic Consequences

Using the results from the previous section, we now give algorithmic consequences for distance-r
versions of (σ, ρ) problems and more generally of LCVP problems (introduced below). In particular,
the results in this section follow from Theorem 5 which states that taking an arbitrary power of a
graph never increases its mim-width by more than a factor of two. The second ingredient is the
following simple observation about neighborhoods of r-th powers of graphs.

Observation 14. For a positive integer r, a graph G and a vertex u ∈ V (G), the r-neighborhood of
u is equal to the neighborhood of u in Gr, i.e. N r

G(u) = NGr(u).

The observation above shows that solving a distance-r (σ, ρ) problem on G is the same as solving
the same standard distance-1 variation of the problem on Gr. Hence, we may reduce our problem
to the standard version by simply computing the graph power. Combining Theorem 5 with the
algorithms provided in Proposition 3, we have the following consequence.

Corollary 15. There is an algorithm that for all r ∈ N, given a graph G and a decomposition tree
(T,L) of G with w ..= mimwG(T,L) solves each distance-r (σ, ρ) problem Π with d ..= d(Π)

(i) in time O(n4+4d·w), if T is a caterpillar, and

(ii) in time O(n4+6d·w), otherwise.

Proof. Let G be the input graph and (T,L) the provided decomposition tree. We apply the following
algorithm:

Step 1. Compute the graph Gr.

Step 2. Solve the standard (distance-1) version of the problem on Gr, providing (T,L) as the
decomposition tree.

Step 3. Return the answer of the algorithm ran in Step 2 without modification.

Computing Gr in Step 1 takes at most O(n3) time using standard methods, Step 3 takes constant
time. The worst time complexity is hence found in Step 2. By Theorem 5, the mim-width of (T,L)
on Gr is at most twice that of the same decomposition on G. The stated runtime then follows from
Proposition 3. The correctness of this procedure follows immediately from Observation 14.

LCVP Problems. A generalization of (σ, ρ) problems are the locally checkable vertex partitioning
(LCVP) problems which we now discuss. A degree constraint matrix D is a q × q matrix where
each entry is a finite or co-finite subset of N. For a graph G and a partition of its vertices
V = {V1, V2, . . . Vq} (where some parts of the partition may possibly be empty), we say that it is a
D-partition if and only if, for each i, j ∈ [q] and each vertex v ∈ Vi, it holds that |N(v)∩Vj | ∈ D[i, j].
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For instance, let D3 be the 3× 3 matrix whose diagonal entries are {0} and the non-diagonal
ones are N, i. e.

D3
..=

{0} N N
N {0} N
N N {0}

 .
Then, a graph G admits a 3-coloring if and only if it admits a D3-partition.

Typically, the natural algorithmic questions associated with LCVP properties are existential.3

Interesting problems which can be phrased in such terms include the H-Covering and Graph
H-Homomorphism problems where H is fixed, as well as q-coloring, Perfect Matching Cut
and more. We refer to [30] for an overview.

We generalize LCVP properties to their distance-r version, by considering the ball of radius r
around each vertex rather than just the immediate neighborhood.

Definition 16 (Distance-r neighborhood constraint matrix). A distance-r neighborhood constraint
matrix D is a q× q matrix where each entry is a finite or co-finite subset of N. For a graph G and a
partition of its vertices V = {V1, V2, . . . Vq} (where some parts of this partition may be empty), we
say that it is a D-distance-r-partition if and only if, for each i, j ∈ [q] and each vertex v ∈ Vi, it
holds that |N r(v) ∩ Vj | ∈ D[i, j].

We say that an algorithmic problem is a distance-r LCVP problem if the property in question
can be described by a distance-r neighborhood constraint matrix. For example, the distance-r
version of a problem such as q-coloring can be interpreted as an assignment of at most q colours
to vertices of a graph such that no two vertices are assigned the same colour if they are at distance
r or closer.

For a given distance-r LCVP problem Π, its d-value d(Π) is the maximum d-value over all the
sets in the corresponding neighborhood constraint matrix.

As in the case of (σ, ρ) problems, combining Theorem 5 with Observation 14 and the works [3, 7]
we have the following result.

Corollary 17. There is an algorithm that for all r ∈ N, given a graph G and a decomposition tree
(T,L) of G with w ..= mimwG(T,L) solves each distance-r LCVP problem Π with d ..= d(Π)

(i) in time O(n4+4qd·w), if T is a caterpillar, and

(ii) in time O(n4+6qd·w), otherwise.

As we state the runtime bounds in the previous corollary in a different way than in [7] where
they have been proved first, we would like to note that this is justified by an argument parallel to
the one we provided in the sketch of the proof of Proposition 3 presented in this work.

5 Lower Bounds

We show that several (σ, ρ) problems are W[1]-hard parameterized by linear mim-width plus solution
size. Our reductions are based on two recent reductions due to Fomin, Golovach and Raymond [13]

3Note however that each (σ, ρ) problem can be stated as an LCVP problem via the matrix D(σ,ρ) =

[
σ N
ρ N

]
, so

maximization or minimization of some block of the partition can be natural as well.
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who showed that Independent Set and Dominating Set are W[1]-hard parameterized by linear
mim-width plus solution size. In fact they show hardness for the above mentioned problems on
H-graphs (the parameter being the number of edges in H plus solution size) which we now define
formally.

Definition 18 (H-Graph). Let X be a set and S a family of subsets of X. The intersection graph
of S is a graph with vertex set S such that S, T ∈ S are adjacent if and only if S ∩ T 6= ∅. Let H
be a (multi-) graph. We say that G is an H-graph if there is a subdivision H ′ of H and a family of
subsets M ..= {Mv}v∈V (G) (called an H-representation) of V (H ′) where H ′[Mv] is connected for all
v ∈ V (G), such that G is isomorphic to the intersection graph of M. For a vertex v ∈ V (G), we
call Mv the model of v.

We make an immediate observation from the definition of H-graphs that will be useful in later
proofs of this section. For a graph H, we can construct a H-representation of itself: We subdivide
each edge of H once to obtain H ′. Then, we create an H-representationM of H by adding for each
vertex v ∈ V (H) a model Mv

..= NH′ [v].

Observation 19. Any graph H is an H-graph.

All of the hardness results presented in this section are obtained via reductions to the respective
problems on H-graphs, and the hardness for linear mim-width follows from the following proposition.

Proposition 20 (Theorem 2 in [13]). Let G be an H-graph. Then, G has linear mim-width at
most 2 · ||H|| and a corresponding decomposition tree can be computed in polynomial time given an
H-representation of G.

5.1 Maximization Problems

The first lower bound concerns several maximization problems that can be expressed in the (σ, ρ)
framework. Recall that the (Maximum) Independent Set problem can be formulated as Max-
({0},N). The following result states that a large class of (σ, ρ) maximization problems that are
related to the Independent Set problem according to their (σ, ρ) formulation are W[1]-hard on
H-graphs parameterized by ||H|| plus solution size. These problems include Induced Matching,
Dominating Induced Matching, Induced d-Regular Subgraph, and Induced Subgraph
of Maximum Degree d, see Table 1 for the details.

Theorem 21. For any fixed d ∈ N and x ≤ d+ 1, the following holds. Let σ∗ ⊆ N≤d with d ∈ σ∗.
Then, Max-(σ∗,N≥x) Domination is W[1]-hard on H-graphs parameterized by the number of edges
in H plus solution size, and the hardness holds even if an H-representation of the input graph is
given.

Proof. To prove the theorem, we provide a reduction from Multicolored Clique where given a
graph G and a partition V1, . . . , Vk of V (G), the question is whether G contains a clique of size k
using precisely one vertex from each Vi (i ∈ [k]). This problem is known to be W[1]-complete [11, 25].

Let (G,V1, . . . , Vk) be an instance of Multicolored Clique. We can assume that k ≥ 3 and
that |Vi| = p for i ∈ [k]. If the second assumption does not hold, let p ..= maxi∈[k] |Vi| and add
p− |Vi| isolated vertices to Vi, for each i ∈ [k]. (Note that adding isolated vertices does not change
the answer to the problem.) For i ∈ [k], we denote by vi1, . . . , v

i
p the vertices of Vi. We first describe

the reduction of Fomin et al. [13] and then explain how to modify it to prove the theorem.
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(a) Example of the graph H when k = 3.
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p
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(b) The subdivisions done for a pair (i, j).

Figure 3: Illustration of the construction of Fomin et al. [13].

The Construction of Fomin, Golovach and Raymond [13]. The graph H is obtained as
follows, see Figure 3a.

1. Construct k nodes u1, . . . , uk.

2. For every 1 ≤ i < j ≤ k, construct a node wi,j and two pairs of parallel edges uiwi,j and ujwi,j .

We then construct the subdivision H ′ of H by first subdividing each edge p times. We denote
the subdivision nodes for 4 edges of H constructed for each pair 1 ≤ i < j ≤ k in Step 2 by

x
(i,j)
1 , . . . , x

(i,j)
p , y

(i,j)
1 , . . . , y

(i,j)
p , x

(j,i)
1 , . . . , x

(j,i)
p , and y

(j,i)
1 , . . . , y

(j,i)
p . This subdivision process is

depicted in Figure 3b. To simplify notation, we assume that ui = x
(i,j)
0 = y

(i,j)
0 , uj = x

(j,i)
0 = y

(j,i)
0

and wi,j = x
(i,j)
p+1 = y

(i,j)
p+1 = x

(j,i)
p+1 = y

(j,i)
p+1 .

We now construct the H-graph G′′ by defining its H-representation M = {Mv}v∈V (G′′) where
each Mv is a connected subset of V (H ′). (Recall that G denotes the graph of the Multicolored
Clique instance.)

1. For each i ∈ [k] and s ∈ [p], construct a vertex zis with model

Mzis
..=
⋃

j∈[k],j 6=i

({
x
(i,j)
0 , . . . , x

(i,j)
s−1

}
∪
{
y
(i,j)
0 , . . . , y

(i,j)
p−s

})
.

2. For each edge visv
j
t ∈ E(G) for s, t ∈ [p] and 1 ≤ i < j ≤ k, construct a vertex r

(i,j)
s,t with:

M
r
(i,j)
s,t

..=
{
x(i,j)s , . . . , x

(i,j)
p+1

}
∪
{
y
(i,j)
p−s+1, . . . , y

(i,j)
p+1

}
∪
{
x
(j,i)
t , . . . , x

(j,i)
p+1

}
∪
{
y
(j,i)
p−t+1, . . . , y

(j,i)
p+1

}
.

Throughout the following, for i ∈ [k] and 1 ≤ i < j ≤ k, we use the notation

Z(i) ..=
⋃

s∈[p]

{
zis
}

and R(i, j) ..=
⋃

s,t∈[p],
visv

j
t∈E(G)

{
r
(i,j)
s,t

}
,

respectively. We now observe the crucial property of G′′.
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B(w(2,3))B(w(1,2)) u1

w(1,3)

Figure 4: The graph K with respect to which the graph G′ constructed in the proof of Theorem 21
is a K-graph. In this example, we have k = 3 and d = 4.

Observation 21.1 (Claim 18 in [13]). For every 1 ≤ i < j ≤ k, a vertex zih ∈ V (G′) (a vertex

zjh ∈ V (G′)) is not adjacent to a vertex r
(i,j)
s,t ∈ V (G′) corresponding to the edge visv

j
t ∈ E(G) if and

only if h = s (h = t).

We now describe how to obtain from G′′ a graph G′ that will be the graph of the instance of
Max-(σ∗,N≥x) Domination, by adding a gadget attached to each set Z(i) and R(i, j) (for all
1 ≤ i < j ≤ k).

The New Gadget and the Construction of G′. Let X be a set of vertices of a graph. The
gadget B(X) is a complete bipartite graph on 2d − 1 vertices and bipartition ({β1,1, . . . , β1,d},
{β2,1, . . . , β2,d−1}) such that for h ∈ [d], each vertex β1,h is additionally adjacent to each vertex
in X.

The graph G′ is obtained from G′′ by adding the gadgets B(Z(i)) for all i ∈ [k] and the gadgets
B(R(i, j)) for all 1 ≤ i < j ≤ k. To prove the theorem, we require G′ to be a K-graph for some
graph K whose number of edges is bounded by a function of k, and possibly d, as d is fixed. We
will show that G′ is a K-graph for some supergraph K of H that meets this requirement.

Motivated by Observation 19, and the fact that the bipartite graph in each gadget B(·) has
O(d2) edges, we do the following to obtain K from H: For each i ∈ [k], we add the gadget B({ui}),
which will be used to encode B(Z(i)) in G′; furthermore, for each 1 ≤ i < j ≤ k, we add the gadget
B({w(i,j)}), which will be used to encode B(R(i, j)) in G′. For an illustration of K, see Figure 4.
We obtain a subdivision K ′ of K as follows:

(K1) For all edges in E(K) ∩ E(H), we do the same subdivisions that were made to obtain H ′

from H.

(K2) For each gadget B(·), we perform the edge subdivisions due to Observation 19 that allow for
encoding the bipartite graph in B(·) as a B(·)-graph.

(K3) For each i ∈ [k], let {βi1,1, . . ., βi1,d, βi2,1, . . ., βi2,d−1} be the vertices of B({ui}). Then, for

each h ∈ [d], we subdivide the edge uiβ
i
1,h, and denote the corresponding subdivision node by

s(i, h).
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Z(i) R(i, j) Z(j)

B1(i)

B2(i)

B1(j)

B2(j)

B1(i, j)

B2(i, j)

Figure 5: A part of the graph G′, where 1 ≤ i < j ≤ k and d = 4.

(K4) Similarly, for each 1 ≤ i < j ≤ k, let {β(i,j)1,1 , . . ., β
(i,j)
1,d , β

(i,j)
2,1 , . . ., β

(i,j)
2,d−1} be the vertices

of B({w(i,j)}). Then, for each h ∈ [d], we subdivide the edge uiβ
(i,j)
1,h , and denote the

corresponding subdivision node by s((i, j), h).

We now give the K-representation of G′, M′ = {M ′v}v∈V (G′), where each M ′v is a connected
subset of V (K ′); for an illustration of G′ see Figure 5.

(R1) For each vertex v ∈ V (G′) ∩ V (G′′), we let M ′v
..= Mv, where Mv is the model of v defined

given in the construction of Fomin et al. which we described above. Note that each such

vertex is either some vertex zis or some vertex r
(i,j)
s,t for appropriate choices for i, j, s, and t.

(R2) For each i ∈ [k], let {βi1,1, . . ., βi1,d, βi2,1, . . ., βi2,d−1} be the vertices of B({ui}). By the
subdivisions we did in Step K2, we obtain a corresponding complete bipartite graph on
vertices {bi1,1, . . ., bi1,d, bi2,1, . . ., bi2,d−1}. Each bit,h, where t ∈ [2] and h ∈ [d] if t = 1 and
h ∈ [d− 1] if t = 2, comes with a model from the subdivision of the complete bipartite graph
of B({ui}), which we initially use as M ′

bit,h
.

(R3) We proceed analogously to Step R2 with each B({w(i,j)}), where 1 ≤ i < j ≤ k.

(R4) For each i ∈ [k], and each h ∈ [d], we add the node s(i, h) to the models of zis for all s ∈ [p],
and we add s(i, h) to the model (in M′) of bi1,h. (This ensures that each bi1,h is complete to
Z(i).)

(R5) For each 1 ≤ i < j ≤ k and s, t ∈ [p] such that visv
j
t ∈ E(G), and each h ∈ [d], we add the

node s((i, j), h) to the model of r
(i,j)
s,t , and we add s((i, j), h) to the model (in M′) of b

(i,j)
1,h .

(This ensures that each b
(i,j)
1,h is complete to R(i, j).)

We count the size of K. For |K|, we observe that |H| = k+
(
k
2

)
and each gadget B(·) has 2d− 1

nodes, and we add k +
(
k
2

)
such gadgets. Hence, |K| = 2d

(
k +

(
k
2

))
= dk(k + 1). As for ||K||, we

observe that the number of edges in H is 4 ·
(
k
2

)
and each gadget B(·) introduces d(d− 1) + d = d2

edges. Hence,

||K|| = 4 ·
(
k

2

)
+ d2

(
k +

(
k

2

))
= O(d2 · k2). (2)
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We introduce some more notation. For 1 ≤ i < j ≤ k, we let B1(i) ..= {bi1,1, . . . , bi1,d}, B2(i) ..=

{bi2,1, . . . , bi2,d−1}, B1(i, j) ..= {b(i,j)1,1 , . . . , b
(i,j)
1,d } and B2(i, j) ..= {b(i,j)2,1 , . . . , b

(i,j)
2,d−1}; furthermore B(i) ..=

B1(i) ∪ B2(i), B(i, j) ..= B1(i, j) ∪ B2(i, j), and B ..=
⋃
i∈[k]B(i) ∪

⋃
1≤i<j≤k B(i, j). Note that

|B| = (2d− 1)(k +
(
k
2

)
). We furthermore use the notation

Z+B(i) ..= Z(i) ∪B(i) and R+B(i, j) ..= R(i, j) ∪B(i, j).

We now turn to the correctness proof of the reduction. We let k′ ..= 2d · (k +
(
k
2

)
) and show

that G has a multicolored clique if and only if G′ has a (σ∗,N≥x) set of size k′. We first prove the
forward direction. Note that the following claim yields the forward direction of the correctness
proof, since a ({d}, {d+ 1, . . . , d+ k}) set is a (σ∗,N≥x) set. (Recall that d ∈ ρ∗ and x ≤ d+ 1.)

Claim 21.2. If G has a multicolored clique, then G′ has a ({d}, {d + 1, . . . , d + k}) set of size
k′ = 2d · (k +

(
k
2

)
) (assuming k ≥ 3).

Proof. Let {v1h1 , . . . , v
k
hk
} be the vertex set in G that induces the multicolored clique. By Observa-

tion 21.1 we can verify that

I ..=
{
z1h1 , . . . , z

k
hk

}
∪
{
r
(i,j)
hi,hj

| 1 ≤ i < j ≤ k
}

(3)

is an independent set in G′. We let S ..= I ∪B and observe that S is a ({d}, {d+ 1, . . . , d+ k}) set:
By construction, there is no edge between any pair of distinct sets of B(i), B(i′), B(i, j), B(i′, j′),
for any choice of 1 ≤ i < j ≤ k and 1 ≤ i′ < j′ ≤ k.

Consider any vertex x ∈ S and suppose that x ∈ Z+B(i) for some i ∈ [k]. (The case when
x ∈ R+B(i, j) can be argued for analogously.) If x = zihi , then x is adjacent to the d vertices

bi1,1, . . . , b
i
1,d, if x = bi1,` for some ` ∈ [d], then x is adjacent to zihi and the vertices bi2,1, . . . , b

i
2,d−1

and if x = bi2,`′ for some `′ ∈ [d− 1], then it is adjacent to the vertices bi1,1, . . . , b
i
1,d. Hence, in all

cases, x has precisely d neighbors in S.
Let y ∈ V (G′) \ S and note that (V (G′) \ S) ∩ B = ∅. If y ∈ Z(i) for some i ∈ [k], then

N(y) ∩ S ⊇ {zihi , b
i
1,1, . . . , b

i
1,d}, so |N(y) ∩ S| ≥ d + 1. Since the only additional neighbors of y

in S are in the set Ri ..=
⋃

1≤j<iR(j, i) ∪
⋃
i<j≤k R(i, j) and Ri ∩ S ⊆ I, we can conclude that

|N(y) ∩ (S \B)| ≤ k−1, since I contains precisely one vertex from each set R(i, j). We have argued
that d+ 1 ≤ |N(y) ∩ S| ≤ d+ k. If y ∈ R(i, j) for some 1 ≤ i < j ≤ k, we can argue as before that
|N(y) ∩ S| ≥ d+ 1 and since all neighbors of y in S \B(i, j) are contained either in Z(i) or Z(j),
we can conclude that d+ 1 ≤ |N(y) ∩ S| ≤ d+ 3 ≤ d+ k.

It remains to count the size of S. Clearly, |I| = k +
(
k
2

)
and as observed above, |B| =

(2d− 1)(k +
(
k
2

)
), so

|S| = |I|+ |B| = k +

(
k

2

)
+ (2d− 1)

(
k +

(
k

2

))
= 2d

(
k +

(
k

2

))
= k′,

as claimed. y

We now prove the backward direction of the correctness of the reduction. We begin by making
several observations about the structure of (σ∗,N≥x) sets in the graph G′.

Claim 21.3. Let 1 ≤ i < j ≤ k.

(i) Any (σ∗,N≥x) set in G′ contains at most d+1 vertices from each Z(i)∪B1(i) or R(i, j)∪B1(i, j).
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(ii) Any (σ∗,N≥x) set contains at most 2d vertices from each Z+B(i) or R+B(i, j).

(iii) If a (σ∗,N≥x) set S contains 2d vertices from some Z+B(i) (R+B(i, j)), then it contains at
least one vertex from Z(i) (R(i, j)) and each such vertex in S ∩ Z(i) (S ∩R(i, j)) has at least
d neighbors in S ∩ Z+B(i) (S ∩R+B(i, j)).

Proof. (i) We prove the claim for a set Z(i) ∪ B1(i). The proof for a set R(i, j) ∪ B1(i, j) works
analogously. Suppose for the sake of a contradiction that there is a set S ⊆ V (G′) that contains at
least d+ 2 vertices from some Z(i) ∪ B1(i). Since |B1(i)| = d, we know that S contains a vertex
from Z(i), say x. However, by construction, all vertices in S ∩ (Z(i) ∪ B1(i)) \ {x} are adjacent
to x, implying that x has at least d+ 1 neighbors in S, a contradiction with the fact that S is a
(σ∗,N≥x) set.

(ii) follows as a direct consequence, since Z+B(i) \ (Z(i) ∪B1(i)) = B2(i) and |B2(i)| = d− 1.
Similar for R+B(i, j).

(iii). The claim that S contains at least one vertex from Z(i) is immediate since |S ∩ Z+B(i)| = 2d
and |Z+B(i) \ Z(i)| = |B(i)| = 2d− 1. Let x ∈ S ∩Z(i) be such a vertex. Then, the only vertices of
Z+B(i) that x is not adjacent to are the vertices B2(i). Since |B2(i)| = d− 1, the remaining vertices
in (S ∩ Z+B(i)) \ (B2(i) ∪ {x}), of which there are at least d as we just argued, are neighbors of x.
Similar for R+B(i, j). y

Equipped with the previous claim, we can now finish the correctness proof of the reduction.

Claim 21.4. If G′ contains a (σ∗,N≥x) set S of size k′ = 2d(k+
(
k
2

)
), then G contains a multicolored

clique.

Proof. Let S be a (σ∗,N≥x) set of size k′ in G′. By Claim 21.3(ii), we can conclude that S contains
precisely 2d vertices from each Z+B(i) and each R+B(i, j) (where 1 ≤ i < j ≤ k). Consider any pair
i, j with 1 ≤ i < j ≤ k. By Claim 21.3(iii) we know that there are vertices

zisi ∈ Z(i) ∩ S, zjsj ∈ Z(j) ∩ S, and r
(i,j)
ti,tj
∈ R(i, j) ∩ S,

for some si, sj , ti, tj ∈ [p]. Again by Claim 21.3(iii), zisi has d neighbors in Z+B(i) ∩ S, so if

zisir
(i,j)
ti,tj
∈ E(G′), then zisi has d+1 neighbors in S, a contradiction with the fact that S is a (σ∗,N≥x)

set. Hence, zisir
(i,j)
ti,tj

/∈ E(G′) and zjsjr
(i,j)
ti,tj

/∈ E(G′). By Observation 21.1, we then have that si = ti

and sj = tj . We can conclude that visiv
j
sj ∈ E(G) and since the argument holds for any pair of

indices i, j, G has a multicolored clique. y

We would like to remark that by the proof of the previous claim, we have established that any
(σ∗,N≥x) set S in G′ of size k′ in fact contains all vertices from B and one vertex from each Z(i) and
from each R(i, j). Since this is precisely the shape of the set constructed in the forward direction of
the correctness proof, this shows that any (σ∗,N≥x) set of size k′ in G′ is a ({d}, {d+1, . . . , d+k}) set
(assuming k ≥ 3).

Claims 21.2 and 21.4 establish the correctness of the reduction. We observe that |V (G′)| =
O(|V (G)|+ d2 · k2) and clearly, G′ can be constructed from G in time polynomial in |V (G)|, d and
k as well. Furthermore, by (2), ||K|| = O(d2 · k2) which implies that ||K|| = O(k2) since d is a fixed
constant and the theorem follows.

By Proposition 20, the previous theorem has the following consequence.
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Corollary 22. For any fixed d ∈ N and x ≤ d+ 1, the following holds. Let σ∗ ⊆ N≤d with d ∈ σ∗.
Then, Max-(σ∗,N≥x) Domination is W[1]-hard parameterized by linear mim-width plus solution
size, and the hardness holds even if a corresponding decomposition tree is given.

5.2 Minimization Problems

In this section we prove W[1]-hardness of minimization versions of several (σ, ρ) problems parame-
terized by linear mim-width plus solution size. We obtain our results by modifying a reduction from
Multicolored Independent Set to Minimum Dominating Set on H-graphs parameterized by
solution size plus ||H|| due to Fomin et al. [13]. In the Multicolored Independent Set problem
we are given a graph G and a partition V1, . . . , Vk of its vertex set V (G) and the question is whether
there is an independent set {v1, . . . , vk} ⊆ V (G) in G such that for each i ∈ [k], vi ∈ Vi. The
W[1]-hardness of this problem follows immediately from the W[1]-hardness of the Multicolored
Clique problem.

The Reduction of Fomin et al. [13]. Let G be an instance of Multicolored Independent
Set with partition V1, . . . , Vk of V (G). Again we can assume that k ≥ 3 and that |Vi| = p for all
i ∈ [k]. If the latter condition does not hold, let p ..= maxi∈[k] |Vi| and for each i ∈ [k], add p− |Vi|
vertices to Vi that are adjacent to all vertices in each Vj where j 6= i. It is clear that the resulting
instance has a multicolored independent set if and only if the original instance does.

The graph G′ of the Minimum Dominating Set instances is obtained as follows. We take the
graph G′′ as constructed in the proof of Theorem 21, and for each i ∈ [k], we add a vertex bi whose
model is {ui}, i. e. it is adjacent to all vertices in Z(i) and nothing else. We argue that G has a
multicolored independent set if and only if G′ has a dominating set of size k.

For the forward direction, if G has a multicolored independent set I ..= {v1h1 , . . . , v
k
hk
}, then

using Observation 21.1, one can verify that D ..= {z1h1 , . . . , z
k
hk
} is a dominating set in G′: Clearly,

for each i ∈ [k], the vertices in Z(i) ∪ {bi} are dominated by zihi ∈ D. Suppose there is a vertex

r
(i,j)
s,t ∈ R(i, j) that is not dominated by D, then in particular it is neither adjacent to zihi nor to zjhj .

By Observation 21.1, this implies that G contains the edge vihiv
j
hj

, a contradiction with the fact
that I is an independent set.

For the backward direction, suppose that G′ has a dominating set D of size k. Due to the vertices
bi (for i ∈ [k]), we can conclude that for all i ∈ [k], D ∩ (Z(i) ∪ {bi}) 6= ∅. If D contains bi for some
i ∈ [k], then we can replace bi by any vertex in Z(i) such that the resulting set is still a dominating
set of D, so we can assume that D = {z1h1 , . . . , z

k
hk
}. We claim that {v1h1 , . . . , v

k
hk
} is an independent

set in G. Suppose that for i, j ∈ [k], there is an edge vihiv
j
hj
∈ E(G). Observation 21.1 implies that

r
(i,j)
hi,hj

is neither adjacent to zihi nor to zjhj , so r
(i,j)
hi,hj

is not dominated by D, a contradiction.

Remark 23. We would like to remark that the above reduction is to the Min-(σ∗, ρ∗) Domina-
tion problem, for all σ∗ ⊆ N with 0 ∈ σ∗ and ρ∗ ⊆ N+ with {1, 2} ⊆ ρ∗.

Proposition 24 ([13]). For σ∗ ⊆ N with 0 ∈ σ∗ and ρ∗ ⊆ N+ with {1, 2} ⊆ ρ∗, Min-(σ∗, ρ∗) Dom-
ination is W[1]-hard on H-graphs parameterized by the number of edges in H plus solution size,
and the hardness holds even when an H-representation of the input graph is given.

Adaption to Total Domination Problems. Recall that the (σ, ρ) formulation for Dominating
Set is (N,N+). We now explain how to modify the above reduction to obtain hardness for total
dominating set problems where each vertex in the solution has to have at least one neighbor in the
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solution as well. These problems include Total Dominating Set and Dominating Induced
Matching, which can be formulated as (N+,N+) and ({1},N+), respectively. The minimization
problem of either of them is known to be NP-complete.

Theorem 25. For σ∗ ⊆ N+ with 1 ∈ σ∗ and ρ∗ ⊆ N+ with {1, 2} ⊆ ρ∗, Min-(σ∗, ρ∗) Domination is
W[1]-hard on H-graphs parameterized by the number of edges in H plus solution size, and the hardness
holds even when an H-representation of the input graph is given.

Proof. We modify the above reduction from Multicolored Independent Set as follows. For
each i ∈ [k], we add another vertex ci to G′ which is only adjacent to bi. We let B ..=

⋃
i∈[k]{bi}

and C ..=
⋃
i∈[k]{ci}. Note that these new vertices can be ‘hardcoded’ into H with the number of

edges in H increasing only by k. To argue the correctness of the reduction, we now show that G
has a multicolored independent set if and only if G′ has a (σ∗, ρ∗) set of size k′ ..= 2k.

For the forward direction, suppose that G has an independent set {v1h1 , . . . , v
k
hk
}. Then, D′ ..=

{z1h1 , . . . , z
k
hk
} dominates all vertices in V (G′) \ C by the same argument as above and D ..= D′ ∪B

dominates all vertices of G′. Furthermore, each x ∈ D has precisely one neighbor in D: For each
such x, either x = zihi or x = bi for some i ∈ [k]. In the former case, N(x) ∩ D = {bi} and in

the latter case, N(x) ∩ D = {zihi}. Now let y ∈ V (G′) \ D. If y ∈ Z(i) ∪ {ci} for i ∈ [k], then

∅ 6= N(y) ∩D ⊆ {zihi , bi}. If y ∈ R(i, j) for some 1 ≤ i < j ≤ k, then y is either dominated by one

of zihi and zjhj or by both and it cannot have any other neighbors in D by construction. Since 1 ∈ σ∗

and {1, 2} ⊆ ρ∗, D is a (σ∗, ρ∗) set and clearly, |D| = 2k.
For the backward direction, suppose that G′ has a (σ∗, ρ∗) set D of size 2k. Let i ∈ [k]. Since

0 /∈ σ∗ and 0 /∈ ρ∗, we have that at least one of ci and bi is contained in D (either ci is dominating
or it needs to be dominated). Suppose ci ∈ D. Since each vertex in D has to have at least one
neighbor in D and bi is the only neighbor of ci, we can conclude that bi ∈ D. So, in either case, we
have that bi is contained in D and subsequently we have that B ⊆ D. Since 0 /∈ σ∗, all vertices
of B have a neighbor in D. Suppose for some i ∈ [k] that neighbor is ci. Then, we can replace
ci with some zihi ∈ Z(i), without changing the fact that D is a (σ∗, ρ∗) set. We can assume that

for each i ∈ [k], the neighbor of bi that is contained in D is a vertex zihi ∈ Z(i). We have that

D = B ∪{z1h1 , . . . , z
k
hk
} and since D is a dominating set (in other words, 0 /∈ ρ∗), we can again argue

using Observation 21.1 that {v1h1 , . . . , v
k
hk
} is an independent set in G.

As a somewhat orthogonal result to Theorem 21, we now show hardness of several problems
related to the d-Dominating Set problem, where each vertex that is not in the solution set has to
be dominated by at least some fixed number of d neighbors in the solution.

Adaption to d-Domination Problems. We use a similar gadget as the one constructed in
the proof of Theorem 21 to prove hardness of several (σ, ρ) problems where each vertex has to be
dominated by at least d vertices. In particular, we prove the following theorem. Note that the
analogous statement of the following theorem for d = 1 is proved by the reduction explained in the
beginning of this section, see Remark 23.

Theorem 26. For any fixed d ∈ N≥2, the following holds. Let σ∗ ⊆ N with {0, 1, d − 1} ⊆ σ∗

and ρ∗ ⊆ N≥d with {d, d + 1} ⊆ ρ∗. Then, Min-(σ∗, ρ∗) Domination is W[1]-hard on H-graphs
parameterized by the number of edges in H plus solution size, and the hardness even holds when an
H-representation of the input graph is given.
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u1

w(1,3)

u3

u2

w(1,2) w(2,3)

C(1) C(3)

C(2)

Figure 6: An example graph K w.r.t. which the graph G′ constructed in the proof of Theorem 26 is
a K-graph. In this example, k = 3.

Proof. We modify the reduction from Multicolored Independent Set to Dominating Set
on H-graphs due to Fomin et al. [13] that we summarized in the beginning of this section. Let
G be a graph with vertex partition V1, . . . , Vk and |Vi| = p for all i ∈ [k] and assume k ≥ 3.
We first describe the gadget we use and then we describe how to construct the graph G′ of the
Min-(σ∗, ρ∗) Domination instance.

The Gadget C(i). Let i ∈ [k]. The gadget C(i) is a complete bipartite graph with bipartition
(C1(i), C2(i)) where C1(i) ..= {ci1,1, . . . , ci1,d} and C2(i) ..= {ci2,1, . . . , ci2,d} such that each vertex ci1,j
for j ∈ [d− 1] is additionally adjacent to all vertices in Z(i) as well as to all vertices in R(i, j) for
j > i. (Note that ci1,d does not have these additional adjacencies.) Throughout the following, we let
C(i) ..= C1(i) ∪ C2(i) and C ..=

⋃
i∈[k]C(i).

The graph G′ is now obtained by constructing the graph G′′ as in the proof of Theorem 21
and then, for each i ∈ [k], adding the gadget C(i) and adding a ‘satellite vertex’ si, adjacent to all
vertices in Z(i) ∪ C1(i). G′ is a K-graph for the graph K ⊇ H, obtained by ‘hardcoding’ each C(i),
for i ∈ [k], into H. That is, for each i ∈ [k], we add a complete bipartite graph with bipartition
({γi1,1, . . . , γi1,d}, {γi2,1, . . . , γi2,d}), and make all vertices γi1,h, where h ∈ [d− 1], adjacent to ui as well
as to all vertices w(i,j) with j > i. For an illustration of K see Figure 6. Note that

||K|| = ||H||+ k(d2 + 1) +

k∑
i=1

(k − i)(d− 1) = O(k2 · d+ k · d2). (4)

We illustrate the structure of the graph G′ in Figure 7. We now argue that G′ is a K-graph.
We begin by constructing a subdivision K ′ of K. First, we do Step K1 that was taken in the proof
of Theorem 21 (see page 19) to construct the subdivision, and then the analogue of Step K2 in the
proof of Theorem 21 for the gadgets C(i). We continue with the following two steps.

(K3) For each i ∈ [k], let {γi1,1, . . ., γi1,d, γi2,1, . . ., γi2,d−1} be the vertices of the copy of the graph

of C(i) in K. For each h ∈ [d − 1], we subdivide the edge uiγ
i
1,h once, and denote the

corresponding subdivision node by s(i, h).

(K4) Furthermore, for each i ∈ [k], for each i < j ≤ k, and h ∈ [d − 1] we subdivide the edge
w(i,j)γ

i
1,h once, and denote the corresponding subdivision node by s((i, j), h).
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Z(i) R(i, j) Z(j)

C1(i) \ {ci1,4}

C2(i)

ci1,4

C1(j) \ {cj1,4}

C2(j)

cj1,4

si sj

Figure 7: Illustration of a part of G′ constructed in the proof of Theorem 26, where 1 ≤ i < j ≤ k
and d = 4.

We now sketch how to obtain a K-representation of G′, M′ = {M ′v}v∈V (G′), where each M ′v is a
connected subset of V (K ′); for an illustration of G′ see Figure 7. As these steps are very similar
to Steps (R1) to (R5) in the proof of Theorem 21 (see page 20), we focus on pointing out how to
adapt them rather than fully restating all of them.

First, for each i ∈ [k], the model for the vertex si consists of the vertex ui, i.e. we add the
model M ′si

..= {ui} to M′. Then we do the steps analogous to Steps R1 and R2 taken in the proof
of Theorem 21. Following that, we take the steps analogous to R4 and R5, where in Step R4 we
consider vertex ci1,h instead of vertex bi1,h , and in Step R5, we consider vertex ci1,h instead of vertex

b
(i,j)
1,h . Furthermore, in Step R4, we additionally add s(i, h) to the model of si. This completes the

construction of the K-representation for G′.

Claim 26.1. If G has a multicolored independent set, then G′ has a (σ∗, ρ∗) set of size k′ ..= k · (d+1).

Proof. Let {v1h1 , . . . , v
k
hk
} be the independent set in G. By the reduction proving Proposition 24 in

the beginning of this section, we have that D′ ..= {z1h1 , . . ., zkhk} is a ({0}, {1, 2})-set of G′ − C of
size k (see also Remark 23). Let C1

..=
⋃
i∈[k]C1(i), C2

..= C \ C1 and D ..= D′ ∪ C1.

Since each vertex in V (G′) \ (D ∪ C) is adjacent to precisely d− 1 vertices in C1 and to either
one or two vertices in D′ (and D′ ∩C1 = ∅), we can conclude that each vertex in V (G′) \ (D ∪C) is
adjacent to either d or d+ 1 vertices in D. Since each C(i) induces a Kd,d, we can conclude that all
vertices in C2 have d neighbors in D as well. Furthermore, N(si) ∩D = (C1(i) \ {ci1,d}) ∪ {zihi}, so
we have that all vertices in G′ that are not contained in D have either d or d+ 1 neighbors in D.

Let i ∈ [k]. Then, N(zihi) ∩ D = {ci1,1, . . ., ci1,d−1}, N(ci1,d) ∩ D = ∅ and for ` ∈ [d − 1],

N(ci1,`) ∩D = {zihi}. We can conclude that D is a ({0, 1, d − 1}, {d, d+ 1})-set in G′ and clearly,
|D| = k + kd = k′. y

In what follows, the strategy is to argue that each (σ∗, ρ∗) set of size k′ = k · (d+ 1) contains a
set {z1h1 , . . . , z

k
hk
} which will imply that {v1h1 , . . . , v

k
hk
} is an independent set in G. Throughout the

following, for i ∈ [k], we let Z+(i) ..= Z(i) ∪ C(i) ∪ {si}.
Claim 26.2. For all i ∈ [k], any (σ∗, ρ∗) set D in G′ contains at least d vertices from C(i) and at
least d+ 1 vertices from Z+(i).
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Proof. We first show that each such D contains at least d vertices from C(i). Suppose not, then
|D ∩ C(i)| ≤ d − 1 for some i ∈ [k]. If ci1,d /∈ D, then C2(i) ⊆ D, otherwise ci1,d cannot have d or

more neighbors in D. But |C2(i)| = d, a contradiction. We can assume that ci1,d ∈ D. Furthermore,

there is at least one vertex ci2,` for ` ∈ [d] with ci2,` /∈ D. To ensure that ci2,` has at least d neighbors
in D, we would have to include all remaining vertices from C1(i) in D, but then |D ∩ C(i)| ≥ d, a
contradiction. The second part of the claim now follows since the vertex si only has neighbors in
Z+(i) and at most d− 1 neighbors in C(i) ∩D (namely C1(i) \ {ci1,d}): Since D is a (σ∗, ρ∗) set, it
either has to contain si or at least one additional neighbor of si. y

Claim 26.3. For all i ∈ [k], any (σ∗, ρ∗) set D of size at most k′ = k(d + 1) contains C1(i). We
furthermore can assume that it additionally contains some zihi ∈ Z(i), where hi ∈ [p].

Proof. By Claim 26.2 we have that D contains d+ 1 vertices from each Z+(i′), i′ ∈ [k], and no other
vertices. Consider any vertex zis ∈ Z(i) (where s ∈ [p]) that is not contained in D. Recall that zis has
to have at least d neighbors in D. By Claim 26.2, zis has precisely one neighbor in (Z(i)∪ {si})∩D
and since D does not contain any vertex from any R(j, i) (1 ≤ j < i) or R(i, j′) (i < j′ ≤ k), the
only possible neighbors of zis in D are (C1(i)∪ {si}) \ {ci1,d}. Furthermore, we observe that ci1,d ∈ D:

for if ci1,d /∈ D, then ci1,d has to have either d or d+ 1 neighbors in D. However, D already contains

the d− 1 vertices C1(i) \ {ci1,d} that are not adjacent to ci1,d, and D contains d+ 1 vertices from

Z+(i). So, at most two neighbors of ci1,d are contained in D. If at most one neighbor of ci1,d is
contained in D, this immediately gives a contradiction with D being a (σ∗, ρ∗) set since d ≥ 2.
However, if d = 2, and two neighbors of ci1,d are contained in D, then each vertex in Z(i) has only

d− 1 neighbors in D, namely the ones in C1(i) \ {ci1,d}, again a contradiction with D being a (σ∗, ρ∗)
set. We can conclude that C1(i) ⊆ D.

Now suppose that si ∈ D. Then, after swapping si with any vertex in Z(i), the resulting set
remains a (σ∗, ρ∗) set: Clearly, the condition of being a (σ∗, ρ∗) set is not violated by any vertex in
Z+(i). For i < j ≤ k, consider any vertex x ∈ R(i, j). Then, N(x) ∩D contains the d− 1 vertices
C1(i) \ {ci1,d}, and at most one more each from Z(i) and Z(j), as D can contain at most one vertex
from each Z(i′), i′ ∈ [k]. Now, if we swapped si with some vertex from Z(i), then this means
that initially, D contained d neighbors from N(x), namely C1(i) \ {ci1,d} and one vertex from Z(j).
Hence, after swapping, D contains d+ 1 vertices and since d+ 1 ∈ ρ∗, D remained a (σ∗, ρ∗) set.
An analogous argument can be given for any R(j′, i), where 1 ≤ j′ < i. y

We are now ready to conclude the correctness proof of the reduction.

Claim 26.4. If G′ has a (σ∗, ρ∗) set of size k′ = k(d+ 1), then G has a multicolored independent set.

Proof. Let D be a (σ∗, ρ∗) set of size k′. By Claim 26.3, we can assume that D = C1∪{z1h1 , . . . , z
k
hk
}

for some h1, . . . , hk ∈ [p]. Now, since for each 1 ≤ i < j ≤ k, all vertices in R(i, j) have precisely
d − 1 neighbors in C1, each of them has to have at least one of zihi and zjhj as a neighbor. By

Observation 21.1, this allows us to conclude that {v1h1 , . . . , v
k
hk
} is an independent set in G. y

Claims 26.1 and 26.4 establish the correctness of the reduction. Clearly, |V (G′)| = O(|V (G)|+
d2 · k) (and G′ can be constructed in polynomial time) and by (4), ||K|| = O(k2 · d+ k · d2). Since d
is a fixed constant we have that ||K|| = O(k2) and the theorem follows.

Similarly to above, a combination of the previous two theorems with Proposition 20 yields the
following hardness results for (σ, ρ) mimization problems on graphs of bounded linear mim-width.
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Corollary 27. Let σ∗ ⊆ N and ρ∗ ⊆ N. Then, Min-(σ∗, ρ∗) Domination is W[1]-hard parameter-
ized by linear mim-width plus solution size, if one of the following holds.

(i) σ∗ ⊆ N+ with 1 ∈ σ∗ and ρ∗ ⊆ N+ with {1, 2} ⊆ ρ∗.

(ii) For some fixed d ∈ N≥2, {0, 1, d− 1} ⊆ σ∗ and ρ∗ ⊆ N≥d with {d, d+ 1} ⊆ ρ∗.

Furthermore, the hardness holds even if a corresponding decomposition tree is given.

6 Conclusion

We have introduced the class of distance-r (σ, ρ) and LCVP problems. This generalizes well-known
graph distance problems like distance-r domination, distance-r independence, distance-r coloring
and perfect r-codes. It also introduces many new distance problems for which the standard distance-1
version naturally captures a well-known graph property.

Using the graph parameter mim-width, we showed that all these problems are solvable in
polynomial time for many interesting graph classes. These meta-algorithms will have runtimes
which can likely be improved for a particular problem on a particular graph class. For instance,
blindly applying our results to solve Distance-r Dominating Set on permutation graphs yields
an algorithm that runs in time O(n8): Permutation graphs have linear mim-width 1 (with a
corresponding decomposition tree that can be computed in linear time) [3, Lemmas 2 and 5], so we
can apply Corollary 15(i). However, there is an algorithm that solves Distance-r Dominating
Set on permutation graphs in time O(n2) [26]; a much faster runtime.

Recently, Chiarelli et al. [10] gave algorithms for the (Total) k-Dominating Set problems on
proper interval graphs that run in time O(n3k). The mim-width framework yields an algorithm for
these problems that runs in time O(n2k+4) which follows from Proposition 3(i) and the result that
interval graphs have linear mim-width 1 [3]. Hence the work [10] improves the generic mim-width
based algorithm whenever k < 4. We would like to remind the reader however that prior to this
work, the result formulated in Proposition 3(i) has not been explicitly stated anywhere.

Regarding lower bounds, we expanded on the previous results by Fomin et al. [13] and showed
that many (σ, ρ) problems are W[1]-hard parameterized by mim-width. However, it remains open
whether there exists a problem which is NP-hard in general, yet FPT parameterized by mim-width.
In particular, several (σ, ρ) problems are not covered by the W[1]-hardness results of Fomin et
al. [13] and the ones presented in this paper. Examples include Perfect Code and Perfect
Dominating Set, see e.g. Table 1. Even so, we conjecture that every NP-hard (distance) (σ, ρ)
problem is W[1]-hard parameterized by mim-width.

Somewhat surprisingly, we proved that powers of graphs of bounded tree-width or clique-width
have bounded mim-width. Heggernes et al. [14] showed that the clique-width of the k-th power of a
path of length k(k + 1) is exactly k. This also shows that the expressive power of mim-width is
much stronger than clique-width, since all powers of paths have mim-width just 1. As a special case,
we show that leaf power graphs have mim-width 1. We believe the notion of mim-width can be of
benefit to the study of leaf power graphs. We remark that it is a big open problem whether leaf
power graphs can be recognized in polynomial time [6, 8, 22, 24]. Knowing that leaf powers have
mim-width 1, we can connect this open problem to the open problem regarding the recognition of
graphs of bounded mim-width which has been repeatedly stated (e.g. [18, 31]): A polynomial-time
algorithm that recognizes graphs of mim-width 1 could prove itself useful in devising a recognition
algorithm for leaf power graphs.
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