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Abstract

We study the computational complexity of partitioning the vertices of a graph into
generalized dominating sets. Generalized dominating sets are parameterized by two
sets of nonnegative integers o and p which constrain the neighborhood N (v) of vertices.
A set S of vertices of a graph is said to be a (o,p)-set if Vo € S : [Nw)N S| € ¢
and Vv ¢ S : |[N(v) N S| € p. The (k,o,p)-partition problem asks for the existence
of a partition Vi, Va, ...,V of vertices of a given graph G such that V;,¢ = 1,2,....k
is a (o, p)-set of G. We study the computational complexity of this problem as the
parameters o, p and k vary.

1 Motivation and overview

Several well-studied graph problems ask for a partition of vertices of a graph into subsets
with a given property. For example, the Chromatic Number problem asks for a partition
into the least number of independent sets. Even the fixed parameter version of this problem,
vertex k-coloring, where we ask for the existence of a partition into k independent sets, is
intractable (NP-complete) for any k > 3, while it is easy for smaller k£ [2]. Similarly, the
Kj-cover problem asking for a partition into k& perfect codes is NP-complete starting from
k > 4 [5], whereas the partition into perfect matchings problem is NP-complete already for
kE>2]7].

These problems can all be defined as Partitions Into Generalized Dominating Sets. Gen-
eralized dominating sets, introduced by Telle in [8] and defined formally in the next section,
are parameterized by two sets o and p of nonnegative integers. Many well-studied vertex
subset properties with applications in facility location and network communication can be
expressed as (o, p)-sets [8, 1, 2, 3], see Table 1. In this paper we present a systematic study
of the complexity of partitioning vertices of a given graph G into k (o, p)-sets, for varying
values of the parameters k&, o, p.

Our focus has been on the vertex subset properties found in the literature, and on
generalizations of these properties. In particular, for the vertex subset properties in Table
1, we find the tractability /intractability cutoff point k. Meaning that we give a polynomial-
time algorithm deciding whether a graph has a partition into &k — 1 (o, p)-sets, and an
NP-completeness proof for the problem of deciding whether it has a partition into k (o, p)-
sets. See the table for these cutoff values. Several of our NP-completeness results are shown
to hold for infinite classes of problems and/or for restricted graph classes, usually k-regular
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graphs. In addition to the three problems mentioned in the first paragraph, these partition
problems have, to our knowledge, previously only been studied for dominating sets (domatic
number) [2].

In the next section, we give some definitions and present some general facts on these
partitioning problems. Section 3 contains the various NP-completeness reductions. In
Section 4, we present the polynomial-time solvable problems and conclude with an open
problem in Section 5.

‘ o ‘ p ‘ Standard terminology ‘ cutoff ‘
N {0,1} | Nearly Perfect set oo *
{0} {0,1} | Strong Stable set or 2-Packing 4 *
{0} {1} Perfect Code or Efficient Dominating set | 4 [5]
{0} N Independent set 3 2]
{0} P Independent Dominating set 3
N P Dominating set 3 [2]
{0,1} | {0,1} | Total Nearly Perfect set 3
{0,1} | {1} Weakly Perfect Dominating set 3
{1} {1} Total Perfect Dominating set 3
{1} N Induced Perfect Matching 2 [7]
{1} P Dominating Induced Matching 2 %
P P Total Dominating set 2 *
N {1} Perfect Dominating set 2 %

Table 1: Some vertex subset properties expressed as (o,p)-sets, with tractabil-
ity /intractability cutoff value for the partitioning problem (co means tractable for all &
values). Reference * if cutoff value proved here.

2 Definitions and some facts

We first define the concepts used in our discussions. They concern mostly combinatorial
graphs, i.e., sets of vertices and edges together with the incidence relation between them.

A graph G = (V, E) consists of a set of vertices V, and a set of edges E C {(u,v) | u,v €
V'}. We consider only undirected graphs without self-loops. Given a vertex v € V, we call
the set of adjacent vertices its neighborhood, N(v) = {w | (v,w) € E}. The cardinality
of N(v) is called the degree of v. A graph all of whose vertices have degree k is called a
k-regular graph. A path of length & in a graph G = (V, E) is a sequence of distinct, pairwise
adjacent vertices, vg,v1,... v, with (v;_1,v;) € E for all 4, 1 < i < k. If, in addition,
(vo,vk) € E, then we have a cycle. A graph is connected if there is a path between any two
distinct vertices. In the complete graph Kj on k vertices there is an edge between every
pair of vertices.

Let N= {0,1,...} and P= {1,2,...} denote the nonnegative and positive integers, re-
spectively. A partition Vi,Va, ..., Vi of a set V satisfies UleVi =V,and V;NV; = 0,
1<i#j<k

Definition 1 For 0 C N and p C N, a subset S of the vertices of a graph is a (o, p)-set if
YoeS:|Nw)NS|€o and Yo g S:|N(v)NS|e€p.



Definition 2 A (k, o, p)-partition of a graph G is a partition V1, Vs, ..., Vi of its vertices
such that each V; is a (o, p)-set of G fori=1,2,...,k.

Partitioning a graph into (o, p)-sets can also be viewed as a vertex labeling problem.
A (k, o, p)-partition of a graph G is a labeling of its vertices with & labels, such that for
each vertex, the number of neighbors it has with its own label is in ¢ and the number of
neighbors it has with each different label than its own is in p.

We now state some general facts on the existence of (k, o, p)-partitions in a graph G.
These facts follow from the definition of a (k, o, p)-partition.

Fact 1 A graph has a (1,0, p)-partition if and only if the degree of every vertex is in o.

We will be assuming, quite naturally, that the parameter sets o and p have polynomial-
time membership tests. The problem of deciding whether a graph has a (1, o, p)-partition
is therefore easy for all values of o and p.

Fact 2 Ifp is a positive integer, then in any (k, o, {p})-partition of a graph G, all partition
classes V; must have the same cardinality |V;| = |V(G)|/k, fori=1,..., k.

Fact 2 follows since for any two partition classes V; and Vj,7 # j, every vertex in V;
must have p neighbors in V}, and vice-versa.

Fact 3 For nonnegative integers s and r, if a graph G has a (k,{s},{r})-partition then G
is (s + (k — 1)r)-regular.

In the case of Fact 3, every vertex must have exactly s neighbors with the same label
as itself, and it must have exactly r neighbors with each of the k£ — 1 other labels.

Fact 4 Given a graph G = (V, E), if V and 0 are both (o, p)-sets, then G has a trivial
(k, o, p)-partitioning V1 =V, and V; = 0 fori=2,...,k.

We get the situation in Fact 4, for example if 0 = N and 0 € p.

Fact 5 A graph G has a non-trivial (k, o, {0})-partition if and only if G contains at least
k components, and the degree of every vertex is in o.

The problem of deciding whether a graph has a (k, o, {0})-partition is thus easy for
all values of £ and 0. The following lemma will be used in the proofs of some of the
NP-completeness results of Section 3.

Lemma 6 For any o and p with maxo = s and max p = r, where r and s are nonnegative
integers, an (s + (k — 1)r)-regular graph G has a (k, o, p)-partition if and only if G has a
(k,{s},{r})-partition.

Proof. If G has a (k, {s}, {r})-partition, then G has clearly a (k, o, p)-partition since s € o,
and r € p.

If G has a (k, 0, p)-partition with max o = s and max p = r, then G has a vertex labeling
with & labels such that each vertex has at most s neighbors with the same label as itself and
at most r neighbors labeled with each of the k — 1 other labels. Since G is (s + (k — 1)r)-
regular, each vertex v has exactly s+ (k — 1)r neighbors, where s neighbors must be labeled



with the same label as v, and r neighbors must be labeled with each of the other £ — 1
labels. This is equivalent to a (k,{s}, {r})-partition of G. =

For all our results it will turn out that tractability of a (k, o, p)-partition problem holds
even if k is part of the input, while an intractability result always holds for k fixed. This is
not surprising, as the number of partitions of n vertices into k classes is not polynomial in
n for any k£ > 2.

3 NP-completeness results

The values of o and p used to describe the vertex subset properties listed in Table 1 are con-
fined to {0},{0,1},{1},N and P. For p = {0} we know from Fact 5 that the corresponding
partition problems are easy. Table 2 gives a complete listing of all remaining combinations
of o and p among these values. We focus our study on the problems in this table. In this
section, we give the NP-completeness proofs for the following (k, o, p)-partition problems,
which have not been proven before:

L (2N {1}), 2,7,{1}), (2,{0,1},N) (2,{0,1},P), (2,P,P) and (2, {1},P).

2. (k,{1},{1}), (k,{1},{0,1}), (¥,{0,1},{1}), (%,{0,1},{0,1}),
(k+1,{0},{0,1}) all on k-regular graphs, and (k, {0}, P), all for & > 3.

These problems are marked with a * in our tables. The entries in Table 2 are the cut-
off values for the corresponding (k, o, p)-partition problems. In order to show that these
k-values are the cutoff points, polynomial time algorithms are given in Section 4 for parti-
tioning into less than k (o, p)-sets.

P[NP {1} {01}
o

N oo* 3 2F oo*
P oco*  2* 2% oo*
{1} 2 2% 3 3

{0,1} 2% 2% 3 3

{0} 3 3* 4 4*

Table 2: A two dimensional cutoff table.

Before the NP-completeness proofs, we give definitions of three problems which do not
appear in previous sections. These problems are all known to be NP-complete, and are used
in the proofs of some of the theorems of this subsection.

Definition 3 (1-3SAT) Given sets Si,...,Sm each having three members, the One-In-
Three Satisfiability problem asks whether there is a subset T' of the members such that for
each i, [T NS;| = 1.

Definition 4 (NAE-3SAT) Given a collection C of clauses on a finite set X of variables
where each clause contains three literals, the Not-All-Equal 3-Satisfiability problem asks
whether there is a truth assignment for X that satisfies all the clauses in C such that no
clause contains literals that are all true.



The problems 1-3SAT and NAE-3SAT were shown to be NP-complete by Schaefer in
[7]-

Definition 5 (k-EC) Given a graph G, the k-Edge-Coloring problem asks whether the
edges of G can be colored with k colors such that no vertezx is incident to two edges colored
with the same color. If G is a k-regular graph, the question becomes whether each vertez is
incident to k distinctly colored edges.

This last problem was shown to be NP-complete for ¥ = 3 by Holyer in [4], and for
k > 3 by Leven and Galil in [6].

We now give the proofs of the NP-completeness results for the partition problems listed
at the beginning of Section 3. Clearly all of these problems are in NP, and as will be obvious,
all of our reductions are polynomial-time reductions.

Theorem 1 The following (k, o, p)-partition problems are NP-complete:
(i) (2,N,{1}) - Perfect Matching Cut

(ii) (2,P,{1}) - Partition Into 2 Perfect Dominating Sets Inducing No Isolated Vertices.

Proof. (i) We use a reduction from 1-3SAT to (2,N,{1})-partition. Let us consider an
arbitrary instance of 1-3SAT, where S1, So, ..., Sy, are the given sets, each containing three
variables. We construct a graph G = (V, E) such that G is (2, N, {1})-partitionable if and
only if the sets 51,52, ..., Sy, are one-in-three satisfiable.

For each set S; = {z,y,z}, we construct a subgraph G; of G counsisting of 10 vertices
T, Vi, Zi, a3, a2, ..., al, as shown in Figure 1. Whenever two sets S; and S; share a variable
x, there is an edge between z; and z; in G. G also contains a 4-cycle [s, t3,t1,t3, s] induced
by the vertices s,t1,t2 and t3 with (s,a}) € E, for i = 1,...,m (t1,%2,t3 and s have no other
neighbors). An example is shown in Figure 2.

/\

Figure 1: The subgraph of G corresponding to S; = {z,y,z}.

Let G be (2,N,{1})-partitionable. This is equivalent to a 2-labeling of the vertices
of G such that each vertex has exactly one neighbor with the opposite label than itself.
The vertices t2 and t3 must be labeled oppositely since they are the only neighbors of ¢;.
Equivalently, s and ¢; must also be labeled oppositely. Assume, without loss of generality,
that ¢, is labeled with 1 and s with 0. Since s already has a neighbor (¢3 or t3) with the
opposite label, every other neighbor of s must be labeled with the same label as s. Thus
a} is labeled with 0, for s = 1,...,m. Consider a subgraph G;, where S; = {z,y, z} is the
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Figure 2: An example showing the constructed graph G, when the given sets are: S; =
{z,y,2},S2 = {u,w,y} and S35 = {v,y,z}. The labeling corresponds to choosing T' =

{w, z}.

corresponding set. Apart from s, a} has neighbors z;,y;, z;. Since both s and a} are labeled
with 0, and a} must have exactly one neighbor with the opposite label, one of z;,y; and
z; must be labeled with 1, and the other two with 0. When these are labeled, the rest of
the labeling of G; is unique. This labeling is such that each of z;,y; and z; has exactly
one neighbor with the opposite label than itself within G;. Therefore, any neighbor outside
G; of a vertex z; must have the same label as x;. The only such neighbors of z; are the
vertices x;, where z € S; N S;. If G has a valid labeling, then the desired set T for 1-3SAT
is T = U2 {z € S; | z; is labeled with 1}. Now, each set S; has exactly one member
x such that the corresponding vertex z; in G; is labeled with 1. Also, for each other set
S; containing x, the corresponding vertex z; must also be labeled with 1. Thus the sets
S1, ..., Sy, are one-in-three satisfiable.

Assume now that there exists a set T' C [J;~; Si, such that each set S; has exactly one
member in T. For each z € T, and for each i such that z € S;, label the corresponding
vertex z; in G with label 1. For each y ¢ T, and for each ¢ such that y € S;, label the
corresponding vertex y; with 0. Label ¢, and t3 oppositely, t; with 1, s with 0, and a}
with 0, for ¢ = 1,...,m. Let us now consider a subgraph G; corresponding to S; = {z,y, z}.
Assume that z € T. Label a?,a},a? and af with label 1, and agl and az with 0. This
describes a valid labeling of all the vertices in GG;. Because of the symmetry of G;, this
labeling can easily be adapted for z € T', or y € T, instead of z (see Figure 2). Let us label
all the subgraphs G; as described. Since each subgraph has a valid labeling independent of
the rest of GG, and since external edges only go between vertices of same label, this describes



a valid labeling of G. Thus G is (2, N, {1})- partitionable.

(i) Note that in G, every vertex has at least two neighbors. Therefore, G has a
(2,N, {1})-partitioning if and only if it has a (2,P,{1})-partitioning. It is easy to see that
the labeling described in (i) is indeed a (2, P, {1})-partitioning for G. =

Theorem 2 The following (k, o, p)-partition problems are NP-complete:
(i) (2,{0,1},N) - Partition Into 2 Sets Inducing Isolated Vertices and Edges.

(ii) (2,{0,1},P) - Partition Into 2 Dominating Sets Inducing Isolated Vertices and Edges.

Proof. (i) The reduction is from 1-3SAT to (2, {0, 1}, N)-partition. Let Si,S2,...,Sm be
the given sets in an arbitrary instance of 1-3SAT. We construct a graph G = (V, E) such
that G is (2,{0, 1}, N)-partitionable if and only if the sets S1,Ss,..., Sm are one-in-three
satisfiable.

For each set S; = {z,y, z}, there is a 4-clique K; in G induced by the vertices z;, y;, z;
and a;, as shown in Figure 3 a). For each variable z, there is an edge e, in G. For each set S;
such that x € §;, the vertex z; of K; has edges to both endpoints of e;, as shown in Figure
3 b). G also contains a 4-clique induced by the vertices s, t1,t2 and t3 with (s, a;) € E, for
i=1,...,m (t1,t2,t3 and s have no other neighbors). An example is shown in Figure 4.

a) b)

Figure 3: a) The clique K; corresponding to the set S; = {z,y, 2z}, and b) the subgraph
concerning e; when z € §; N S; N S;.

A (2,{0,1}, N)-partitioning of G is equivalent to a 2-labeling of the vertices such that
each vertex has at most one neighbor with the same label as itself. Assume that G has
such a labeling. Each 4-clique must be labeled such that two vertices are labeled with 0
and two are labeled with 1, otherwise some vertex in the clique would have two or more
neighbors that are labeled the same as itself. Assume without loss of generality that s is
labeled with 0. Then two of t1,t2 and t3 are labeled with 1, and one with 0. Since s already
has a neighbor with the same label as itself, every other neighbor of s must be labeled with
the opposite label. Thus each a; is labeled with 1, for 1 = 1,2, ..., m. Let K; be the 4-clique
corresponding to the set S; = {z,y, z}. Since K; must have exactly two vertices with each
of the labels, one of z;,y; and z; must be labeled with 1, and two must be labeled with 0.
Each vertex z; has now one neighbor in K; with the same label as x;. Therefore, every other



Figure 4: An example showing the constructed graph G, when the given sets are: S; =
{z,y,2},52 = {z,v,w} and Ss = {u,w,z}. The labeling corresponds to choosing T =

{w,y}.

neighbor of z; must be labeled with the opposite label. This implies that both endpoints
of the edge e, have the same label, and every other neighbor of these endpoints must be
labeled with the same label as z;. Now, the desired set T'in 1-3SAT is T = 21 {z € S; | z;
is labeled with 1}, and we can conclude that the sets S, ..., Sy, are one-in-three satisfiable.

Assume that the sets Si,..., S, are one-in-three satisfiable, and let T" be the desired
subset. Label a; with 1, for ¢ = 1,2,...,m, and label rest of the vertices in each clique K;
with 1 if the corresponding variables belong to 7', and with 0 otherwise. Since there is only
one member in each set that can have its corresponding vertex labeled with 1, there are
two vertices labeled with 1, and two with 0 in each K;. Label s and ¢; with 0, and ¢2 and
t3 with 1. For each edge e;, label both endpoints with 0 if £ € T, and with 1 otherwise.
Clearly, this is a labeling of G' corresponding to a (2, {0, 1}, N)-partition.

(ii) Since each vertex in G has at least two neighbors, a (2,{0, 1}, N)-partition for G is
equivalent to a (2, {0, 1},P)-partition. The labeling described in (i) is indeed a (2, {0, 1}, P)-
partitioning of G. =

Theorem 3 The (2, P, P)-partition problem (Partition Into Two Total Dominating Sets) is
NP-complete.

Proof. The reduction is from NAE-3SAT. Let X be the set of variables and C be the
the set of clauses in an arbitrary instance of NAE-3SAT. We can assume that all literals
appear in some clause, otherwise for each literal that does not appear, we can put it and



its negation in an additional clause. This clause is then always true and contains at least
one false literal. We construct a graph G = (V, E) such that G has a (2, P, P)-partition if
and only if the variables in X can be assigned values true or false such that each clause in
C has at least one literal that is true and at least one that is false.

For each variable z € X, there are three vertices z, Z and a; in V, where (z,z) ¢ E,
(z,a;) € E, and (Z,a;) € E. For each clause ¢; € C, there is a vertex ¢; € V, and ¢; has
edges to the vertices representing the literals in the clause ¢;. This construction is shown
in Figure 5.

Figure 5: An example showing G when the given clauses are: ¢; = (z, 7, z) and c2 = (%, y, 2).

A (2,P,P)-partitioning of G is a 2-labeling of the vertices of G such that each vertex
v € V has at least one neighbor with the same label as v, and at least one neighbor with
the opposite label. Assume that G has such a labeling, and let the two labels be T' and
F. Since a, has only two neighbors z and Z, the vertices z and Z have opposite labels for
each z € X. Furthermore, each vertex c; has at least one neighbor labeled with 7', and at
least one neighbor labeled with F'. With T' = true and F = false, this describes a truth
assignment for the variables in X that is consistent with the requirements of the NAE-3SAT
problem. An example labeling is given in Figure 5.

Conversely, given that X has such a truth assignment, we will show how to achieve a
2-labeling of the vertices of G that corresponds to a (2, P, P)-partitioning. Label each vertex
agz with F, for z € X, and label each vertex ¢; with T, for ¢; € C. Each vertex = and Z is
labeled with T if its corresponding literal is assigned true, and with F if its corresponding
literal is assigned false. Clearly, this describes a valid (2, P, P)-partitioning of G, and the
proof is complete. =

Theorem 4 The (2, {1}, P)-partition problem (Partition Into 2 Dominating Induced Match-
ings) is NP-complete on 3-regular graphs.

Proof. The reduction is from the (2, {1}, N)-partition problem, which is also called Two-
Colorable Perfect Matching. Schaefer shows in [7] that this problem is NP-complete on
3-regular graphs.

Let G be a (2, {1}, N)-partitionable 3-regular graph. Then the vertices of G can be
labeled with two labels such that each vertex has exactly one neighbor labeled with the
same label as itself. Since G is 3-regular, this also means that each vertex has exactly two
neighbors labeled with the opposite label as itself. Thus G is also (2, {1}, P)-partitionable.

Conversely, a (2,{1},P)-partition for any graph is clearly a (2, {1}, N)-partition for
the same graph. Thus, a 3-regular graph G is (2, {1}, N)-partitionable if and only if G



is (2,{1}, P)-partitionable, and we have shown that (2,{1},P)-partition problem is NP-
complete on 3-regular graphs. =

Theorem 5 The (k,{1},{1})-partition problem (Partition Into k Total Perfect Dominating
Sets) is NP-complete on k-regular graphs for k > 3.

Proof. The reduction is from k-EC on k-regular graphs for ¥ > 3. Let G = (V,E)
be a k-regular graph. We construct a k-regular graph G' = (V’', E') such that G’ has a
(k, {1}, {1})-partitioning if and only if G has a k-edge-coloring.

For each vertex v € V, there is a clique K, in G’ with k vertices, and V' = ¢y Ky.
Each vertex of K, has exactly one neighbor outside K, corresponding to the edges incident
to v in G. If (u,v) € E, then in E’, there is an edge between exactly one vertex of K, and
exactly one vertex of K,. This construction is shown in Figure 6. Since G is k-regular, each
clique K, in G’ has exactly k external edges incident to it, one incident to each of the k
vertices in K,. Thus G’ is also k-regular. Any two cliques K, and K, in G’ have at most
one external edge connecting them.

NP .
/ a) \ \<>
Ku ‘ Kv
b)

Figure 6: a) An edge in G, and b) the corresponding subgraph in G’, where G is 4-regular.

A (k,{1},{1})-partitioning of a graph is equivalent to a k-labeling of the vertices such
that each vertex has exactly k neighbors each labeled distinctly with one of the k labels
(one neighbor of its own label, and exactly & — 1 other neighbors each labeled distinctly).
Assume that G’ has a k-labeling. The internal vertices of each clique K, must be labeled
with k different labels, otherwise some of the vertices in the clique would have at least two
neighbors labeled with the same label. In addition, both endpoints of each external edge
must be labeled with the same label, since each endpoint z has £k —1 other neighbors labeled
distinctly and differing from the label of z in the clique that z belongs to. An example is
shown in Figure 7. For each external edge in G’, if the endpoints are labeled with label 7,
then color the corresponding edge in G with color . Since the vertices in each clique are
labeled distinctly in G’, each vertex in G will then be incident to k distinctly colored edges,
and G is k-edge-colorable.

If G is k-edge-colorable with colors {1,2, ..., k}, then there exists a k-labeling of G’ with
labels {1,2,...,k}, such that for each edge colored with 7 in G, there is an external edge
in G’ both of whose endpoints are labeled with i, and where the internal vertices of each
clique K, are labeled with k distinct labels. Thus G’ is (k, {1}, {1})-partitionable, and the
proof is complete. =



a)

Figure 7: a) A 3-regular graph G which is 3-edge-colorable, and b) the vertex labeling of
the corresponding graph G’.

Theorem 6 The following (k, o, p)-partition problems are NP-complete on k-regular graphs
for k > 3:

(i) (k,{0,1},{1}) - Partition Into k Weakly Perfect Dominating Sets
(ii) (k,4{0,1},{0,1}) - Partition Into k Total Nearly Perfect Set s

(iii) (k,{1},{0,1}) - Partition Into k Nearly Perfect Sets Inducing Perfect Matching.

Proof. Let s = maxo, and r = maxp. For all these three problems, s = r = 1, and
s+ (k—1)r = k. By Lemma 6, a k-regular graph G has a (k, {1}, {1})-partitioning if and
only if it has a (k, 0, p)-partitioning where o € {{0,1},{1}}, and p € {{0,1},{1}}. Thus
Theorem 5 implies that all of these problems are NP-complete on k-regular graphs for k£ > 3.

Theorem 7 The (k,{0}, {0, 1})-partition problem (Partition Into k Strong Stable Sets) is
NP-complete on (k — 1)-regular graphs for k > 4.

Proof. The reduction is from the (k,{0},{1})-partition problem, which is also called
Partition Into k Perfect Codes . Kratochvil shows in [5] that this problem is NP-complete
on (k — 1)-regular graphs for £ > 4. Let s = max o and r = max p. For these two problems,
s=0,r=1,and s+ (k—1)r =k — 1. Then by Lemma 6, a (k — 1)-regular graph G has a
(k, {0}, {1})-partitioning if and only if G has a (k, {0}, {0, 1})-partitioning. =

Theorem 8 The (k,{0},P)-partition problem (Partition Into k Independent Dominating
Sets) is NP-complete for k > 3.

Proof. The reduction is again from k-EC on k-regular graphs. Given a k-regular graph
G = (V, E), we construct a graph G’ such that G’ has a (k, {0}, P)-partitioning if and only
if G is k-edge-colorable.

For each vertex v € V, there is a k-clique K, in G', and for each edge (u,v) € E, there
is a (k — 1)-clique E,, in G'. Let (u,v) € E, then in G’, there is exactly one vertex in K,



Figure 8: a) An edge in GG, and b) the corresponding subgraph of G’, where G is 4-regular.

and exactly one vertex in K, that have edges to every vertex in F,,, and no other vertex
in G’ has edges to the vertices in E,,. This is depicted in Figure 8.

Now, a (k, {0}, P)-partitioning of a graph is equivalent to a k-labeling of the vertices
such that each vertex has no neighbors labeled the same as itself, and at least one neighbor
labeled with each of the other £ — 1 labels. Vertices in each k-clique must be labeled with &
distinct labels, otherwise at least one vertex v in the cliques would have neighbors that are
labeled the same as v. Since each vertex of G’ appears in a k-clique, this is equivalent to a
proper k-coloring of the vertices of G'. Consider Figure 8; if the vertex connecting K, to
E,, is labeled with i, then the vertex connecting £, to K, must also be labeled with ¢ since
the (k—1)-clique in between requires all of the remaining k—1 labels. In G, we can color the
edge (u,v) with color i. With an argument equivalent to the one in the proof of Theorem
5, we can conclude that G is k-edge-colorable if and only if G’ is (k, {0}, P)-partitionable. =

4 Polynomial time results

The polynomial-time solvable (k, o, p)-partition problems listed in Table 2 fall in four classes,
corresponding to a cutoff value of 2, 3, 4 or co. For each (o, p)-set we show that deciding
whether a graph has a partition into k classes, where k is less than the cutoff value, is easy.

For the problems with cutoff value 2 this indeed follows as stated in Fact 1. The
problems with cutoff value co either have the property that a trivial partition with V4, =V
and V; = 0,7 = 1,...,k is a k-partition (see Fact 4) or they have p = {0} and are easy by
Fact 5.

For the problems with cutoff value 3 or 4, the properties that must be checked to decide
whether a graph has a partition of size smaller than the cutoff value are summerized in
Table 3. We explain the first two of these problems and their solutions further, whereas
we leave the rest to be studied in the same way by the reader. Here we assume that the
given graph is connected, if it is not, the same argument can be applied on each connected
component.

Let us first consider the (2, {1}, {1})-partition problem. This is equivalent to finding a 2-
labeling of the vertices of the given graph G such that each vertex v has exactly one neighbor
labeled with the same label as v, and exactly one neighbor labeled with the opposite label.
Since the degree of each vertex in G must then be 2, G must be a cycle. The desired labeling
is possible if and only if the number of vertices in the cycle is a multiple of 4. Thus we can



| (k,0,p) | (k, 0, p)-partitionable (m > 1) |
{1}, {1}) Cam,
) {1}7 {07 1}) {P2m—1, C4m}

(k
(2
(2
Ega {0’ 1}’ {1}) {P2’m—1’ C4M}
(2
(3

) {0’ 1}’ {0’ 1}) {Pm: C4m}
,{0},P) Bipartite
’ {0}7 {07 1}) {Pm: CSm}

Table 3: For each row, G has the (k,o, p)-partition on the left if and only if G or its
connected components belong to the class on the right.

check in polynomial time whether GG is a 4m-cycle.

The (2, {1}, {0, 1})-partition problem asks for a 2-labeling of the given graph G such
that each vertex v has exactly one neighbor labeled with the same label as v, and at most
one neighbor labeled with the opposite label. Since the degree of each vertex in G must
then be at most 2, G must be either a cycle or a path. If G is a cycle, then it must be a
4m-cycle as above. Otherwise, G must be a path, and since each vertex has exactly one
neighbor with the same label as itself, there must be an even number of vertices in the path.
Thus we must check whether G € {Pa,—1, Capp } for m > 1.

5 Closing remarks

We have presented a systematic study of the complexity of partitioning graphs into general-
ized dominating sets, with emphasis on those generalized dominating sets which are found
in the literature. If we look more broadly at the general class of (k, o, p)-partition problems,
we believe that they will all fall in one of the 4 classes corresponding to a cutoff value of
2,3,4 or co. We may mention that for graphs of bounded treewidth there are linear-time
algorithms solving any (k, o, p)-partition problem [9].

Most problems with cutoff 3 or 4 are easily solvable for partitions into 2 or 3 classes
either because such partitions exist only if the graph has maximum degree 2, or because
o = {0} and a partition into 2 classes exists if and only if the graph is bipartite and the
degree of every vertex is in p. The exception to this rule is the (2, N, P) problem, partitioning
a graph into two dominating sets, which can always be done by taking one subset to be a
maximal independent set, easily found by a greedy algorithm.

For problems with cutoff co, it might be of interest to consider only non-trivial partitions,
i.e., allow only non-empty partition classes. Some problems, like (k, N, N) are still easy, since
every subset of vertices in a graph is a (N, N)-set.

Let us look at the (k, P, N)-partition problem into non-empty classes Vi, ..., V4 and show
that it can be solved for all k£ using a maximum matching of the graph G. Clearly, G’ cannot
have any isolated vertices. Let M = {ej, ea, ..., €, } be a maximum matching of G. If m > k,
then we place in V; the endpoints of the edge e;, for i = 1,...,k — 1. The endpoints of the
edges ey, €x+1, ---, €ém are placed in V. Since there are no isolated vertices in G, every other
vertex in the graph must be a neighbor of some of the vertices that are already placed in the
partition sets. For each such vertex v, place v in any one of the partition sets that contains
a neighbor of v. Now, all the vertices in G are partitioned into the sets Vi, ..., V%, and each
set contains at least two vertices where each vertex has at least one neighbor in the same
set as itself. Note also that, given a non-trivial (k, P, N)-partition for G, a matching with



k or more edges can be found by picking an edge from each partition set. Thus G has a
non-trivial (k, P, N)-partitioning if and only if G has a matching with & or more edges. Since
a maximum matching can be found in polynomial time, this describes a polynomial time
algorithm for the (non-trivial) (&, P, N)-partition problem.

We have not been able to resolve the complexity of the (non-trivial) (k,N,{0,1}) and
(k,P,{0,1})-partition problems and will therefore close the paper with the the following
open problem.

Open Problem: What is the complexity of deciding whether the vertices of a given
graph G can be labeled by two labels such that each vertex has at most one neighbor of a
different label than its own, and there is at least one vertex with each label?
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