
Linear MIM-Width of Trees ?

Svein Høgemo, Jan Arne Telle, and Erlend Raa V̊agset

Department of Informatics, University of Bergen, Norway.
{svein.hogemo, jan.arne.telle, erlend.vagset}@uib.no

Abstract. We provide an O(n logn) algorithm computing the linear
maximum induced matching width of a tree and an optimal layout.

1 Introduction

The study of structural graph width parameters like tree-width, clique-width and
rank-width has been ongoing for a long time, and their algorithmic use has been
steadily increasing [11, 17]. The maximum induced matching width, denoted
MIM-width, and the linear variant LMIM-width, are graph parameters having
very strong modelling power introduced by Vatshelle in 2012 [20]. The LMIM-
width parameter asks for a linear layout of vertices such that the bipartite graph
induced by edges crossing any vertex cut has a maximum induced matching of
bounded size. Belmonte and Vatshelle [2] 1 showed that interval graphs, bi-
interval graphs, convex graphs and permutation graphs, where clique-width
can be proportional to the square root of the number of vertices [10], all have
LMIM-width 1 and an optimal layout can be found in polynomial time.

Since many well-known classes of graphs have bounded MIM-width or LMIM-
width, algorithms that run in XP time in these parameters will yield polynomial-
time algorithms on several interesting graph classes at once. Such algorithms
have been developed for many problems: by Bui-Xuan et al [4] for the class of
LCVS-VP - Locally Checkable Vertex Subset and Vertex Partitioning - problems,
by Jaffke et al for non-local problems like Feedback Vertex Set [14, 13] and
also for Generalized Distance Domination [12], by Golovach et al [9] for
output-polynomial Enumeration of Minimal Dominating sets, by Bergoug-
noux and Kanté [3] for several Connectivity problems and by Galby et al for
Semitotal Domination [8]. These results give a common explanation for many
classical results in the field of algorithms on special graph classes and extends
them to the field of parameterized complexity.

Note that very low MIM-width or LMIM-width still allows quite complex cuts
compared to similarly defined graph parameters. For example, carving-width 1
allows just a single edge, maximum matching-width 1 a star graph, and rank-
width 1 a complete bipartite graph. In contrast, LMIM-width 1 allows any cut

? This is the appendix of our WG submission, the long version with extra figures and
full proofs

1 In [2], results are stated in terms of d-neighborhood equivalence, but in the proof,
they actually gave a bound on LMIM-width.

2 S. Høgemo et al.

where the neighborhoods of the vertices in a color class can be ordered linearly
w.r.t. inclusion. In fact, it is an open problem whether the class of graphs having
LMIM-width 1 can be recognized in polynomial-time or if this is NP-complete.
Sæther et al [18] showed that computing the exact MIM-width and LMIM-width
of general graphs is W-hard and not in APX unless NP=ZPP, while Yamazaki
[21] shows that under the small set expansion hypothesis it is not in APX unless
P=NP. The only graph classes where we know an exact polynomial-time algo-
rithm computing LMIM-width are the above-mentioned classes interval, bi-
interval, convex and permutation that all have structured neighborhoods
implying LMIM-width 1 [2]. Belmonte and Vatshelle also gave polynomial-time
algorithms showing that circular arc and circular permutation graphs
have LMIM-width at most 2, while Dilworth k and k-trapezoid have LMIM-
width at most k [2]. Recently, Fomin et al [7] showed that LMIM-width for
the very general class of H-graphs is bounded by 2|E(H)|, and that a lay-
out can be found in polynomial time if given an H-representation of the input
graph. However, none of these results compute the exact LMIM-width. On the
negative side, Mengel [15] has shown that strongly chordal split graphs,
co-comparability graphs and circle graphs all can have MIM-width, and
LMIM-width, linear in the number of vertices.

Just as LMIM-width can be seen as the linear variant of MIM-width, path-
width can be seen as the linear variant of tree-width. Linear variants of other
well-known parameters like clique-width and rank-width have also been stud-
ied. Arguably, the linear variant of MIM-width commands a more noteworthy
position, since for almost all well-known graph classes where the original param-
eter (MIM-width) is bounded but other parameters (like clique-width) are not
bounded, then also the linear variant (LMIM-width) is bounded.

In this paper we give an O(n log n) algorithm computing the LMIM-width of
an n-node tree. This is the first graph class of LMIM-width larger than 1 having
a polynomial-time algorithm computing LMIM-width and thus constitutes an
important step towards a better understanding of this parameter. The path-
width of trees was first studied in the early 1990s by Möhring [16], with Ellis et
al [6] giving an O(n log n) algorithm computing an optimal path-decomposition,
and Skodinis [19] anO(n) algorithm. In 2013 Adler and Kanté [1] gave linear-time
algorithms computing the linear rank-width of trees and also the linear clique-
width of trees, by reduction to the path-width algorithm. Even though LMIM-
width is very different from path-width, the basic framework of our algorithm is
similar to the path-width algorithm in [6].

In Section 2 we give some standard definitions and prove the Path Layout
Lemma, that if a tree T has a path P such that all components of T \N [P] have
LMIM-width at most k then T itself has a linear layout with LMIM-width at
most k+1. We use this to prove a classification theorem stating that a tree T has
LMIM-width at least k+1 if and only if there is a node v such that after rooting
T in v, at least three children of v themselves have at least one child whose rooted
subtree has LMIM-width at least k. From this it follows that the LMIM-width
of an n-node tree is no more than log n. Our O(n log n) algorithm computing

Linear MIM-Width of Trees 3

LMIM-width of a tree T picks an arbitrary root r and proceeds bottom-up on
the rooted tree Tr. In Section 3 we show how to assign labels to the rooted
subtrees encountered in this process giving their LMIM-width. However, as with
the algorithm computing pathwidth of a tree, the label is sometimes complex,
consisting of LMIM-width of a sequence of subgraphs, of decreasing LMIM-
width, that are not themselves full rooted subtrees. Proposition 1 is an 8-way
case analysis giving a subroutine used to update the label at a node given the
labels at all children. In Section 4 we give our bottom-up algorithm, which will
make calls to the subroutine underlying Proposition 1 in order to compute the
complex labels and the LMIM-width. Finally, we use all the computed labels to
lay out the tree in an optimal manner.

2 Classifying LMIM-width of Trees

We use standard graph theoretic notation, see e.g. [5]. For a graph G = (V,E)
and subset of its nodes S ⊆ V we denote by N(S) the set of neighbors of nodes
in S, by N [S] = S ∪ N(S) its closed neighborhood, and by G[S] the graph
induced by S. For a bipartite graph G we denote by MIM(G), or simply MIM if
the graph is understood, the size of its Maximum Induced Matching, the largest
number of edges whose endpoints induce a matching. Let σ be the linear order
corresponding to the enumeration v1, . . . , vn of the nodes of G, this will also
be called a linear layout of G. For any index 1 ≤ i < n we have a cut of σ
that defines the bipartite graph on edges ”crossing the cut” i.e. edges with one
endpoint in {v1, . . . , vi} and the other endpoint in {vi+1, . . . , vn}. The maximum
induced matching of G under layout σ is denoted mim(σ,G), and is defined as
the maximum, over all cuts of σ, of the value attained by the MIM of the cut, i.e.
of the bipartite graph defined by the cut. The linear induced matching width –
LMIM-width – of G is denoted lmw(G), and is the minimum value of mim(σ,G)
over all possible linear orderings σ of the vertices of G.

We start by showing that if we have a path P in a tree T then the LMIM-
width of T is no larger than the largest LMIM-width of any component of T \
N [P], plus 1 . To define these components the following notion is useful.

Definition 1 (Dangling tree). Let T be a tree containing the adjacent nodes
v and u. The dangling tree from v in u, T 〈v, u〉, is the component of T \ (u, v)
containing u.

Given a node x ∈ T with neighbours {v1, . . . , vd}, the forest obtained by re-
moving N [x] from T is a collection of dangling trees {T 〈vi, ui,j〉}, where ui,j 6= x
is some neighbour of vi. We can generalise this to a path P = (x1, . . . , xp) in
place of x, such that T\N [P] = {T 〈vi,j , ui,j,m〉}, where vi,j ∈ N(P) is a neigh-
bour of xi and ui,j,m 6∈ N [P]. See top part of Figure 1. This naming convention
will be used in the following.

Lemma 1 (Path Layout Lemma). Let T be a tree. If there exists a path
P = (x1, . . . , xp) in T such that every connected component of T\N [P] has

4 S. Høgemo et al.

LMIM-width ≤ k then lmw(T) ≤ k + 1. Moreover, given the layouts for the
components we can in linear time compute the layout for T .

Proof. Using the optimal linear orderings of the connected components of T\N [P],
we give the below algorithm LinOrd constructing a linear order σT on the nodes
of T showing that lmwof T is ≤ k+1. The ordering σT starts out empty and the
algorithm has an outer loop going through vertices in the path P = (x1, . . . , xp).
When arriving at xi it uses the concatenation operator ⊕ to add the path node
xi before looping over all neighbors vi,j of xi adding the linear orders of each
dangling tree from vi,j and then vi,j itself. See Figure 1 for an illustration.

function LinOrd(T : tree, P = (x1, . . . , xp): path, {σT 〈vi,j ,ui,j,m〉}: lin-ords)
σT ← ∅ . The list starts out empty
for i← 1, p do . For all nodes on path (x1, . . . , xp)

σT ← σT ⊕ xi . Append path node
for j ← 1, |N(xi)\P | do . For all nbs of xi not on path: vi,j

for m← 1, |N(vi,j)\xi| do . For all dangling trees from vi,j
σT ← σT ⊕ σT 〈vi,j ,ui,j,m〉 . Append given order of T 〈vi,j , ui,j,m〉

σT ← σT ⊕ vi,j . Append vi,j

T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4

v1,1 v2,1
v1,2

v1,3 v3,1 v3,2

u1,1,1
u2,1,1u1,1,2 u1,2,1

u3,1,1
u3,1,2

u3,2,1 u3,2,2

T1 T2 T3 T4 T5 T6 T8T7

x1 x2 x3 x4

v1,1 v2,1v1,2 v1,3 v3,1 v3,2

u1,1,1 u2,1,1u1,1,2 u1,2,1 u3,1,1 u3,1,2 u3,2,1 u3,2,2

Fig. 1. A tree with a path P = (x1, x2, x3, x4), with nodes in N [N [P]] and dangling
trees featured, and below it the order given by the Path Layout Lemma

Firstly, from the algorithm it should be clear that each node of T is added
exactly once to σT , that it runs in linear time, and that there is no cut containing
two crossing edges from two separate dangling trees. Now we must show that σT
does not contain cuts with MIM larger than k+ 1. By assumption the layout of
each dangling tree has no cut with MIM larger than k, and since these layouts
can be found as subsequences of σT it follows that then also σT has no cut with
more than k edges from a single dangling tree T 〈vi,j , ui,j,m〉. Also, we know that

Linear MIM-Width of Trees 5

edges from two separate dangling trees cannot both cross the same cut. The only
edges of T left to account for, i.e. not belonging to one of the dangling trees, are
those with both endpoints in N [N [P]], the nodes at distance at most 2 from a
node in P . For every cut of σT that contains more than a single crossing edge
(xi, xi+1) there is a unique xi ∈ P and a unique vi,j ∈ N(xi) such that every
edge with both endpoints in N [N [P]] that crosses the cut is incident on either xi
or vi,j , and since the edge connecting xi and vi,j also crosses the cut at most one
of these edges can be taken into an induced matching. With these observations
in mind, it is clear that lmw(T) ≤ mim(σT , T) ≤ k + 1.

Definition 2 (k-neighbour and k-component index). Let x be a node in
the tree T and v a neighbour of x. If v has a neighbour u 6= x such that
lmw(T 〈v, u〉) ≥ k, then we call v a k-neighbour of x. The k-component in-
dex of x is equal to the number of k-neighbours of x and is denoted DT (x, k),
or shortened to D(x, k).

Theorem 1 (Classification of LMIM-width of Trees). For a tree T and
k ≥ 1 we have lmw(T) ≥ k + 1 if and only if D(x, k) ≥ 3 for some node x.

Proof. We first prove the backward direction by contradiction. Thus we assume
D(x, k) ≥ 3 for a node x and there is a linear order σ such that mim(σ, T) ≤ k.

Let v1, v2, v3 be the three k-neighbors of x and T1, T2, T3 the three trees of
T \N [x] each of LMIM-width k, with vi connected to a node of Ti for i = 1, 2, 3,
that we know must exist by the definition of D(x, k). We know that for each
i = 1, 2, 3 we have a cut Ci in σ with MIM=k and all k edges of this induced
matching coming from the tree Ti. Wlog we assume these three cuts come in the
order C1, C2, C3, i.e. with the cut having an induced matching of k edges of T2 in
the middle. Note that in σ all nodes of T1 must appear before C2 and all nodes
of T3 after C2, as otherwise, since T is connected and the distance between T2
and the two trees T1 and T3 is at least two, there would be an extra edge crossing
C2 that would increase MIM of this cut to k + 1. It is also clear that v1 has to
be placed before C2 and v3 has to be placed after C2, for the same reason, e.g.
the edge between v1 and a node of T1 cannot cross C2 without increasing MIM.
But then we are left with the vertex x that cannot be placed neither before C2

nor after C2 without increasing MIM of this cut by adding at least one of (v1, x)
or (v3, x) to the induced matching. We conclude that D(x, k) ≥ 3 for a node x
implies LMIM-width at least k + 1.

To prove the forward direction we first show the following partial claim: if
lmw(T) ≥ k + 1 then there exists a node x ∈ T such that D(x, k) ≥ 3; or
there exists a strict subtree S of T with lmw(S) ≥ k + 1. We will prove the
contrapositive statement, so let us assume that every node in T has D(x, k) <
3 and no strict subtree of T has LMIM-width ≥ k + 1 and show that then
lmw(T) ≤ k. For every node x ∈ T , it must then be true that D(x, k) ≤ 2
and that D(x, k + 1) = 0. The strategy of this proof is to show that there is
always a path P in T such that all the connected components in T\N [P] have
LMIM-width ≤ k − 1. When we have shown this, we proceed to use the Path

6 S. Høgemo et al.

Layout Lemma, to get that lmw(T) ≤ k. To prove this, we define the following
two sets of vertices:

X = {x|x ∈ V (T) and D(x, k) = 2}, Y = {y|y ∈ V (T) and D(y, k) = 1}

Case 1: X 6= ∅
If xi and xj are in X, then every vertex on the path P (xi, . . . , xj) connecting xi
and xj must be elements of X, as every node on this path clearly has a dangling
tree with LMIM-width k in the direction of xi and in the direction of xj . The fact
that every pair of vertices in X are connected by a path in X means that X must
be a connected subtree of T . Furthermore, this subtree must be a path, otherwise
there are three disjoint dangling trees T 〈v1, u1〉, T 〈v2, u2〉, T 〈v3, u3〉, each with
LMIM-width k, and each hanging from a separate node. But then there is some
vertex w such that T 〈v1, u1〉, T 〈v2, u2〉 and T 〈v3, u3〉 are subtrees of dangling
trees from different neighbours of w. But this implies that D(w, k) ≥ 3, which
we assumed were not the case, so this leads to a contradiction. We therefore
conclude that all nodes in X must lie on some path P = (x1, . . . , xp). The final
part of the argument lies in showing that we can apply the Path Layout Lemma.
For some xi ∈ P, i ∈ {2, . . . , p− 1}, its k-neighbours are xi−1 and xi+1. For x1,
these neighbours are x2 and some x0 6∈ X. For xp, these neighbours are xp−1
and some xp+1 6∈ X. x0 and xp+1 may only have one k-neighbour – x1 and xp
respectively – or else they would be in X. If we make P ′ = (x0, . . . , xp+1), we
then see that every connected component in T\N [P ′] must have LMIM-width
≤ k − 1. By the Path Layout Lemma, lmw(T) ≤ k.

Case 2: X = ∅, Y 6= ∅
We construct the path P in a simple greedy manner as follows. We start with
P = (y1, y2), where y1 is some arbitrary node in Y , and y2 its only k-neighbour.
Then, if the highest-numbered node in P , call it yq, has a k-neighbour y′ 6∈ P ,
then we assign yq+1 to y′, and repeat this process exhaustively. Since we look
at finite graphs, we will eventually reach some node yp such that either yp 6∈ Y
or yp’s k-neighbour is yp−1. We are then done and have P = (y1, . . . , yp), which
must be a path in T , since every node yi+1 ∈ P is a neighbour of yi and for yi
we only assign maximally one such yi+1. Also, every connected component of
T\N [P] must have LMIM-width ≤ k−1. If not, some node yi ∈ P would have a
k-neighbour y′ 6∈ P , but by the assumption X = ∅ this is impossible, since then
either i < p and yi has two k-neighbours y′ and yi+1, or else i = p and yp ∈ Y
and yi has the two k-neighbors y′ and yi−1 (in case i = p and yp 6∈ Y then by
definition of Y the node yi could not have a k-neighbor y′). By the Path Layout
Lemma, lmw(T) ≤ k.

Case 3: X = ∅, Y = ∅
If you make P = (x) for some arbitrary x ∈ T , it is obvious that every connected
component of T\N [P] has LMIM-width ≤ k − 1. By the Path Layout Lemma,
lmw(T) ≤ k.

Linear MIM-Width of Trees 7

We have proven the partial claim that if lmw(T) ≥ k+ 1 then there exists a
node x ∈ T such that D(x, k) ≥ 3; or there exists a strict subtree S of T with
lmw(S) ≥ k + 1. To finish the backward direction of the theorem we need to
show that if lmw(T) ≥ k + 1 then there exists a node x ∈ T with D(x, k) ≥ 3.
Assume for a contradiction that there is no node with k-component index at
least 3 in T . By the partial claim, there must then exist a strict subtree S with
lmw(S) ≥ k+ 1. But since we look at finite trees, we know that there in S must
exist a minimal subtree S0, lmw(S0) = k+ 1 with no strict subtree with LMIM-
width > k. By the partial claim, S0 must contain a node x0 with DS0(x0, k) ≥ 3.
But every dangling tree S0〈v, u〉 is a subtree of T 〈v, u〉, and so if DS0(x0, k) ≥ 3,
then DT (x0, k) ≥ 3 contradicting our assumption.

vu1 u2

u3S1 S2

S3

Fig. 2. The smallest tree with LMIM-width 2, having a node v with three 1-neighbors
u1, u2, u3 having dangling trees S1, S2, S3, respectively, so that D(v, 1) = 3

By Theorem 1, every tree with LMIM-width k ≥ 2 must be at least 3 times
bigger than the smallest tree with LMIM-width k−1, which implies the following.

Remark 1. The LMIM-width of an n-node tree is O(log n).

3 Rooted trees, k-critical nodes and labels

Our algorithm computing LMIM-width will work on a rooted tree, processing it
bottom-up. We will choose an arbitrary node r of the tree T and denote by Tr the
tree rooted in r. For any node x we denote by Tr[x] the standard complete subtree
of Tr rooted in x. During the bottom-up processing of Tr we will compute a label
for various subtrees. The notion of a k-critical node is crucial for the definition
of labels.

Definition 3 (k-critical node). Let Tr be a rooted tree with lmw(Tr) = k. We
call a node x in Tr k-critical if it has exactly two children v1 and v2 that each has
at least one child, u1 and u2 respectively, such that lmw(Tr[u1]) = lmw(Tr[u2]) =
k. Thus x is k-critical if and only if lmw(T) = k and DTr[x](x, k) = 2.

8 S. Høgemo et al.

Remark 2. If Tr has LMIM-width k it has at most one k-critical node.

Proof. For a contradiction, let x and x′ be two k-critical nodes in Tr. There are
then four nodes, vl, vr, v

′
l, v
′
r, the two k-neighbours of x and x′ respectively, such

that there exist dangling trees T 〈vl, ul〉, T 〈vr, ur〉, T 〈v′l, u′l〉, T 〈v′r, u′r〉 that all
have LMIM-width k. If x and x′ have a descendant/ancestor relationship in Tr,
then assume wlog that x′ is a descendant of vl, and note that T 〈vr, ur〉, T 〈v′l, u′l〉
and T 〈v′r, u′r〉 are disjoint trees in different neighbours of x′, thus DTr

(x′, k) = 3
and by Theorem 1 Tr should have LMIM-width k + 1 Otherwise, all the dan-
gling trees are disjoint, thus DT (x, k) = DT (x′, k) = 3 and we arrive at the same
conclusion.

Definition 4 (label). Let rooted tree Tr have lmw(Tr) = k. Then label(Tr)
consists of a list of decreasing numbers, (a1, . . . , ap), where a1 = k, appended
with a string called last type, which tells us where in the tree an ap-critical node
lies, if it exists at all. If p = 1 then the label is simple, otherwise it is complex.
The label(Tr) is defined recursively, with type 0 being a base case for singletons
and for stars, and with type 4 being the only one defining a complex label.

– Type 0: r is a leaf, i.e. Tr is a singleton, then label(Tr) = (0, t.0);
or all children of r are leaves, then label(Tr) = (1, t.0)

– Type 1: No k-critical node in Tr, then label(Tr) = (k, t.1)
– Type 2: r is the k-critical node in Tr, then label(Tr) = (k, t.2)
– Type 3: A child of r is k-critical in Tr, then label(Tr) = (k, t.3)
– Type 4: There is a k-critical node uk in Tr that is neither r nor a child of r.

Let w be the parent of uk. Then label(Tr) = k ⊕ label(Tr\Tr[w])

In type 4 we note that lmw(Tr\Tr[w]) < k since otherwise uk would have
three k-neighbors (two children in the tree and also its parent) and by Theorem
1 we would then have lmw(Tr) = k+1. Therefore, all numbers in label(Tr\Tr[w])
are smaller than k and a complex label is a list of decreasing numbers followed
by last type ∈ {t.0, t.1, t.2, t.3}. We now give a Proposition that for any node x
in Tr will be used to compute label(Tr[x]) based on the labels of the subtrees
rooted at the children and grand-children of x. The subroutine underlying this
Proposition, see the decision tree in Figure 3, will be used when reaching node
x in the bottom-up processing of Tr.

Proposition 1. Let x be a node of Tr with children Child(x), and given label(Tr[v])
for all v ∈ Child(x). We define (and compute) k = maxv∈Child(x) {lmw(Tr[v])}
and Nk = {v ∈ Child(x) | lmw(T [v]) = k} and denote by Nk = {v1, . . . , vq}
and by li = label(Tr[vi]). Define (compute) tk = DTr[x](x, k) by noting that
tk = |{vi ∈ Nk | vi has child uj with lmw(Tr[uj]) = k}|. Given this informa-
tion, we can find label(Tr[x]) as follows:

– Case 0: if |Child(x)| = 0 then label(Tr[x]) = (0, t.0);
else if k = 0 then label(Tr[x]) = (1, t.0)

– Case 1: Every label in Nk is simple and has last type equal to t.1 or t.0,
and tk ≤ 1. Then, label(Tr[x]) = (k, t.1)

Linear MIM-Width of Trees 9

– Case 2: Every label in Nk is simple and has last type equal to t.1 or t.0,
but tk = 2. Then, label(Tr[x]) = (k, t.2)

– Case 3: Every label in Nk is simple and has last type equal to t.1 or t.0,
but tk ≥ 3. Then, label(Tr[x]) = (k + 1, t.1)

– Case 4: |Nk| ≥ 2 and for some vi ∈ Nk, either li is a complex label, or li
has last type equal to either t.2 or t.3. Then, label(Tr[x]) = (k + 1, t.1)

– Case 5: |Nk| = 1, l1 is a simple label and l1 has last type equal to t.2.
Then, label(Tr[x]) = (k, t.3)

– Case 6: |Nk| = 1, l1 is either complex or has last type equal to t.3, and
k 6∈ label(Tr[x]\Tr[w]), where w is the parent of the k-critical node in Tr[v1].
Then, label(Tr[x]) = k ⊕ label(Tr[x]\Tr[w])

– Case 7: |Nk| = 1, l1 is either complex or has last type equal to t.3, and
k ∈ label(Tr[x]\Tr[w]), where w is the parent of the k-critical node in Tr[v1].
Then, label(Tr[x]) = (k + 1, t.1)

DTr[x](x, k)?

≤ 1 = 2 ≥ 3

YES

Is there a child vi of x such thatNO YES

lmw(Tr[x]) = k + 1 and

lmw(Tr[x]) = k and

Tr[x] is a type 1 tree

lmw(Tr[x]) = k and

Tr[x] is a type 2 tree

Tr[x] is a type 1 tree

lmw(Tr[x]) = k + 1 and

Tr[x] is a type 1 tree

lmw(Tr[x]) = k and

Tr[x] is a type 3 tree

Is lmw(Tr[x]\Tr[w]) = k for

lmw(Tr[x]) = k and

Tr[x] is a type 4 tree

lmw(Tr[x]) = k + 1 and

Tr[x] is a type 1 tree

NO

YES NO

What is the value of

Is it the root vi ∈ Tr[vi]

that is the k-critical node?

w parent of k-critical node?

Are there children vj 6= vi

Tr[vi]contains a k-critical node? of x where lmw(Tr[vj]) = k?

Case 6

Case 2

Case 4

Case 1

Case 5

Case 3 Case 7

NO YES

Fig. 3. A decision tree corresponding to the case analysis of Proposition 1

Proof. We show that exactly one case applies to every rooted tree and in each
case we assign the label according to Definition 4. First the base case: either x is
a leaf or all its children are leaves and we are in Case 0 and the label is assigned
according to Def. 4. Otherwise, observe the decision tree in Figure 3. It follows
from Def. 4, k, Nk and tk that cases 1 up to 7 of Prop. 1 corresponds to cases 1
up to 7 in the decision tree - we mention this correspondence in the below - and
this proves that exactly one case applies to every rooted tree. The following facts
simplify the case analysis: lmw(Tr[x]) is equal to either k or k+ 1, and since no
subtree rooted in a child of x has LMIM-width k+1 there cannot be any (k+1)-
critical node in Tr[x], therefore if lmw(Tr[x]) = k + 1, Tr[x] is always a type 1

10 S. Høgemo et al.

tree and by Theorem 1 it must contain a node v such that DTr[x](v, k) >= 3.
This node must either be a k-critical node in a rooted subtree of Tr[x], or x
itself. We go through the cases 1 to 7 in order.
Note that in Cases 1, 2, and 3 the condition ’Every label in Nk is simple and has
last type equal to t.1 or t.0’ means there are no k-critical nodes in any subtree
of Tr[x], because every Tr[v] for v ∈ Child(x) is either of type 1 or has LMIM-
width < k:
Case 1: By definition of tk, DTr[x](x, k) ≤ 1. Therefore, lmw(Tr[x]) = k, and
Tr[x] is a type 1 tree.
Case 2: By definition of tk, DTr[x](x, k) = 2, and no other nodes are k-critical,
therefore lmw(Tr[x]) = k. But now x is k-critical in Tr[x] so Tr[x] is a type 2
tree.
Case 3: By definition of tk, DTr[x](x, k) = 3 and lmw(Tr[x]) = k + 1.
For the remaining Cases 4, 5, 6 and 7, some Tr[v] for v ∈ Child(x) has LMIM-
width k and is of type 2, 3 or 4, so at least one k-critical node exists in some
subtree of Tr[x]:
Case 4: There is a k-critical node uk in some Tr[vi] (not of type 1), and
some other vj has lmw(Tr[vj]) = k (because |Nk| ≥ 2). Now observe w the
parent of uk. The dangling tree Tr[x]\Tr[w] is a supertree of Tr[vj] and thus
has LMIM-width ≥ k. Therefore w is a k-neighbour of uk and by Theorem 1
lmw(Tr[x]) = k + 1.
Case 5: x has only one child v with lmw(Tr[v]) = k, and v is itself k-critical
(Tr[v] is type 2). x cannot be a k-neighbour of v in the unrooted Tr[x], because
every dangling tree from x is some Tr[vi], vi 6= v of x, which we know has LMIM-
width < k. Since no other node in T is k-critical, lmw(Tr[x]) = k, and since v,
a child of x, is k-critical in Tr[x], Tr[x] is a type 3 tree.
Case 6: x has only one child v with lmw(Tr[v]) = k, and there is a k-critical
node uk with parent w – neither of which are equal to x – in Tr[v] (Tr[v] is a
type 3 or type 4 tree). Moreover, no tree rooted in another child of w, apart
from uk, can have LMIM-width ≥ k, since this would imply DTr[v](uk, k) = 3
and thus lmw(Tr[v]) > k; nor can Tr[x]\Tr[w] have LMIM-width = k, since then
we would have k in label(Tr[x]\Tr[w]) disagreeing with the condition of Case 6.
Therefore DTr[x](u, k) = 2, and lmw(Tr[x]) = k. Tr[x] is thus a type 4 tree and
the label is assigned according to the definition.
Case 7: Tr[v], uk and w are as described in Case 6. But here, lmw(Tr[x]\Tr[w]) =
k (since the condition says that k is in its label), and thus w is a k-neighbour of
its child uk and by Theorem 1 lmw(Tr[x]) = k + 1.
We conclude that label(Tr[x]) has been assigned the correct value in all possible
cases.

4 Computing LMIM-width of Trees and Finding a Layout

The subroutine underlying Prop. 1 will be used in a bottom-up algorithm that
starts out at the leaves and works its way up to the root, computing labels

Linear MIM-Width of Trees 11

(1, t.0)

(0, t.0)

(1, t.1)

(2, t.1)

(2, t.1)

(3, t.1)

(3, t.1)

(0, t.0)

(1, t.0)

(1, t.1)

(0, t.0)

(1, t.0)

(1, t.1)

(0, t.0)

(1, t.0)

(1, t.1)

(2, t.1)

(2, t.1)

(0, t.0)

(1, t.0)

(1, t.1)

(0, t.0)

(1, t.0)

(1, t.1)

(0, t.0)

(1, t.0)

(1, t.1)

(2, t.1)

(2, t.1)

(3, t.2)

(3, t.3)

(0, t.0)

(1, t.0)

(1, t.1)

(0, t.0)

(1, t.0)

(1, t.1)

(3, 2, t.2)

(3, 2, t.3)

(3, 2, 1, t.2)

(3, 2, 1, t.3)

(3, 2, 1, 0, t.0)

(4, t.1)

Fig. 4. A rooted tree of LMIM-width 4 with labels of subtrees. We explain the labels
(3, t.2), (3, t.3), (3, 2, t.2) assigned to subtrees rooted at the nodes we call a, b, c, with
parent(a) = b and parent(b) = c. The sub-tree rooted at a, with label (3, t.2) has
precisely two children that have a child-tree each of LMIM-width 3, hence a is 3-
critical and it is a type 2 tree (Case 2 of Prop. 1). The sub-tree rooted at b, labelled
(3, t.3), is thus the parent of a 3-critical node, and so it is of type 3 (Case 5 of Prop. 1).
The sub-tree rooted at c with label (3, 2, t.2) has maximum LMIM-width of a child-tree
being 3, and it has a 3-critical node a which is neither c nor a child of c, so it is of type
4 (Case 6 of Prop. 1); and moreover the subtree Tr[c] \ Tr[a] has LMIM-width 2 with
node c as 2-critical so it is of type 2 (Case 2 of Prop. 1), and the label of Tr[c] becomes
3⊕ (2, t.2).

of subtrees Tr[x]. However, in two cases (Case 6 and 7) we need the label of
Tr[x]\Tr[w], which is not a complete subtree rooted in any node of Tr. Note that
the label of Tr[x]\Tr[w] is again given by a (recursive) call to Prop. 1 and is then
stored as a suffix of the complex label of Tr[x]. We will compute these labels
by iteratively calling Prop. 1 (substituting the recursion by iteration). We first
need to carefully define the subtrees involved when dealing with complex labels.

12 S. Høgemo et al.

From the definition of labels it is clear that only type 4 trees lead to a
complex label. In that case we have a tree Tr[x] of LMIM-width k and a k-
critical node uk that is neither x nor a child of x, and the recursive definition
gives label(Tr[x]) = k⊕label(Tr[x]\Tr[w]) for w the parent of uk. Unravelling this
recursive definition, this means that if label(Tr[x]) = (a1, . . . , ap, last type), we
can define a list of nodes (w1, . . . , wp−1) where wi is the parent of an ai-critical
node in Tr[x]\(Tr[w1] ∪ . . . ∪ Tr[wi−1]). We expand this list with wp = x, such
that there is one node in Tr[x] corresponding to each number in label(Tr[x]),
and Tr[x]\(Tr[w1] ∪ . . . ∪ Tr[wp]) = ∅.

Now, in the first level of a recursive call to Prop. 1 the role of Tr[x] is taken
by Tr[x]\Tr[w1], and in the next level it is taken by (Tr[x]\Tr[w1])\Tr[w2] etc.
The following definition gives a shorthand for denoting these trees.

Definition 5. Let x be a node in Tr, label(Tr[x]) = (a1, a2, . . . , ap, last type)
and the corresponding list of vertices (w1, . . . , wp) is as we describe in the above
text. For any non-negative integer s, the tree Tr[x, s] is the subtree of Tr[x]
obtained by removing all trees Tr[wi] from Tr[x], where ai ≥ s. In other words, if
q is such that aq ≥ s > aq+1, then Tr[x, s] = Tr[x]\(Tr[w1]∪Tr[w2]∪ . . .∪Tr[wq])

Remark 3. Some important properties of Tr[x, s] are the following. Let Tr[x, s],
label(Tr[x, s]), (w1, . . . , wp) and q as in the definition. Then

1. if s > a1, then Tr[x, s] = Tr[x]
2. label(Tr[x, s]) = (aq+1, . . . , ap, last type)
3. lmw(Tr[x, s]) = aq+1 < s
4. lmw(Tr[x, s+ 1]) = s if and only if s ∈ label(Tr[x])
5. Tr[x, s+ 1] 6= Tr[x, s] if and only if s ∈ label(Tr[x])

Proof. These follow from the definitions, maybe the last one requires a proof:
Backward direction: Let s = aq for some 1 ≤ q ≤ p. Then Tr[x, s + 1] =
Tr[x]\(Tr[w1]∪ . . .∪Tr[wq−1]) and Tr[x, s] = Tr[x]\(Tr[w1]∪ . . .∪Tr[wq]). These
two trees are clearly different.
Forward direction: Let Tr[x, s] = Tr[x]\(Tr[w1]∪ . . .∪ Tr[wq]) and Tr[x, s+ 1] =
Tr[x]\(Tr[w1] ∪ . . . ∪ Tr[wq′]) with q′ < q and aq′ > aq (because numbers in a
label are strictly descending). aq < s+ 1 and aq ≥ s, ergo aq = s.

Note that for any s the tree Tr[x, s] is defined only after we know label(Tr[x]).
In the algorithm, we compute label(Tr[x]) by iterating over increasing values of
s (until s > lmw(Tr[x]) since by Remark 3.1 we then have Tr[x, s] = Tr[x])
and we could hope for a loop invariant saying that we have correctly computed
label(Tr[x, s]). However, Tr[x, s] is only known once we are done. Instead, each
iteration of the loop will correctly compute the label of the following subtree
called Tunion[x, s], which is not always equal to Tr[x], but importantly for s >
lmw(Tr[x]), we will have Tunion[x, s] = Tr[x, s] = Tr[x].

Definition 6. Let x be a node in Tr with children v1, . . . , vd. Tunion[x, s] is then
equal to the tree induced by x and the union of all Tr[vi, s] for 1 ≤ i ≤ d. More
technically, Tunion[x, s] = Tr[V ′] where V ′ = x∪ V (Tr[v1, s])∪ . . .∪ V (Tr[vd, s]).

Linear MIM-Width of Trees 13

Given a tree T , we find its LMIM-width by rooting it in an arbitrary node
r, and computing labels by processing Tr bottom-up. The answer is given by
the first element of label(Tr[r]), which by definition is equal to lmw(T). At a
leaf x of Tr we initialize by label(Tr[x])← (0, t.0), and at a node x for which all
children are leaves we initialize by label(Tr[x])← (1, t.0), according to Definition
4. When reaching a higher node x we compute label of Tr[x] by calling function
MakeLabel(Tr, x).

function MakeLabel(Tr, x) . finds cur label = label(Tr[x])
cur label← (0, t.0) . This is label(Tunion[x, 0])
{v1, . . . , vd} = children of x
if 0 ∈ label(Tr[vi]) for some i then

cur label← (1, t.0) . This is then label(Tunion[x, 1])

for s← 1,maxd
i=1{first element of label(Tr[vi])} do

{l′1, . . . , l′d} = {label(Tr[vi, s+ 1]) | 1 ≤ i ≤ d}
Ns = {vi | 1 ≤ i ≤ d, s ∈ l′i}
ts = |{vi | vi ∈ Ns, vi has child uj s.t. s ∈ label(Tr[uj , s+ 1])}|
if |Ns| > 0 then

case← the case from Prop. 1 applying to s, {l′1, . . . , l′d}, Ns and ts
cur label← as given by case in Prop. 1 (s⊕ cur label if Case 6)

FALSE

TRUE
ts

cur label←

|Ns| ≥ 2

l1 = (s, t.2)

s ∈ cur label

≤ 1 = 2 ≥ 3

TRUE

FALSE

TRUE

FALSE

FALSE TRUE

∃li ∈ Ns s.th. at least one is true:

cur label←
(s+ 1, t.1)

cur label←

cur label←

cur label←

cur label←

cur label←

(s, t.1)

(s, t.2)

(s+ 1, t.1)

(s+ 1, t.1)

(s, t.3)

(s⊕ cur label)

2) li = (s, t.2)
1) li is a complex label

3) li = (s, t.3)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6 Case 7

Fig. 5. The same decision tree as shown in Prop. 1, but adapted to MakeLabel

Lemma 2. Given labels at descendants of node x in Tr, MakeLabel(Tr, x)
computes label(Tr[x]) as the value of cur label.

Proof. Assume that x has the children v1, . . . , vd, and denote their set of la-
bels as L = {l1, . . . , ld}. MakeLabel keeps a variable cur label that is updated

14 S. Høgemo et al.

maximally k times in a for loop, where k is the biggest number in any label
of children of x. The following claim will suffice to prove the lemma, since for
s > lmw(Tr[x]), we have Tunion[x, s] = Tr[x]..

Claim: At the end of the s’th iteration of the for loop the value of cur label
is equal to label(Tunion[x, s+ 1]).

Base case: We have to show that before the first iteration of the loop we
have cur label = label(Tunion[x, 1]). If some label li ∈ L has 0 as an element then
Tunion[x, 1] is isomorphic to a star with x as the center and vi as a leaf. By Prop.
1, in this case label(Tunion[x, 1]) = (1, t.0) and this is what cur label is initialized
to. If no li ∈ L has 0 as an element, then by Remark 3.5 Tunion[x, 1] = Tunion[x, 0]
which by definition is the singleton node x and by Prop. 1 the label of this tree
is (0, t.0) and this is what cur label is initialized to.

Induction step: We assume cur label = label(Tunion[x, s]) at the start of
the s’th iteration of the for loop and show that at the end of the iteration,
cur label = label(Tunion[x, s+ 1]).
The first thing done in the for loop is the computation of {l′i | 1 ≤ i ≤ d, l′i =
label(Tr[vi, s+ 1])}. By Remark 3.2, label(Tr[vi, s+ 1]) ⊆ label(Tr[vi]) for all i,
therefore l′1, . . . , l

′
d are trivial to compute. The second thing done is to set Ns as

the set of all children of x whose labels contain s, and ts as the number of nodes
in Ns that themselves have children whose labels contain s. Let us first look at
what happens when |Ns| = 0:
By Remark 3.5, for every child vi of x, Tr[vi, s+1] = Tr[vi, s] if s 6∈ label(Tr[vi]).
Therefore, if |Ns| = 0, then Tunion[x, s+1] = Tunion[x, s], and from the induction
assumption, label(Tunion[x, s + 1]) = cur label, and indeed when |Ns| = 0 then
iteration s of the loop does not alter cur label.
Otherwise, we have |Ns| > 0 and make a call to the subroutine given by
Prop. 1, see the decision tree in Figure 5, to compute label(Tunion[x, s + 1])
and argue first that the variables used in that call correspond to the variables
used in Prop. 1 to compute label(Tr[x]). The correspondence is given in Ta-
ble 4. Most of these are just observations: Tunion[x, s + 1] corresponds to Tr[x]

Proposition 1 for loop iteration s Explanation

Tr[x], k Tunion[x, s + 1], s Tree needing label, max lmw of children
Tr[v1], ..., Tr[vd] Tr[vi, s], ..., Tr[vd, s] Subtrees of children
l1, ..., ld, Nk, tk l′1, ..., l

′
d, Ns, ts Child labels, those with max, root comp. index

label(Tr[x]\Tr[w]) cur label This is also label(Tunion[x, s + 1]\Tr[w, s + 1])

in Prop. 1, and Tr[v1, s + 1], . . . , Tr[vd, s + 1] corresponds to Tr[v1], . . . , Tr[vd].
{l′i | 1 ≤ i ≤ d, l′i = label(Tr[vi, s+ 1])} correspond to {label(Tr[v]) | v ∈ Child}
in Prop. 1. Ns is defined in the algorithm so that it corresponds to Nk in Prop. 1.
Since |Ns| > 0, some vi has s in its label l′i. By Remark 3.3 and 3.4, we can infer
that s is the maximum LMIM-width of all Tr[vi, s+ 1], therefore s corresponds

Linear MIM-Width of Trees 15

to k in Proposition 1.
It takes a bit more effort to show that ts computed in iteration s of the for
loop corresponds to tk = DTr[x](x, k) in Prop. 1 – meaning we need to show
that ts = DTunion[x,s+1](x, s). Consider vi, a child of x. In accordance with
MakeLabel we say that vi contributes to ts if vi ∈ Ns and vi has a child uj
with s in its label. We thus need to show that vi contributes to ts if and only
if vi is an s-neighbour of x in Tunion[x, s + 1]. Observe that by Remark 3.4,
lmw(Tr[vi, s + 1]) = lmw(Tr[uj , s + 1]) = s if and only if s is in the labels of
both Tr[vi] and Tr[uj]. If s 6∈ label(Tr[uj , s + 1]), then lmw(Tr[uj , s + 1]) < s,
and if this is true for all children of vi, then vi is not an s-neighbour of x in
Tunion[x, s+1]. If s 6∈ label(Tr[vi, s+1]), then lmw(Tr[vi, s+1]) < s and no sub-
tree of Tr[vi, s+1] can have LMIM-width s. However, if s ∈ label(Tr[uj , s+1]) and
s ∈ label(Tr[vi, s+1]) (this is when vi contributes to ts), then Tr[vi, s+1]∩Tr[uj]
must be equal to Tr[uj , s+1] and Tr[uj , s+1] ⊆ Tunion[x, s+1], and we conclude
that vi is an s-neighbour of x in Tunion[x, s+ 1] if and only if vi contributes to
ts, so ts = DTunion[x,s+1](x, s).
Lastly, we show that if Tunion[x, s+1] is a Case 6 or Case 7 tree – that is, |Ns| = 1,
and Tr[v1, s+1] is a type 3 or type 4 tree, with w being the parent of an s-critical
node – then the algorithm has label(Tunion[x, s + 1]\Tr[w, s + 1]) available for
computation, indeed that this is the value of cur label. We know, by definition of
label and Remark 3.5 that Tr[vi, s+1]\Tr[vi, s] = Tr[w, s+1]. But since |Ns| = 1,
for every j 6= i, Tr[vj , s+1]\Tr[vj , s] = ∅. Therefore Tunion[x, s+1]\Tunion[x, s] =
Tr[w, s + 1] and Tunion[x, s + 1]\Tr[w, s + 1] = Tunion[x, s]. But by the induc-
tion assumption, cur label = label(Tunion[x, s]). Thus cur label corresponds to
label(Tr[x]\Tr[w]) in Prop. 1.
We have now argued for all the correspondences in Table 4. By that, we conclude
from Prop. 1 and Definition ?? and the inductive assumption that cur label =
label(Tunion[x, s + 1]) at the end of the s’th iteration of the for loop in Make-
Label. It runs for k iterations, where k is equal to the biggest number in any
label of the children of x, and cur label is then equal to label(Tunion[x, k + 1]).
Since k ≥ lmw(Tr[vi]) for all i, by definition Tr[vi, k + 1] = Tr[vi] for all
i, and thus Tunion[x, k + 1] = Tr[x]. Therefore, when MakeLabel finishes,
cur label = label(Tr[x]).

Theorem 2. Given any tree T , lmw(T) can be computed in O(n log(n))-time.

Proof. We find lmw(T) by bottom-up processing of Tr and returning the first
element of label(Tr). After correctly initializating at leaves and nodes whose
children are all leaves, we make a call to MakeLabel for each of the remaining
nodes. Correctness follows by Lemma 2 and induction on the structure of the
rooted tree. For the timing we show that each call runs in O(log n) time. For
every integer s from 1 to m, the biggest number in any label of children of x,
which is O(log n) by Remark 1, the algorithm checks how many labels of chil-
dren of x contain s (to compute Ns), and how many labels of grandchildren of
x contain s (to compute ts). The labels are sorted in descending order, there-
fore the whole loop goes only once through each of these labels, each of length

16 S. Høgemo et al.

O(log n). Other than this, MakeLabel only does a constant amount of work.
Therefore, MakeLabel(Tr, x), if x has a children and b grandchildren, takes
time proportional to O(log n)(a+ b). As the sum of the number of children and
grandchildren over all nodes of Tr is O(n) we conclude that the total runtime to
compute lmw(T) is O(n · log n).

Theorem 3. A layout of LMIM-width lmw(T) of a tree T can be found in
O(n · log n)-time.

Proof. Given T we first run the algorithm computing lmw(T) by finding labels
of all nodes and various subtrees. Given T we first run the algorithm computing
lmw(T) finding the label of every full rooted subtree in Tr. We give a recursive
layout-algorithm that uses these labels in tandem with LinOrd presented in the
Path Layout Lemma. We call it on a rooted tree where labels of all subtrees are
known. For simplicity we call this rooted tree Tr even though in recursive calls
this is not the original root r and tree T . The layout-algorithm goes as follows:
1) Let lmw(Tr) = k and find a path P in Tr such that all trees in Tr\N [P] have
LMIM-width < k. The path depends on the type of Tr as explained in detail
below.
2) Call this layout-algorithm recursively on every rooted tree in Tr\N [P] to ob-
tain linear layouts; to this end, we need the correct label for every node in these
trees.
3) Call LinOrd on Tr, P and the layouts provided in step 2.

Every tree in the forest T\N [P] is equal to a dangling tree T 〈v, u〉, where v
is a neighbour of some x ∈ P .
We observe that if lmw(T) = k, then by definition lmw(T 〈v, u〉) = k if and only
if v is a k-neighbour of x. It follows that every tree in T\N [P] has LMIM-width
at most k− 1 if and only if no node in P has a k-neighbour that is not in P . We
use this fact to show that for every type of tree we can find a satisfying path in
the following way:

Type 0 trees: Choose P = (r). Since T\N [r] = ∅ in these trees, this must be
a satisfying path.
Type 1 trees: These trees contain no k-critical nodes, which by definition means
that for any node x in Tr, at most one of its children is a k-neighbour of x.
Choose P to start at the root r, and as long as the last node in P has a k-
neighbour v, v is appended to P . This set of nodes is obviously a path in Tr. No
node in P can possibly have a k-neighbour outside of P , therefore all connected
components of T\N [P] have LMIM-width ≤ k−1. Furthermore, all components
of T −N [P] are full rooted sub-trees of Tr and so the labels are already known.
Type 2 trees: In these trees the root r is k-critical. We look at the trees rooted
in the two k-neighbours of r, Tr[v1] and Tr[v2]. By Remark 2 these must both
be Type 1 trees, and so we find paths P1, P2 in Tr[v1] and Tr[v2] respectively, as
described above. Gluing these paths together at r we get a satisfying path for
Tr, and we still have correct labels for the components T\N [P].

Linear MIM-Width of Trees 17

Type 3 trees: In these trees, r has exactly one child v such that Tr[v] is of type
2 and none of its other children have LMIM-width k. We choose P as we did
above for Tr[v]. r is clearly not a k-neighbour of v, or else DT (v, k) = 3. Every
other node in P has all their neighbours in Tr[v]. Again, every tree in T\N [P]
is a full rooted subtree, and every label is known.
Type 4 trees: In these trees, Tr contains precisely one node w 6= r such that w
is the parent of a k-critical node, x. This w is easy to find using the labels, and
clearly the tree Tr[w] is a type 3 tree with LMIM-width k. We find a path P
that is satisfying in Tr[w] as described above. w is still not a k-neighbour of x,
therefore P is a satisfying path. In this case, we have one connected component
of T\N [P] that is not a full rooted subtree of Tr, that is Tr\Tr[w]. Thus for every
ancestor y of w (the blue path in Figure 6) Tr[y]\Tr[w] is not a full rooted sub-
tree either, and we need to update the labels of these trees. However, Tr[y]\Tr[w]
is by definition equal to Tr[y, k], whose label is equal to label(Tr[y]) without its
first number. Thus we quickly find the correct labels to do the recursive call.

. . .

. . .

. . .

.
. . .

.

Type 1: Type 3: Type 4:

< k < k < k < k

< k < k
< k < k

< k < k < k

< k
< k

k

k

k

k
k

k

k
k

k

k
k

k

k

k

kk

k k

k

k

k

< k < k
k

Type 1 Type 1
Type 3

. . .

< k

Fig. 6. The path P in green for the proof of Theorem 3.

5 Conclusion

We have given an O(n log n) algorithm computing the LMIM-width and an opti-
mal layout of an n-node tree. This is the first graph class of LMIM-width larger
than 1 having a polynomial-time algorithm computing LMIM-width and thus
constitutes an important step towards a better understanding of LMIM-width.
Indeed, for the development of FPT algorithms computing tree-width and path-
width of general graphs, one could argue that the algorithm of [6] computing
optimal path-decompositions of a tree in time O(n log n) was a stepping stone.
The situation is different for MIM-width and LMIM-width, as it is W-hard to
compute these parameters [18], but it is similar in the sense that our objective
has been to achieve an understanding of how to take a graph and assemble a
decomposition of it, in this case a linear one, such that it has cuts of low MIM.
To achieve this objective a polynomial-time algorithm for trees has been our
main goal.

18 S. Høgemo et al.

Bibliography

[1] Adler, I. and Kanté, M. M. (2015). Linear rank-width and linear clique-width
of trees. Theor. Comput. Sci., 589:87–98.

[2] Belmonte, R. and Vatshelle, M. (2013). Graph classes with structured neigh-
borhoods and algorithmic applications. Theor. Comput. Sci., 511:54 – 65.

[3] Bergougnoux, B. and Kanté, M. M. (2018). Rank based approach on graphs
with structured neighborhood. CoRR, abs/1805.11275.

[4] Bui-Xuan, B.-M., Telle, J. A., and Vatshelle, M. (2013). Fast dynamic pro-
gramming for locally checkable vertex subset and vertex partitioning problems.
Theor. Comput. Sci., 511:66 – 76.

[5] Diestel, R. (2012). Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer.

[6] Ellis, J. A., Sudborough, I. H., and Turner, J. S. (1994). The vertex separa-
tion and search number of a graph. Inf. Comput., 113(1):50–79.

[7] Fomin, F. V., Golovach, P. A., and Raymond, J.-F. (2018). On the tractabil-
ity of optimization problems on H-graphs. In Proc. ESA 2018, pages 30:1 –
30:14.

[8] Galby, E., Munaro, A., and Ries, B. (2018). Semitotal domination: New
hardness results and a polynomial-time algorithm for graphs of bounded mim-
width. CoRR, abs/1810.06872.

[9] Golovach, P. A., Heggernes, P., Kanté, M. M., Kratsch, D., Sæther, S. H., and
Villanger, Y. (2018). Output-polynomial enumeration on graphs of bounded
(local) linear mim-width. Algorithmica, 80(2):714–741.

[10] Golumbic, M. C. and Rotics, U. (2000). On the clique-width of some perfect
graph classes. Int. J. Found. Comput. Sci., 11(3):423–443.

[11] Hlinený, P., Oum, S., Seese, D., and Gottlob, G. (2008). Width parameters
beyond tree-width and their applications. Comput. J., 51(3):326–362.

[12] Jaffke, L., Kwon, O., Strømme, T. J. F., and Telle, J. A. (2018a). General-
ized distance domination problems and their complexity on graphs of bounded
mim-width. In 13th International Symposium on Parameterized and Exact
Computation, IPEC 2018, August 20-24, 2018, Helsinki, Finland, pages 6:1–
6:14.

[13] Jaffke, L., Kwon, O., and Telle, J. A. (2017). Polynomial-time algorithms
for the longest induced path and induced disjoint paths problems on graphs
of bounded mim-width. In 12th International Symposium on Parameterized
and Exact Computation, IPEC 2017, September 6-8, 2017, Vienna, Austria,
pages 21:1–21:13.

[14] Jaffke, L., Kwon, O., and Telle, J. A. (2018b). A unified polynomial-time
algorithm for feedback vertex set on graphs of bounded mim-width. In 35th
Symposium on Theoretical Aspects of Computer Science, STACS 2018, Febru-
ary 28 to March 3, 2018, Caen, France, pages 42:1–42:14.

[15] Mengel, S. (2018). Lower bounds on the mim-width of some graph classes.
Discrete Applied Mathematics, 248:28–32.

[16] Möhring, R. H. (1990). Graph problems related to gate matrix layout and
pla folding. In Computational graph theory, pages 17–51. Springer.

Linear MIM-Width of Trees 19

[17] Oum, S. (2017). Rank-width: Algorithmic and structural results. Discrete
Applied Mathematics, 231:15–24.

[18] Sæther, S. H. and Vatshelle, M. (2016). Hardness of computing width pa-
rameters based on branch decompositions over the vertex set. Theor. Comput.
Sci., 615:120–125.

[19] Skodinis, K. (2003). Construction of linear tree-layouts which are optimal
with respect to vertex separation in linear time. J. Algorithms, 47(1):40–59.

[20] Vatshelle, M. (2012). New width parameters of graphs. PhD thesis, Univer-
sity of Bergen, Norway.

[21] Yamazaki, K. (2018). Inapproximability of rank, clique, boolean, and max-
imum induced matching-widths under small set expansion hypothesis. Algo-
rithms, 11(11):173.

