Faster Algorithms for the Nonemptiness of
Streett Automata and for Communication
Protocol Pruning

Monika Rauch Henzinger
Systems Research Center, Digital Equipment Corporation, Palo Alto, CA *

Jan Arne Telle

Department of Informatics, University of Bergen, Norway

l

Abstract

This paper shows how a general technique, called lock-step search,
used in dynamic graph algorithms, can be used to improve the running
time of two problems arising in program verification and communication
protocol design.

(1) We consider the nonemptiness problem for Streett automata: We
are given a directed graph G = (V, E) with n = |V| and m = |E|, and a
collection of pairs of subsets of vertices, called Streett pairs, (L;,U;),t =
1..k. The question is whether G has a cycle (not necessarily simple)
which, for each 1 < i < k, if it contains a vertex from L; then it also
contains a vertex of U;. Let b = Y, |Li| + |U;|- The previously best
algorithm takes time O((m+b) min{n, k}). We present an algorithm that
takes time O(m min{y/mlogn,k,n} + bmin{logn, k}).

*monika@src.dec.edu. This research was done while at the Department of Computer Sci-
ence, Cornell University, Ithaca, NY and was supported by an NSF CAREER Award, Grant
No. CCR-9501712.

ttelle@ii.uib.no. This research was done while visiting the Department of Computer Sci-
ence, Cornell University, Ithaca, NY and was supported by a fellowship from the Norwegian
Research Council.

(2) In communication protocol pruning we are given a directed graph
G = (V, E) with [special vertices. The problem is to efficiently maintain
the strongly-connected components of the special vertices on a restricted
set of edge deletions. Let m; be the number of edges in the strongly
connected component of the ith special vertex. The previously best algo-
rithm repeatedly recomputes the strongly-connected components which
leads to a running time of O(3"; m?). We present an algorithm with time

O(WIy;m}?).

1 Introduction

Maintaining the strongly-connected components of a digraph G = (V, E) efhi-
ciently under vertex or edge deletions is an unsolved problem. No data structure
is known that is faster than recomputation from scratch. This is unfortunate
since such a data structure would speed up various algorithms. In this paper we
describe two such algorithms and show how a technique, called lock-step search,
used in dynamic graph algorithms, can improve their running time.

Nonemptiness for Streett automata

A Streett automaton with Streett pairs (L;,U;) is an automaton on infinite
words where a run is accepting if for all pairs ¢, if the run visits infinitely many
times some state in I; then it also visits infinitely many times some state in
U;. The first problem that we consider is called the nonemptiness problem for
Streett automata: Given a directed graph G = (V, E) and a collection of pairs
of subsets of vertices, called Streett pairs, (L;,U;), i = 1..k, determine if G has a
cycle (not necessarily simple) which, for each 1 < i < k, if it contains a vertex
from L; then it also contains a vertex of U;. !

Nonemptiness checking of Streett automata is used in computer-aided ver-
ification. Consider, for example, the problem of checking if a strongly fair
finite-state system A satisfies a specification ¢ in linear temporal logic (“model
checking”). The system A can be modeled as a Streett automaton. The negated
specification —¢ can be translated into an equivalent Biichi automaton, and

!Note that the nonemptiness problem for Streett automata usually includes also a desig-
nated root vertex (the start state) and requires that the cycle asked for be reachable from
the root. For ease of presentation, we assume that a simple linear preprocessing step has
computed the input graph G consisting only of vertices reachable from the root, since the
other vertices will not affect the solution.

therefore Streett automaton, B-4. Then model checking reduces to checking
the nonemptiness of the product Streett automaton A x B_4 [7].

Let |V| = n,|E| = m and b = Y ,_; ; |L;| + |U;]. The previously best
algorithms for this problem take time O((m + b) min{n, k}) [1, 3]. We present
an O(m min{y/mlogn, k,n} 4+ bmin{logn, k}) algorithm for the problem. The
improved running time is achieved through (1) lock-step search and (2) an
efficient data structure for representing the Streett pairs (L;,U;). In model
checking, frequently G has bounded out-degree. In this case m = O(n) and our
algorithm has running time O(n min{y/nlogn, k} + bmin{logn, k}).

Protocol Pruning

A communication system defines interactions between different components us-
ing exact rules, called protocols. Since protocol standards have become very
complex, various approaches try to simplify protocols. A new technique by
Lee, Netravali, and Sabnani [4] models a protocol as a collection of communi-
cating finite state machines, and prunes the protocol without constructing the
composite machine. The finite state machines are represented as a directed
graph with [special vertices (start states), one per machine. Interactions be-
tween machines are modeled as dependencies among edges. Their algorithm
repeatedly “prunes off” (i.e. deletes) edges of the graph and recomputes the
strongly-connected components of the special vertices. Which edges are deleted
in the next iteration depends on dependencies between the edges left in the
current strongly-connected components of the special vertices. If the strongly-
connected components have not changed between two iterations the algorithm
terminates with these strongly-connected components representing the pruned
protocol machine.

Let m; be the number of edges in the strongly-connected component of
the ith special vertex. Recomputing the strongly-connected components from
scratch in each iteration leads to a running time of O(}>; m?). We present an
algorithm with time O(v/I1Y;m}®). For constant I our algorithm takes time

O(3im;?®).

Lock-Step Search

Both improved algorithms use lock-step search. Lock-step search was introduced
by Even and Shiloach [2] to maintain the connected components of an undirected
graph under edge deletions. After the deletion of the edge (u,v), they start a
(depth-first) search for the resulting component “in parallel” at v and at v: the

algorithm executes one step of the search at u and one step of the search at v
and stops whenever one of the searches is completed.

Let C, and C, be the new components of v and v. Case 1: If C, # C,,
then the lock-step search takes time O(min(|Cy|,|C,|), where |C| denotes the
number of edges in a component. Charging this cost to the edges in the smaller
of the two components charges at most O(logn) to an edge in the graph: an
edge is charged only if the number of edges in its component is at least halved.

Case 2: 1If C,, = C, the search takes time O(|C,|). Thus, if this situation
arises at almost all edge deletions, the running time for the whole algorithm is
O(m?).

We use a slightly modified lock-step search on directed graphs, described
below, to find strongly-connected components. Note that both the problems
we consider allow the algorithm to terminate as soon as a strongly-connected
component is found that fulfills their condition. Thus, instead of first finding the
strongly connected components and then checking for each strongly-connected
component if it fulfills the conditions, our new algorithms first guarantee that
the conditions are fulfilled in the current graph and then start a lock-step search.
If Case 1 holds, the costs are charged as described above and further deletions
might be necessary. If Case 2 arises the traversed strongly-connected component
fulfills the conditions and the algorithms terminate.

Lock-Step Search on Directed Graphs

Assume we have a strongly-connected digraph from which the set of edges F'
are deleted. If the resulting graph G is not strongly-connected then lock-step
search can be used to find a strongly-connected component containing at most
half the edges of G. Let Heads = {v : uv € F'} be the vertices which are heads
of edges in F' and Tails = {u : uv € F'} be the vertices which are tails of edges
in F'. Consider the condensed graph of G where strongly-connected components
are condensed into single vertices. This graph is acyclic, every source vertex
represents a source component which must contain a vertex in Heads and every
sink vertex represents a sink component which must contain a vertex of Tails,
since before deletion of F' the condensed graph had only one vertex. Lock-step
searches are started on G at each vertex of Tails and also on Reverse(G), where
all edges are reversed, at each vertex of Heads. A search of G rooted at a
vertex in a sink component will explore exactly this component. Likewise, a
search of Reverse(G) started in a source component of G will explore exactly
that component. A search started in any other component of G' will eventually

enter a sink component (or source component for the reverse searches), and
thus terminate later than the search started in the sink (or source) component
itself. By searching from all vertices of Heads and Tails simultaneously we are
thus guaranteed to terminate as soon as the smallest source or sink component
is discovered.

Notation

For a graph G = (V, E) we denote the induced graph on S C V by G[S]. We
consider only directed graphs and may refer to a strongly connected component
simply as a component. We denote the standard linear-time strongly-connected
component algorithm [6] by SCC. We describe the algorithm for the Streett
automata in Section 2. The protocol pruning algorithm is presented in Section 3.

2 Nonemptiness of Streett automata

The best known algorithm for checking nonemptiness of Streett automata dy-
namically modifies the input graph by deletion of bad vertices. A vertex is bad
if it belongs to L;, for some %, but there is no cycle containing both it and a
vertex of U;. Note that if a run reaches a bad vertex (bad state) then it will not
be an accepting run. All other vertices are good, but note that they can become
bad after some vertex deletions. A strongly-connected component of the current
graph is said to be good if it contains good vertices only. The goal is then to
find a non-trivial good component, or to decide that after iteratively deleting
all bad vertices no non-trivial component is left. The algorithm computes the
strongly-connected components of the graph, halts if a good component is found
or if only trivial components remain, otherwise deletes at least one bad vertex
and repeats. A straightforward implementation, using the linear-time depth-
first strongly-connected component algorithm SCC [6], gives a running time of
O((m +b) min{n, k}) [1, 3], for |V| =n,|E|=mand b= Y ,_; |Li| + |U;|. We
present an O(mmin{y/mlogn,k,n} + bmin{logn, k}) algorithm for the prob-
lem.

2.1 Data structure for Streett pairs

The algorithm maintains a partition of the vertex set. Each set in the partition
induces a collection of strongly-connected components of the current graph.
Note that for a set S of the partition, any vertices in SN L; are bad if SNU; = (.
For S C V, define bits(S) = ;-1 |SNL;|+[SNU;|. We need to quickly refine
a set in the partition and locate and delete bad vertices. For this we use a data
structure with operations:

Construct(S) returns the initialized data structure C'(S), for S C V.

Remove(S,C(S), B) removes B from S and returns the data structure C(S'\
B), for S,BC V.

Bad(C(S)) returns {v € S:Ji:v e L; AU;NS =0}, for SC V.

Each operation need only return a pointer to the appropriate item. In
section 2.3 we show the following result.

Lemma 2.1 After a one-time initialization of O(k) the data structure can be
implemented with running time O(bits(S) +|S|) for Construct(S), O(bits(B) +
|B|) for Remove(S,C(S),B) and O(1) for Bad(C(S)).

2.2 The Algorithm for Non-Emptiness Testing of Streett
Automata

The algorithm maintains a list L of data structures C(S), where S C V is
a vertex subset whose induced subgraph G[S] contains candidates for good
components. The vertex subsets on this list are disjoint and the list is initialized
to contain the components of the input graph. Bad vertices are removed until
only good vertices remain and only then are new components computed. Note
that the statement “C'(S) := Remove(S,C(S), B)” also updates S to S\ B.
Some vertices may be labelled h (for head) or ¢ (for tail) signifying that further
exploration rooted at the vertex is necessary. The algorithm halts as soon as a
good component is found. The algorithm is given on the next page. We argue
separately for correctness and running time for the cases min{n, k} < y/mlogn

and min{n, k} > /mlogn.

Emptiness-Testing Algorithm for Streett Automata
Input: A digraph G = (V, E) and Streett pairs (L;,U;),i = 1.k
Output: A good component, if it exists

1. Run SCC to find components G[Si], ..., G[Sy] of G.
2. For i=1 to d add Construct(S;) to list L.
3. While L # () do

(a) Get C(S) from L.
(b) While Bad(C(S)) # 0 do C(S) := Remove(S,C(S), Bad(C(S))).
(c) Add label h (t) to vertices in S which have an incoming (outgoing)
edge to a vertex just removed. Let Heads := {v € S : h € label(v)}
and Tails == {v € S : t € label(v)}.
(d) Case 1. If |Heads| + |Tails| = 0 do /* G[S] is a good component */
i. If |S| > 2 then HALT and output G[5]

(e) Case 2. Else if |Heads| + |Tails| > y/m/logn do /* If min{n, k} <
v/mlogn) change this line to: “Case 2. Else do ”.*/
i. Remove all h,t-labels from S
ii. Run SCC to find comp.’s G[S1], ..., G[S4] (|S1]| > |Si|) of G[S].
iii. For i=2 to d
C(S) := Remove(S,C(S), S;)
Add Construct(S;) to L
iv. Add C(S) to L /* Note that S =51 */

(f) Case 3. Else 0 < |Heads|+|Tails| < y/m/logn do /* If min{n, k} <
vmlogn) remove this case completely */

i. For each v € Tails search G[S] from v and for each v € Heads
search ReverseG[S] (all edges reversed) from v. Run the |Tails|+
|Heads| searches in lock-step until the first search terminates
with all vertices R reachable from its root visited.

ii. If R =S then HALT and output G[S].

iii. Remove all h, t-labels from R. Add label h (t) to vertices in S\ R
which have an incoming (outgoing) edge to R.

iv. Add Remove(S,C(S),R) to L
v. Add Construct(R) to r’

4. L empty, HALT and output: “No good components exist”.

Lemma 2.2 The algorithm for nonemptiness testing of Streett automata is cor-

rect when min{n, k} < /mlogn.

Proof. Line 3(e) is then: “Case 2. Else do” and Case 3 does not exist. The
while loop in line 3 has the invariant: “For any C(S) in the list L the vertices S
have no h, t-labels, G[S] is a component of the current graph and all candidates
for non-trivial good components are in L”. The invariant is maintained since
after removal of bad vertices from S all h,t-labels are removed from S and
components of G[S], the new candidates, are added to L. If Bad(C(S)) # 0 then
after removal of bad vertices some vertex in the remainder (unless remainder is
empty) has an edge to a removed vertex, since we started with a component.
Thus, if |Heads| + |Tails| = 0 and S contains at least two vertices then G[S] is
a non-trivial component with no bad vertices. We conclude that the algorithm
finds a good component, if it exists. O

Lemma 2.3 The algorithm for nonemptiness testing of Streett automata has
running time O(mmin{k, n} 4+ b min{logn, k}) when min{n, k} < /mlogn.

Proof. Each time an edge uv is involved in a call of SCC in line 3(e)ii, the
component S(uv) the edge belonged to had some bad vertices removed from it,
in line 3(b). Since each such removal decreases both [{i € {1..k} : L; N S(uv) #
0} and [{w € V : w € S(uv)}| by at least one, the total cost of calls to
SCC is bounded by O(mmin{k,n}). Deletions of bad vertices in line 3(b) take
total time O(b) = Y ,cy bits(v) since a vertex v is deleted at most once at a
cost of O(bits(v)). Note that the partitioning of the data structure for C(S)
into C(S1),-..,C(Sg) in the for loop of line 3(e)iii avoids the cost of bits(S;)
for the largest component S;. After removing S;,i = 2..k from C(S) then
precisely C'(S1) remains. The cost of Remove(S, C(S),S;) and Construct(S;)
of O(bits(S;) + |Si|) is charged to vertices of S; or to their bit in L; or Uj,
2 < i < d. When a vertex v is charged, the size of its component S(v) is
therefore halved, and |{i € {1..k} : L; N S(v) # 0}| decreases. The total cost
of partitioning is then O((b + n) min{logn,k}), and the total running time is
O(mmin{k,n} + bmin{logn, k}) for this case. O

Lemma 2.4 The algorithm for nonemptiness testing of Streett automata is cor-

rect when min{n, k} > /mlogn.

Proof. We explain the parallel searches in line 3(f)i. Assume that G[S U B]
is a component of the current graph from which we delete the vertices B. Let
Heads (Tails) be the vertices in S with an incoming (outgoing) edge to a vertex
of B. Consider the condensed graph of G[S] where strong components are
condensed into single vertices. This graph is acyclic, every source component
must contain a vertex in Heads and every sink component must contain a vertex
of Tails, since G[S U B] was strongly-connected. A search of G[S] rooted at a
vertex in a sink component will explore exactly this component, and likewise a
search of ReverseG[S] started in a source component will explore exactly that
component. A search started in any other component will eventually enter
a sink component (or source component for the reverse searches), and thus
terminate later than the search started in the sink (or source) component itself.
By searching from all vertices of Heads and Tails simultaneously we are thus
guaranteed to terminate as soon as the smallest source or sink component is
discovered. We can now state the invariant of the while loop: “For any C(S) in
the list L, either G[S] is a component or any source (sink) component of G[S]
has a vertex labelled h (t). All candidates for non-trivial good components are in
L”. The algorithm takes a data structure from L, deletes bad vertices until only
good vertices remain and adds labels h (or t) to vertices which had an incoming
(or outgoing) edge removed. The invariant is maintained by Case 2 since it
adds unlabelled components to the list. Case 3 searches all vertices labelled A
and ¢ simultaneously. As described above it returns the smallest source or sink
component R of G[S]. If R = S then we have a good component. Otherwise,
we add the unlabelled component R to L and from S we delete vertices R and
add labels h (or t) to vertices which had an incoming (or outgoing) edge to
R, before adding S \ R to L. Thus the loop invariant is maintained and the
algorithm is correct. O

Lemma 2.5 The algorithm for nonemptiness testing of Streett automata has
running time O(m+/mlogn + bmin{logn, k}) when min{n, k} > /mlogn.

Proof. The cost of all searches in Case 3 are charged to the edges of the
smallest component G[R|. If R = S then we halt and each edge is charged

O(y/m/logn) units. Otherwise, the size of R is at most half the size of S. Thus,

9

each edge is charged at most logn times. Each time it is charged O(y/m/logn)
constant units, for total cost of searches in Case 3 of O(m+/mlogn). Line
3(e) Case 2 occurs after deletion of at least \/m/logn edges from the graph,

which can happen at most v/mlogn times, each time invoking SCC for a total
cost of O(m+/mlogn). The earlier analysis of data structure operations not
under Case 3 still holds. The cost of O(bits(R) + |R|) for the data structure
operations in Case 3 are charged to R, and as before each vertex v is charged
at most O((bits(v) + 1) min{logn, k}) units total. The total running time for
this case is therefore O(m+/mlogn + bmin{logn, k}). O

We have shown the following theorem.

Theorem 1 Given a directed graph on n vertices and m edges, and Streett pairs
(Liy Us),i = 1.k, withb = Y, 1 | Li|+|Ui|, there is an O(m min{y/mlogn, k,n}+
bmin{logn, k}) time algorithm which either finds a good non-trivial compo-
nent of the graph or decides that no such component exists, thereby solving
the nonemptiness problem for Streett automata.

2.3 Implementation of data structure for Streett pairs

We prove Lemma 2.1. Assume the Streett pairs are given by sets of circular
linked lists, one for each vertex. The list of v; € V' = {vy, v, ..., v, } contains an
entry for all sets L; such that v; € L; and all sets U; such that v; € U;. The
entry specifying that v; € L; (or v; € U;) is called the m-bit (membership-bit)
[vi, Lj] (or [v;,U;]) and specifies the data v; and L; (or U;). There are thus a
total of b m-bits, each one belonging to the unique vertex list specified by the
vertex in the m-bit. The data structure we describe constructs analogous set
lists so that each m-bit also belongs to a unique set list specified by the Streett
set in the m-bit. For a given vertex set S C V we maintain for each L; such
that L; NS # 0 and for each U; such that U; NS # 0 a set list. The set list
of L; NS is a doubly linked list of all m-bits [v, ;] where v € S, in arbitrary
order, and the set list for U; N S is defined analogously. The first element of
the set list L; NS (or U; N S) is called first(L;,S) (or first(U;,S)). The data
structure C(S) for S C V consists of

10

a doubly linked list of vertices in S. Note that each vertex has a pointer
to its vertex list.

the doubly linked set lists L; NS and U; N S.

a doubly linked list of records (first(L;, S), first(U;, S)), for each i such
that L; N S # @, and a pointer from each first(L;, S) and first(U;, S) to
the corresponding record. A record is bad if L; NS # @ and U; NS = 0.

a doubly linked list of bad records.

Bad(C(S)) in O(1) time returns a pointer to the list of bad records.

Construct(.S) is given the list of vertices in S and needs to construct C(S).
Every Construct operation uses the same auxiliary array A[1..k], which is
initialized only once at the beginning. After each use A is cleaned up in
time independent of k, by keeping track of accessed indices. While con-
structing C(S), the entry A[i] stores the record {first(L;, S), first(U;, S)),
initially (nil,nil). To construct C(S), traverse the vertex list for each
v; € S and add each encountered m-bit to its corresponding set list, e.g.
[vj, L;] is added to the list with first element first(L;, S). A final traversal
of the accessed indices of array A sets up the lists of records for non-empty
set lists and the list of bad records. Apart from the one-time O(k) ini-
tialization of the auxiliary array, the Construct(S) operation takes time
O(bits(S) + |S|), since there are bits(S) m-bits in vertex lists of S.

Remove(S,C(S), B) is given S, the data structure C'(S) and a list of vertices
in B. To construct C(S \ B) traverse the vertex list for each vertex
in B and remove each encountered m-bit from its corresponding set list
(note that set lists are doubly linked). If the last vertex of S NU; is
removed then add the record (first(L;, S), first(U;, S)) to the list of bad
records. If the last vertex of S N L; is removed then remove the record
(first(Ls;, S), first(U;, S)) from the list of records and, if present, from
the list of bad records. Finally, remove vertices in B from the (doubly
linked) vertex list of S. The Remove(S, C(S), B) operation takes time
O(bits(B) + |B|).

11

3 Protocol Pruning

A new technique called protocol pruning is given in [4] to simplify communica-
tion protocols. The input to this problem consists of

1. a labeled digraph G = (V, E) with m = |E| and n = |V| and a labeling
function label : E — {1,...,m};

2. [l vertices aq,...,a; of V marked as special vertices, such that each special
vertex belongs to a different strongly-connected component of G;

3. a function depends_on : {1,...,m} — {1,...,m};
4. an initial set D of edges that have to be deleted from G.

We call an edge e bad if the current graph does not contain an edge with label
depends_on(label(e)). An edge e is called useless if it is not contained in a
strongly-connected component of a special vertex in the current graph. The
protocol pruning approach repeatedly removes all edges in D and creates a new
set D consisting of bad or useless edges. When the current graph does not
contain any bad or useless edges then the components of the special vertices
constitute the pruned protocol.

Let m; be the number of edges in the strongly-connected component of a;
in the initial graph. The previously best implementation of protocol pruning,
see [4], adds all bad or useless edges to D. To determine the useless edges it
recomputes the strongly connected component of a vertex a; every time the
component lost an edge. Thus, this implementation takes time O(3 m?).

We give an implementation of protocol pruning in time O(\/Z >, mi°). Our
algorithm maintains disjoint sets Sy, ..., S; of vertices of the current graph G with
the special vertex a; € S; so that each induced graph G[S;] is a collection of
strongly-connected components. As before, the algorithm maintains sets Heads
and Tails of vertices. For each vertex v in Heads (Tails) incoming (outgoing)
edges incident to v have been deleted, and the search for the strongly-connected
component of v has not yet been completed.

Before each iteration of the main loop we ensure the current graph has no
bad edges. The main loop of the algorithm has two cases. If there exists an ¢
with |S; N Heads| + |S; N Tails| > 1/m;/l, then for each such i, the strongly-
connected components of G[S;] are computed from scratch, and D is set to be

12

all newly discovered useless edges. Otherwise, the algorithm starts a search at
all vertices in Heads U Tails. The searches are lock-step in two levels. On the
outer level the searches alternate between the different G[S;], running a fixed
number of search steps in each G[S;]. On the inner level all searches within a
G|[S;] are also done in lockstep. The search rooted at vertex v tries to determine
the strongly-connected component of v. As in the previous algorithm the search
for v € Tails is started in the current graph and the search for v € Heads in
the reverse of the current graph. If all the searches terminate in the exact same
component as they were started then there are no useless edges and we are
done. Else, assume the first search to terminate is rooted in S, reaching the
vertices R C S,. If the special vertex a, belongs to R then we set D to be
all edges of G[S,] which do not have both endpoints in R and update S, to
R. If a, does not belong to R then D is set to be all edges with at least one
endpoint in R and S, is updated to S, \ R. In this latter case the new G[S;] is
not necessarily strongly connected, so vertices in Heads or Tails belonging to
the new S, remain in Heads or Tails to be searched in the next iteration.
Our implementation uses the following data structure.

e A first array of size m that stores for each edge label i a set of pointers to
all edges in the current graph with label ¢ and the number of such edges;
each edge of label 7 stores ¢ and a reverse pointer to its location in the list
of 1.

e A second array of size m that stores for each label 7 all labels j such that
depends_on(j) = i.

The data structure is updated in an obvious way whenever an edge is deleted
from the graph. If the number of edges with label ¢ becomes 0, all edges with
label j such that depends_on(j) =i are marked as bad. The algorithm is given
on the next page. All use of the above data structure is restricted to lines 3, 4,
6(c) and 6(d), where edges are removed from G.

Lemma 3.1 The protocol pruning algorithm is correct.

Proof. As shown below, the while loop in the algorithm has the invariant:
“There are no bad edges in G and each edge has both endpoints in some S;.
For each i, a; € S; and if the induced graph G[S;] is not a strongly-connected
component of G then any source (sink) component of G[S;] has a vertex in

13

Protocol Pruning Algorithm

1. Run SCC to find the components G[S1], ..., G[S)] of G such that a; € S;.
2. Let m; be the number of edges in the component G[S;].

3. Remove edges DU {uv € E : Ai : {u,v} C S;} from G.

4. While there exist bad edges do Remove all bad edges from G.

5. Set Heads (Tails) to be the vertices in |J; S; which had an incoming (out-
going) edge just removed in line 3 or 4 above.

6. While Heads U Tails # () do

(a) Case 1: If 3i such that |Heads N S;| + |Tails N S;| > y/m;/l do
For each i such that |Heads N S;| + |Tails N S;| > y/m;/L:

i. Run SCC on G[S;] to find new component G|[S;] containing a;.
ii. Add to D all edges with at least one endpoint in S; \ S..
iii. Remove vertices S; from Heads and from Tails and set S; := S.

(b) Case 2: Else For all i, |Heads N S;| + |Tails N S;| < /m;/l do

i. For each v € Tails search G from v and for each v € Heads
search Reverse(G) from v. Run the searches for all 1 < ¢ <1
in lock-step both between different G[S;] and lock-step within
each G[S;] until the first search completes, say on G[S,], with
all vertices R reachable from its root visited and R C S,, but
R # S,. If no such search exists (i.e. R D S, for each search)
HALT and output G[Si], ..., G[Si].

ii. If a, € R then
A. Add to D all edges with at least one endpoint in S, \ R.

B. Remove vertices S, from Heads and Tails and set S, := S.
iii. If a, ¢ R then
A. Add to D all edges with at least one endpoint in R.
B. Remove vertices R from Heads and Tails and set S, := S, \R.
(c) Remove useless edges D from G
(d) While there exist bad edges do Remove all bad edges from G.
(e) Add to Heads (Tails) vertiges in U; S; which had an incoming (out-

going) edge just removed in line (c) or (d) above.

7. HALT and output G[S1], ..., G[Si]

Heads (Tails).” Upon termination of the while loop Heads U Tails = () which
together with the invariant ensures that there are neither any bad or useless
edges left. The invariant holds initially since we delete all edges without both
endpoints in some S; in line 3 and all bad edges in line 4. Moreover, if after
these edge deletions G[S;] is no longer strongly connected, then every one of
its source (sink) components contains an endpoint of an edge removed, by an
argument similar to one in the proof of Lemma 2.4. An execution of the loop
either discovers a new component G[S;] (lines 6(a)i and 6(b)ii) or discovers some
vertices R which do not belong to a strongly-connected component of a special
vertex (line 6(b)iii). In the former case we remove from Heads, Tails all vertices
of the involved component, while in the latter case only vertices R are removed
from Heads, Tails. In either case the relevant component vertex sets are updated
and useless edges added to D. These useless edges and any subsequent bad edges
are then removed from G, ensuring that the first part of the loop invariant holds.
Since endpoints of removed edges are added to Heads and Tails in lines 6(c),
6(d) and 6(e) the second part of the loop invariant holds as well. Note that
the algorithm may also terminate if in line 6(b)i all searches from vertices in
Heads and Tails terminate in the exact same component as they were started,
meaning that each G[S;] is indeed a strongly-connected component. O

Lemma 3.2 The protocol pruning algorithm has running time O(\ﬁZm}'E’).

Proof. The cost of all data structure operations is O(}"; m;). Foreach 1 <i <

line 6(a)i is executed O(y/m;l) times, since each time at least (/m;/l edges
incident with the component of a; have been deleted. An invocation of SCC
costs O(m;) for a total cost of O(v/1 Y mk?).

In an execution of line 6(b)i, if all searches terminate in the exact same
component as they were started, then their total cost is O(\/Z > m;?), since in
each G[S;| there are at most y/m;/l searches costing O(m;) each. Otherwise,
let the search initiated at v € S, be the first one to complete, after traversing
vertices R and edges Fr. Note that there are at most (/m,/l searches in S,.
Since the parallel searches are lock-step also between different S;, we know that
for each 1 < ¢ < I, the parallel searches in G|[S;| cost at most O(y/m,/l|Eg|),

for a total cost of O(1/Im,|ERg|) for all searches in this execution of 6(b)i. This
cost is charged to the useless edges discovered, namely those with an endpoint
in S, \ R if a, € R or those with an endpoint in R itself if a, ¢ R. It is

15

clear that in the latter case there are at least |Eg| useless edges. This also
holds in the former case since R is a source (or sink) component of G[S,] and
there is therefore at least one sink (or source) component of G[S,|, containing
useless edges, in which a parallel search had not yet completed when Er had
been traversed. Therefore there is a charge of O(y/m,[) per edge in either case.
Edges are charged only once for a total cost of O(\ﬂ >, mi®). O

Acknowledgements

The authors are indebted to Moshe Vardi for suggesting the nonemptiness prob-
lem for Streett automata and to David Lee for suggesting the protocol pruning
problem.

References

[1] E. A. Emerson and C. L. Lei. Modalities for model checking: Branching
time strikes back. Science of Computer Programming, 8 (1987), 275-306.

[2] S. Even and Y. Shiloach, “An On-Line Edge-Deletion Problem”, J. ACM
28 (1981), 1-4.

[3] R. Kurshan. Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press, Prince-
ton, 1994.

[4] D. Lee, A. N. Netravali, K. K. Sabnani. Protocol Pruning, The Proceed-
ings of IEEE, October 1995.

[5] S. Safra. On the complexity of w-automata. Proc. 29th IEEE Symposium
on Foundations of Computer Science (FOCS), 1988, 319-327.

[6] R.E. Tarjan. Depth-first search and linear graph algorithms, STAM Jour-
nal on Computing, vol.1, no.2, June 1972, 146-160.

[7] M. Y. Vardi and P. L. Wolper. An Automata-Theoretic Approach to
Automatic Program Verification. Proc. 1st IEEE Symposium on Logic
in Computer Science (LICS), 1986, 322-331.

16

