Finding Good Decompositions for Dynamic
Programming on Dense Graphs

Eivind Magnus Hvidevold, Sadia Sharmin, Jan Arne Telle, and Martin Vatshelle

Department of Informatics, University of Bergen, Norway *

Abstract. It is well-known that for graphs with high edge density the tree-width
is always high while the clique-width can be low. Boolean-width is a new pa-
rameter that is never higher than tree-width or clique-width and can in fact be as
small as logarithmic in clique-width. Boolean-width is defined using a decompo-
sition tree by evaluating the number of neighborhoods across the resulting cuts
of the graph. Several NP-hard problems can be solved efficiently by dynamic
programming when given a decomposition of boolean-width k&, e.g. Max Weight
Independent Set in time O(n?k2%*) and Min Weight Dominating Set in time
O(n? + nk23%). Finding decompositions of low boolean-width is therefore of
practical interest. There is evidence that computing boolean-width is hard, while
the existence of a useful approximation algorithm is still open. In this paper we
introduce and study a heuristic algorithm that finds a reasonably good decom-
position to be used for dynamic programming based on boolean-width. On a set
of graphs of practical relevance, specifically graphs in TreewidthLIB, the best
known upper bound on their tree-width is compared to the upper bound on their
boolean-width given by our heuristic. For the large majority of the graphs on
which we made the tests, the tree-width bound is at least twice as big as the
boolean-width bound, and boolean-width compares better the higher the edge
density. This means that, for problems like Dominating Set, using boolean-width
should outperform dynamic programming by tree-width, at least for graphs of
edge density above a certain bound. In view of the amount of previous work on
heuristics for tree-width these results indicate that boolean-width could in the
future outperform tree-width in practice for a large class of graphs and problems.

1 Introduction

Many NP-hard graph problems become polynomial-time solvable when restricted to
graphs of bounded tree-width or bounded clique-width. These algorithms usually have
two stages, a first stage finding a decomposition of width k& of the input graph, and
a second stage of dynamic programming along the decomposition. The dynamic pro-
gramming is typically exponential in k, e.g. given a decomposition of tree-width £ it
solves Maximum Weight Independent set in time O(n2*) and Minimum Weight Dom-
inating set in time O(n3%k2) [20]. It is therefore important to have fast algorithms
for the first stage, i.e. to find decompositions of small width. For clique-width such
algorithms are not known, apart from the 2077 approximation achieved through rank-
width [13]. For tree-width there is an O(f (n)20(k3)) algorithm for finding a decom-
position of tree-width k, if it exists [3]. This algorithm is not practical [17], but much

* Supported by the Norwegian Research Council, project PARALGO.

work has been done on finding decompositions of low tree-width in practical settings,
see the overviews [5,4]. The web site TreewidthLIB [19] has been established to pro-
vide a benchmark and to join the efforts of people working in experimental settings to
solve graph problems using tree-width and branch-width [12,16]. This includes prob-
lems from computational biology [18,21,22], constraint satisfaction [9,11], and prob-
abilistic networks [15]. However, tree-width and branch-width are unsuitable for non-
sparse graphs, as a decomposition of tree-width or branch-width £ means the graph has
O(k?n) edges. Clique-width, on the other hand, can be low for dense graphs, but so
far no experimental study has been done for clique-width or similar notions. To our
knowledge this paper is the first case of an experimental study on computing a notion
of width that works also for non-sparse graphs.

Boolean-width is a recently introduced graph parameter motivated by algorithms
[8]. It is defined by a decomposition tree that minimizes the number of different unions
of neighbourhoods across resulting cuts of the graph. This decomposition is natural
to solve problems where vertex sets having the same neighborhoods across the cuts
can be treated as equivalent. This includes problems related to Independent Set, Dom-
inating Set, Perfect Code, Induced k-Bounded Degree Subgraph, H-Homomorphism,
H-Covering, H-Role Assignment etc [1]. Similarly to treewidth, dynamic programming
algorithms to solve these problems using boolean-width employ a table at each node of
the decomposition tree, to store solutions to partial problems. In contrast to treewidth,
the dynamic programming for boolean-width involves a non-negligible pre-processing
phase computing indices of the tables, the so-called ’representatives’. Regardless, the
total runtimes are in many cases close to those for treewidth, e.g. given a decomposi-
tion of boolean-width k& Max Weight Independent Set is solved in time O(n?k2%*) and
Min Weight Dominating Set in time O(n? + nk23) [8]. These boolean-width-based
algorithms are straightforward and have been implemented in Java, without much ef-
fort, using only the description in [8]. Let us compare dynamic programming based on
tree-width versus boolean-width, to solve Independent Set and Dominating Set, with
focus on exponential factors. For Independent Set the exponential factor in the runtimes
are 2! versus 22boolw given decompositions of treewidth tw or boolean-width boolw,
and boolean-width becomes preferable when tw > 2boolw. For Dominating Set the
exponential factor in the runtime is 3t yersus 2390l and the cutoff is a bit lower, i.e.
when tw > 1.9boolw.

It is known that boolean-width is never higher than tree-width or clique-width and
it can be as low as logarithmic in clique-width [8]. For example, any interval graph
or permutation graph has boolean-width O(logn) [2] while there exist such graphs of
clique-width £2(y/n) and tree-width £2(n). Also, a random graph with constant edge
probability will almost surely have boolean-width ©(log® n) [1] but linear clique-width
and tree-width. While these theoretical results favor boolean-width over tree-width, the
cutoff tw > 2boolw that we arrived at above applies when we are given a decompo-
sition of treewidth tw or boolean-width boolw, as the output of a first stage algorithm.
It is unknown if computing boolean-width is FPT or W-hard. In this paper we give a
heuristic for the first stage, taking as input a graph G and finding a decomposition of G
having reasonably low boolean-width. We tried various heuristics and present the one
with best performance, which is a local search algorithm where the search for new solu-

tions is based on interweaving between greedy choices and random choices. Theoretical
evidence that random choices are useful for boolean-width, at least for random graphs,
comes from the analysis of [1] showing that any decomposition of a random graph is
expected to be a decomposition of relatively low boolean-width. On a set of graphs of
practical relevance, specifically graphs in TreewidthLIB, the best known upper bound
on their tree-width is compared to the upper bound on their boolean-width given by
our heuristic. For 78% of those graphs in TreewidthLIB where both tree-width and
boolean-width upper bounds were encountered, the tree-width bound is at least twice
the boolean-width bound, thus meeting the tw > 2boolw bound mentioned above. A
drawback of tree-width is that it is always high when edge density is high. In contrast,
boolean-width is typically low for dense graphs and our experiments show that within
reasonable time we can find decompositions witnessing this. Our results indicate that,
for problems like Dominating Set, using boolean-width will outperform dynamic pro-
gramming by tree-width, at least for graphs of edge density above a certain bound. In
view of the amount of previous work on heuristics for tree-width we expect that fur-
ther work on boolean-width heuristics will substantially increase the class of graphs for
which boolean-width outperforms tree-width, also for other problems besides Indepen-
dent Set and Dominating Set.

The rest of the paper is organized as follows. In Section 2 we define partial and full
decomposition trees and boolean-width. In Section 3 we describe the heuristic finding a
decomposition of low boolean-width. In Section 4 we describe the experimental results
on graphs in TreewidthLIB, and also on small grid graphs. In Section 5 we draw some
conclusions.

2 Boolean-width

We consider undirected graphs G = (V, E) without loops. We denote the neighborhood
of a vertex v by N (v) and the union of neighborhoods of a vertex subset A by N(A) =
Uyea N (v). The complement of A C V is denoted by A = V' \ A and we call (A, A) a
cut of G. A partition of a set S consists of non-empty and disjoint subsets of S whose
union is S. We follow custom by referring to vertices of a graph and nodes of a tree.

Definition 1 (Full and partial decomposition trees). A partial decomposition tree of
a graph G = (V, E) is a pair (T,0), where T is a full binary tree and § is a mapping
from the nodes of T" to non-empty subsets of V, satisfying the following: if x is the root
of T then 6(x) = V and if nodes y and z of T are children of a node x then (§(y), 6(2))
is a partition of §(z). If a subtree of T rooted at x has |0(z)| leaves then it is called a
full decomposition subtree. If T" has | V| leaves then (7', §) is called a full decomposition
tree.

Note that in a partial decomposition tree (7',0) of a graph G, if L is the set of leaves
of T then {0(z) : * € L} is a partition of V. Hence in a full decomposition tree there
will for each vertex v of G be a unique leaf x of T' with §(z) = {v}. Likewise for each
vertex of d(x) in a full decomposition subtree rooted at x.

Definition 2 (Unions of neighborhoods and boolean-width). Let (7',) be a partial
decomposition tree of a graph G. Let V(T') be the nodes of T'. Every node x € V(T)

defines a cut (6(x),d(x)) of G. The set of unions of neighborhoods of subsets of A
across the cut (4, 4) is UN(A) = {N(X)N A : X C A}. The boolean-width of
(T,6) is

boolw(T,§) = ﬁe‘g(xT){logz\UN@(x))l}

The boolean-width of a graph G is the minimum boolean-width over all its full decom-

position trees boolw(G) = min {boolw(T,d)}.
full (1,5) of G

Note that U N (A) are the subsets of A for which there exists an X C A with N(X)NA
being that subset, so we always have) € UN(A). It is known from boolean matrix
theory [14] that [UN (A)| = |[UN(A)| and this is sometimes used by our code. Let us
consider some examples. If |[UN(A)| = 2 then the set of edges crossing the cut (4, A)
induce a complete bipartite graph. If the set of edges crossing the cut (A4, A) induce a
perfect matching of G then [UN(A)| = 2!V/2|. In the definition of boolean-width we
take the logarithm base 2 of [UN(A)| which ensures that 0 < boolw(G) < |V|.If a
graph has boolean-width one then it has a full decomposition tree such that, for every
cut defined by a node of the tree, the edges crossing the cut, if any, induce a complete
bipartite graph. From this it follows that the graphs of boolean-width one are exactly
the distance-hereditary graphs [7].

Definition 3 (Split). A split of a set P is a partition into two subsets A and B, with the
constraint that min{|A|, |B|} > £|P|.

3 Heuristic Algorithm

We present a local search heuristic that given a graph G' computes a full decomposition
tree of GG. The search for new solutions in the space of candidate solutions is based
on a fine balance between greedy choices and random choices. The heuristic, given
in Algorithm 1, runs for a pre-defined length of time and then returns the best full
decomposition found. Each heuristic pass iterates over all decomposition nodes of the
current partial decomposition tree, including the children created by this heuristic pass.
A newly created tree node always starts out as a leaf node, which § maps to a set of
vertices of GG that may be larger than one. We keep track of the best full decomposition
subtrees found for each P C V encountered so far and call it Best(P).

3.1 Greedy Initialization

Step 1 of Algorithm 1 greedily generates a full decomposition tree, to serve as the start-
ing tree for the local search in Step 2. The greedy initialization starts with 7" containing
a single node z (as both root and leaf) with §(x) = V and repeatedly calls the Split
subroutine until we get a full decomposition tree. The Split(P) subroutine returns a
split (A, B) of P and is given in Algorithm 2. Starting with A being a random half of
the vertices of P (unless P=V"), it adds new vertices to A one by one in a greedy fashion
while minimizing [UN(A)| and |[UN (P \ A)|, and returns the best split found along
the way complying with the split constraint. The call of Split(V") at the root sets the

Algorithm 1 : Generate a full decomposition of a given graph

Input: a graph G
Output: a full decomposition tree (7', §) of G
Step 1: /*«Greedily generate initial full decomposition treex/
Initialize T with V(T') = {root}, 6(root) =V
while 3 leaf z of T" with |§(x)| > 1
(A, B) = Split(3(z));
Add leaves y and z as children of x with §(y) = A and §(z) = B
for all x € V(T) store Best(d(x)), the subtree rooted at =
Step 2: /xLocal Search for better treesx/
for fixed amount of time do
TryToImproveSubtree(root)
if (T, 9) is a full decomposition tree then Best(V') = (T, §)
return Best(V)

initial conditions for the later splits and for this root-case we start with A = (), rather
than a random half of the vertices, to allow the full benefit of the greedy choices. The
local search in TryTolmproveSubtree will for leaves of the current tree make calls to
Split(P) but not for P = V, since the root of 7" will never again become a leaf and
instead the RandomSwap subroutine described in the next subsection will be applied
to the root.

Algorithm 2 : Split(P)

Input: Set of vertices P C V.

Output: a partition (A,B) of P s.t. min{|A|,|B|} > 1|P|.

if P=V then A; < 0

else A; < random half of the vertices in P

i=1

while [P\ A;| > 1|P| do
findz € P\ A; s.t. maz{UN(A; U {z}), UN((P \ A;) \ {z})} is minimized.
Ai+1 = AZ U {.’E}
=1+ 1.

end while

find i such that maz{UN(A;), UN(P \ A;)} is minimized and |A;| > £|P|.

return (A;, P\ A;).

The objective function optimized locally in Split is [U N (A)|, the number of unions
of neighborhoods of A, which directly relates to boolean-width, see Definition 2. The
computation of [UN(A)| is done in a separate subroutine called UN(A) given in Al-
gorithm 3. This subroutine starts by restricting from the cut (A4, A) to the subsets of
vertices (S1,.92) having an edge going across the cut (A, A). The list LN is used to
accumulate the set UN(A) in a straightforward way. Correctness is easy to show by
induction on |S;|. Early termination of the UN(A) subroutine is not shown in Algo-

rithm 3 but is done if it is determined that | LN| is too large for the cut (A, A) to be
interesting.

Algorithm 3 : UN(A)
Input: Set of vertices A C V.
Output: |UN(A)|, the number of unions of neighborhoods of the cut (A4, A)
if [UN (A)| has already been computed return the stored value
Si={veA:Jue AN (u,v) € E}
So={veA:Jue AN (u,v) € E}
LN « {0} /*neighborhood set accumulators/
for all v € S; do
for allY € LN do
X+ (Nu)NnS)uYy
if X ¢ LN then add X to LN
return The number of elements in LN

3.2 Local Search

The local search used to improve the current decomposition tree is initiated at the root
of the tree T, in Step 2 of Algorithm 1. In the subroutine TryToImproveSubtree(z),
given in Algorithm 4, z is a node of the current partial decomposition tree (7',) and
the goal is to improve the subtree of 1" rooted at x. That subroutine has four main parts.

(1) if x leaf then find candidate for split of its subset

(2) if z non-leaf then find candidate for swap of its two children subsets
(3) conditionally update (7', 9)

(4) for each child of x either use stored subtree or recurse

For (1) we use the Split subroutine described earlier. For (2) we use the Random-
Swap(A,B) subroutine given in Algorithm 5 that randomly swaps vertices between A
and B while complying with the split constraint. At the very onset of the local search,
the current (7', 0) is the full decomposition tree found by the greedy initialization. How-
ever, the current decomposition tree ceases to be full as soon as the split given by
RandomSwap(4(y), 6(z)) in (2) is a good one and (3) updates (T, 0) so that y and
z become leaves. If the new J(y) is a subset of vertices for which a full decomposition
subtree has never been stored, or the stored one is not good enough, then in (4) a recur-
sive call is made to TryTolmproveSubtree(y), with y a leaf of the current tree. If in
that recursive call the split found in (1) is not good then in (3) we will return with y a
leaf of the current (7', §) having |6(y)| > 1, which explains the if-statement at the very
end of Algorithm 1.

Note that the local improvements made in the local search are based on randomly
swapping vertices between J(y) and 0(z) for two nodes y and z with the same parent.
As usual in local search, there is a fine balance to trying new splits versus sticking with
old splits. The goal is to neither get stuck in local minima nor to swap so many nodes
that we re-randomize completely and don’t get a hill-climbing effect. Note in (4) that we

Algorithm 4 : TryTolmproveSubtree(z)

Input: a node z of 7" with |6(z)| > 1
(1) if = is a leaf then (A,B) = Split(§(z))
(2) else
Let y and z be the children of the node x.
(A, B)=RandomSwap(J(y), 6(z))

(3) if maz{UN(A), UN(B)} < boolw(Best(V))
then Set y and z as new leaf children of = with §(y) = A and 6(z) = B
else if z is still a leaf then return /* in case we came from (1) */

@) if maz{UN((y)), UN(6(2))} < boolw(Best(V')) then
for w € {y, z}
if subtree for §(w) is stored and boolw(Best(V')) > boolw(Best(d(w)))
then use root of Best(d(w)) as w.
else if |6(w) > 1| call TryTolmproveSubtree(w)
if the subtree T, rooted at x is a full subtree of §(x)
then update Best(d(x)) to T

store for each subset P of vertices encountered so far the best found full decomposition
subtree Best(P). The decision of when to try new splits and when to use the old splits is
tied to the boolean-width of the best subtrees, and to the upper bound on boolean-width
of G given by Best(V).

Algorithm 5 : RandomSwap(d(y), 6(2))

Input: 6(y), 6(z) C V for sibling nodes y and z of T".

Output: split (A, B) of 6(y) U d(2).

Let x be the parent of y and z.

choose randomly i in 0..(|8(y)| — 221y and j in 0..(|8(z)| — 1220,
choose randomly M; C 6(y) and M; C 6(z) with |M;| = ¢ and | M;| = j.
A= (6(y) \ Mi) U M,

B = (6(z) \ M;) UM,

return (A, B).

3.3 Discussion and Implementation Details

We made our implementations in Java. Subsets of vertices are stored as bitvectors of
length n, i.e. the number of vertices in the graph. We expect most of the subsets we
store to be of size at least 5 so this is an efficient way to store subsets. We also limited
the boolean-width to 31, i.e. [UN (A)| < 23!, but none of the graphs tested reached this
limit. The bottleneck is rather the memory available on our machines. Let us explain.
Our implementation of subroutine UN(A) uses memory proportional to n « [UN (A)|
bits. Since [UN(A)| < 2m(ALIAD the *boolean-width < 31’ becomes a bottleneck

only if the graph has at least 64 vertices. In that case the implementation is handling a
list of neighborhoods of size 64 * 23! bits which is 16 GB of memory and that is more
memory than our desktop had. It is part of future research to find memory efficient
methods to compute |[UN (A)|.

As described, we are currently storing the best full decompositions of subtrees.
Since bitvectors are easy to compare they are stored in a binary search tree for quick
look-up. Storing all these solutions eats up memory, and for some big graphs this is the
limiting factor. In the future we will consider more advanced schemes for storing the
partial solutions encountered. In particular one should throw out elements that are no
longer below the upper bound.

The search for new solutions in the space of candidate solutions is based on a fine
balance between greedy choices and random choices, a balance that was arrived at
mainly through experimentation. This appears e.g. in the choice of letting the Split
subroutine start with a random half of the nodes on one side before trying vertices
one-by-one in the more costly greedy stage. Similarly for the fully random choice of
swapping in subroutine RandomSwap, and in the conditional tests in (3) and (4) of
TryTolmproveSubtree.

Although not specified in the pseudocode, for small subtrees we just return an ar-
bitrary one, since if |§(z)| < boolw(Best(V)) then any full subtree at x will have
boolean-width at most boolw(Best(V')). The Split(P) subroutine given in Algorithm
2 could be stopped as soon as a subset A; with low [UN (A4;)| and [UN (P \ A;)| values
has been found. It is not clear that this is always better and currently it is not done.
There are many calls of UN(A) for many subsets A that only differ in a few vertices. A
possible improvement is to store the sets of unions of neighborhoods U N (A) and use
these e.g. when computing UN (AU {v}) for a single added vertex v, allthough it is not
clear how to do this efficiently. The UN(A) subroutine given in Algorithm 3 does not
recompute known values, but otherwise it may seem naive. It forms the inner loop of
the heuristic and it is the bottleneck for running on graphs with many vertices. We tried
different approaches such as randomly sampling subsets to approximate |[UN (A)| and
exploiting a correlation between the degree of a vertex and its contribution to [UN (A)].
These tests led to only insignificant improvements so for the moment we kept the naive
algorithm. There are other, similar, improvements to UN(A) that can be attempted, and
although they may not asymptotically improve the running-time of the heuristic they
could potentially be of big help.

The balance between trying new splits and sticking to old splits is guided by the
conditional test in (3) of Algorithm 4. We did try imposing stronger conditions in order
to arrive at better splits sooner, but only minor improvements were seen, and only in
some cases.

The heuristic ran for a predefined amount of time for each graph but there are several
ways of experimenting with the stopping criteria, for example based on the size of the
input graph, or on the fraction of time since an improved tree was last found.

4 Experimental Results

All presented results have been carried out on a Linux machine with 2.33 GHz Intel
Core 2Duo CPU E6550 and 2 GB RAM. Our aim was not fast benchmark results, but
to explore heuristics for finding decompositions of low boolean-width. TreewidthLIB is
an online depository containing a collection of 710 graphs, to be used as a benchmark
for the comparison of algorithms computing treewidth. TreewidthLIB provides selected
instance graphs, for which computing the treewidth is relevant, originating from appli-
cations like probabilistic networks, vertex coloring, frequency assignment and protein
structures [5]. We ran our heuristic on the graphs in TreewidthLIB.

TreewidthLIB contains 710 graphs. For 482 graphs a tree-width bound is given in
TreewidthLIB, and for 426 graphs we give a boolean-width bound using our heuristic.
For the comparison we concentrate on the 300 graphs for which we have a bound on
both tree-width and boolean-width, but let us first discuss the remaining 410 graphs.
Among these 410 graphs, there are 126 having only a boolean-width bound, 182 having
only a tree-width bound, and 102 having neither. Among the 182 graphs having only a
tree-width bound there are some in a graph format not supported by our implementation,
but for the majority of these graphs our heuristic simply timed out already at the greedy
initialization stage. Note that for these 182 graphs, if we were given the decomposition
of low tree-width k, we could easily have produced a decomposition of boolean-width
at most k, using the O(nk?) algorithm which can be deduced from [1].

We now summarize our findings for the 300 graphs having both a tree-width bound
and a boolean-width bound. Firstly, the boolean-width bound is always better than the
tree-width bound, with the ratio of the tree-width bound divided by the boolean-width
bound ranging from 1.15 to 29, with an average of 3.13. Not surprisingly, the ratio
increased with higher edge density. In Fig.1 we have plotted this ratio against the edge
density of the graphs for a total of 300 graphs. The trend line shows the growth of ratio
with edge density.

Our heuristic algorithm starts with greedily finding a full decomposition tree giv-
ing an Initial Bound on boolean-width and then improves this bound iteratively. In the
experiments we kept track of the decrease in the boolean-width over time. In Fig. 2
and Fig. 3 the upper bounds on boolean-width, i.e. the values of boolw(BEST(V)),
are shown as they decrease over time, for the two graphs called eil51.tsp (V=51 and
E=140) and miles1500 (V=128,E=5198). For the graph eil51.tsp the Initial Bound was
9.1 after less than a second, then at the ’knee’ of the curve before the improvement
decays we found a Fast Bound of 6.2 after 4 seconds, and finally the Best Bound of 5.8
was found after 124 seconds. For each graph, we can likewise speak of three bounds: i)
the Initial Bound given by the greedy initialization, ii) a Fast Bound found at the "knee’
of the curve, and iii) the Best Bound found possibly after a long runtime.

In Table 1 we summarize results for 8 selected graphs having a good variety of
number of vertices V, edge density density, Time in seconds to find Initial Bound,
Fast Bound, and Best Bound on boolean-width, its best known treewidth upper bound
TWUB, and Ratio=TWUB/BWUB(Best Bound). The graphs are sorted by this Ratio.
The miles1500 graph is translated from the Stanford GraphBase. The zeroin.i.l and
mulsol.i.5 graphs originate from the 2nd DIMACS implementation challenge [10] and
are generated from a register allocation problem based on real code. The queen8_12 also

35

X Graph instances
y=143x"-164x°+48x2+1.9x+1.6

TWUB/BWUB

Ratio:

0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1
Edge density

Fig. 1. Ratio (treewidth divided by boolean-width) versus edge density in all the 300 graphs for
which heuristically computed upper bounds are known.

951 5.6

Initial Bound
S5.51 @ Initial Bound

85 5.4

c 8 £ 53

3 b1

7 3

£ 7.5H < 52

2 2

: i
7H] 5.1

!

Fast Bound
o gasx Bound

r Best Bound

Best Bound © ©

o 20 40 60 80 100 120 140 0 100 200 300 400 500 600 700
Time(sec) Time(sec)

Fig.2. Improvement of boolean-width upper Fig.3. Improvement of boolean-width upper
bound as the local search progresses over time, bound as the local search progresses over time,
for the graph eil51.tsp (V=51,E=140) for the graph miles1500 (V=128,E=5198)

comes from the DIMACS[10] graph coloring problems and is an example of n-queens
puzzle. The graph Iawd is from the field of computational biology with each vertex
representing a single side chain and each edge representing the existence of a pairwise
interaction between the two side chains. The graph celarO6-wpp is a frequency assign-
ment instance. The graph BN_28 originates from Bayesian Network from evaluation of
probabilistic inference systems at UAI 2006. The graph eil51.tsp is a Delauney triangu-
lation of a traveling salesman problem.

Table 1. Results for selected graphs

Edge Initial Bound Fast Bound Best Bound
Graph name| V' |density|BWUB Time(s)|BWUB Time(s)|BWUB Time(s)| TWUB|Ratio
miles1500 [128 0.64 55 326 49 3457 4.8 609.6 77(15.85
zeroini.l |211 0.19 4.0 741 38 116.2 3.7 168.0 50(13.51
mulsol.i.5 [186 0.23 64 553 54 130.0 49 3652 31| 6.25
queen8_12 | 96 0.30f 16.7 3055| 16.7 3055 16.7 3055 65| 3.91

lawd 89 027 133 675 11.1 521.1] 10.8 7029 38| 3.52
celar06-wpp| 34 0.28 4.5 0.1 32 0.8 3.0 4.8 11| 3.37
BN_28 24 0.18 33 0.02 23 0.05 2.0 0.3 5| 2.50
eil51.tsp 51 0.11 9.1 0.9 6.2 4.1 5.8 124.6 9| 1.55

4.1 Small grid graphs

We also ran our heuristic on graphs corresponding to the n x n grid. However, for square
grids the current implementation of UN(A) is too memory-intensive and we had to limit
the size to n < 9. These are sparse graphs having tree-width n and the upper bound we
find on boolean-width is below this. See Figure 4. The boolean-width of square n x n
grids is a topic we are investigating and our current guess is that the optimal upper
bound, holding for all n, is about 0.8 * n. If this is correct, the value computed by the
heuristic is close to optimal, which is somewhat interesting as it is our understanding
that the heuristics for finding decompositions of low tree-width do not perform well on
grid graphs.

5 Conclusion

We presented the first experimental study on computing a notion of width that works
also for non-sparse graphs, based on the boolean-width parameter. Experiments with
the graphs in TreewidthLIB show the strength of boolean-width versus tree-width, in a
practical setting, in particular for graphs of edge density above a certain value. For more
examples of real-world graphs of high edge density and high tree-width we could also
look beyond the TreewidthLIB library. There are a number of open problems related
to boolean-width heuristics and some have already been discussed in subsection 3.3.
Firstly, we need a fast heuristic that directly constructs a reasonable upper bound on

©

®
N

~
\

*

w & o

Boolean-width of Grid nxn

~

Fig. 4. Upper-bound on boolean-width, as computed by our heuristic, for the n X n grid, with n
ranging from 2 to 9. Tree-width is given by the dotted line x = y.

the boolean-width for any graph, regardless of how big the graph is or what its edge
density is. The main issue will be to give a fast heuristic for the computation of a
good upper bound on |[U N (A)|. Secondly, we need to consider heuristics for computing
lower bounds on boolean-width, just as it has been done for tree-width [6]. Thirdly, we
should explore pre-processing to simplify the graph instances, again this has been done
extensively for tree-width [4]. These problems are of interest since our results indicate
that using boolean-width could in the future outperform the use of tree-width in practice
for a large class of graphs and problems.

References

1. I. Adler, B. M. Bui-Xuan, Y. Rabinovich, G. Renault, J. A. Telle, and M. Vatshelle. On the
boolean-width of a graph: Structure and applications. Proceedings of the 36th International
Workshop on Graph-Theoretic Concepts in Computer Science, WG 2010, pages 159-170,
2010.

2. R. Belmonte and M. Vatshelle. Graph classes with structured neighborhoods and algo-
rithmic applications. Proceedings of the 37th International Workshop on Graph-Theoretic
Concepts in Computer Science, WG 2011, 2011. see full version www.ii.uib.no/ mart-
inv/Papers/LogBoolw.pdf.

3. Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing, 25:1305-1317, 1996.

4. Hans L. Bodlaender. Treewidth: Characterizations, applications, and computations. In Fe-
dor V. Fomin, editor, Proceedings of the 32nd International Workshop on Graph-Theoretic
Concepts in Computer Science, WG 2006, pages 1 — 14. Springer Verlag, LNCS, vol. 4271,
2006.

5. Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations I. Upper bounds.
Information and Computation, 208:259-275, 2010.

6. Hans L. Bodlaender and Arie M. C. A. Koster. Treewidth computations II. lower bounds.
Technical Report UU-CS-2010-022, Department of Information and Computing Sciences,
Utrecht University, Utrecht, the Netherlands, 2010. Accepted for publication in Information
and Computation.

3

10.

11.

12.

14.
15.

18.

19.
20.

21.

22.

. A. Brandstadt. personal communication.
. B. M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Boolean-width of graphs (to appear). Theoret-
ical Computer Science, 2011. see full version www.ii.uib.no/ telle/bib/listofpub/BTV11.pdf.

. Hubie Chen. Quantified constraint satisfaction and bounded treewidth. In Ramon Lépez

de Mantaras and Lorenza Saitta, editors, Proceedings of the 17th European Conference on
Artificial Intelligence, ECAI 2004, pages 161-165, 2004.

The second DIMACS implementation challenge: NP-Hard Problems: Maximum Clique,
Graph Coloring, and Satisfiability. See http://dimacs.rutgers.edu/Challenges/, 1992—1993.
Georg Gottlob, Nicola Leone, and Francesco Scarcello. A comparison of structural CSP
decomposition methods. Acta Informatica, 124:243-282, 2000.

Illya V. Hicks, Arie M. C. A. Koster, and Elif Kolotoglu. Branch and tree decomposition
techniques for discrete optimization. In J. Cole Smith, editor, TuzORials 2005, INFORMS
Tutorials in Operations Research Series, chapter 1, pages 1-29. INFORMS Annual Meeting,
2005.

. P. Hlinény and S. Oum. Finding branch-decomposition and rank-decomposition. SIAM

Journal on Computing, 38:1012-1032, 2008.

K. H. Kim. Boolean matrix theory and its applications. 1982. Marcel Dekker.

S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphi-
cal structures and their application to expert systems. The Journal of the Royal Statistical
Society. Series B (Methodological), 50:157-224, 1988.

. Arnold Overwijk, Eelko Penninkx, and Hans L. Bodlaender. A local search algorithm for

branchwidth. Proceedings of the 37th Conference on Current Trends in Theory and Practive
of Computer Science, SOFSEM 2011, pages 444-454, 2011.

. Hein Rohrig. Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut

fiir Informatik, Saarbriicken, Germany, 1998.

Y. Song, C. Liu, R. Malmberg, F. Pan, and L. Cai. Tree decomposition based fast search
of RNA structures including pseudoknots in genomes. In Proceedings of the 2005 IEEE
Computational Systems Bioinformatics Conference, CSB’05, pages 223-234, 2005.
Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004—....

Johan M. M. van Rooij, Hans L. Bodlaender, and Peter Rossmanith. Dynamic programming
on tree decompositions using generalised fast subset convolution. In Amos Fiat and Peter
Sanders, editors, Proceedings of the 17th Annual European Symposium on Algorithms, ESA
2009, pages 566-577. Springer Verlag, Lecture Notes in Computer Science, vol. 5757, 2009.
Jizhen Zhao, Dongsheng Che, and Liming Cai. Comparative pathway annotation with
protein-DNA interaction and operon information via graph tree decomposition. In Proceed-
ings of Pacific Symposium on Biocomputing, PSB 2007, volume 12, pages 496-507, 2007.
Jizhen Zhao, Russell L. Malmberg, and Liming Cai. Rapid ab initio prediction of RNA
pseudoknots via graph tree decomposition. Journal of Mathematical Biology, 56(1-2):145—
159, 2008.

