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Abstract8

We study the complexity of finding an optimal hierarchical clustering of an unweighted similarity9

graph under the recently introduced Dasgupta objective function. We introduce a proof technique,10

called the normalization procedure, that takes any such clustering of a graph G and iteratively11

improves it until a desired target clustering of G is reached. We use this technique to show both12

a negative and a positive complexity result. Firstly, we show that in general the problem is13

NP-complete. Secondly, we consider min-well-behaved graphs, which are graphs H having the14

property that for any k the graph H(k) being the join of k copies of H has an optimal hierarchical15

clustering that splits each copy of H in the same optimal way. To optimally cluster such a graph16

H(k) we thus only need to optimally cluster the smaller graph H. Co-bipartite graphs are min-17

well-behaved, but otherwise they seem to be scarce. We use the normalization procedure to show18

that also the cycle on 6 vertices is min-well-behaved.19
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1 Introduction23

Clustering is an unsupervised machine learning technique and one of the most important24

problems in data-mining [3, 9–11]. Given a data set and a pairwise similarity measure,25

the task is to partition the data set into clusters so that similar data points belong to the26

same cluster. In a hierarchical clustering the data set is recursively partitioned into smaller27

clusters, by means of a rooted binary tree whose leaves are in one-to-one correspondence28

with the data points. Hierarchical clustering emerged as a central task in the study of29

phylogenetic trees [2, 12]. Such a clustering is very general, capturing clustering structure30

at all levels of granularity, with a clustering into two parts given by the root of the tree,31

and finer clusterings given by lower levels of the tree. Algorithms for hierarchical clustering32

have been widely used for many years, but it was only recently that an objective function33

to measure their quality was formalized. In a STOC 2017 paper [7] Dasgupta introduced a34

natural objective function measuring the global cost of a hierarchical clustering. From now35

on, this function will be called the Dasgupta Clustering function - DC function. Several36

follow-ups to Dasgupta’s work have appeared, we mention only a couple: in [4], the authors37

improve the ratio of the approximation algorithm proposed by Dasgutpa; in [5], the authors38

revisit the DC function and propose some axioms that a "good" cost function should satisfy.39

In this paper we investigate the complexity of finding the DC-optimal hierarchical clustering40

for unweighted similarity graphs. Thus, we assume that any pair of data points has been41

marked as either ’similar’ or ’non-similar’ and represent this information as an undirected,42
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unweighted graph G whose vertex set V (G) is the set of data points and adjacencies represent43

similarity. We ask for an HC-tree (a Hierarchical Clustering tree), a rooted binary tree T with44

leaves in one-to-one correspondence with V (G), such that the DC-cost of T - i.e. the sum45

over all edges uv of G, of the number of leaves of the subtree rooted at the least common46

ancestor of u and v - is minimized. Dasgupta [7] showed that the edge-weighted version47

of this problem, with weights representing degree of similarity, is NP-complete. In this48

paper we focus on unweighted graphs, the hardness of which was left open by Dasgupta [6].49

Unweighted graphs naturally appear in this context, for example in the correlation clustering50

problem [1]. It is also a common approach to transform a similarity matrix into a similarity51

graph by fixing a threshold value that determines whether two objects are similar or not52

(see [9] for example). We focus on dense similarity graphs. Such graphs typically appear53

when there is a fixed threshold for similarity that is set to be very low, for example the54

existence of email correspondence within a single (small) organization, or existence of non-55

zero trade relations between countries. We show that the problem remains NP-complete,56

already for dense graphs. More precisely, by a reduction building on the one used in [7], we57

establish the NP-hardness for unweighted n-vertex graphs where every vertex has at least58

n− 6 neighbours.59

Note that all pairs of vertices will be split into distinct clusters at some point in the HC-60

tree, namely at their least common ancestor. Minimizing the DC-cost encourages pairs of61

adjacent vertices (similar data points) to be split lower in the tree than non-adjacent vertex62

pairs (non-similar data points). For example, if G is the complement of a bipartite graph63

on color classes A,B then any HC-tree T that splits A and B at the root is optimal, which64

follows easily from observations in [7] since G[A] and G[B] are complete graphs. Dasgupta65

showed that minimizing the DC-cost of G is equivalent to maximizing the DC-cost of the66

complement of G. Thus the previous result can be restated to say that for a bipartite graph67

any HC-tree splitting the two color classes at the root will have max DC-cost, rendering68

the result trivial as all edges are now split at the root. In the current paper we will usually69

take this viewpoint, thus considering unweighted sparse graphs and looking for an HC-tree70

maximizing the DC-cost, typically splitting pairs of adjacent vertices, now denoting non-71

similarity, at higher levels of the tree.72

As noted, bipartite graphs are then trivial, but what other graphs can be handled73

efficiently? What about G being a collection of disjoint copies of the same bipartite graph?74

Maximizing DC-cost is still trivial, in fact G is again bipartite, so at the root we can simply75

split each copy in the same optimal way. Let us define a more complex property generalizing76

this behavior. Consider a graph H of max DC-cost W achievable by some HC-tree T and77

let the graph H(k) consist of k disjoint copies of H. If we use T to simultaneously cluster78

each of the k copies of H then each leaf of T will contain k copies of the same vertex. These79

vertices induce a stable set so we can further cluster them in an arbitrary way to get an80

HC-tree T (k). Note that this tree will have DC-cost k2W since each edge of H has k copies81

in H(k), and the subtree of T (k) that splits an edge contains a multiplicative factor k more82

vertices than the similar subtree of T . We call such H max-well-behaved if for any k the83

max DC-cost of H(k) is no higher than k2t, and the complement of H min-well-behaved.84

We have argued that any bipartite graph is max-well-behaved, but this is not the case85

for all H. For a simple example, in Figure 1 we see that complete split graphs are not86

max-well-behaved. In this paper, as a spin-off of our NP-completeness proof, we initiate87

the study of well-behaved graphs. We introduce a normalization procedure that makes88

incremental changes to a given HC-tree of some H(k), while observing monotonicity in the89

DC-cost, to arrive at a new HC-tree showing that H is well-behaved. We employ this to90
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Figure 1 The complete split graph Q2,3 is not max-well-behaved. We have DC-cost(Q2,3, T ) =
6 × 5 + 1 × 2 = 32 which is the maximum possible. The HC-tree T ′ of Q(k)

2,3 with k = 2 (vertices
s1, c1, ... in one copy and s′

1, c
′
1, ... in the other copy) satisfies DC-cost(Q(k)

2,3, T
′) = 130 which is larger

than DC-cost(Q2,3, T )× k2 = 128, i.e. the DC-cost of the factorized HC-tree clustering both copies
according to T simultaneously.

show that the prism graph (the complement of a 6-cycle) is max-well-behaved, and thus C691

min-well-behaved, establishing the aforementioned NP-completeness along the way.92

2 Preliminaries93

We use standard graph-theoretic notation [8]. A hierarchical clustering of a similarity graph
G = (V,E) is a full rooted binary tree T , together with a bijection δ from V to L(T ), the
set of leaves of T . We call such a pair (T, δ) an HC-tree of G. For a node t of T we denote
by T [t] the subtree of T rooted at t. The Dasgupta cost function [7] is this (lca means least
common ancestor):

DC-cost(G, (T, δ)) =
∑
uv∈E

w(uv) · |L(T [x])| : x is the lca of δ(u) and δ(v)

and an HC-tree of minimum DC-cost (under Dasgupta’s objective function) is thus an HC-94

tree (T ∗, δ∗) that minimizes DC-cost.95

Dasgupta shows that any HC-tree with minimum weight for graph G is also an HC-
tree with maximum weight for its complement G. We consider only unweighted graphs,
equivalently w(uv) = 1 for all uv ∈ E and 0 otherwise. For any node t ∈ T , we define
G(T,δ)[t] as the subgraph of G induced by δ−1(L(T [t])), the vertices of G mapped to leaves
in T [t]. Similarly, for any two nodes t1, t2 ∈ T with L[t1] ∩L[t2] = ∅, we define G(T,δ)[t1, t2]
as the bipartite subgraph of G consisting of all edges with one endpoint in δ−1(L(T [t1])) and
the other endpoint in δ−1(L(T [t2])). If (T, δ) is inferred from context, we further shorten
these to G[t] and G[t1, t2]. We can now simplify the Dasgupta cost function on unweighted
graphs as follows:

DC-cost(G, (T, δ)) =
∑

t∈V (T )\L(T )

|V (G[t])| · |E(G[cl, cr])| : cl, cr children of t

We start with a simple but useful fact.96

I Property 1. Let G,G′ be two edge-disjoint graphs over the same vertex set V (G), and (T, δ)
an HC-tree of V . The DC-cost of the decomposition on their union GU = (V (G), E(G) ∪
E(G′)) is the sum of the costs on each graph:

DC-cost(GU , (T, δ)) = DC-cost(G, (T, δ)) + DC-cost(G′, (T, δ))
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Proof. The cost of (T, δ) on GU is simply the sum, over every edge e ∈ E(GU ), of the size97

(i.e. number of vertices) of the subgraph in which e is cut. This is the same as adding98

together the sums over every edge in G and every edge in G′. J99

I Corollary 1 ( [7], Section 4.1). An HC-tree of G with minimum DC-cost is also an HC-tree100

of G with maximum DC-cost.101

Proof. G is by definition edge-disjoint from G, therefore DC-cost(GU , (T, δ)) =102

DC-cost(G, (T, δ))+DC-cost(G, (T, δ)) by Property 1. But the union ofG andG is isomorphic103

to Kn where n = |V (G)|, and we know that every HC-tree of Kn has the same cost,104

namely 1
3 (n3−n) ( [7], Theorem 3). Therefore, for any HC-tree (T, δ), DC-cost(G, (T, δ)) =105

1
3 (n3 − n) − DC-cost(G, (T, δ)). We conclude that a HC-tree of G with minimum cost is a106

HC-tree of G with maximum cost, and vice versa. J107

3 Well-behaved Graphs108

Minimizing DC-cost of a graph is accomplished by the exact same HC-trees that maximize109

DC-cost for the complement graph. However, for specific graph classes, like bipartite graphs,110

it can be easy to find an HC-tree maximizing the DC-cost but hard to minimize the DC-111

cost, or vice-versa. Let us consider a very simple operation to construct sparse graphs. Take112

G(k), consisting of k disjoint copies of some graph G. If we are given an HC-tree T for113

G of minimum DC-cost then any HC-tree for G(k) hierarchically clustering each copy of114

G as done in T will have minimum DC-cost. However, maximizing the DC-cost for G(k)
115

seems harder. Given an HC-tree T of maximum DC-cost for G we call any HC-tree for G(k)
116

that hierarchically clusters each copy of G as in T a factorized HC-tree. Let us define this117

formally:118

I Definition 2 (Factorized HC-tree). Let G be a graph, (T, δ) an HC-tree of G of maximum
DC-cost W , and k a natural number. A factorized HC-tree (T, δ)(k) of the graph G(k) is
made as follows: Make a copy of (T, δ) and for every node t, make

G
(k)
(T,δ)(k) [t] =

k⋃
i=1

G(T,δ)[t]

This is not a complete HC-tree, since for t ∈ L(T ), G(k)[t] is not a single vertex, but k119

vertices. But these k vertices are all disjoint, therefore any extension of this partial HC-tree120

will have the same DC-cost k2W and be regarded as a factorized HC-tree.121

As previously mentioned, if G is bipartite then for any k the factorized HC-tree for G(k)
122

will have max DC-cost. We give this property a name.123

I Definition 3 (Well-behaved graph). Let G be an unweighted graph, and W the maximum124

DC-cost over HC-trees of G. We call G max-well-behaved, or just well-behaved if, for any125

natural number k, the maximum Dasgupta cost over HC-trees of the graph G(k) is equal to126

k2W . The complementary graph G is called min-well-behaved.127

So any bipartite graph G is well-behaved and thus computing the max DC-cost of any128

G(k) can be reduced to computing the max DC-cost of G, or equivalently, computing the129

min DC-cost of G(k) (the join of k copies of G) reduces to computing the min DC-cost of130

G. We may naturally ask: Is every graph well-behaved? On the contrary, counterexamples131

abound, even for very small graphs, see Figure 1 for an example.132
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How to show that some interesting non-bipartite graph G is well-behaved? We need to133

show that for any value of k no HC-tree of G(k) has higher DC-cost than the factorized HC-134

tree. We will show this by what we call a normalization procedure on HC-trees: starting with135

an arbitrary HC-tree we incrementally, step by step, modify it into the factorized HC-tree136

and show that at no step does the cost decrease. We formalize this notion:137

I Definition 4 (Safe operation). An operation that takes an HC-tree of a graph G as input138

and outputs another HC-tree of the same graph is called safe (for maximization) if the139

DC-cost of the input is no larger than the DC-cost of the output.140

I Property 2. [Normalization Procedure] Let G have max HC-tree (T, δ). If there is a141

procedure that for any k takes as input any HC-tree ofG(k), iteratively applies safe operations,142

and outputs a factorized HC-tree (T, δ)(k) of G(k) then G is well-behaved.143

The prism P is the graph on six vertices shown in Figure 2. It is non-bipartite, and its144

complement is a cycle. P exhibits a high degree of symmetry (it is vertex-transitive), and145

thus has a limited number of non-isomorphic decompositions. The optimal HC-tree we will146

base our normalization procedure around is also shown in Figure 2, and has the maximum147

cost of 48 (note P has also another optimal HC-tree). To be convinced that this is indeed148

optimal, note that in a minimum optimal HC-tree (T, δ) of its complement, every subgraph149

induced by a node in T must be connected if the whole graph is connected. We will show150

in Section 5 a normalization procedure for the prism as described in Property 2 to establish151

the following:152

I Lemma 5. The prism is max-well-behaved, and thus C6 is min-well-behaved.153

This result is non-trivial, and should be seen in light of e.g. the five-vertex graph in Figure154

1, whose complement is a 3-cycle and two isolated vertices, that is not max-well-behaved.155

4 NP-Hardness for Unweighted Graphs156

Dasgupta shows that for edge-weighted graphs, finding an HC-tree of maximum DC-cost is157

NP-hard, by reduction from an NP-complete problem he called NAESAT*:158

I Definition 6 (NAESAT*). We are given a boolean CNF formula where every clause159

contains either two or three literals (called "2-clauses" and "3-clauses", respectively), and160

every variable appears in exactly one 3-clause, and in exactly two 2-clauses with one appearance161

positive and the other negative. Moreover, no 2-clause nor its copy with polarities reversed162

is part of any 3-clause. Is there a not-all-equal-satisfying assignment, i.e. one where every163

clause contains at least one true and one false literal?164

Dasgupta first gave a simple reduction from NAE3SAT, where every clause has exactly 3165

literals but there is no restriction on how many times each variable appears in the formula, to166

NAESAT*. In that reduction it follows trivially that no 2-clause nor its copy with polarities167

reversed will be contained in a 3-clause, so we have included that property in our definition168

of NAESAT*. We will assume, as Dasgupta [6] does, that if there is a 2-clause C whose169

literals also appear in a 2-clause C ′, but with reversed polarity, then C ′ is removed.170

Dasgupta’s reduction to hierarchical clustering takes as input a NAESAT* formula ϕ on171

n variables with m = 1
3n 3-clauses and m′ ≤ n 2-clauses, and constructs a graph G with two172

vertices for each variable x appearing in the formula ϕ: one corresponding to x and one to173

x. For every 2-clause (x̃ ∨ ỹ), where a variable with a tilde above, x̃, is shorthand for "x or174

x", he adds an edge between x̃ and ỹ, and also between x̃ and ỹ (these 2m′ edges are called175
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the 2-clause edges). For every 3-clause (x̃ ∨ ỹ ∨ z̃), he adds a triangle between x̃, ỹ and z̃,176

and also between x̃, ỹ and z̃ (these 6m edges are called the 3-clause edges). In addition, he177

adds one edge between x and x for every variable (these n edges are called the matching178

edges). He shows that ϕ is in NAESAT* if and only if G has weighted DC-cost at least M179

(for some fixed M that we do not specify here). Let us see how this comes about. Given a180

not-all-equal assignment of truth values to the n variables of ϕ, he constructs an HC-tree181

of G by first splitting V (G) evenly at the root into True literals and False literals and then182

splitting all remaining edges at the next level.183

This HC-tree cuts all n matching edges at the top since x and x have opposite truth184

values. Since the assignment is not-all-equal satisfying all 2m′ 2-clause edges are cut at185

the top, and also 4m of the 6m 3-clause edges are cut at the top. Thus 4m + 2m′ + n186

are cut at the top. The remaining 2m 3-clause edges are all disjoint, without sharing any187

endpoints, and can thus be cut in one single split at the level below the root. Dasgupta188

in his reduction gives a high weight to the matching edges (specifically, the matching edges189

have weight 2nm+ 1) to ensure that any HC-tree of weighted DC-cost M will be a tree that190

cuts all matching edges at the top. Note that an HC-tree cutting all matching edges at the191

top will naturally define a truth assignment to the variables of the formula. We will show192

the same result even when all edges have unit weight; this will imply the following:193

I Theorem 7. Hierarchical clustering of unweighted graphs is NP-hard.194

Proof. Let the graph G constructed by the Dasgupta reduction when given ϕ be unweighted.195

What is then the cost of the HC-tree described above on G, given some not-all-equal196

assignment of the underlying Boolean formula ϕ? As described above, in G there are197

4m + 2m′ + n edges that are cut at the top and each receive a cost of 2n, and 2m198

edges that are split at the next level and each receive a cost of n. The total cost is thus199

W ∗ = 10nm + 4nm′ + 2n2. We have already argued that if ϕ is not-all-equal-satisfiable200

then DC-cost of G is at least W ∗, but now we need to argue the converse. If we restrict to201

HC-trees that split V (G) into two equally big parts, then we see that W ∗ is the maximum202

possible and it can only be reached if the resulting assignment is not-all-equal satisfying.203

This is because it will have to cut all matching edges at the top and furthermore there is no204

way to cut more than two edges of a triangle in a single split.205

It remains to show that an HC-tree not splitting V (G) evenly at the top will have DC-
cost less than W ∗. To this purpose, we partition the edges of G into two subgraphs G′ and
G′′, with G′ being the graph containing only the 2m′ 2-clause edges, and G′′ containing the
3-clause edges and matching edges. We observe that the 3-clause edges comprise 2m disjoint
triangles, and that the matching edges bind together pairs of triangles, as shown in Figure
2. This means that G′′ is a collection of m disjoint prisms. The graph G′ is also easy to
describe; every variable appears in either one or two 2-clauses. It will belong to a single
2-clause when there was a 2-clause C whose literals also appeared with reversed polarity in
a 2-clause C ′ and C ′ was removed, otherwise it will belong to two 2-clauses. Thus G′ will
be a collection of disjoint components that are 1-regular (single edges) or 2-regular (cycles).
Since G′ is a collection of edges and cycles it is easy to see that no HC-tree whose root is
an uneven split can cut all its 2m′ edges at the top. From Property 1 we know that for an
HC-tree (T, δ) of G we have DC-cost(G, (T, δ)) = DC-cost(G′, (T, δ)) + DC-cost(G′′, (T, δ)).
Thus, for an uneven HC-tree (T, δ) of G to have cost at least W ∗, then DC-cost(G′′, (T, δ)′)
must be strictly higher than W ∗ − 4nm′ since G′ would contribute less than 4nm′. By the
equality n = 3m, we get

W ∗ − 4nm′ = 10mn+ 2n2 = 30m2 + 18m2 = 48m2



S. Høgemo, C. Paul and J.A. Telle XX:7

so that G′′ must contribute more than 48m2. But our main Lemma 5 showing that the206

prism is well-behaved, implies that 48m2 is the maximum cost achievable for G′′ being m207

copies of the prism. It must then be the case that there is no uneven HC-tree of G with cost208

at least W ∗.209

We conclude that there exists an HC-tree of G with weight at least 10nm+ 4nm′ + 2n2
210

if and only if the underlying Boolean formula is not-all-equal satisfiable. J211

x̃

x̃

ỹ
ỹ

z̃
z̃

x̃ x̃

ỹ ỹ

z̃ z̃
x̃ ỹ

z̃ x̃

ỹ z̃

Figure 2 The prism P , made from 3-clause edges and matching edges. By our definition of
NAESAT*, every 3-clause in ϕ is represented in G. To the middle and right, one possible HC-tree
of P with maximum DC-cost, and the top split of this tree.

5 The Normalization Procedure212

We give a normalization procedure for G = P (k) = P1 ∪ P2 ∪ . . . ∪ Pk consisting of k213

disjoint copies of the prism P . This procedure takes as input an HC-tree for G, performs214

a series of safe operations, and outputs a factorized HC-tree where every prism is clustered215

according to the evenly balanced HC-tree T in Figure 2. We could have done this naively216

by a single Bottom-Up traversal of the tree, performing some PowerfulBalancing operation217

on each node t of the tree. For every possible split of a subgraph of a prism at node t,218

PowerfulBalancing would have to perform a safe operation that changes this split into one219

that is closer to the desired end goal. However, the number of subgraphs of a prism, and the220

number of distinct splits of these subgraphs is very high, 11 and 83 respectively. Thus the221

naive PowerfulBalancing is not a practical option to try and prove that the prism is well-222

behaved. Instead, our normalization procedure will lower the number of distinct subgraphs223

and splits of these subgraphs that appear in a node of the tree before doing the Balancing.224

In total, we employ 3 subroutines at each node t of the tree:225

Cut Optimization: ensures that every sub-prism split at t involves one of the 6 subgraphs226

given in Figure 3 and is split according to one of 8 specific splits plus 6 distinct mirror-227

images.228

Left-Heavy Distribution: ensures that no sub-prism split at t has the subgraph in the229

right child bigger than the one in the left child, restricting to the 8 distinct splits; Figure230

5 in the Appendix depicts these splits.231

Balancing: ensures that every sub-prism split at t is split as evenly as possible232

The normalization procedure will make 2 traversals of the tree: the first is a Top-Down233

traversal that will perform Cut Optimization on each node, the second is a Bottom-Up234

traversal that on each node will perform Left-Heavy Distribution followed by Balancing.235

Pseudo-code for this can be found in Algorithm 1 in the appendix.236
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For every prism Pi in G and every internal node t in T , we define Pi[t] to be the subgraph237

of Pi that lies inside the cluster at t: Pi[t] = Pi ∩G[t]. Each step of the procedure works on238

each of these subgraphs, striving to optimize the way these subgraphs are split.239

In the next section we show that after the Cut Optimization is done on all nodes of240

the tree, every subgraph Pi[t] is one of the six subgraphs S1, . . . , S6 that are depicted in241

Figure 3. This means that in the continuation we only have to consider splits involving242

these subgraphs.243

We introduce some symbolic notation to easily talk about these splits. Let t be an internal244

node in the HC-tree T and let cl and cr be its children. Let Pi[t] be any subgraph. If we245

have done Cut Optimization on (T, δ), we know that Pi[t], Pi[cl] and Pi[cr] are isomorphic246

to some Sa, Sal
and Sar , respectively. Then we denote the split of Pi at t as Sa → (Sal

, Sar ).247

248

S6 S5 S4 S3 S2 S1

Figure 3 The sub-prisms arising from optimal splits

We must say a few words on what it means for a subtree of an HC-tree to be fully249

normalized, i.e. after we have performed Balancing on the root of the subtree. The end250

goal is clear: when we are finished, i.e. when we have performed Balancing on the root r of251

T , we want every prism being split into two S3’s at the root, and those S3’s split into S2’s252

and S1’s at the children of the root, as seen in Figure 2. But when dealing with the subtree253

T [t] for a node t further down the tree, the subgraphs involved can be any Sa. Therefore we254

define "fully normalized" as every such Sa in the subtree T [t] being split the same way, for255

all a. The allowed splits are S6 → (S3, S3), S5 → (S3, S2), S4 → (S2, S2) and S3 → (S2, S1).256

The next sections are devoted to proving that in our normalization procedure, both the257

top-down traversal is a safe operation, performing Cut Optimization on every node, and also258

the subsequent bottom-up traversal is a safe operation, performing Left-Heavy Distribution259

followed by Balancing on every node of the tree. In the appendix are a number of illustrations260

to help visualizing each step of the normalization procedure.261

5.1 Cut Optimization262

Let G = P (k) be k disjoint prisms, and let (T, δ) be any HC-tree of G. We look at some263

node t ∈ T . Every subgraph Pi[t] is split into two subgraphs Pi[cl] and Pi[cr], with some r264

and s vertices, respectively. Not every way to split one graph into two subgraphs with given265

numbers of vertices is equally good. The optimal split of Pi[t] into subgraphs with r and s266

vertices, is simply the split that cuts the most edges.267

I Remark 8. Let G and (T, δ) as above. Let t be an internal node in T with children cl, cr,268

and assume that some Pi[t] is split optimally. Furthermore, let S1, . . . , S6 be the graphs269

depicted in Figure 3. Whenever Pi[t] = Sa for some a, then Pi[cl] = Sal
and Pi[cr] = Sar270

for some al, ar.271
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Proof. It is not hard to verify via simple counting that the subgraphs S1, . . . , S6 have the272

minimal number of edges among the subgraphs of the prism. Since there, for any Sa, Sb273

with a + b ≤ 6, exists a split of Sa+b into Sa and Sb, this split must cut more edges than274

any other split of Sa+b.275

Obtaining an optimal split is thus a matter of simply switching around vertices between276

Pi[cl] and Pi[cr]. Formally, switching vertices u and v in G with respect to (T, δ) can be277

seen as an operation on δ, yielding a new bijection δ′ with the property that δ(u) = δ′(v),278

δ(v) = δ′(u), and for every vertex w 6= u, v, δ(w) = δ′(w). This operation preserves the size279

of every subgraph of G induced by (T, δ), therefore the only edges affected are the ones that280

lie on u or v. We thus conclude that every split that cuts some Sa optimally, cuts it into281

Sal
, Sar

for some al, ar. J282

I Lemma 9. For any node t ∈ T , Cut Optimization on (T [t], δ) is a safe operation.283

Proof. From the proof of Remark 8, we see that for all Pi[t] that is isomorphic to some Sa,284

performing Cut Optimization is a safe operation, as it never decreases the DC-cost of (T, δ).285

Now, note that we perform this operation on each node of T in top-down fashion. At the286

root of T , r, we have that for every 1 ≤ i ≤ k, Pi[r] = P = S6, so the operation is safe on r.287

At any other node t, we have already optimized the cuts in u, the parent of t. By Remark 8,288

we again have that for every 1 ≤ i ≤ k, there exists some a such that Pi[t] = Sa. Therefore,289

the operation also is safe on every other node of T . J290

5.2 Left-Heavy Distribution291

Now we show that also Left-Heavy Distribution is a safe operation on each node. This step292

is performed after Cut Optimization, therefore we can assume every split in the HC-tree is293

an optimal one. Furthermore, since this step is done in tandem with the Balancing step, on294

each node before moving up to its parent, we can assume that when performing Left-Heavy295

Distribution on some node t in T with children cl and cr, then T [cl] and T [cr] are already296

fully normalized.297

The goal of the second step, Left-Heavy Distribution, is to ensure that for every i,298

|Pi[cl]| ≥ |Pi[cr]|. The intuition behind this step is clear: if we first split one component299

unevenly, we would expect more uncut edges in the big part than in the small part. Indeed,300

this is true for the subgraphs S1, . . . , S6; Sa does not have more edges than Sa+1 for any301

a ∈ {1, . . . , 5}. Splitting all components unevenly with the big part on the same side, we302

give more weight to these remaining edges when they are cut, further down in T .303

We begin by dividing G[t] into two pieces, G[t]L and G[t]R. G[t]L is the union of all304

those Pi[t] for which |Pi[cl]| ≥ |Pi[cr]| (the left-heavily split subgraphs), while G[t]R is the305

union of all those Pi[t] for which |Pi[cl]| < |Pi[cr]| (the right-heavily split subgraphs). G[t]L306

and G[t]R are clearly disjoint, since every connected subgraph lies wholly within one of these307

parts. We make a couple of observations about these two subgraphs:308

I Remark 10. Every edge in G[cl] is also in G[t]L, and every edge in G[cr] except those309

arising from (3-3)-splits is also in G[cr].310

Proof. We begin looking at G[cl]: As we have performed Cut Optimization on the HC-tree,311

we can assume that Pi[cl] is isomorphic to Sal
for some al ∈ {0, . . . , 6} for every i, and312

equivalently every Pi[cr] is isomorphic to some Sar . Now, for any Pi[t], if this subgraph has313

been put into G[t]R it is because it has been split right-heavily, i.e. al < ar. Since al + ar is314

at most 6, is follows that al is at most 2. But the optimal subsets of the prism that contain315

edges all have at least 3 vertices, therefore Pi[t] cannot contain any edges.316



XX:10 Hierarchical Clusterings of Unweighted Graphs

The proof for G[cr] is roughly equivalent to the one above, but we have to factor in317

that there can exist some Pi[cr] in G[t]L that is isomorphic to S3. If this is the case, then318

we know that Pi[cl] also must be isomorphic to S3, therefore Pi[t] is a prism that is split319

(3-3)-wise. J320

I Remark 11. Let (T, δ) be a HC-tree, and t a node with children cl, cr. We give the321

children of cl and cr names l1, l2 and r1, r2 respectively. Furthermore, we give the children322

of these 4 nodes names x1, x2, x3, x4, y1, y2 and y3, y4 respectively. If T [cl] and T [cr] are323

fully normalized, then for every i ∈ {1, . . . , 4}, G[xi] and G[yi] have no edges.324

Proof. Assume that T [cl] and T [cr] are fully normalized. By definition, we know that all325

the subgraphs in G[cl] and G[cr] have been split optimally as balanced as possible. This326

means that all the subgraphs in G[l1], G[l2], G[r1] and G[r2] have at most 3 vertices. These327

subgraphs are also split optimally and balanced. This means that for any T [xi] or T [yi],328

every subgraph is isomorphic to either of ∅, S1, s2 and thus have no edges. J329

When explaining the operation, we assume that the nodes have the same names as in
Remark 11. From here, we identify the nodes that are children of l1, l2, r1 and r2. We then
switch around all the subgraphs that are split right-heavy, so they become left-heavy split.
Figure 6 in the Appendix shows this operation. Specifically, we modify (T, δ) into (T ′, δ′)
such that for each pair of nodes xi, yi ∈ T ′, we have

G(T ′,δ′)[xi] = (G(T,δ)[xi] ∩G[t]L) ∪ (G(T ′,δ′)[yi] ∩G[t]R)

G(T ′,δ′)[yi] = (G(T,δ)[xi] ∩G[t]R) ∪ (G(T ′,δ′)[yi] ∩G[t]L)

I Lemma 12. Left-Heavy Distribution on any node t is a safe operation.330

Proof. As implied by Remark 11, none of the subgraphs G[xi] or G[yi] have any edges. This331

means that for every i, any HC-tree of G(T ′,δ′)[xi] or G(T ′,δ′)[yi] has DC-cost zero. When332

this step is done, every edge in G[t] is cut at one of the nodes t, cl, cr, l1 or l2. It is also333

evident that every edge is cut in a subgraph that is at least as big in T ′ as it was in T ,334

except the edges in cr. Following Remark 10, these edges must necessarily follow from a335

S6 → (S3, S3) split at t. The decrease in cost for these edges are therefore matched by the336

increase in cost for the other S3 that is split at cl. It follows that (T ′, δ′) has at least as high337

DC-cost as (T, δ). Note that every subgraph in T ′[cl] and T ′[cr] is still fully normalized,338

since they are split the same way as before. J339

5.3 Balancing the HC-tree340

Let t be a node of HC-tree (T, δ) on which we have just performed Left-Heavy Distribution.341

This means that every split at a node t is optimal and left-heavy, and also that we have342

performed Balancing on both its children cl, cr, so that T [cl], T [cr] are both fully normalized.343

In the Balancing step we fully normalize T [t]. Since splits at the children are left-heavy,344

there are 12 possible splits of sub-prisms at t before we perform Balancing. These are the 8345

in Figure 5 plus 4 not cutting any edge. 4 of these 12 (the first 4 in below) are as even as346

possible, while 8 are uneven.347
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a splits of type S6 → (S3, S3)
b splits of type S5 → (S3, S2)
c splits of type S4 → (S2, S2)
d splits of type S3 → (S2, S1)
a′ splits of type S6 → (S6, ∅)
b′ splits of type S6 → (S5, S1)

c′ splits of type S6 → (S4, S2)
d′ splits of type S5 → (S5, ∅)
e′ splits of type S5 → (S4, S1)
f ′ splits of type S4 → (S4, ∅)
g′ splits of type S4 → (S3, S1)
h′ splits of type S3 → (S3, ∅)

348

The Balancing step is done as follows: Each uneven split of a sub-prism is modified into349

the unique even split on the same sub-prism, by way of moving some vertices from the left350

side over to the right side. Figure 7 in the Appendix shows the details of this operation.351

In the resulting HC-tree, the sub-prisms are not necessarily split left-heavily in cl or cr352

anymore. This does not affect the cost, as these nodes are the lowest that cut edges. We353

still flip the left and right side of these sub-prisms to guarantee the behavior of performing354

Left-Heavy distribution on the parent of t.355

As an example of this type of modification, consider a sub-prism that is split S5 →356

(S4, S1) before the modification. We will modify it into S5 → (S3, S2). In this case, we357

move one single vertex from the left side to the right side. To optimize the split, we must358

pick the one vertex that is not adjacent to the vertex already lying on the right side. However,359

note that these movements of vertices from left subtree to right subtree affect also the cost360

of edges belonging to even splits, and thus Figure 7 shows also the effects on even splits.361

For every possible split, we have denoted the number of sub-prisms that are split this362

way at t with a letter as shown above, where the letters a to d are reserved for even splits363

and ticked letters a′ through h′ are reserved for uneven splits.364

From Remark 11, we know that before the Balancing step at t, every edge in G[t] is cut365

at one of the nodes t, cl, cr, l1 and l2 (where the nodes are named as in Figure 6). After366

the modification, every edge in G[t] is cut at one of the nodes t, cl and cr in (T ′, δ′). How367

much is gained and lost for each type of split is shown in Figure 7.368

I Lemma 13. In the bottom-up traversal the Balancing operations collectively contribute to369

making this bottom-up traversal a safe operation.370

Proof. Assume Balancing has been performed at a node t as explained above, with the371

letters a, ..., d, a′, ...h′ denoting the number of sub-prisms before the Balancing of each of the372

12 types. To calculate the change in cost, we must look at the sizes of subgraphs of G[t],373

with A the number of leaves of the subtree rooted at left child before Balancing at t and A′374

this number after the balancing at t, and similarly for B,B′, C (remember that (T, δ) is the375

tree before this step and (T ′, δ′) is the modified HC-tree):376

A := |G(T,δ)[cl]| = 6(a′) + 5(b′ + d′) + 4(c′ + e′ + f ′) + 3(a+ b+ g′ + h′) + 2(c+ d)377

A′ := |G(T ′,δ′)[cl]| = 3(a+ b+ a′ + b′ + c′ + d′ + e′) + 2(c+ d+ f ′ + g′ + h′)378

B := |G(T,δ)[cr]| = 3(a) + 2(b+ c+ c′) + 1(d+ e+ b′ + e′ + g′)379

B′ := |G(T ′,δ′)[cr]| = 3(a+ a′ + b′ + c′) + 2(b+ c+ d′ + e′ + f ′ + g′) + 1(d+ h′)380

C := |G(T,δ)[l1]| ≤ 3(a′ + b′ + d′) + 2(a+ b+ c′ + e′ + f ′ + g′ + h′ + c+ d)381

N := |G[t]| = A+B = A′ +B′382

Back to our example, we see in Figure 7 that in each of the e′ sub-prisms that used to383

be split S5 → (S4, S1) there are 3 edges that have their cost changed, for two of them a gain384

of B = (A+B)−A since these edges used to be on the left side but are now cut at t, while385

one edge incurs a loss of A − A′ since the left side has shrunk in size. The net gain (Gain386

minus Loss) for these e′ sub-prisms is thus e′(2B −A+A′).387
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The net gain for all sub-prisms split at t is found by summing in a similar way the net gain388

for all the 12 cases. Into this total net gain we now plug the definitions of A,A′, B,B′, C,N389

given above, to get a large sum of products of pairs of the variables a, ..., d, a′, ..., h′. After390

a simple, but tedious reorganizing of this sum each pair will be multiplied by a coefficient391

in this total net gain; these coefficients are shown in Table 1 in the Appendix.392

In this sum, every coefficient is non-negative, except for two terms: −b′h′ and −c′h′.393

This means that if G[t] consists of only S6 → (S4, S2)’s (denoted by c′) and S3 → (S3, ∅)’s394

(denoted by h′), then the modified (T ′, δ′) actually has lower DC-cost than the original395

(T, δ). In other words, not every call to Balancing will be safe. But in every ancestor of t,396

the c′ S6 → (S4, S2)’s are S6 → (S6, ∅)’s, and the h′ S3 → (S3, ∅)’s will at some ancestor397

be involved in one of S4 → (S3, S1), S5 → (S3, S2) or S6 → (S3, S3). The coefficients398

for these combinations in the sum are 8, 13 and 24, respectively. Therefore, even when399

including these combinations of sub-prisms, the cost for these sub-prisms must increase400

more at the ancestors of t than it decreases at t. The same argument can be put forward for401

the combination −b′h′. This implies that no pair of sub-prisms contributes a lower DC-cost402

in the finished, factorized HC-tree than at the start of the bottom-up traversal. J403

I Lemma 14. The top-down traversal of (T, δ) in which Cut Optimization is performed is404

a safe operation. The bottom-up traversal of (T, δ) in which Left-Heavy Distribution and405

Balancing is performed is a safe operation.406

Proof. Lemma 9 has already established that the top-down traversal consists of a series of407

safe operations and is therefore itself a safe operation, i.e. the DC-cost of the HC-tree that408

was given as input is no higher than the DC-cost of the HC-tree after top-down traversal. By409

Lemma 12 the Left-heavy Distribution on each node is also safe. By Lemma 13 the combined410

result of all the Balancing operations together imply that the bottom-up traversal is also a411

safe operation, i.e. the DC-cost of the HC-tree resulting from the top-down traversal does412

not have DC-cost higher than the DC-cost of the HC-tree after the bottom-up traversal. J413

I Lemma 5. The prism P is max-well-behaved, and thus C6 is min-well-behaved.414

Proof. We have demonstrated a safe normalization procedure that works for any k and any415

HC-tree of G = P (k) as described by Property 2. Safeness of the procedure follows from416

the safeness of the two steps, both the top-down traversal and the bottom-up traversal, as417

established by Lemma 14. This means that no HC-tree of G = P (k) has DC-cost higher than418

the tree output by the normalization procedure. This output tree is a factorized HC-tree419

since at its root node r every connected subgraph Pi[r] of G[r] is the prism S6 and every420

prism at r is split into two S3’s, which are further split into the independent sets S2 and S1,421

as in Figure 2. This decomposition is thus the factorized HC-tree, of DC-cost 48k2. J422

6 Conclusion423

We leave as an open problem the complexity of deciding if a graph is max or min well-424

behaved. A related question arises if we assume that we are given an HC-tree T of max425

DC-cost for a graph H and also an integer k, and we ask for an HC-tree of max DC-cost426

for H(k). Note that the equivalent min DC-cost version of this problem, where adjacency427

denotes similarity, instead looks at the join of k copies, i.e. a dense graph where an edge is428

added between any two vertices from distinct copies. It is not clear to us if these problems429

on k copies are solvable in polynomial time, even though we assume an optimal HC-tree is430

given for a single copy.431
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A Appendix456

Algorithm 1 This pseudocode outlines in which manner the subroutines are called on the
HC-tree (T, δ).

function Normalize(G:graph, (T, δ):HC-tree, t ∈ V (T ))
if t ∈ L(T ) then

return
end if
cl, cr ← Children of t in T
δ ← Cut Optimization (cf. Section 5.1) on δ with regards to G[t]
Normalize((T, δ), cl)
Normalize((T, δ), cr)
(T, δ)← Left-Heavy (cf. Section 5.2) on (T, δ) with regards to G[t]
(T, δ)← Balancing Out (cf. Section 5.3) on (T, δ) with regards to G[t]

end function

function Normalization(G:graph, (T, δ):HC-tree)
r ← Root of T
Normalize(G,(T, δ),r)

end function

a

b
c

d
e

⇒

a

b
c

d
e

Figure 4 In Cut Optimization, we obtain an optimal cut from a suboptimal one by switching
two vertices, in this case d and e. Note that b and c could also be used.
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S6 → (S3, S3) S6 → (S4, S2) S6 → (S5, S1)

S5 → (S3, S2) S5 → (S4, S1) S4 → (S2, S2) S4 → (S3, S1)

S3 → (S2, S1)

Figure 5 After Cut Optimization, every split of sub-prisms that cuts at least one edge is one of
the splits shown here or its mirror image. After Left Heavy the mirror images no longer appear.

r1

x1 x2 x3 x4 y1 y2 y3 y4

l1 l2 r2

cl cr

t
T

1 2 3 4 1 2 3 4

Figure 6 The circles beneath each node xi (or yi) represents G(T,δ)[xi] (or G(T,δ)[yi]); the colored
halves represent the sub-prisms that are right-heavily split at t, i.e. the union of all those Pi[t] for
which |Pi[cl]| < |Pi[cr]| (in Appendix this part is called G[t]R). In Left-Heavy Distribution, we
switch each two colored parts with the same number.
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a′ b′ c′ d′ e′ f ′ g′ h′

a 24 13 3 16 6 9 3 3
b 13 6 0 9 3 4 1 1
c 16 8 2 10 4 6 2 2
d 8 3 0 5 2 3 1 1
a′ 0 5 10 0 5 0 8 0
b′ x 2 5 2 3 1 4 -1
c′ x x 0 6 1 2 1 -1
d′ x x x 0 4 0 5 0
e′ x x x x 1 1 2 0
f ′ x x x x x 0 3 0
g′ x x x x x x 1 1
h′ x x x x x x x 0

Table 1 The coefficients associated with each pair of variables, in the formula for net gain after
modification of the HC-tree (T [t], δ). That is, net gain is equal to 24aa′ +13ab′ + . . .+1g′h′ +0h′h′.
Note the two negative numbers.
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t t

cl cr cl cr

a · S6 → (S3, S3) b · S5 → (S3, S2)

Gain − Loss =

1(A′ −A)− 1(B −B′) = 0

Gain − Loss =

−1(A′ −A)

l1 l2 r1 r2 l1 l2 r1 r2

cl cr

l1 l2 r1 r2

t

a′ · S6 → (S6, ∅)

t

cl cr

l1 l2 r1 r2

t

cl cr

l1 l2 r1 r2

t

cl

crl1 l2

b′ · S6 → (S5, S1) c′ · S6 → (S4, S2) d′ · S5 → (S5, ∅)

c · S4 → (S2, S2)

t

cl cr

d · S3 → (S2, S1)

t

cl cr

Gain − Loss =

8B

Gain − Loss =

0

Gain − Loss =

0Gain − Loss =

5B − 1C

Gain − Loss =

2B − 1A

Gain − Loss =

5B + 1(A′ − C)

t

cl

crl1 l2

e′ · S5 → (S4, S1)

Gain − Loss =

2B + 1(A′ −A)

f ′ · S4 → (S4, ∅)
t

cl cr

Gain − Loss =

3B

g′ · S4 → (S3, S1)

t

cl cr

Gain − Loss =

1B

h′ · S3 → (S3, ∅)
t

cl cr

Gain − Loss =

1B

Figure 7 This figure shows every type of split that gets some edges modified in the Balancing
step, after the modification. Green edges have gained cost and red edges have lost cost. Edges
whose cost do not change are not shown.
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