
Iterated Colorings of Graphs

Sandra M. Hedetniemi∗ Stephen T. Hedetniemi∗

Alice A. McRae† Dee Parks† Jan Arne Telle‡

August 12, 2002

Abstract

For a graph property P, in particular maximal independence, minimal domi-
nation and maximal irredundance, we introduce iterated P-colorings of graphs.
The six graph parameters arising from either maximizing or minimizing the
number of colors used for each property, are related by an inequality chain, and
in this paper we initiate the study of these parameters. We relate them to other
well-studied parameters like chromatic number, give alternative characteriza-
tions, find graph classes where they differ by an arbitrary amount, investigate
their monotonicity properties, and look at algorithmic issues.

1 Introduction

An (undirected) graph G = (V,E) consists of a finite, nonempty set V of ver-
tices, and a set E of unordered pairs of vertices called edges. Two distinct
vertices u and v are adjacent if (u, v) ∈ E, and we say that u is a neighbor of
v and v is a neighbor of u.

Various properties can be associated with subsets of the vertices of a graph.
A set S ⊆ V of vertices is said to be independent if no two vertices in S are
adjacent. A set S ⊆ V is called a dominating set if for all vertices u 6∈ S, there
is a vertex v ∈ S such that (u, v) ∈ E.

For vertex v ∈ V , the open neighborhood of v, denoted N(v), is the set of
vertices u 6= v that are adjacent to v. We define the closed neighborhood of
v as N [v] = N(v) ∪ {v}. The open neighborhood of set S N(S) (resp. closed
neighborhood N [S]) is the union of all the open neighborhoods N(v) (resp.
closed neighborhoods N [v]) of vertices v ∈ S. Given a set S ⊆ V , the subgraph
of G induced by S is the graph G[S] = (S,E ∩ S × S).

∗Department of Computer Science, Clemson University, Clemson, SC 29634
†Department of Mathematical Sciences, Appalachian State University, Boone, NC 28608
‡Department of Computer Science, University of Bergen, N-5020 Bergen, Norway

1



A set S ⊆ V is said to be an irredundant set if for every vertex u ∈ S,
N [u] − N [S − {u}] 6= ∅, that is, each vertex v ∈ S either has no neighbor in
S or has at least one neighbor w ∈ V − S that is not a neighbor of any other
vertex in S. We refer to such a vertex w as a private neighbor of v, and if v has
multiple private neighbors, we refer to these vertices as the private neighbor set
of v.

Let P be a property associated with a vertex set. We refer to a set having
property P as a P -set. We will assume that for all properties P of interest, an
isolated set of vertices S has property P . We are often interested in finding
either a maximum or a minimum cardinality P -set in graph G, or perhaps only
the cardinality of a maximum or minimum P -set. Whether we are interested
in a maximum or a minimum P -set depends on the property P . If P is the
property of being an independent set or an irredundant set, then the minimum
P -set is simply the empty set ∅, so maximum P -sets are of interest. If P is the
property of being a dominating set, the maximum P -set is the entire set V , so
we are interested in minimum dominating sets.

In addition to maximum and minimum P -sets, we can define maximal and
minimal P -sets. A P -set S is maximal if no proper superset of S is a P -set,
and is minimal if no proper subset of S is a P -set.

The vertex independence number of G is the maximum cardinality of an
independent set of G, and is denoted β0(G). Because any maximal independent
set is also a dominating set, we refer to the minimum cardinality of a maximal
independent set as the independent domination number of G, denoted i(G).

The domination number γ(G) of G is the minimum cardinality of a domi-
nating set of G. The maximum cardinality of a minimal dominating set of G
is called the upper domination number of G and is denoted Γ(G).

Finally, the irredundance number ir(G) is the minimum cardinality of a
maximal irredundant set of G, and the upper irredundance number IR(G) of G
is the maximum cardinality of an irredundant set of G.

A well-known relationship between all of these parameters is given in the
following theorem by Cockayne, Hedetniemi and Miller in 1978 [5].

Theorem 1 For any graph G, ir(G) ≤ γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) ≤
IR(G).

For a complete discussion of this inequality chain, the reader is referred to
the book by Haynes, Hedetniemi and Slater on domination in graphs [9].

A k-coloring of a graph G is simply an assignment f : V → {1, 2, . . . , k} of
k colors (i.e. the integers 1, 2, . . . , k) to the vertices of G. A coloring f is called
proper if adjacent vertices are always assigned different colors.

Equivalently, a k-coloring is a partition Π = {V1, V2, . . . , Vk} of V (G) into
color classes Vi, where every vertex in Vi is assigned the color i. In a proper
coloring each color class Vi is an independent set. The minimum number of
colors in a proper coloring of a graph G is called the chromatic number of
G, and is denoted χ(G). More generally, a P -coloring is a partition Π =

2



{V1, V2, . . . , Vk} of V (G) such that for every i, 1 ≤ i ≤ k, Vi is a P -set. In the
following we shall speak of k-colorings either as functions f or as partitions Π,
and we shall require that Vi is a P -set in the graph remaining after removing
V1, ..., Vi−1.

2 Iterated Coloring Algorithm

In this paper we examine some different types of P -colorings that arise from
the Iterated Coloring Algorithm (ICA) given below, which was also studied
in [12]. Let P be some property associated with a set of vertices in a graph
G = (V,E). Algorithm ICA repeatedly removes a set S of vertices having
property P and assigns the same color to every vertex in S. Each successive
set S is selected with respect to the graph that remains after the vertices up to
and including the most recent set S have been removed. These sets form color
classes V1, V2, . . . , Vk, where k, the number of colors used, is the number of sets
removed before the graph becomes empty.

Iterated Coloring Algorithm (ICA)

Input: graph G = (V,E), property P

Output: P -coloring {V1, V2, . . . , Vk}

i = 0;
while (V is not empty) {

find an arbitrary P -set S in G[V ];
i++;
Vi = S;
V = V − S;

}
k = i;

Notice the inherent nondeterminism in Algorithm ICA. Since it removes an
arbitrary P -set during each iteration of the while-loop, many different out-
comes are possible for a given graph G. We will be interested in the set of all
possible outcomes for a graph G, that is, in the set of all possible P -colorings
that Algorithm ICA can create for a given graph G.

Let P be the property of being a maximal independent set; we write P =
maximal-independent, for shorthand. Let G be the graph shown in Figure 1.
The numbers assigned to the vertices represent two possible colorings that can
be created by Algorithm ICA with G and P = maximal independent as input.

An assignment of colors to the vertices of any graph G by Algorithm ICA
with P = maximal-independent is called an iterated maximal-independent col-
oring of G, or a *independent coloring, for short [read: ’star’ independent
coloring]. A *independent coloring is a partition of V into independent color

3



h

h

h h
hh

h

h

h h
hh

1

2

3 1
21

1

2

4
1

3

1

h

h

h h
hh

h

h

h h
hh

1

2

3 1
21

1

2

4
1

3

1

Figure 1: Colorings created with P = maximal-independent

classes {V1, V2, . . . , Vk}, where each Vi is a maximal independent set in the
graph Gi = G − V1 − V2 − · · · − Vi−1. These colorings were first defined by
Prins in 1963 [11], who called them Type-1 colorings. The minimum number of
colors used over all runs of Algorithm ICA, with inputs G and P = maximal
independent, is called the iterated independent domination number of G, and is
denoted by i∗(G). The maximum number of colors used over all runs of Algo-
rithm ICA, with G and P = maximal independent as input, is denoted β0*(G),
and is called the iterated independence number of G.

Theorem 2 For any graph G, i∗(G) = χ(G).

Proof. Because a *independent coloring is a proper coloring, it follows that
χ(G) ≤ i∗(G).

Conversely, it can be shown that for any proper coloring of a graph G with
k colors, there exists a *independent coloring of G with at most k colors. Let
Π = {V1, V2, . . . , Vk} be any proper coloring of a graph G. If V1 is not a maximal
independent set of G, then create a maximal independent set containing V1 by
moving vertices in V2, if any, that are not adjacent to any vertices in V1 into
V1. Call the resulting set V12. Next, move any vertices in V3 into V12 if they
are not adjacent to any vertices in V12. Call the resulting set V13. Repeat this
process iteratively for every set V4 through Vk. At this point the resulting set
V1k will be a maximal independent set of G.

Next, let V ′
2 be the set of vertices in V2 that remain after the process of

creating V1k. Repeat the process of moving vertices from higher indexed sets
into V ′

2 if possible, resulting in a set V2k which is maximal independent in the
graph G1 = G−V1k. This process can be continued for all remaining sets. The
resulting coloring will then be a *independent coloring with at most k colors.

It follows from this argument, that if the original proper coloring had been
a coloring with k = χ(G) colors, then the resulting *independent coloring will
have at most χ(G) colors. Thus, i∗(G) ≤ χ(G), and hence, i∗(G) = χ(G). 2

We can also equate the iterated independence number, β∗
0(G) with a well-

known coloring invariant. Let Π = {V1, V2, . . . , Vk} be any proper coloring of a
graph, and let v ∈ Vj , for some index j. We say that v is a Grundy vertex if it is
adjacent to at least one vertex u ∈ Vi, for every i, 1 ≤ i < j. Notice that every
vertex in V1 is a Grundy vertex. We say that a proper coloring Π is a Grundy
coloring if every vertex is a Grundy vertex. The maximum number of colors

4



used in a Grundy coloring of a graph G is called the Grundy coloring number
of G, and is denoted GN(G). The Grundy number of a graph is well-studied,
see [8, 4, 3, 7, 10], for example.

Theorem 3 For any graph G, β∗
0(G) = GN(G).

Proof. The proof is simple, since every Grundy coloring Π = {V1, V2, . . . , Vk}
of a graph G is an iterated maximal-independent coloring that can be created
by Algorithm ICA. In particular, it can be seen that Vi must be a maximal
independent set in Gi = G − V1 − V2 − . . . − Vi−1.

Conversely, it is easily seen that given any *independent coloring, every
vertex is a Grundy vertex. 2

We can create other kinds of colorings using the Algorithm ICA if we change
property P . Let G be a graph and let P = minimal-dominating. An assignment
of colors to the vertices of G by Algorithm ICA is called an iterated minimal-
dominating coloring of G, or a *dominating coloring, for short. A *dominating
coloring is a partition of V into color classes V1, V2, . . . , Vk, each of which is a
minimal dominating set of vertices in the graph Gi = G− V1 − V2 − · · · − Vi−1.
The fewest number of colors used over all runs of Algorithm ICA is called
the iterated domination number of G, and is denoted by γ*(G). The largest
number of colors used is called the iterated upper domination number of G, and
is denoted by Γ∗(G).

Since every maximal independent set S is a minimal dominating set, we
know that

γ∗(G) ≤ i∗(G) = χ(G) ≤ β∗
0(G) = GN(G) ≤ Γ∗(G) (1)

Now let P = maximal-irredundant and G be any graph. An assignment of
colors to the vertices of G by Algorithm ICA is called an iterated maximal-
irredundant coloring of G (or a *irredundant coloring, for short), and is a
partition of V into color classes V1, V2, . . . , Vk, each of which is a maximal
irredundant set in the graph Gi = G − V1 − V2 − · · · − Vi−1. The largest num-
ber of colors used over all runs of Algorithm ICA is called the iterated upper
irredundance number of G, and is denoted by IR*(G). The minimum number
of colors used is called the iterated irredundance number of G, and is denoted
by ir*(G).

Since every minimal dominating set S is a maximal irredundant set, we have
shown the following:

Theorem 4 For any graph G

ir∗(G) ≤ γ∗(G) ≤ i∗(G) ≤ β∗
0(G) ≤ Γ∗(G) ≤ IR∗(G)

5



3 Alternative characterizations

Two properties completely characterize iterated maximal-independent color-
ings. One of these properties guarantees that each of the color classes is an in-
dependent set, and the other guarantees that each independent set is maximal
in the remaining graph Gi. Likewise there are two properties that characterize
iterated minimal-dominating colorings; one guarantees that each of the color
classes is a dominating set in Gi, and one guarantees that each dominating set is
minimal. Because every maximal independent set is a minimal dominating set,
the maximality property for independent colorings is very similar to the domi-
nation property for iterated minimal-dominating colorings. In similar fashion,
there are two properties that characterize iterated maximal-irredundant color-
ings, one that guarantees irredundance and one that guarantees maximality.
Since every minimal dominating set is maximal irredundant, the minimality
property for iterated minimal-dominating colorings becomes the irredundance
property for iterated maximal-irredundant colorings.

In order to describe the graph G as Algorithm ICA removes vertices, we
use the notation Gi = (V,Ei) to represent the graph remaining at the start
of iteration i. The initial graph G is G1. The vertices in color class Vi = S
are removed from Gi during iteration i. The final coloring is denoted Π =
{V1, V2, . . . , Vk}.

3.1 Iterated maximal-independent colorings

In this section we describe two properties that completely characterize *inde-
pendent colorings of a graph G. We shall show that these properties are both
necessary and sufficient to characterize such colorings.

Lemma 1 Let f : V → {1, 2, . . . , k} be a *independent coloring of G = (V,E).
Then for any two adjacent vertices u and v, f(u) 6= f(v).

Proof. Suppose there are two adjacent vertices u and v with f(u) = f(v) = i.
Then color class Vi is not an independent set, which is a contradiction. 2

Lemma 2 Let f : V → {1, 2, . . . , k} be a *independent coloring of G = (V,E).
Then for every vertex v ∈ V with f(v) > 1 and for all i, 1 ≤ i < f(v), there
is a vertex w in the neighborhood of v with f(w) = i, that is, v is a Grundy
vertex.

Proof. Suppose it is not true that for every vertex v ∈ V with f(v) > 1 there
is a vertex w in the neighborhood of v with f(w) = i for all i, 1 ≤ i < f(v).
Then there must be a vertex u ∈ V with f(u) > 1 and an i, 1 ≤ i < f(u),
such that there is no vertex x ∈ N(u) with f(x) = i. But Vi is a maximal
independent set in Gi, and as such it is also a dominating set for Gi. Since
u ∈ V [Gi], some vertex with color i dominates u, i.e., some vertex with color i
is adjacent to u. This is a contradiction. 2

6



Theorem 5 The two properties described in Lemmas 1 and 2 are necessary
and sufficient to characterize a coloring of a graph G created by Algorithm ICA
when P = maximal-independent.

Proof. The lemmas given above show that the properties are necessary for a
*independent coloring. We now show that they are sufficient. Given a coloring
Π of graph G for which both properties hold, we must show that Π could
have been created by the Algorithm ICA with P = maximal-independent. In
other words, we must show that for any i, Vi is a maximal independent set for
graph Gi. Suppose this is not true. If Vi is not an independent set, then there
must exist two vertices in Vi that are adjacent. But Lemma 1 says that any
two adjacent vertices must have different colors, which yields a contradiction.
Suppose therefore that Vi is not a maximal independent set, i.e., that Vi is not
a dominating set. Then there exists a vertex w in Gi that is not adjacent to
any vertex colored i. This vertex w will be colored with a color greater than i.
By Lemma 2, any vertex with a color greater than 1 is adjacent to vertices of
all colors less than its own color, making this a contradiction. 2

3.2 Iterated minimal-dominating colorings

In this section we describe two properties that completely characterize *dom-
inating colorings of a graph G. We show that these properties are necessary
and sufficient to characterize such colorings.

Lemma 3 Let f : V → {1, 2, . . . , k} be a *dominating coloring of G = (V,E).
Then every vertex v ∈ V is a Grundy vertex, that is, for all i, 1 ≤ i < f(v),
there is a vertex w ∈ N(v) with f(w) = i.

Proof. Suppose it is not true that every vertex v ∈ V is a Grundy vertex.
Then there must be a vertex u ∈ V with f(u) > 1 and an i, 1 ≤ i < f(u), such
that there is no vertex x ∈ N(u) with f(x) = i. But Vi is a dominating set for
Gi, and therefore some vertex with color i must dominate u, i.e., some vertex
with color i is adjacent to u. This is a contradiction. 2

Lemma 4 Let f : V → {1, 2, . . . , k} be a *dominating coloring of G = (V,E).
If two adjacent vertices v and w are colored with the same color i < k, there
must exist distinct vertices y ∈ N(v) and z ∈ N(w) such that f(y) and f(z) are
both greater than i, and neither y nor z is adjacent to another vertex colored i.

Proof. The set Vi is a minimal dominating set of Gi. Since any minimal
dominating set is also an irredundant set, if vertices v and w are adjacent, then
they must each have private neighbors in Gi. 2

Theorem 6 The two properties described in Lemmas 3 and 4 are necessary
and sufficient to characterize the colorings of a graph G created by Algorithm
ICA when P = minimal-dominating.

7



Proof. Lemmas 3 and 4 show that the properties are necessary for a *dom-
inating coloring. We now show that they are sufficient. Given a coloring
Π = {V1, V2, . . . , Vk} of a graph G for which both properties hold, we must
show that Π can be created by Algorithm ICA with P = minimal-dominating.
In other words, we must show that for any i, Vi is a minimal dominating set
for graph Gi.

Suppose this is not true. If Vi is not a dominating set, then there must exist
some vertex in Gi that is not dominated by Vi. But every vertex in Gi that
is not colored i must be adjacent to a vertex colored i (by Lemma 3), which
yields a contradiction. Suppose Vi is not a minimal dominating set, i.e., that Vi

is not irredundant. Then there exists a vertex w colored i that does not have
a private neighbor. Clearly w is adjacent to some other vertex colored i, or w
would have itself as a private neighbor. By Lemma 4 any two adjacent vertices
of the same color have private neighbors, making this a contradiction. 2

3.3 Iterated maximal-irredundant colorings

In this section we describe two properties that completely characterize *irre-
dundant colorings of a graph G. We shall show that these properties are both
necessary and sufficient to characterize such colorings.

Lemma 5 Let f : V → {1, 2, . . . , k} be a *irredundant coloring of G = (V,E).
Then if two adjacent vertices v and w are colored with the same color i < k,
there must exist distinct vertices y ∈ N(v) and z ∈ N(w) such that f(y) and
f(z) are both greater than i, and neither y nor z is adjacent to another vertex
colored i.

Proof. The set Vi is an irredundant set for graph Gi. Thus any two adjacent
vertices v, w ∈ Vi must have private neighbors, say y and z, respectively, in Gi.
2

Lemma 6 Let f : V → {1, 2, . . . , k} be a *irredundant coloring of G = (V,E).
For any vertex p with f(p) > 1 and every color 1 ≤ i < f(p), at least one of
the following must hold:

1. In graph Gi, N [p] − N [Vi] = ∅, that is, vertex p and every neighbor of p
colored greater than i are adjacent to some vertex colored i.

2. There exists a vertex q in Vi, such that in the graph Gi, N [q]−N [Vi−{q}] ⊆
N [p]. That is, there is a vertex q colored i whose entire private neighbor
set is in N [p].

Proof. Consider any vertex p with f(p) > x. Since Vx is a maximal irredundant
set in Gx, the set Vx∪{p} is not irredundant. This set is not irredundant either
because vertex p would have no private neighbor with respect to Vx or because
vertex p would destroy the private neighbor set for some vertex q ∈ Vx. 2

8



Theorem 7 The two properties described in Lemmas 5 and 6 are necessary
and sufficient to characterize colorings of a graph G created by Algorithm ICA
when P = maximal-irredundant.

Proof. Lemmas 5 and 6 show that the properties are necessary for a *irre-
dundant coloring. We now show that they are sufficient. Given a coloring Π of
a graph G for which both properties hold, we must show that Π can be created
by Algorithm ICA with P = maximal-irredundant. In other words, we must
show that for any i, Vi is a maximal irredundant set in graph Gi. Suppose this
is not true. If Vi is not an irredundant set, then there must exist some vertex
w ∈ Vi that does not have a private neighbor in Gi. Clearly, w must be adjacent
to some other vertex in Vi or w would have itself as a private neighbor. By
Lemma 5, any two adjacent vertices of the same color have private neighbors,
which yields a contradiction.

Suppose Vi is not a maximal irredundant set in Gi. Then there is some
vertex w in Gi − Vi such Vi ∪ {w} is irredundant. Vertex w must have a color
greater than i and therefore greater than 1, so by Lemma 6 one of the following
conditions must hold:

1. For every color j less than the color of w (this includes i), vertex w and
every neighbor of w colored greater than j are adjacent to some vertex
colored j. In this case, w could not be added to Vi, a contradiction.

2. For every color j less than the color of w there is a vertex q colored j
whose entire private neighbor set is in N [w]. Similarly in this case, w
could not be added to Vi, another contradiction.

2

4 Relationships Between Colorings

In this section we show that arbitrarily large differences can exist between each
consecutive pairs of invariants in the inequality sequence:

ir∗(G) ≤ γ∗(G) ≤ i∗(G) ≤ β∗
0(G) ≤ Γ∗(G) ≤ IR∗(G).

We use the term endvertex to describe a vertex having only one neighbor.

Lemma 7 There can be an arbitrarily large difference between ir∗(G) and
γ∗(G).

Proof. Consider the graph G on n = 3q vertices, q ≥ 3, where V = {a1, a2, . . . , aq,
b1, b2, . . . , bq, c1, c2, . . . , cq}. Form a complete graph among the a-vertices and
another complete graph among the b-vertices. Add the edges {ai, bi} and
{bi, ci}, for 1 ≤ i ≤ q. See Figure 2. For this graph, we will show that
ir∗(G) = 3 and γ∗(G) = bq/2c + 2.

9



j j

j
j j
PPP ���

cc## A
AA �

��
PPPPP

�����

j j

j
j j
PPP ���

cc## A
AA �

��
PPPPP

�����j j

j
%%

ir∗(G) = 3 γ∗(G) = b5/2c + 2 = 4

1

3 4

2

2

1
1 1

3

4

j j2 2

2 1

1

a1

a2 a3

a4

a5

b1

b2 b3

b4

b5

c1

c2 c3

c4

c5

j j

j
j j
PPP ���

cc## A
AA �

��
PPPPP

�����

j j

j
j j
PPP ���

cc## A
AA �

��
PPPPP

�����j j

j
%%

1

1 1

1

1

2
2 2

2

2

j j3 3

3 3

3

a1

a2 a3

a4

a5

b1

b2 b3

b4

b5

c1

c2 c3

c4

c5

QQ �� QQ ""

Figure 2: Graph where γ∗(G) is greater than ir∗(G).

1. A *irredundant coloring using three colors can be found by assigning
all the a-vertices the color 1, all the b-vertices color 2, and all the c-
vertices color 3. Therefore, ir∗(G) ≤ 3. If ir∗(G) ≤ 2, then at least
two a-vertices must have the same color, and they must get their private
neighbors from the b-vertices. These b-vertices are adjacent and either
are assigned different colors or are assigned the same color, getting their
private neighbors from the c-vertices. In either case, at least three colors
must be used.

2. The assignment a1 = 1; ai = 2, for dq/2e < i ≤ q; ai = i + 1, for
2 ≤ i ≤ dq/2e; bi = 1, for 1 ≤ i ≤ dq/2e; bi = i − dq/2e + 2, for
dq/2e < i ≤ q; ci = 2, for 1 ≤ i ≤ dq/2e; and ci = 1, for dq/2e < i ≤ q ,
is a *dominating coloring that uses bq/2c + 2 colors.

3. Let f be a *dominating function for G. To show that γ(G) ≥ bq/2c + 2,
requires several observations:

(a) Either f(bi) = 1 or f(ci) = 1, 1 ≤ i ≤ q, otherwise vertex ci is not
dominated by V1. If f(bi) = 1, then f(ci) = 2, since vertex ci is an
isolate in G2.

(b) At most one a-vertex can be colored 1, since no b-vertex can be used
as a private neighbor with respect to V1.

(c) If γ(G) < q, then at least two a-vertices must be assigned the same
color, using b-vertices as private neighbors. Let x be the least color
such that f(ai) = f(aj) = x, ai 6= aj . In this case, no b-vertices
can be colored x. All remaining b-vertices must be dominated in Gx,
so all must be adjacent to a-vertices that are colored x. Note that
when Vx is removed, Gx+1 will contain two disjoint cliques. Let R
be the number of a-vertices colored x. All b-vertices remaining in Gx

must be assigned a color greater than x, and no two vertices within a

10



h
h

h
h

h

h

h

h
2

1

1

2

2

1

1

2

Figure 3: Graph where γ∗(G) = 2 and i∗(G) = 4

remaining clique can be assigned the same color. Therefore, at least
one of the b-vertices must be assigned a color y ≥ R+2. Considering
all the a-vertices in G, R of these vertices are colored x, and no other
vertices can have the same color. So q − R + 1 colors are used for
the a-vertices. If R < bq/2c, then the a-clique will require at least
bq/2c + 2 colors. If R ≥ bq/2c, then the b-clique will require at least
bq/2c + 2 colors. Therefore, γ∗(G) = bq/2c + 2.

2

Lemma 8 There can be an arbitrarily large difference between γ∗(G) and i∗(G).

Proof. Consider a graph G on n = 2q vertices that contains

• a clique of q vertices, and

• q endvertices, each adjacent to a distinct q clique vertex.

Figure 3 shows a graph with a clique of q = 4 vertices. If we use Algorithm
ICA with P = minimal-dominating, all of the vertices in the clique can be
colored 1, because each of them has a private neighbor. Once the vertices
in the clique are removed, we color all of the remaining single vertices 2, so
γ∗(G) = 2 for any such graph. However, if we use Algorithm ICA, with P =
maximal-independent, on a graph of this type, we require q colors, since each
of the vertices in the clique must be assigned a different color. By varying the
size of the clique, we can create a graph G with an arbitrarily large difference
between γ∗(G) and i∗(G). 2

Lemma 9 For any positive integer q there is a tree T on n = 2q vertices with
i∗(T ) = 2 and β∗

0(T ) = log n + 1.

Proof. Consider the binomial tree T = Bq with n = 2q vertices, which can be
defined iteratively as follows:

• B0 consists of one vertex

• Bi consists of a copy of Bi−1 with each vertex having a new endvertex as
a neighbor.

11



Since Bq is a tree it has chromatic number χ(Bq) = i∗(Bq) = 2. By the
above definition it is clear that the leaves of Bq form a maximal independent
set and that after removing these endvertices we are left with Bq−1. Since
β∗

0(B0) = 1, we have β∗
0(Bq) ≥ q +1 = log n+1. In fact, equality can be shown

to hold. 2

Lemma 10 For any positive integer q there is a bipartite graph G on n = 2q
vertices with β∗

0(G) = 2 and Γ∗(G) = q + 1.

Proof. Consider the complete bipartite graph Kq,q. It has only two maximal
independent sets, namely the two vertex partition classes. After removing any
of these, we are left with a graph without any edges, and thus β∗

0(Kq,q) = 2.
On the other hand, any pair of adjacent vertices form a minimal dominating
set of Kq,q. After removal of such a pair, we are left with Kq−1,q−1. Since
Γ∗(K1,1) = 2, we have Γ∗(Kq,q) ≥ q +1. In fact, equality can be shown to hold.
2

Lemma 11 For any positive integer q there is a graph G on n = 2q vertices
with Γ∗(G) = 3 and IR∗(G) = q + 1.

Proof. Consider the graph Gq with two non-adjacent vertices each of degree
q − 1 and 2q − 2 vertices of degree two, obtained for example by starting with
a two-vertex graph with q− 1 multiple edges connecting these two vertices and
then subdividing each edge twice. The degree two vertices induce a matching
on q − 1 edges. Any minimal dominating set of Gq must for each edge uv
in this matching contain either u or v or both of the degree q − 1 vertices.
After removing such a set, the components of the remaining graph consists of
star graphs K1,i with a center and i leaves, 0 ≤ i ≤ q − 2. Since a minimal
dominating set in a star graph consists either of the center or all of the leaves,
we have Γ∗(Gq) = 3. On the other hand, any two adjacent degree-two vertices
u and v of Gq form a maximal irredundant set, since taking any additional
vertex would leave either u or v without a private neighbor. After removal of
u and v we are left with Gq−1. Since G2 is a path on four vertices, we have
IR∗(G2) = 3 so that IR∗(Gq) ≥ q + 1, and, in fact, equality can be shown to
hold. 2

The following result was observed by Fricke and Hedetniemi but has never
been published:

Lemma 12 For every tree T , β∗
0(T ) = Γ∗(T ).

Proof. Assume the contrary. Let T 0 be a smallest tree for which β∗
0(T ) <

Γ∗(T ). Let S be a minimal dominating set of T 0 whose removal results in
a forest F such that Γ∗(T 0) = 1 + Γ∗(F ). Let T1 be a tree in F such that
Γ∗(T1) = Γ∗(F ). Since T1 is smaller than T 0, β∗

0(T1) = Γ∗(T1).

12



Let Y be the set of all vertices in S that are adjacent to vertices in T1.
Notice that |Y | ≥ |T1|, since every vertex of T1 is adjacent to a distinct vertex
in Y . No two vertices in Y can be adjacent else T 0 contains a cycle. Now let S0

be any maximal independent set of T 0 containing Y . Notice that S0 = T − T1

and that T1 is a tree in T − S0. Thus, β∗
0(T ) ≥ 1 + β∗

0(T1) = Γ∗(T ); i.e.,
β∗

0(T ) = Γ∗(T ). 2

5 Monotonicity Properties of Parameters

It is well-known that removing edges from a graph cannot increase its chromatic
number. We say that a graph parameter is monotone if it has this property:
its value for a graph H is at least as much as its value for any subgraph of H.
In this section we study the monotonicity of iterated coloring parameters, and
show that i∗ and Γ∗ are monotone, while ir∗, γ∗, β∗

0 and IR∗ are not monotone.

Lemma 13 The iterated independent domination number i∗ and the iterated
upper domination number Γ∗ are monotone.

Proof. Since i∗ is equal to the chromatic number it is a monotone parameter.
We prove that Γ∗ is monotone.

Claim: For any graph G = (V,E), supergraph H = (V ∪ W,E ∪ F ) and
minimal dominating set S of G, there exists a minimal dominating set S ′ of H
such that S ′ ∩ V ⊆ S.

We first show that if this claim holds, then the lemma follows. Let Γ∗(G) = k
and let V1, V2, ..., Vk be a corresponding partition of V with Vi a minimal dom-
inating set of Gi, the graph remaining after the removal of V1, V2, ..., Vi−1. The
claim states that in the supergraph H of G we can find a minimal dominating
set V ′

1 of H with V ′
1 ∩ V ⊆ V1. After the removal of V ′

1 from H we have a
supergraph H1 of G1, and again the claim states the existence of a minimal
dominating set V ′

2 of H1 with V ′
2 ∩ V ⊆ V2. Repeatedly applying this argu-

ment we can conclude that Γ∗(H) ≥ Γ∗(G), showing that Γ∗ is a monotone
parameter.

Proof of claim: We remove vertices from S ∪ (W − V ) to give us S ′ by
executing the following procedure, where all neighborhood references are to the
supergraph H:

• Set S′ = S ∪ (W − V )

• while ∃v ∈ S ′ such that N(v) ∩ S ′ 6= ∅ and v has no private neighbor in
V − S′

do remove v from S ′

The while-loop clearly has the invariant: S ′ is a dominating set of H, since
initially S ⊆ S ′, S is a dominating set of the subgraph G, and any vertex of
H not in G is in S ′. The invariant is maintained since whenever we remove
a vertex v from S ′ it has a neighbor in S ′ and any of its neighbors also have

13



e

e e

ee

e

e e

ee

2

11

22

B

c

db

a e

A

I

e

e e

ee

e

e e

ee

2

11

22

D

h

ig

f j

C

II

e e

e e

l m

nk

F

e e

e e

2 3

11

E

III

d

d

d

d

d

d

d d

u

vt

q

s

r

p

o
H

d

d

d

d

d

d

d d

5

43

1

2

1

1

2
G

IV

Figure 4: Examples of non-monotonicity. The vertex numbering shows that ir∗(B) =
2, γ∗(D) = 2, β∗

0(E) = 3 and IR∗(G) = 5. We prove that ir∗(A) = 3, γ∗(C) = 3,
β∗

0(F ) = 2 and IR∗(H) = 4.

another neighbor in S ′. Moreover, upon termination of the while-loop we know
that S′ is a minimal dominating set, since there are no vertices triggering the
condition in the while-loop, so that all vertices in S ′ have a private neighbor.
Equivalently, upon termination the remaining set S ′ satisfies both Lemma 3
and Lemma 4. 2

Lemma 14 The iterated irredundance number ir∗, the iterated domination
number γ∗, the iterated independence number β∗

0 , and the iterated upper ir-
redundance number IR∗ are not monotone.

Proof. See the graphs in Figure 4 which show the non-monotonicity properties.
In the bottom row are subgraphs with a higher iterated numbers than the
graphs in the top row. The example for ir∗ in I, for γ∗ in II, for β∗

0 in III and
for IR∗ in IV.

Since ir∗ and γ∗ are minimization invariants we give an iterated coloring
for the graphs B and D, showing that ir∗(B) = γ∗(D) = 2. We show that
the subgraphs A and C need at least three colors. Any irredundant set in A
contains at most one vertex of b, c, d, since otherwise not all vertices of the
irredundant set will have a private neighbor. After removal of an irredundant
set we are therefore left with at least one edge, and indeed ir∗(A) = 3. Since A
and C are isomorphic we know that also γ∗(C) ≥ ir∗(C) = ir∗(A) = 3, and in
fact equality holds.

14



Since β∗
0 and IR∗ are maximization invariants, we have indicated an iterated

coloring for the subgraphs E and G, showing that β∗
0(E) = 3 and IR∗(G) = 5.

We have β∗
0(F ) = 2, since any independent dominating set in F must include

two non-adjacent vertices of the 4-cycle, so that after removal no edges are
left. The argument for showing that IR∗(H) ≤ 4 is slightly longer. Let S be a
maximal irredundant set of H. If r ∈ S then q 6∈ S, so r has a private neighbor
and at least one of {s, t, u, v}, say u, is in S. But after the removal of S we
would then be left with isolated vertices, edges and a 3-cycle on {s, t, v}, and
could remove only three more maximal irredundant sets. On the other hand, if
r 6∈ S, then q ∈ S and at least one of {s, t, u, v} and one of {o, p} is in S. After
removal of S we are then left with, say, the graph on {p, r, s, t, v}. In this graph
a maximal irredundant set must include one of {t, u, v} and one of {p, r}. After
its removal we are left with, say, the 3-path on {r, s, t} from which at most two
more irredundant sets can be removed. The other possibilities are even easier
to argue, and we conclude that IR∗(H) = 4. 2

6 Algorithmic issues

In the first two subsections below we show, respectively, that for a fixed value
of k, the problems of deciding if a graph G has a *dominating coloring that
uses at most k colors, or a *irredundant coloring that uses at most k colors, is
polynomial-time solvable for k < 3 and NP-complete for k ≥ 3.

In the final subsection, we show NP-hardness of the problem of finding
the largest k such that a graph G has a *dominating, a *irredundant, or a
*independent coloring, respectively.

6.1 Iterated minimal-dominating k-colorings

ITERATED MINIMAL-DOMINATING k-COLORING (*DOMk)
INSTANCE: Graph G.
QUESTION: Does G have an iterated minimal-dominating coloring
that uses at most k colors?

It is well known that a graph can be properly colored with two colors if
and only if it is bipartite. This is the same as saying that bipartite graphs can
be colored using two colors by Algorithm ICA with P = maximal independent.
Bipartite graphs can also be colored using two colors by Algorithm ICA with P
= minimal dominating. However, some graphs that are not bipartite can also
be 2-colored with P = minimal dominating. For example, consider the graph
in Figure 3. In this case we will say that a graph is *dominating 2-colorable,
or equivalently, that γ∗(G) = 2, and such a P -coloring is called a *dominating
2-coloring.

The following polynomial algorithm determines whether or not γ∗(G) = 2,
for any connected graph G of order n > 1. For these graphs it is also true that G

15



is *dominating 2-colorable by Algorithm ICA with P = minimal dominating.
This algorithm makes use of a known polynomial algorithm for solving the
following decision problem:

2-SATISFIABILITY (2SAT)
INSTANCE: Collection C = {c1, c2, . . . , cm} of two-literal clauses on
a finite set U of variables.
QUESTION: Is there a truth assignment for U that satisfies all the
clauses in C?

Algorithm *dominating-2-colorable

Input: A connected graph G.

Output: A Boolean variable: decision that is true if G is 2-γ∗colorable and
false otherwise; and a 2-γ∗coloring of G if G is 2-γ∗colorable.

1. Color all vertices that are adjacent to endvertices: blue.

2. Color all edges between two blue vertices: blue.

3. Let B equal the set of blue edges.

4. if the graph G′ = (V,E − B) is not bipartite

(a) then /* G is not 2 − γ∗colorable */
set decision = false;
exit;

(b) else /* G′ = (V,E − B) is bipartite */

i. for each connected component Ci of G′ do

A. let {V1, V2} be a proper 2-coloring of Ci;

B. assign the value ci to each vertex in V1;

C. assign the value ci to each vertex in V2;

ii. create a two-literal clause corresponding to each blue edge,
for example, (ci, cj) or (ci, ck),
this creates an instance 2SAT(G) of the 2-satisfiability problem;

iii. if 2SAT(G) is not satisfiable then decision = false; exit;

iv. else decision = true;
solve the 2SAT(G) problem;
assign color 1 to all vertices whose corresponding literal is true;
assign color 2 to all vertices whose corresponding literal is false;
exit.

The graph in Figure 5 is *dominating 2-colorable. The clauses that result
from the blue edges are (c̄1, c̄2) and (c̄2, c̄2). We can solve the 2-SATISFIABILITY
problem by letting c1 be true and c2 be false. Then all the vertices colored c1

and c̄2 are assigned color 1, while all other vertices are assigned color 2.

16



h
h

hh h h

h
h h

h
h

hh h h

h
h h

h
h

hh h h

h
h hc1

c1

c2

c2

c̄1

c2

c̄2

c̄2 c2

1

1

2

2

2

2 1 2

1

Figure 5: 2-colorable graph (P = minimal dominating).

h h
h h

h
h

h h
h h

h h
h h

h
h

h h

h hc1

c̄1

c1

c̄1

c1

c̄1

c1

c̄1

c1

c̄1

Figure 6: Graph that is not *dominating 2-colorable).

The graph in Figure 6 is not 2 − γ∗colorable, however. The clauses that
result from the blue edges are (c1, c1) and (c̄1, c̄1). This 2-SATISFIABILITY
problem is not solvable.

17



Lemma 15 When Algorithm *dominating-2-colorable executes instruc-
tion 4.(b).iv, it produces a *dominating 2-coloring.

Proof. No two vertices colored 2 are adjacent, that is, the set of vertices colored
2 is independent. Therefore, any vertex colored 2 must be adjacent to a vertex
colored 1. If two adjacent vertices are colored 1, they must be connected by a
blue edge, which means that each of them is adjacent to an endvertex colored
2. 2

Lemma 16 If a graph G has a *dominating 2-coloring, then Algorithm *dominating-
2-colorable produces a *dominating 2-coloring of G.

Proof. Let G be a graph that has a *dominating 2-coloring, and assume
that Algorithm *dominating-2-colorable cannot 2-color G. There are two
stages where the algorithm could determine that G is not 2-colorable. The
first occurs when all blue edges are removed from G, and the resulting graph
G′ = (V,E − B) is not bipartite. If G′ is not bipartite, then there is an odd
cycle in G′, and two adjacent vertices in this cycle must be assigned the same
color. These two vertices cannot both be colored 2 because by Lemma 4 they
would then have to be adjacent to vertices of a higher color, and there are only
two colors. However, they also cannot both be colored 1 because both vertices
would need endvertices as private neighbors. If both had adjacent endvertices,
then the edge between them would have been colored blue by the algorithm.

The second stage where the algorithm could fail to 2-color a graph is when
the 2-SATISFIABILITY problem has no solution (i.e. there is no way to assign
colors to vertices incident with the blue edges, such that at least one of the
vertices is colored 1). Note that no two adjacent vertices in G′ can be colored
the same color. Therefore, if there is a 2-coloring for G, then the colors assigned
to vertices incident with blue edges (1 - true, 2 - false) should be a satisfiable
truth assignment. 2

Theorem 8 The decision problem *DOMk is polynomial-time solvable for k =
2 and NP-complete for any fixed k, k ≥ 3.

The case k = 2 has just been shown. For lack of space the NP-completeness
reduction, from the well-known SAT problem, is given in an appendix.

Let us merely mention the following lemmas required for the NP-completeness
proof, that may be of independent interest:

Lemma 17 Let f : V → {1, 2, . . . , k} be a *dominating coloring for G. Then
for any two adjacent vertices p and q, if f(p) = f(q), there exists some vertex
w ∈ N [p] − N [q], with f(w) > f(p).

Proof. By Lemma 4, vertex p must be adjacent to a vertex with a higher label
that no other vertex with label f(p) is adjacent to. All neighbors of vertex p
that are not in N [p] − N [q] are also adjacent to vertex q. 2

18



Lemma 18 Let f : V → {1, 2, ..., k} be a *dominating k-coloring for G. Then
for any two vertices p and q, if f(p) = f(q), then N [p] − N [q] 6= ∅.

Proof. If N [p] − N [q] = ∅, then vertices p and q must be adjacent. By
Corollary 17, if two adjacent vertices p and q are given the same label, then
N [p] − N [q] 6= ∅. 2

Lemma 19 Let f : V → {1, 2, ..., k} be a *dominating k-coloring for G. Then
for any vertex p, the degree of p is greater than or equal to f(p) − 1.

Proof. This follows from Lemma 3. A vertex p with a label f(p) > 1 must be
adjacent to vertices with labels 1..p − 1. 2

6.2 Iterated maximal-irredundant k-colorings

ITERATED MAXIMAL-IRREDUNDANT k-COLORING (*IRRk)
INSTANCE: graph G = (V,E)
QUESTION: does G have an iterated maximal-irredundant coloring
that uses at most k colors?

Lemma 20 If G is 2-colorable with property P = maximal irredundant, then
G is also 2-colorable with P = minimal dominating.

Proof. Let G be a graph with ir∗(G) = 2, and let Π be a *irredundant 2-
coloring of G. Then Π is also a *dominating 2-coloring. Note that a vertex
v colored 2 must be adjacent to some other vertex in G, as all isolates in G
must be colored 1. Vertex v cannot be adjacent to any other vertex colored
2, otherwise V2 is not irredundant. Therefore, vertex v is adjacent to a vertex
colored 1. Lemma 3 is satisfied. We do not have to check Lemma 4, since it is
also a requirement for *irredundant colorings (see Lemma 5.) 2

Theorem 9 The decision problem *IRRk is polynomial-time solvable for k = 2
and NP-complete for any fixed k, k ≥ 3.

The case k = 2 has just been shown. The NP-completeness proof is for
space reasons to be found in the appendix. We mention an observation used in
the proof that may be of independent interest.

Corollary 1 Let f : V → {1, 2, ..., k} be a *irredundant k-coloring for G. Then
for any two adjacent vertices p and q, if f(p) = f(q), there exists some vertex
w ∈ N [p] − N [q], with f(w) > f(p).

Proof. By Lemma 4, vertex p must be adjacent to a vertex with a higher color
that no other vertex with color f(p) is adjacent to. All neighbors of vertex p
that are not in N [p] − N [q] are also adjacent to vertex q. 2

19



6.3 Iterated Independence, Upper Domination and

Upper Irredundance

ITERATED UPPER IRREDUNDANCE
INSTANCE: graph G = (V,E)
QUESTION: does G have an iterated maximal-irredundant coloring
using at least k colors?

Theorem 10 ITERATED UPPER IRREDUNDANCE is NP-complete.

The proof can be found in the appendix.

ITERATED MAXIMUM INDEPENDENCE
INSTANCE: Graph G, positive integer k.
QUESTION: Does G have an iterated maximal-independent coloring
that uses at least k colors?

ITERATED UPPER DOMINATION
INSTANCE: Graph G, positive integer k.
QUESTION: Does G have an iterated minimal-dominating coloring
that uses at least k colors?

Theorem 11 ITERATED MAXIMUM INDEPENDENCE and ITERATED
UPPER DOMINATION are NP-complete.

Proof. Clearly, the two problems are in NP . We use the same construction as
for ITERATED MAXIMUM IRREDUNDANCE. As shown in Theorem 10, if
the G3C instance is 3-colorable, then G′ would have a *independent, and *dom-
inating, k-coloring. If G′ has an *independent (or *dominating) k-coloring,
then it has a *irredundant k-coloring, and by the theorem, the G3C instance
is 3-colorable. 2

7 Open Problems

Many problems and questions have been raised by our study of iterated color-
ings of graphs. We conclude by providing a list of some of the most interesting
ones.

1. What can you say about γ∗(G) and ir∗(G) for planar graphs? Since
i∗(G) = χ(G), we know from the Four Color Theorem [1, 2] that if G is
planar, then

ir∗(G) ≤ γ∗(G) ≤ i∗(G) = χ(G) ≤ 4.

Can you prove that, for planar graphs G, γ∗(G) ≤ 4, without using the
Four Color Theorem? Failing this, can you prove that ir∗(G) ≤ 4, for
planar graphs G, without using the Four Color Theorem?

20



e

e

e

e e

e

e

e

ee

2

1

2

1

3

3

2

3

2

3

e

e

e

e e

e

e

e

ee

2

1

2

1

3

3

2

3

4

1

P = maximal irredundanceP = irredundance

Figure 7: This graph requires 3 colors if P = irredundant, but 4 colors if P = maximal

irredundant.

2. Investigate property P = irredundant, rather than P = maximal irredun-
dant. The graph in Figure 7 can be 3-colored with P = irredundant, but
requires four colors if P = maximal irredundant.

3. What can you say about iterated coloring numbers for such properties as
P = maximal 2-packing or P = G[S] is acyclic.

4. What are the effects of adding or removing edges from G on ir∗(G) and
γ∗(G). Adding edges to a graph cannot reduce i∗(G), but adding edges
can reduce ir∗(G) or γ∗(G). In Figure 7 we see that ir∗(G) = 4, but if we
add the new edge shown in Figure 8, ir∗(G) = 3. In Figure 9 we show
that γ∗(G) can be reduced from 4 to 3 by the addition of a new edge.

References

[1] K. Appel and W. Haken, Every planar map is four colorable. Part I: Dis-
charging, Illinois J. Math. 21:429-490, 1977.

[2] K. Appel, W. Haken, and J. Koch, Every planar map is four colorable. Part
II: Reducibility, Illinois J. Math. 21:491-567. 1977.

[3] T. Beyer, S. M. Hedetniemi and S. T. Hedetniemi, A linear algorithm for the
Grundy number of a tree, Proc. Thirteenth Southeastern Conf. on Combi-
natorics, Graph Theory and Computing, Congr. Numer. 36:351-363, 1982.

[4] C. A. Christen and S. M. Selkow, Some perfect coloring properties of graphs,
J. Combin. Theory Ser. B 27:49-59, 1979.

[5] E. J. Cockayne, S. T. Hedetniemi and D. J. Miller, Properties of hereditary
hypergraphs and middle graphs, Canad. Math. Bull. 21:461-468, 1978.

[6] Michael R. Garey, and David S. Johnson, Computers and Intractability, A
Guide to the Theory of NP-Completeness, Freeman, New York, 1979.

21



e

e

e

e e

e

e

e

ee

2

1

2

1

3

1

2

1

3

2

Figure 8: ir∗(G) is reduced from 4 to 3 by the addition of a new edge (see previous
figure).

e ee

ee

e

e

e

2

1

2
3

4 1

2

e ee

ee

e

e

e

3

2

1
2

3 1

2

Figure 9: Here we have reduced γ∗(G) from 4 to 3 by the addition of a new edge.

22



[7] N. Goyal and S. Vishwanathan, NP-completeness of undirected Grundy
numbering and related problems, preprint, 1997.

[8] P. M. Grundy, Mathematics and games. Eureka 2:6-8, 1939.

[9] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domi-
nation in Graphs, Marcel Dekker, New York, 1998, 446 pp.

[10] D. J. Hoffman and P. D. Johnson, Greedy colorings and the Grundy chro-
matic number of the n-cube, Bull. Inst. Combin. Appl. 26:49-57, 1999.

[11] G. Prins, Unpublished manuscript, dated February 8, 1963.

[12] J.A.Telle and A.Proskurowski, Algorithms for Vertex Partitioning Prob-
lems on Partial k-Trees, SIAM Journal on Discrete Mathematics Vol. 10,
No. 4, pp. 529-550, November 1997.

23



8 APPENDIX

We first give the NP-completeness reduction completing the proof of Theorem 8.

Proof. Clearly *DOMk is in NP. We need only guess a coloring Π, and in
O(E) time, using Lemmas 3 and 4, it can be verified that Π is a *dominating
k-coloring that uses at most k colors.

A transformation from the well-known SAT problem to *DOMk is given
below. We show that given an arbitrary instance of SAT, we can transform the
instance into a graph G, such that there exists a satisfiable truth assignment
for the SAT instance if and only if there exists a *dominating coloring of G
with at most k colors, where k > 2 is fixed.

Let an arbitrary instance of SAT be represented by a set of variables U =
{u1, u2, u3, . . . , un} and a set of clauses C = {c1, c2, c3, . . . , cm}. Our transfor-
mation has three components: variable components, clause components, and a
communication component.

1. Variable components: For each variable ui in the SAT instance, create a
variable component. Start with a complete graph Kk on k vertices and
identify any two vertices in Kk, labeling them pi and p̄i. Create two new
vertices labeled ui and ūi. Connect ui to all vertices in Kk except for pi,
and connect ūi to all vertices in Kk, except for p̄i

2. Clause components: For each clause cj in the SAT instance, create a
clause component, consisting of a path on three vertices, with the first
vertex in the path labeled cj . Connect each cj vertex to the u variable
vertices whose names correspond to the literals in the clause cj .

3. Communication component: Create a complete graph K2k−2 on 2k − 2
vertices, and label k − 1 of the vertices with labels r1..rk−1. Add k − 1
additional vertices s1..sk−1 along with the edges (ri, si), 1 ≤ i ≤ k − 1.
Add two more vertices x1 and x2 and the two edges (x1, s1) and (x1, x2).
Form a complete graph among the s vertices and the c vertices from the
clause components.

Clearly, this construction is polynomial with respect to the size of the SAT
input. The remainder of the proof requires two parts. First, we show that if
the SAT instance has a satisfiable truth assignment, then G has a *dominating
coloring that uses at most k colors. Given a satisfiable truth assignment g, an
iterated dominating coloring function f can be found in this manner:

1. Variable components: if SAT variable ui is assigned true, then f(ui) =
f(pi) = 1 and f(ūi) = f(p̄i) = 3; otherwise if SAT variable ui is assigned
false, then f(ui) = f(pi) = 3 and f(ūi) = f(p̄i) = 1. Assign the colors
2, 4, ..., k to the other k − 2 vertices in the variable component using a
different label for each of these vertices.

2. Clause components: assign all cj variables the color 2, and the middle
vertices in the component paths the color 3, and assign the color 1 to all
the end-vertices in the paths.

24



3. Communication component: Assign all r vertices the color 1, and assign
to the other k−1 vertices in the complete graph the colors 2, 3, 4, 5, . . . , k,
using a different label for each of these vertices. Let f(x1) = 3 and f(x2)
= 1. Let f(si) = i + 1, for 1 ≤ i ≤ k − 1.

We consider each vertex in turn to show that this assignment is a valid
*dominating coloring.

1. No two adjacent vertices in a variable component have the same color,
and every vertex is in a complete graph with k vertices, all which have
different colors. Therefore, every vertex i with color f(i) > 1 is adjacent
to some vertex with color f(j), for any j, 1 ≤ j < i. Note also that no ui

or ūi variable has the same color as a ci variable.

2. In the clause components, no vertices, other than the cj vertices are ad-
jacent to any vertices with the same color. The vertices colored 3 are
adjacent to vertices colored 1 and 2. All cj vertices are colored 2, and
they are adjacent to a u or ū vertex that is colored 1; note this u or ū
vertex corresponds to a true literal from the SAT instance. Each cj vertex
is adjacent to a vertex colored 3 (the vertex in the middle of the path)
that no other vertex colored 2 is adjacent to.

3. In the communication component, the x1 and x2 variables are not adjacent
to any vertices that match their own color. Furthermore, x1 is adjacent
to a vertex colored 1 and a vertex colored 2. Other than s1, no si variable
is adjacent to a variable with the same color as its own, and each si is
adjacent to some vertex of every other color between 1 and k inclusive.
Vertex s1 is the only vertex with color 2 adjacent to x1, so it can get a
private neighbor from x1. Finally, consider the vertices in the 2k−2 clique.
The r vertices have private neighbors of the corresponding s vertices. The
other vertices in the clique are not adjacent to any other vertex with the
same color, but they are adjacent to all colors other than their own.

Second, we must show that if G has a *dominating coloring f using k or fewer
colors, then the SAT instance is satisfiable. Given a *dominating coloring for G
with k or fewer colors, a truth assignment g can be found for the SAT instance
in this manner: if f(ui) = 1, then g(ui) = true, otherwise g(ui) = false. We
show this is a valid truth assignment by proving that each cj vertex is adjacent
to a u-vertex with a true label 1. We also show that it is not possible that
f(ui) = f(ūi) = 1. This requires several observations.

1. Consider the vertices in the 2k−2 clique in the communication component.
The k − 1 unlabeled vertices all share the same closed neighborhoods, so
by Corollary 18, they must all be different colors. Also, no unlabeled
vertex can have the same color as any one of the r vertices because the
closed neighborhood of any unlabeled vertex is a subset of the closed
neighborhood of any r vertex. Since only k colors are used for G, it follows
that all r vertices are colored the same, and that they must get private

25



neighbors from the s-vertices. Since the s-vertices are private neighbors,
each must have a color greater than 1.

2. Two vertices si and sj, i < j, cannot have the same color because N [j]−
N [i] = {rj}, and rj cannot be a private neighbor for sj, since sj is a
private neighbor for rj. Therefore all s-vertices must have different colors
other than 1, necessarily 2..k. These vertices are private neighbors for r
vertices which all must have been colored 1.

3. We now show that the c vertices must all be colored 2. Note that the c
vertices must have the same color as s1 :

(a) vertex cj cannot have a color of 1, because the s vertices are private
neighbors of the r vertices that are colored 1.

(b) vertex cj cannot have the same color as any of the si vertices i > 1,
since N [si]−N [cj ] = {ri} and ri cannot be a private neighbor for si.

(c) There is only one color possible for cj and that is s1’s color. Vertex
s1 will get its private neighbor from x1 and x1 must be colored 3:
vertex x1 cannot be colored lower than 3 and be a private neighbor
for s1, and it cannot have a higher color than 3 since it is adjacent
to only two vertices.

4. In any vertex component, either the k-clique is colored with k colors or
the k-clique is colored with k − 1 colors and the two labeled vertices
are colored the same color (this is because all vertices in the clique have
neighborhoods that are contained in the neighborhood of any unlabeled
vertex). If the k-clique is colored with k−1 colors then the two u-vertices
must be private neighbors for the labeled vertices, and their color must
be the same as the color missing in the clique.

5. The two u-vertices in a vertex component must not both be assigned 1;
otherwise the k-clique would have to be colored with k colors, and the
k-clique vertex colored 1 would have no private neighbor.

6. If a u-vertex is assigned a color greater than 1, then the k − 1 vertex
component clique vertices that it is joined to must be all different colors,
and these colors must be different from u, otherwise either the u vertex
or the two clique vertices would not have private neighbors in the case of
a match.

7. No ci clause vertex can use a u-vertex as a private neighbor, because if
the u-vertex is assigned a color other than 1, then it is adjacent to a
vertex colored 2 in its component’s clique. Therefore all ci vertices get
their private neighbors from the center vertices in the paths. These center
vertices are colored 3. Each ci clause vertex must be adjacent to a vertex
colored 1. These must come from the u-vertices.

2

We now give the NP-completeness reduction completing the proof of Theo-
rem 9.

26



Proof. Clearly *IRRk is in NP . We need only guess a coloring f , and in O(E)
time, using Lemmas 5 and 6, it can be verified whether f is a *irredundant
coloring that uses at most k colors.

A transformation from the Exact Cover by 3-Sets problem (X3C) from [6]
to *IRRk is given below. We show that given an arbitrary instance of X3C, we
can transform the instance into a graph G, such that there exists a satisfiable
truth assignment for the X3C instance if and only if there exists an iterated
irredundance coloring of G with at most k colors, where k > 2 is fixed.

EXACT COVER BY 3-SETS
INSTANCE: Set X of elements, |X| = 3q, and a collection C of
3-element subsets of X.
QUESTION: Does C have an exact cover C ′; i.e., every element of
X appears in exactly one subset in C ′?

Let a set of elements X = {x1, x2, x3, ..., x3q} and a collection of subsets
C = {c1, c2, c3, ..., cm} be an arbitrary instance of X3C. Our transformation
has two types of components: element components and subset components.

1. Element components: For each element xi in the X3C instance, create an
element component. Start with a complete graph on k + 1 vertices and
select any two vertices in the complete graph, labeling them xi and yi.
Create another vertex labeled pi, and add the edge {pi, yi}.

2. Subset components: For each subset cj in the X3C instance, create a sub-
set component. For the subset components, again begin with a complete
graph on k+1 vertices, and select any three vertices in the complete graph
labeling them cj,1, cj,2, and cj,3/ Create three new vertices qj,1, qj,2, qj,3

and add edges {qj,1, cj,1}, {qj,2, cj,2} and {qj,3, cj,3}. Connect cj,1, cj,2, and
cj,3 to the xi element vertices whose names correspond to the elements in
the subset cj .

Clearly, this construction is polynomial with respect to the size of the X3C
input. Figure 10 illustrates the construction described above for k = 4.

In this part of the proof, we will use the notation cj∗ to refer to an arbitrary
vertex from cj1, cj2, or cj3. Similarly, the notation qj∗ will be used. Also, the
term xvertex will refer to any vertex labeled xi. First we show that if the X3C
instance has an exact cover, then G has a *irredundant coloring that uses at
most k colors. Given an exact cover C ′, a *irredundant coloring f can be found
in this manner:

1. Subset components: If cj is a subset in the exact cover, let f(cj1) =
f(cj2) = f(cj3) = 2, and f(qj1) = f(qj2) = f(qj3) = 3, and assign the
colors 3, 4, . . . , k to the other k−2 vertices in the subset component using
a different color for each of these vertices. If cj is not a subset in the exact
cover, let f(cj1) = f(cj2) = f(cj3) = 1, and f(qj1) = f(qj2) = f(qj3) = 2,
and assign the colors 2, 3, . . . , k − 1 to the other k − 2 vertices in the

27



g h

g
hh

h
g h

g
hh

h
g h

g
hh

h
g h

g
hh

h
g h

g
hh

h
g h

g
hh

h
y1

p1

x1

y2

p2

x2

y3

p3

x3

y4

p4

x4

y5

p5

x5

y6

p6

x6

g h

g
hh

g h

g
hh

g h

g
hh

g h

g
hh

h

h

h

hh

h

hh

h

h

h

h

q11

q12

q13

q21q22

q23

q31q32

q33

q41

q43

q42

c11

c12 c13

c21

c22 c23

c31

c32
c33

c41

c42
c43

Figure 10: Transformation to *IRRk from X3C where X = {x1, x2, . . . , x6} and
C = {{x1, x2, x6}, {x1, x2, x4}, {x2, x3, x5}, {x3, x4, x5}}.

complete graph in the subset component using a different color for each
of these vertices.

2. Element components: For each element component assign xi and yi the
value 1, and pi the value 2. Assign 2, 3, 4, . . . , k to the other k− 1 vertices
in the complete graph.

We consider each vertex in turn to show that this assignment is a valid
*irredundant coloring.

1. The only two adjacent vertices in an element component that have the
same color are xi and yi. The yi vertices will have the pi vertices as
private neighbors, and the xi vertices will have private neighbors in the cj

component that covers it from the exact cover. No vertex in an element
component can be given a lower value because it would not have a private
neighbor with respect to that value.

2. In the subset component, all vertices have private neighbors within the
subset component. In the components where the corresponding subsets
form the exact cover, the cj,∗ vertices are being used as private neighbors
by some x vertices, and so no vertices in these subset components can be
colored 1. No vertex can be given a lower color greater than 1 because it
would not have a private neighbor with respect to that color.

Now we must show that if G has a *irredundant coloring f using k or fewer
colors that the X3C instance has an exact cover. Given a *irredundant coloring

28



for G with k or fewer colors, an exact cover C ′ can be found for the X3C instance
in this manner: if f(q1j) > 2, then cj is in C ′; otherwise cj is not in C ′. We
show this is a valid exact cover by proving that each of the xi vertices is colored
1 and must get its private neighbor from a cj∗ vertex. Further we show that if
a cj∗ vertex is used as a private neighbor, then cj1, cj2, and cj3 must all be used
as sole private neighbors for some x vertices. This is the only case in which
f(q1j) > 2.

This requires several observations.

1. Consider the vertices in the k + 1 clique in an element component. To
color these vertices with k colors, two vertices must be the same color,
and the private neighbors must come from outside the clique. Therefore
the two vertices with the same color are xi and yi. Every other vertex
inside the clique will use itself as a private neighbor with respect to its
color set. The vertex pi is a private neighbor for yi, so clearly f(pi) > 1.
By Lemma 2, if f(pi) > 1, then either p(i) would have to be adjacent to
a vertex colored 1, or it would have to destroy a private neighbor set for
a vertex colored 1. This can only occur if f(yi) = 1.

2. Consider a vertex cj∗ that is used as a private neighbor for some vertex
xi. We show that all three of cj1, cj2, and cj3 must be used as sole private
neighbors for some x vertices.

First, no vertex in the cj clique can be colored 1, otherwise cj,∗ could
not be used as a private neighbor for the xi vertex. It follows that the
k + 1 vertices in the subset clique are assigned from the k − 1 colors
{2, 3, 4, . . . , k}. The k − 2 unlabeled vertices in the clique must all have
different colors, and these must be colored differently than the labeled
vertices. Therefore, all the labeled vertices in the cj component must be
the same color. The labeled clique vertices must have private neighbors
from the q vertices. Note then that the q vertices in this component must
have colors greater than 2. By Lemma 6, we know that a vertex colored
greater than 2 must either have no private neighbor with respect to V1 or
must be adjacent to all private neighbors of some vertex in V1. A q vertex
in this component is not adjacent to any vertex with value one, so it must
destroy the private neighbor set of some vertex with color 1, namely an x
vertex. Therefore it must be that cj1, cj2, and cj3 are all needed as a sole
private neighbor for some x vertex.

3. Using the reasoning from above, if f(qj1 > 2, then either cj1 = 1 or vertex
cj1 is used as a unique private neighbor for an xi vertex. If f(cj1) = 1, then
qj1 is an isolate in G2 and must be colored 2, a contradiction. Therefore, if
f(qj1) > 2, then cj1, cj2, and cj3 must all be used as sole private neighbors
for x vertices.

4. We have shown that each of the x vertices (and there are 3q of these
vertices ) must have a private neighbor from a c vertex. These private
neighbors must be sole private neighbors, and must be from a subset

29



f

f

f

f

vi

wi

xi

Figure 11: Vertex-edge component.

component where all three c vertices are used as sole private neighbors.
Therefore there are exactly q subset components with f(qj1) > 2, and the
corresponding subsets form an exact cover C ′.

2

We give the proof of Theorem 10:

Proof. Clearly ITERATED UPPER IRREDUNDANCE is in NP . We need
only guess a coloring f , and in polynomial time verify that f is a *irredundant
coloring that uses at least k colors.

Given an arbitrary instance G of Graph 3-Colorability, we transform the
instance into a graph G′ and positive integer k, such that there exists a (proper)
3-coloring for G if and only if there exists a *irredundant k-coloring for G ′.

First, create a graph G′′ by adding a disjoint K2 to G. Label the K2 vertices
with v|V |+1 and v|V |+2 and the edge with e|E|+1. We will transform G′′ to a
graph G′ that has two types of components: vertex-edge components and edge
components.

1. Vertex-edge components: For each vertex vi in G′′ create a tree as shown
in Figure 11, rooting the tree at vi. For each edge ej in graph G′′, add
the same tree as shown in Figure 11, rooting the tree at v|V ′′|+j.

2. Edge components: For each edge ej in G′′, create an additional vertex ej .
Three edges will be added from this vertex to the vertex-edge components:
add edges from this vertex to the two v-vertices that are endpoints of the
edge and also to the v|V ′′|+j vertex from the vertex-edge component. Form
a clique among the ej vertices.

3. Let k = |E ′′| + 3.

Clearly, this construction is polynomial with respect to the size of the G3C
input.

First we show that if G has a 3-coloring, then G′ has a *irredundant coloring
that uses k colors. Given a 3-coloring g for G, an iterated irredundance coloring
function f can be found in this manner:

1. Vertex-edge components: Let f(vi) = g(vi), for i ≤ |V |. Let f(v|V |+1) = 1
and f(v|V |+2) = 2. For each vi vertex, i = |V ′′| + j, representing an edge
ej with endpoints va and vb in G′′, let f(v|V |+j) = 6 − g(va) − g(vb); in

30



f

f

f

f

1

2

1

f

f

f

f

2

1

2

f

f

f

f

3

2

1

2 1 1

Figure 12: Coloring a vertex-edge component.

other words either 1, 2, or 3, whichever of those colors is not used for
its endpoints va and vb. Color the other vertices in the vertex-edge trees
corresponding to the tree in Figure 12 that has the same root color as
f(vi).

2. Edge components: Let f(ej) = 3 + j.

It is easy to see that this assignment is a valid *irredundant k-coloring. Each
color class Ci is a maximal independent set (and therefore maximal irredundant)
with respect to the graph G′

i. Note that each ej vertex is adjacent to vertices
colored 1, 2, and 3 from the vertex-edge component.

Now we must show that if G′ has an iterated irredundance coloring f using
k or more colors, then the G3C instance has a proper 3-coloring. Given a
*irredundant coloring f for G′ with k or more colors, a proper 3-coloring g for
G can be found by letting g(vi) = f(vi) for each vertex vi in G. We will show
that this is a proper 3-coloring.

This requires several observations.

1. In each vertex-edge component tree, at least one of the vertices vi, wi, or
xi must be colored 1. Otherwise C1 is not a maximal irredundant set.

2. If two adjacent vertices in a vertex-edge component tree are the same
color, then the two vertices must be vi and wi. In this case, vi and wi

must be colored 1, and both can get private neighbors from within the
tree. No vertex outside the clique will have its private neighborhood set
contained within the clique.

3. Every vertex p in the clique must be adjacent to vertices colored m, for
1 ≤ m < f(p). Otherwise Cm ∪ p is irredundant in Gm, contradicting the
maximality of Cm.

4. Since there are k − 3 vertices in the clique, and k colors used to color G′,
there are at least three colors missing from the clique. Consider the largest
color m missing in the clique, and let y be a vertex with f(y) = m. Then
for every other missing color in the clique, y must be adjacent to some
vertex of that color, otherwise y could be given a lower color. Since no
non-clique vertex is adjacent to more than two other non-clique vertices,
there are only three colors missing from the clique, and all vertices in the
clique have a different color.

31



5. Let c1 ≤ c2 ≤ c3 be the three colors missing from the clique. Let y be
any vertex not in the clique. Then if f(y) > c1, then y must be adjacent
to a vertex colored c1, if f(y) > c2, then y must be adjacent to a vertex
colored c2, and if f(y) > c3, then y must be adjacent to a vertex colored
c3. Note that no vertex outside the clique can have a value greater than
c3, because its degree outside the clique is at most 2.

6. Consider a vertex y with value c3. It is adjacent to two vertices outside the
clique, so y must either be a v or w vertex from a vertex-edge component.
If y is a v vertex, then the w vertex is colored c2 and the other two vertices
in the tree component are colored c1. If y is a w vertex, then the v vertex
is colored c2. In either case, c1 = 1.

7. Let y be a vertex with f(y) = c3 in a vertex-edge component with root
vi (possibly vi = y). Let p be any clique vertex that is not adjacent to
vi. Then, f(p) > f(wi); otherwise Cf(p) ∪ wi would be irredundant in
Gp. Therefore, f(p) > c2. Further, f(p) > c3, otherwise Cf(p) ∪ y would
be irredundant in Gp. Note that p cannot be adjacent to another vertex
colored p (all clique vertices are different colors, and an adjacent vj vertex
colored f(p) would have to be adjacent to a c1 and c2 by (4) above and
could not get a private neighbor with respect to Cf(p).

8. Let p be any clique vertex. If f(p) < c3, then p must be adjacent to
all vertex-edge components that contain a vertex colored c3. Also, if
f(p) > c3, then p must be adjacent to some vertex-edge component colored
c3. Consider the clique vertex that represents the K2 edge added to make
G′′. Its neighborhood outside the clique is disjoint from any other clique
vertex. Therefore, no clique vertex can be adjacent to all vertex-edge
components containing c3 vertices. The clique vertices are colored 4..|E ′′|,
and each must be adjacent to a vertex colored 1, 2, and 3.

9. The function g will employ only the colors 1, 2, and 3. Also, any two
endpoints of an edge in G will be colored differently.

2

32


