
Generalized graph clustering: recognizing (p, q)-cluster graphs∗

Pinar Heggernes† Daniel Lokshtanov† Jesper Nederlof† Christophe Paul‡

Jan Arne Telle†

Abstract

Cluster Editing is a classical graph theoretic approach to tackle the problem of data
set clustering: it consists of modifying a similarity graph into a disjoint union of cliques,
i.e, clusters. As pointed out in a number of recent papers, the cluster editing model is too
rigid to capture common features of real data sets. Several generalizations have thereby
been proposed. In this paper, we introduce (p, q)-cluster graphs, where each cluster misses
at most p edges to be a clique, and there are at most q edges between a cluster and other
clusters. Our generalization is the first one that allows a large number of false positives and
negatives in total, while bounding the number of these locally for each cluster by p and q.
We show that recognizing (p, q)-cluster graphs is NP-complete when p and q are input. On
the positive side, we show that (0, q)-cluster, (p, 1)-cluster, (p, 2)-cluster, and (1, 3)-cluster
graphs can be recognized in polynomial time.

1 Introduction

Clustering is an optimization problem having applications in many fields ranging from bioinfor-
matics [16, 1] to image processing [19], with various algorithmic approaches available [15]. The
general idea of clustering is to partition a set of data items into subsets, called clusters, in such a
way that highly similar items belong to the same cluster and items having low similarity belong
to different clusters. The input typically consists of similarity values between pairs of items and
in the graph-based approach to clustering the items correspond to vertices, with two vertices
being adjacent if and only if their similarity value exceeds a fixed threshold θ [13]. In a perfect
setting with no noise, an appropriate threshold yields a similarity graph whose connected com-
ponents (or clusters) are cliques. However, in most cases there will be noise, both false positives
(presence of an edge that should not have been present) and false negatives (missing edges).
Shamir et al. [18] initiated a study of clustering in terms of graph modification problems with a
focus on the Cluster Editing problem: modify a given graph by adding and deleting at most
k edges to obtain a disjoint union of cliques.

Cluster Editing, parameterized by the number k of false positives and negatives, is FPT
[3, 9, 10]. Furthermore, it has a polynomial-time 4-approximation algorithm but it does not
admit a PTAS unless P = NP [14]. Several drawbacks of this model have been pointed out (see
e.g. [4, 6]): for low values of the parameter k, it does not capture instances with a high number of
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false positives and negatives, nor does it allow overlap between clusters. As it has been observed
that clusters do not always represent an equivalence relation (see [8, 17]), overlapping clusters
have been considered [5, 7]. In addition, a weighted version of Cluster Editing has been
considered to capture the fact that the costs of fixing false positives and of false negatives can
differ [2]. Other variants to tackle data sets containing a large number of false negatives have
been proposed [12, 11]. The p-Defective Clique Editing problem is introduced by Guo et
al. [11]: modify a given graph by adding and deleting at most k edges to obtain a disjoint union
of p-defective cliques, where a p-defective clique is a graph missing at most p edges from being
a clique. An FPT algorithm, parameterized by p and k, is given for this problem [11]. Note
that for low values of the parameters the p-Defective Clique Editing problem allows a high
number of false negatives, as long as the noise is distributed among the clusters, but it does not
allow a high number of false positives.

In this paper we present an alternative approach to graph clustering that allows a high total
number of both false negatives and false positives, but little noise related to each cluster, by
introducing what we call (p, q)-cluster graphs.

(p, q)-Cluster Graph Recognition
Input: A graph G and two integers p, q.
Question: Can the vertex set of G be partitioned into subsets with each subset missing at most
p edges from being a clique (i.e. inducing a p-defective clique) and having at most q edges going
to other subsets?

Note that (0, 0)-cluster graphs are exactly cluster graphs. A (p, q)-cluster graph can have
low values of p and q, while having a high total number of false negatives and false positives.
In that case the similarity values and threshold θ satisfy the reasonable constraint that in
each cluster C of similar items we find at most p pairs u, v ∈ C with similarity less than θ,
and at most q pairs u ∈ C,w 6∈ C with similarity higher than θ. Observe also that tuning
the p and q parameters independently is an alternative attempt of assigning different roles or
importance to false positives and false negatives [2]. Moreover the transitivity constraint which
has been criticized in Cluster Editing [8, 17] is relaxed. In this way the (p, q)-Cluster
Graph Recognition problem, or its editing version, answers most of the drawbacks present
in the Cluster Editing problem. Thus, as a first task, we want efficient algorithms for (p, q)-
Cluster Graph Recognition. Not surprisingly, (p, q)-Cluster Graph Recognition is
NP-complete, as we show in Theorem 3. However, as we summarize in Figure 1, there are various
values of p and q for which (p, q)-Cluster Graph Recognition can be solved in polynomial
time, some trivially and some by more complicated combinatorial arguments.

On the one hand, (p, 0)-Cluster Graph Recognition corresponds to the p-Defective
Clique Editing problem allowing zero edge modifications and is therefore trivial since the
answer is yes if and only if each connected component of the input graph is a p-defective clique.
On the other hand, (0, q)-Cluster Graph Recognition is not at all simple, as there are
many ways to partition the vertex set of a graph into a collection of cliques. In particular,
similar problems like partitioning the vertex set of a graph into a minimum number of cliques
(Partition Into Cliques), or into subsets of bounded size each having a bounded number
of edges to other subsets (Minimum Degree Graph Partition), are both NP-hard. Hence
it is surprising that (0, q)-Cluster Graph Recognition can be solved in polynomial time,
as we prove in Theorem 10. We also show that (p, 1)-cluster and (p, 2)-cluster graphs can be
recognized in polynomial time. Let us emphasize that the algorithms presented in this paper are
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Figure 1: The shaded area and the dot indicate p and q values for which (p, q)-cluster graphs
are polynomial-time recognizable.

polynomial in both p, q and the size of the graph. For example, the algorithm for (0, q)-Cluster
Graph Recognition runs in time O(n3) and by binary search one can find the smallest q such
that the input graph is a (0, q)-Cluster Graph.

The polynomial-time cases mentioned so far are summarized by the shaded area of the table
given in Figure 1. The first interesting case outside of the shaded area is the recognition of
(1, 3)-cluster graphs. With careful reduction rules and a computerized case analysis we are able
to show that also (1, 3)-cluster graphs can be recognized in polynomial time (Theorem 14). We
must leave as an open problem the complexity, up to P vs NP-complete, of (p, q)-Cluster
Graph Recognition for all possible values of p and q (not to speak of its parameterized
complexity or its edge modification variants).

2 Preliminaries

We consider undirected finite graphs with no loops or multiple edges. For a graph G = (V,E),
we denote its vertex and edge set by V and E, respectively, with n = |V | and m = |E|. For
S ⊆ V , the subgraph of G induced by S is denoted by G[S].

The neighborhood of a vertex x of G is NG(x) = {v | xv ∈ E}. The closed neighborhood of x
is defined as NG[x] = NG(x) ∪ {x}. If S ⊆ V , then the neighbors of S, denoted by NG(S), are
given by

⋃
x∈S NG(x) \ S. The degree of a vertex x in G is dG(x) = |NG(x)|. We will omit the

subscripts when there is no misunderstanding.
A clique is a set of vertices that are pairwise adjacent. A vertex x is called simplicial if N(x)

is a clique. If a vertex set C has exactly p pairs of non-adjacent vertices, we say that C misses
p edges. We will call a vertex set that misses at most p edges a p-group. A p-group C such that
there are at most q edges in G with exactly one endpoint in C is called a (p, q)-group.

For two non-negative integers p and q, a graph G = (V,E) is a (p, q)-cluster graph if V can
be partitioned into (p, q)-groups. Note that this condition is equivalent to the condition in the
question of the (p, q)-Cluster Graph Recognition problem. As deleting vertices from G
cannot disturb a partition into (p, q)-groups, (p, q)-cluster graphs are hereditary, i.e., being a
(p, q)-cluster graph is preserved under taking induced subgraphs.

Clearly, a graph is a (p, q)-cluster graph if and only if every connected component of it is
a (p, q)-cluster graph. Hence for the rest of the paper, we will assume that the input graph is
connected. If not, we can run the presented algorithms on each connected component. As a
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consequence, we can also restrict ourselves to identifying connected (p, q)-groups: a (p, q)-group
C of a graph G might induce a disconnected subgraph, but then every connected component of
G[C] is also a (p, q)-group of G.

3 (p, q)-Cluster Graph Recognition is NP-complete

In this section we prove that, given as input a graph G and two integers p and q, it is NP-
complete to decide whether G is a (p, q)-cluster graph. We use a reduction from the well known
NP-complete problem Clique: Given a graph G and an integer k, 0 < k < n, does G have a
clique of size at least k?

Let G1 = (V1, E1) and k be input to Clique, where |V1| = n. We show how to construct a
graph G2 and integers p and q such that G1 has a clique of size at least k if and only if G2 is a
(p, q)-cluster graph. Let us first define

α = nk − k2 + 1 q = (n− k + 1)α− 1 β = q − α+ 2 p = βk .

Note that α ≥ n and q ≥ 2α− 1, since 0 < k < n. We obtain G2 from G1 as follows:

1. Add a clique A of size α to G1, and add edges between each vertex in A and each vertex
in V1. Call the resulting graph G′

1.

2. Add a clique B of size β to G′
1, and add edges between each vertex in B and each vertex

in A. Call the resulting graph G2.

Lemma 1. Let G1 = (V1, E1), G2, p, and q be as described above. Then G1 has a clique of size
at least k if and only if there is a non-empty set C ⊆ V1 such that A ∪ B ∪ C is a (p, q)-group
in G2.

Proof. Let C be a subset of V1 and assume that S = A ∪ B ∪ C is a (p, q)-group in G2. Let
` = |C| ≥ 1. The number of edges in G2 with exactly one endpoint in S is at least (n − `)α.
Since S is a (p, q)-group, (n − `)α ≤ q = (n − k + 1)α − 1, which implies that ` ≥ k. Let j be
the number of edges that C misses. Then S misses β`+ j edges. But since S is a (p, q)-group,
β`+ j ≤ p = βk, and using ` ≥ k gives j = 0 and k = `. Thus C is a clique of size k.

For the other direction, assume that G1 has a clique of size at least k, and let C be a clique
of size exactly k in G1. Let S = A ∪ B ∪ C. The number edges that S misses is βk = p. The
number of edges with exactly one endpoint in S is at most (n− k)(k + α).

nk − k2 = α− 1 ⇔ (n− k)α+ nk − k2 = (n− k)α+ α− 1
⇔ (n− k)(k + α) = (n− k + 1)α− 1 = q .

Thus, (n− k)(k + α) = q and S is a (p, q)-group in G2.

Lemma 2. Let G1 = (V1, E1), G2, p, and q be as described above. Then G2 is a (p, q)-cluster
graph if and only if there is a non-empty set C ⊆ V1 such that A∪B∪C is a (p, q)-group in G2.

Proof. Assume first that G2 = (V2, E2) is a (p, q)-cluster graph. We have to show that any
(p, q)-group in G2 that intersects with A ∪B has to contain every vertex of A ∪B and at least
a vertex of V1. Let S ⊆ V2 be a (p, q)-group such that S ∩ (A ∪ B) 6= ∅. Observe first that S
cannot be a proper subset of A∪B, because any partition of A∪B into subsets results in more
than q edges with an endpoint in each of the subsets, since A∪B is a clique of size α+β = q+2.
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Furthermore, S cannot be equal to A ∪ B, since the number of edges between A and V1 is αn
and q ≤ αn− 1. Consequently, S must contain whole A ∪B and at least a vertex of V1.

For the other direction, assume that S = A ∪ B ∪ C is a (p, q)-group for a non-empty set
C ⊆ V1. Observe that for any v ∈ V1 \ C, the set {v} is a (p, q)-group, since the degree of v is
at most n + α − 1, and q ≥ 2α − 1 ≥ n + α − 1. Hence S and the collection the single vertex
groups for each vertex in V1 \C defines a partition of V2 into (p, q)-groups and consequently G2

is a (p, q)-cluster graph.

Theorem 3. Given a graph G and integers p and q, it is NP-complete to decide whether G is
a (p, q)-cluster graph.

Proof. Combining Lemmas 1 and 2, we conclude that G1 has a clique of size at least k if and
only if G2 is a (p, q)-cluster graph. Since G2 can be constructed from G1 in polynomial time,
the theorem follows.

4 Polynomial-time recognizable (p, q)-cluster graphs

In this section we show that for p and q values that correspond to the shaded area and the black
dot in the table in Figure 1, (p, q)-cluster graphs can be recognized in polynomial time. Recall
that we can assume the input graph to be connected.

As mentioned in the introduction, recognizing (p, 0)-cluster graphs is trivial for every integer
p, as it is equivalent to checking whether the input graph misses at most p edges.

For recognizing connected (p, 1)-cluster graphs, note that the vertex set of such a graph is
either a p-group or consists of two connected p-groups with a single edge between them. Hence
we can first check whether the input graph is a (p, 0)-cluster graph. If not, we can check for each
bridge in the graph, whether the removal of this bridge results in two connected components
each of which is a p-group. This can clearly be done in polynomial time.

4.1 Polynomial-time recognition of (p, 2)-cluster graphs

Assume that a given connected graph G = (V,E) is a (p, 2)-cluster graph. Then V has a partition
into (p, 2)-groups V1, V2, . . . , Vk. For convenience, in this subsection we call a (p, 2)-group simply
a group. Let us define a graph H which has vertices v1, v2, . . . , vk and edges vivj if G has an
edge with an endpoint in Vi and an endpoint in Vj . Note that for each edge vivj of H, there can
be at most one edge with an endpoint in Vi and an endpoint in Vj in G (except the case where
the (p, 2)-partition consists of only two groups). Clearly H is a connected graph of maximum
degree 2, which means that it is a path or a cycle. Furthermore, the removal of any two edges
of H is equivalent to the removal of exactly two edges of G (except the case where H has only
two vertices). We will use this property to decide whether a given graph G is a (p, 2)-cluster
graph. For this purpose we describe a dynamic programming algorithm.

For every pair of edges e1 = u1v1 and e2 = u2v2 of G, we check whether u1 and v1 appear
in different connected components of G′ = (V,E \ {e1, e2}), and u2 and v2 appear in different
connected components of G′. If so, then we say that {e1, e2} is a cut of G. Let L(e1, e2, u1, u2)
be the disjoint union of all connected components of G′ containing u1 or u2. One can think of
the cut {e1, e2} having two “sides”, L(e1, e2, u1, u2) and L(e1, e2, v1, v2) respectively. We define
a function T (e1, e2, u1, u2) that is true if and only if {e1, e2} is a cut and L(e1, e2, u1, u2) can be
partitioned into groups. Then the following recurrence holds for T .
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• If {e1, e2} is not a cut then T (e1, e2, x, y) is False, for all x, y.
• Otherwise, if every connected component of L(e1, e2, u1, u2) is a group then T (e1, e2, u1, u2)

is True.
• Otherwise T (e1, e2, u1, u2) is True if and only if there is an edge e = uv ∈ E with u, v ∈
L(e1, e2, u1, u2) such that

– every connected component of L(e, e1, u, u1) is a group and T (e, e2, v, u2) is true, or
– every connected component of L(e, e2, v, u2) is a group and T (e, e1, u, u1) is true.

For every pair of edges e1 and e2, we compute T (e1, e2, u1, u2), T (e1, e2, u1, v2), T (e1, e2, v1, u2),
and T (e1, e2, v1, v2), using the above formula. After all this has been computed, we check for
every pair of edges e1 and e2 whether they can be two consecutive edges of H. To do this, we
simply check whether T (e1, e2, x, y) is true and G[V \ L(e1, e2, x, y)] is a connected group for
some edges e1 and e2 and endpoints x of e1 and y of e2. If such edges e1, e2 and endpoints x, y
exist we conclude that G is a (p, 2)-cluster graph. Otherwise it is not a (p, 2)-cluster graph. The
necessary computations can be done in a straight forward way in time O(m3). With a few extra
reduction rules and more clever dynamic programming it is possible to reduce this running time
considerably.

4.2 Polynomial-time recognition of (0, q)-cluster graphs
Deciding whether a given graph G = (V,E) is a (0, q)-cluster graph is deciding whether V can
be partitioned into (0, q)-groups. This is equivalent to partitioning V into cliques, such that for
each of these cliques G has at most q edges with exactly one endpoint in that clique. Analogous
to previous subsection, in this subsection we will call a (0, q)-group simply a group. Also, we
call a vertex of v of G a high degree vertex if d(v) ≥ q + 1. We start with some observations on
(0, q)-cluster graphs, the proofs of which are given in the appendix.

Observation 4. Let G = (V,E) be a (0, q)-cluster graph. Then there is a partition of V into
groups such that every group either consists of a single vertex or contains a high degree vertex.

Observation 5. Let G = (V,E) be a (0, q)-cluster graph. Then there is a partition of V into
groups such that every group C with at least two vertices contains a vertex v with N [v] = C.

Note that Observation 5 is equivalent to saying that C contains a simplicial vertex. By the
above observations, we can restrict our search to groups that are either singletons or contain a
simplicial vertex and a high degree vertex.

Definition 6. A group C is a good group if C = N [v] for some simplicial vertex v, C contains
a high degree vertex, and there are at most q edges in the graph with exactly one endpoint in
C (the last condition is implicit from the definition of group).

Lemma 7. A graph is a (0, q)-cluster graph if and only if its high degree vertices can be covered
by non-overlapping good groups.

Proof. Let G = (V,E) be a graph, and assume that G has a set of good groups C1, ..., C`, such
that Ci∩Cj = ∅ for every pair i 6= j between 1 and `, and every high degree vertex of G belongs
to some Ci for 1 ≤ i ≤ `. Since these good groups do not overlap, each high degree vertex
belongs to a unique good group. Each of these groups has at most q edges leaving the group.
Every vertex of G that does not appear in one of these groups, has degree at most q and is a
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(0, q)-group on its own. Let v1, ..., vt be such vertices of G. Then C1, ..., C`, {v1}, ..., {vt} is a
partition of V into clusters, and hence G is a (0, q)-cluster graph.

The other direction follows from the fact that a good group containing a high degree vertex
is of size at least 2 and Observation 5.

For the next lemma, we say that a good group is maximal if its set of high degree vertices is
not a proper subset of the set of high degree vertices of another good group.

Lemma 8. Let G be a graph and let C1, C2 be two maximal good groups of G, such that C1 has
a high degree vertex not in C2, and C2 has a high degree vertex not in C1. Then C1 ∩ C2 = ∅.

Proof. Let C1 ∩ C2 = X. Let v1 be a high degree vertex of C1 not in C2, and let v2 be a high
degree vertex of C2 not in C1. Hence v1, v2 /∈ X. Observe first that |X| ≤ q because otherwise,
since C2 is a clique, there would be more than q edges from C1 to v2, contradicting that C1 is a
good group. If v1 has a neighbor outside of C1 then N [v1] 6= C1, hence C1 has another vertex v′1
such that N [v′1] = C1, and v′1 /∈ X. If v1 has no neighbor outside of C1, then since d(v1) ≥ q+ 1
and |X| ≤ q, again C1 has a vertex v′1 6= v1 such that v′1 /∈ X. Hence |C1| ≥ |X|+ 2. With the
same arguments, C2 has a vertex v′2 6= v2 such that v′2 /∈ X, and thus also |C2| ≥ |X|+ 2.

Since d(v1) ≥ q + 1, v1 has at least q + 1 − (|C1| − 1) neighbors outside of C1. In addition,
there are |X|(|C2| − |X|) edges between C1 and C2 \X. Since C1 is a good group, we must thus
have: q+ 1− (|C1| − 1) + |X|(|C2| − |X|) ≤ q. Symmetrically, and with the same arguments, we
conclude that: q + 1 − (|C2| − 1) + |X|(|C1| − |X|) ≤ q. Adding up these two inequalities and
simplifying, we get:

4 + (|X| − 1)|C1|+ (|X| − 1)|C2| − 2|X|2 ≤ 0

Recall that |C1| ≥ |X|+ 2 and |C2| ≥ |X|+ 2. Hence we can conclude:

4 + (|X| − 1)(|X|+ 2) + (|X| − 1)(|X|+ 2)− 2|X|2 ≤ 0

Doing the arithmetic, we see that the above inequality reduces to 2|X|2 ≤ 0, and hence we can
conclude that |X| = 0, which completes the proof.

Consequently, maximal good groups with different sets of high degree vertices do not overlap.
With this, we reach the desired characterization.

Theorem 9. A graph is a (0, q)-cluster graph if and only if every high degree vertex belongs to
a good group.

Proof. Let G be a graph. If G has a high degree vertex v that does not belong to any good
group, then G is clearly not a (0, q)-cluster graph, due to Lemma 7 and since v cannot define a
good group on its own due to its high degree. For the other direction, assume that every high
degree vertex of G belongs to a good group. Repeatedly take a maximal good group containing
uncovered high degree vertices, and call C the resulting set of good groups. C covers all the
high degree vertices of G, and the good groups of C pairwise have different sets of high degree
vertices. Thus by Lemma 8, they are pairwise non-overlapping. Consequently, by Lemma 7, G
is a (0, q)-cluster graph.

Theorem 10. Given a graph G and an integer q, it can be decided in polynomial time whether
G is a (0, q)-cluster graph.
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Proof. Note first that finding the good groups of any graph G = (V,E) can be done in polynomial
time, as we only need to check whether N [v] is a clique, contains a high degree vertex, and G has
at most q edges with exactly one endpoint in N [v], for each vertex v ∈ V . Now, by Theorem 9, it
simply remains to check whether every high degree vertex appears in a good group, which can be
done by the procedure described in the proof of Theorem 9. A straight forward implementation
gives a total running time of O(n3), which can probably be improved.

4.3 Polynomial-time recognition of (1, 3)-cluster graphs
Each polynomial-time algorithm that we have given so far has corresponded to a whole row or
a whole column of the table given in Figure 1. In fact, with the algorithms that we have given,
we have now proved that (p, q)-graphs are recognizable in polynomial time for values of p and
q that correspond to the whole shaded area in that table. From here on, we see that the first
natural case to study, with respect to NP-completeness versus polynomial-time computability,
for a single value of p and a single value of q is the recognition of (1, 3)-cluster graphs. This
corresponds to the dot in the table. In this subsection, we show that (1, 3)-cluster graphs can
be recognized in polynomial time.

Analogous to previous subsections, we will refer to a (1, 3)-group simply as a group in this
subsection. A minimal group is a group that cannot be partitioned into smaller groups. If there
is a partition of the vertex set of a graph into groups then there is also a partition into minimal
groups. A high degree vertex is now a vertex of degree at least 4. A 1-group is a clique missing at
most one edge, according to the definitions in Section 2. (Note that a 1-group is not necessarily
a group.) A maximal 1-group is a 1-group that is not a proper subset of another 1-group. (Note
the difference from the definition of maximality in the previous subsection.)

We start this subsection with some reduction rules given in Definition 11. The first steps
of our algorithm will be to apply these rules until they cannot be applied anymore, to obtain a
reduced graph. For these rules, we define the concept of penalizing a vertex x as follows. Let u
be a vertex of G, and let G′ = G[V \{u}]. Let x be a vertex of NG(u). Then dG′(x) = dG(x)−1.
When we penalize x, we keep the degree of x unchanged. Hence we let dG′(v) = dG(v) and keep
it artificially high.

Definition 11. We say that a graph G is reduced if the following reduction rules cannot be
applied to it:

1. If, for an edge uv, there is no group that contains both u and v, then delete edge uv and
penalize u and v.

2. If G contains a maximal 1-group C of size at least 5, then delete C and penalize the
vertices of NG(C) accordingly.

3. If Rule 2 cannot be applied and G contains a clique C of size at least 4, then delete C and
penalize the vertices of NG(C) accordingly.

4. If Rules 2 and 3 cannot be applied and G contains a 1-group C of size 4, such that C has
3 vertices with neighbors outside of C, then delete C, and penalize NG(C) accordingly.

The proof of the following two lemmas can be found in Appendix.

Lemma 12. Given a graph G, the reduced graph G′ obtained from G by applying the reduction
rules in Definition 11 can be computed in polynomial time. Moreover, G is a (1, 3)-cluster graph
if and only if G′ is a (1, 3)-cluster graph.
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Consequently, from now on we can assume that our input graph G is reduced. In particular,
G has no groups of size larger than 4. We will call a group C a leaf group if at most one vertex
of C has neighbors outside of C. Since we assume G to be connected, this is equivalent to C
having exactly one vertex with neighbors outside of C.

Lemma 13. In a reduced graph with more than 42 vertices, every high degree vertex appears in
at most 2 minimal non-leaf groups.

The above lemma enables us to show the main result of this subsection, stated in the following
theorem.

Theorem 14. (1, 3)-cluster graphs can be recognized in polynomial time.

Proof. Given a graph H, we can compute a reduced graph G in polynomial time by Lemma 12.
If G has at most 42 vertices, we can solve the problem in constant time. Assume that G has
n > 42 vertices.

First we show that there is a polynomial time reduction from (1, 3)-Cluster Graph
Recognition to Sat. Given a reduced graph G, we describe an instance of Sat obtained
from G, as follows. For every minimal group, we make a variable x. For every high degree ver-
tex v, we make a clause (x1∨x2∨ ...∨xt), where x1, ..., xt are the variables corresponding to the t
minimal groups containing v. For every pair of overlapping minimal groups with corresponding
variables x and y, we make a clause (x̄∨ ȳ). Clearly, G is a (1, 3)-cluster graph if and only if the
created formula is satisfiable. By Lemma 12, the same is true for H. In G, there are at most
n4 groups, since every group is of size at most 4. Consequently, the construction of the formula
from the given graph takes polynomial time.

Due to Lemma 13, in the constructed Sat formula, every clause X contains variables x1, ..., xt

corresponding to leaf groups and at most two variables a and b corresponding to minimal non-
leaf groups. We can safely set x2, ..., xt to be false, as we will let x1 ensure the true value of
this clause. Every other clause that contains one of x2, ..., xt, contains it in the negated form,
and hence will be true. x1 appears in at most two other clauses: (x̄1 ∨ ā) and (x̄1 ∨ b̄). Hence,
according to the truth-value of a and b, we can assign true or false to x1, and clause X will
be true. Consequently, we can remove clauses involving all leaf groups, as they are not decisive
for the satisfiability of the whole formula. The remaining clauses all have two literals, and hence
we have a 2-Sat instance that can be solved in polynomial time.

Hence we have given a polynomial-time reduction from (1, 3)-Cluster Graph Recogni-
tion to 2-Sat, which means that (1, 3)-cluster graphs can be recognized in polynomial time.

5 Concluding remarks

We have introduced the (p, q)-Cluster Graph Recognition problem and proved that it is
NP-complete. We have shown that (p, 0)-cluster, (p, 1)-cluster, (p, 2)-cluster, (0, q)-cluster, and
(1, 3)-cluster graphs can be recognized in polynomial time. In fact, with a careful implementation
we believe that (p, 2)-cluster and (1, 3)-cluster graphs can be recognized in linear time. Many
interesting questions arise from these results. Some of the most obvious are: Is (p, q)-Cluster
Graph Recognition FPT when parameterized by either p or q, meaning that there is an
algorithm with running time f(p) · poly(n, q) or f(q) · poly(n, p)? Is it FPT when parameterized
by both p and q, meaning that there is an algorithm with running time f(p, q) · poly(n)? Can
(p, q)-cluster graphs be recognized in polynomial time for every pair of fixed p and q, meaning
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that there is an algorithm with running time nf(p,q)? If not, what is the smallest p and smallest
q for which it is NP-complete to recognize (p, q)-cluster graphs?

In fact, there is a natural extension of (p, q)-Cluster Graph Recognition to (p, q, k)-
Cluster Graph Editing. In the latter, we ask whether a (p, q)-cluster graph can be obtained
by adding or removing in total at most k edges in a given graph. Hence (p, q, 0)-Cluster
Graph Editing is equivalent to (p, q)-Cluster Graph Recognition. The editing version
of the problem opens a whole range of questions of the above type involving k in addition.

References

[1] Z. Y. A. Ben-Dor, R.Shamir. Clustering gene expression patterns. J.Comput. Biol., 6(3/4):281–292, 1999.
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Appendix

Proof of Observation 4

Proof. Assume that G has a partition into groups C1, C2, . . . , Ck. Let let Ci be a group con-
taining at least two vertices, such that every vertex of Ci has degree at most q. In this case
each vertex of Ci defines a group consisting only of itself. Furthermore, after dividing Ci into
singletons, every other set Cj with j 6= i is still a group.

Proof of Observation 5

Proof. By Observation 4 we know that there is a partition such that every group C of the
partition that contains at least two vertices, contains a high degree vertex u. If u has no
neighbors outside of C, since C is a clique we have that N [u] = C, and the proof is complete.
Assume that u has at least one neighbor outside of C. Assume that every neighbor of u in C
has a neighbor outside of C. Then together with the neighbors that u has outside of C, there
are more than q edges in G with exactly one endpoint in C, which contradicts the assumption
that C is a group. Thus u has a neighbor v in C such that v has no neighbors outside of C.
Since C is a clique, N [v] = C.

Proof of Lemma 12

Proof. Let G = (V,E). For Rule 1, clearly since no group contains both u and v, G is a
(1, 3)-cluster graph if and only if u and v appear in different groups.

For Rule 2, let C be a 1-group of size at least 5, and let u and v be the only pair of non-
adjacent vertices of C. If |C| ≥ 6 then no subset of C is a group since any partition of C into
smaller parts results in more than 3 edges with one endpoint in each part. If |C| = 5 then every
vertex of C, other than u and v, has 4 neighbors in C, hence the only way C can be partitioned
into smaller groups is making u or v a group on its own and keeping the rest of C together.
In this case, for these two sets to be groups, there cannot be any edges in G with exactly one
endpoint in C, since there are already 3 edges between the two sets. Hence if there is a partition
of G into groups where C is divided, then there is also a partition where C is kept as a whole.
Consequently, since C is maximal, G is a (1, 3)-cluster graph if and only if there is a partition
into groups where C is one of the groups.

For Rule 3, let C be a clique of size at least 4. Since Rule 2 cannot be applied, C is not part
of a 1-group of size at least 5. The only way to partition C into smaller parts is if C is of size
4, a vertex is a group on its own and the rest of C is another group, in which case this is the
whole graph, since there are already 3 edges between the two parts. Thus the only way G can
be partitioned into groups is if C is one of these groups.

For Rule 4, Let C be a 1-group of size at least 4 such that C has three vertices with neighbors
outside of C. We consider 3 cases:

• Case 1. (Figure 2(a)) There is a vertex a /∈ C adjacent to 3 vertices in C that form a
triangle. C∪{a} forms a 4-clique which is a contradiction with the fact that G is a reduced
graph.

• Case 2. (Figure 2(b)) There is a vertex a /∈ C adjacent to 3 vertices in C that induce a
path on 3 vertices. Any strict subset of C ∪ {a} has at least 3 leaving edges. Hence, the
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(a) Case 1

a

(b) Case 2

Figure 2: Two of the cases considered in the proof of correctness of reduction rule 4 of Definition
11.

set C has to be a subset of a group used in the partition.

• Case 3. There are at least two vertices outside of C that are adjacent to two different
vertices in C. Then for any proper subset S ⊂ C, the number of edges leaving S is at least
2. It follows that if C ′ is a group and ∅ ⊂ C ′ ∩C ⊂ C then C ′ \C is also a group. Hence,
if there is a partition of G into groups then there is also a partition such that, for each
group C ′ in the partition, C ∩ C ′ = ∅ or C ⊆ C ′.

For the running time claim of the lemma, first notice that the number of connected groups
can be enumerated in O(m3n) time: for every connected group C there exist edges e1, e2, e3 ∈ E
and vertex v ∈ V such that C is the connected component containing v in (V, E \ {e1, e2, e3}).
For Rule 1, we can restrict ourselves to minimal groups, which are necessarily connected. And
for Rule 2, maximal 1-group of size at least 5 also is connected since it misses at most one edge.
Hence, by enumerating all connected groups these rules can be applied in polynomial time. For
Rules 3 and 4 the same property is trivial.

Proof of Lemma 13

First we need two definitions. A triangle is a set of 3 vertices that induces a complete graph.
A diamond is a set of 4 vertices that induces a complete graph minus one edge. The proof of
Lemma 13 will be based on the following two claims.

Claim 15. In a reduced graph every minimal non-leaf group is a triangle or a diamond.

Proof. Let G be a reduced graph and let C be a group in G. (Recall that the degrees are not
the actual degrees but penalized degrees, and hence they are the same as in the input graph
from which G was reduced.) By Definition 11, |C| ≤ 4. Let v be a high degree vertex in C. If
C = {v}, there are at least 4 edges leaving C, contradicting that C is a group. If C = {v, u}
then N(v) = u since any minimal group is connected and there will be too many edges leaving
C otherwise. But then C is a leaf group. If |C| = 3 and not a triangle, it is a path on 3 vertices
since it is connected. If v is one of the endpoints of the path induced by C, there are at least q
edges leaving C from v. Thus, no other vertex in C is adjacent to leaving edges and C is a leaf
group. If v is the middle vertex of the path induced by C, there are at least q−1 edges adjacent
to v that leave C. Hence, one of the two other vertices has no edges adjacent to it that leave
C. Call such a vertex u. Now {u} and C \ {u} are also groups, and hence C is not a minimal
group.
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Claim 16. In a reduced graph G = (V,E), there do not exist 3 distinct minimal non-leaf groups
C1,C2,C3 ⊆ V that satisfy all of the following.

• C1 ∩ C2 ∩ C3 contains a high degree vertex v;

• for every 1 ≤ i ≤ 3, G[Ci] is a triangle or a diamond;

• there are at least 2 edges in G with exactly one endpoint in C1 ∪ C2 ∪ C3.

Proof. We use computer aided case analysis. The program in Listing 1 enumerates all possible
graphs G[C1 ∪ C2 ∪ C3] such that C1, C2, and C3 satisfy the conditions of the claim. Then it
checks for each such graph whether C1 or C2 or C3 is a group. If such a group is found the
program outputs it. The program does not output any group, and thus the claim is proved.

Proof of Lemma 13. Assume for contradiction that Lemma 13 is not true. Then there exist
distinct minimal non-leaf groups C1, C2 and C3 such that C1 ∩ C2 ∩ C3 contains a high degree
vertex v. Since |C1 ∪ C2 ∪ C3| > 42 there are at least two edges in the graph with exactly one
endpoint in C1 ∪ C2 ∪ C3. But now Claims 15 and 16 together give us that do not exist such
minimal non-leaf groups C1, C2 and C3. Thus we get a contradiction and the lemma follows.

Listing 1: Computer-aided case analysis
public class Clus t e rF ina l {

// add t r i a n g l e to M
stat ic void addTriangle ( int [ ] [ ] M, int a , int b , int c ) {

M[ a ] [ b]=M[ b ] [ a ]=1;
M[ a ] [ c ]=M[ c ] [ a ]=1;
M[ b ] [ c ]=M[ c ] [ b ]=1;

}

// add K4\e to M, ad i s t h e non−edge .
stat ic void addAlmostK4 ( int [ ] [ ] M, int a , int b , int c , int d) {

M[ a ] [ b]=M[ b ] [ a ]=1;
M[ a ] [ c ]=M[ c ] [ a ]=1;
M[ b ] [ c ]=M[ c ] [ b ]=1;
M[ b ] [ d]=M[ d ] [ b ]=1;
M[ c ] [ d]=M[ d ] [ c ]=1;

}

// Outputs a group , in a K4 ’ t h e ou tpu t i s [ a , b , c , d ] , ad i s t h e in t ended non−edge .
stat ic St r ing makeString ( int t , int a , int b , int c , int d) {

St r ing s1=" " , s2=" " ;
i f ( t==0) s1 = " [ k3 , " ;
i f ( t==1) s1 = " [ k4 ’ , " ;
i f ( t==2) s1 = " [ k4 ’ , " ;

i f ( t==0) s2 = a + " , " + b + " , " + c + " ] " ;
i f ( t==1) s2 = a + " , " + b + " , " + c + " , " + d +" ] " ;
i f ( t==2) s2 = b + " , " + a + " , " + c + " , " + d +" ] " ;

return s1+s2 ;
}

// Checks t h a t two groups are not equa l , assuming (a , b , c ) are a lways d i f f e r e n t and nonzero .
stat ic boolean isSame ( int t1 , int a1 , int b1 , int c1 , int t2 , int a2 , int b2 , int c2 ) {

i f ( t1 != t2 ) return fa l se ;
i f ( t1 == 0) {

i f ( a1 != a2 && a1 != b2 ) return fa l se ;
i f ( b1 != a2 && b1 != b2 ) return fa l se ;

} else {
i f ( a1 != a2 && a1 != b2 && a1 != c2 ) return fa l se ;
i f ( b1 != a2 && b1 != b2 && b1 != c2 ) return fa l se ;
i f ( c1 != a2 && c1 != b2 && c1 != c2 ) return fa l se ;

}
return true ;

}

public stat ic void main ( St r ing [ ] args ) {
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// enumerate group t ype . 0 = k3 , 1=k4\e w i th d ( v )=2 , 2=k4\e w i th d ( v)=3
for ( int t1=0; t1 < 3 ; ++t1 ) {
for ( int t2=0; t2 < 3 ; ++t2 ) {
for ( int t3=0; t3 < 3 ; ++t3 ) {

// Ve r t i c e s o f group 1 . v i s a lways v e r t e x 0 .
int v11=1;
int v12=2;
int v13=3; // i f t 1==0 t h i s v e r t e x i s i gnor ed .

// Ve r t i c e s o f group 2 . v i s v e r t e x 0 ,
for ( int v21 = 1 ; v21 <= 4; ++v21 ) {
for ( int v22 = 1 ; v22 <= 5; ++v22 ) {

i f ( v22==v21 ) continue ;
for ( int v23 = 1 ; v23 <= 6; ++v23 ) { // i f t 2==0 t h i s v e r t e x i s i gnor ed .

i f ( v23==v22 | | v23==v21 ) continue ;

// Ve r t i c e s o f group 3 . v i s v e r t e x 0
for ( int v31 = 1 ; v31 <= 7; ++v31 ) {
for ( int v32 = 1 ; v32 <= 8; ++v32 ) {

i f ( v32==v31 ) continue ;
for ( int v33 = 1 ; v33 <= 9; ++v33 ) { // i f t 3==0 t h i s v e r t e x i s i gnor ed .

i f ( v33==v32 | | v33==v31 ) continue ;

//−−−−−−−−−−−−−−−− Ver i f y t h a t no two groups are t h e same .
i f ( isSame ( t1 , v11 , v12 , v13 , t2 , v21 , v22 , v23 )
| | isSame ( t1 , v11 , v12 , v13 , t3 , v31 , v32 , v33 )
| | isSame ( t2 , v21 , v22 , v23 , t3 , v31 , v32 , v33 ) ) continue ;

//−−−−−−−−−−−−−−−− BUILD G
int [ ] [ ] M = new int [ 1 0 ] [ 1 0 ] ;

// group 1 :
i f ( t1 == 0) {

addTriangle (M,0 , v11 , v12 ) ;
} else i f ( t1 == 1) {

// Nonedge : 0 , v13 .
addAlmostK4 (M,0 , v11 , v12 , v13 ) ;

} else {
// Nonedge : v11 , v13 .
addAlmostK4 (M, v11 , 0 , v12 , v13 ) ;

}

// group 2 :
i f ( t2 == 0) {

addTriangle (M,0 , v21 , v22 ) ;
} else i f ( t2 == 1) {

// Nonedge : 0 , v23 .
addAlmostK4 (M,0 , v21 , v22 , v23 ) ;

} else {
// Nonedge : v21 , v23 .
addAlmostK4 (M, v21 , 0 , v22 , v23 ) ;

}

// group 3 :
i f ( t3 == 0) {

addTriangle (M,0 , v31 , v32 ) ;
} else i f ( t3 == 1) {

// Nonedge : 0 , v33 .
addAlmostK4 (M,0 , v31 , v32 , v33 ) ;

} else {
// Nonedge : v31 , v33 .
addAlmostK4 (M, v31 , 0 , v32 , v33 ) ;

}

// −−−−−−−−−−−−−−−−−−−−−− Check Whether t h e K4\e ’ s are induced .
i f ( t1 == 1 && M[ 0 ] [ v13 ]==1) continue ;
i f ( t1 == 2 && M[ v11 ] [ v13 ]==1) continue ;

i f ( t2 == 1 && M[ 0 ] [ v23 ]==1) continue ;
i f ( t2 == 2 && M[ v21 ] [ v23 ]==1) continue ;

i f ( t3 == 1 && M[ 0 ] [ v33 ]==1) continue ;
i f ( t3 == 2 && M[ v31 ] [ v33 ]==1) continue ;

// −−−−−−−−−−−−−The graph must have a t l e a s t 2 edge s l e a v i n g , gue s s where t h e edge s are and p e n a l i z e endponts .
for ( int pen1 = 0 ; pen1 < 10 ; ++pen1 ) {
for ( int pen2 = 0 ; pen2 < 10 ; ++pen2 ) {

// pen1 and pen2 must be a c t u a l v e r t i c e s
i f ( pen1 != 0 && pen1 != v11 && pen1 != v12 && ( t1 == 0 | | pen1 != v13 )

&& pen1 != v21 && pen1 != v22 && ( t2 == 0 | | pen1 != v23 )
&& pen1 != v31 && pen1 != v32 && ( t3 == 0 | | pen1 != v33 ) ) continue ;

i f ( pen2 != 0 && pen2 != v11 && pen2 != v12 && ( t1 == 0 | | pen2 != v13 )
&& pen2 != v21 && pen2 != v22 && ( t2 == 0 | | pen2 != v23 )
&& pen2 != v31 && pen2 != v32 && ( t3 == 0 | | pen2 != v33 ) ) continue ;
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int [ ] pen = new int [ 1 0 ] ;
pen [ pen1 ]++;
pen [ pen2 ]++;

// −−−−−−−−−−−−−−−−−−−−−− Find degree o f v .
int d=pen [ 0 ] ;
for ( int i = 1 ; i < 10 ; ++i ) {d += M[ 0 ] [ i ] ; }

// −−− v must have h i gh degree , p e n a l i z e u n t i l i t does .
while (d < 4) {d++; pen [0]++;}

// −−−−−−−−−−−−−−−−−−−−−− Find ## edges l e a v i n g group 1 , 2 , 3 .
int cut1=0, cut2=0, cut3=0;
for ( int i = 0 ; i < 10 ; ++i ) {

for ( int j = 0 ; j < 10 ; ++j ) {
i f ( j==i ) continue ;
i f (M[ i ] [ j ]==1) {

i f ( t1==0){
cut1 += ( i==0 | | i==v11 | | i==v12 ) && ( j != 0 && j != v11 && j != v12 ) ? 1 : 0 ;

} else {
cut1 += ( i==0 | | i==v11 | | i==v12 | | i == v13 )

&& ( j != 0 && j != v11 && j != v12 && j != v13 ) ? 1 : 0 ;
}

i f ( t2==0){
cut2 += ( i==0 | | i==v21 | | i==v22 ) && ( j != 0 && j != v21 && j != v22 ) ? 1 : 0 ;

} else {
cut2 += ( i==0 | | i==v21 | | i==v22 | | i == v23 )

&& ( j != 0 && j != v21 && j != v22 && j != v23 ) ? 1 : 0 ;
}

i f ( t3==0){
cut3 += ( i==0 | | i==v31 | | i==v32 ) && ( j != 0 && j != v31 && j != v32 ) ? 1 : 0 ;

} else {
cut3 += ( i==0 | | i==v31 | | i==v32 | | i == v33 )

&& ( j != 0 && j != v31 && j != v32 && j != v33 ) ? 1 : 0 ;
}

}
}

}

// I f any cu t + p ena l t y i s too b ig , not a counterexamp le .
i f ( cut1 + pen [ 0 ] + pen [ v11 ] + pen [ v12 ] + ( t1 > 0 ? pen [ v13 ] : 0) > 3) continue ;
i f ( cut2 + pen [ 0 ] + pen [ v21 ] + pen [ v22 ] + ( t2 > 0 ? pen [ v23 ] : 0) > 3) continue ;
i f ( cut3 + pen [ 0 ] + pen [ v31 ] + pen [ v32 ] + ( t3 > 0 ? pen [ v33 ] : 0) > 3) continue ;

// −−−−− OUTPUT GRAPH!
System . out . p r i n t l n ( makeString ( t1 , 0 , v11 , v12 , v13 ) + " , "

+ makeString ( t2 , 0 , v21 , v22 , v23 ) + " , "

+ makeString ( t3 , 0 , v31 , v32 , v33 ) ) ;

}} // P en a l t i e s
}}} // Group 3
}}} // Group 2
}}} // Outer l oop

} // end o f main method
}
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