International Journal of Foundations of Computer Science
© World Scientific Publishing Company

MOD-2 INDEPENDENCE AND DOMINATION IN GRAPHS

MAGNUS M. HALLDORSSON *

University of Iceland, Reykjavik, Iceland
mmh@hi.is

and

JAN KRATOCHVIL **

Charles University, Prague, Czech Republic.
honza@kam.ms.mff.cuni.cz

and

JAN ARNE TELLE

University of Bergen, Bergen, Norway.
telle@ii.usb.no

Received (received date)
Revised (revised date)
Communicated by Editor’s name

ABSTRACT

We develop an O(n3) algorithm for deciding if an n-vertex digraph has a
subset of vertices with the property that each vertex of the graph has an even
number of arcs into the subset. This algorithm allows us to give a combinatorial
interpretation of Gauss-Jordan and Gauss elimination on square boolean matri-
ces. In addition to solving this independence-mod-2 (even) set existence problem
we also give efficient algorithms for related domination-mod-2 (odd) set exis-
tence problems on digraphs. However, for each of the four combinations of these
two properties we show that even though the existence problem on digraphs is
tractable, the problems of deciding the existence of a set of size exactly k, larger
than k, or smaller than £, for a given k, are all NP-complete for undirected graphs.

1. Introduction

A large class of well-studied independence and domination properties in graphs
can be characterized by two sets of nonnegative integers o and p. A (o, p)-set S
in a graph has the property that the number of neighbors every vertex u € S (or
u & S) has in S, is an element of o (of p, respectively) [7]. In a recent paper [3] it

* Adjunct affiliation University of Bergen, Norway
** Research support in part by Czech research grants GAUK 194/1996 and 158/1999, and
GACR 201/1996/0194.

is shown that deciding if a given graph has a ({0}, p)-set, i.e. vertices in S forming
an independent set with further p-imposed domination constraints, is NP-complete
whenever there is a non-negative integer = & p with z+1 € p, unless p are exactly the
positive numbers, and polynomial in all other cases. For the cases 0 & p the vertices
in S form a dominating set. In the present paper we consider cases of independence
and domination modulo 2, where ¢ and p are either the set of all even numbers or
the set of all odd numbers. We denote these sets EVEN and ODD, respectively, and
consider both decision and optimization versions of the four cases of (o, p) equal to
(EVEN, EVEN), (EVEN, ODD), (ODD, ODD), (ODD, EVEN).

In the next section, we develop an O(n?) algorithm to decide if a given graph G
has an (EVEN, EVEN)-set, i.e. a non-empty set S such that each vertex of G has
an even number of neighbors in S. This disproves a 1994 conjecture stating that
no non-trivial (o, p)-set existence problems were solvable in polynomial time [2]. In
section 3 we show that quite trivially this problem is equivalent to determining if the
adjacency matrix of the given graph is singular, and that our algorithm is a com-
binatorial interpretation of Gauss-Jordan elimination on square boolean matrices.
A recent paper giving combinatorial interpretations of various matrix algorithms
left such a view of Gaussian elimination, for general matrices, as an open prob-
lem [5]. We provide a partial answer to this question by using the connection with
(EVEN, EVEN)-sets to give a combinatorial interpretation of Gaussian elimination
for square boolean matrices.

In section 4 we give polynomial algorithms also for the three remaining existence
problems. In section 5 we consider the complexity of deciding if a given graph has
a desired set of size at least k, at most k, or exactly k, for a given integer k.
By reductions from NP-complete coding problems asking for codewords of given
length, we show that these maximization, minimization and exact versions of all
four problems are NP-complete.

2. Existence of independence mod-2 sets

We will be viewing an undirected graph as a directed graph with arcs uv and
vu for each edge {u,v}. We first generalize the (o, p) problems to directed graphs
with loops, and denote the set of out-neighbors of vertex v by vout = {u : vu € E}
and its in-neighbors by v;, = {u : uv € E}. If the graph G is not clear from context
we write vout (@), vin (G).

Definition 1. A nonempty subset of vertices S of a directed graph G = (V, E) is a
(0, p)-set if vyt N S| € o for any v € S and |voyu: N S| € p for any v € V'\ S.

Note that we could also have chosen to count in-neighbors, since in the graph
with all arcs reversed this would define the exact same vertex subsets as (o, p)-
sets. This simple transformation implies that decision problems over (o, p)-sets will
have the same time complexity regardless of whether we count in-neighbors or out-
neighbors.

Our algorithm for deciding if a graph G has an (EVEN, EVEN)-set (which
by Definition 1 must be non-empty) will consist of repeatedly applying a graph
operation that will maintain the property of interest. This will give a series of

graphs G, G, ...,G®, starting with the input graph and ending with a graph
for which it will be trivial to decide if it has an (EVEN, EVEN)-set. Let @ be the
symmetric difference operator, i.e. A®@ B = {z € AUB : z ¢ An B}. The main
observation is that for any two vertices u and r, (EVEN, EVEN)-sets are invariant
under the operation:

Uout ‘= Uout D Tout

Lemma?2. Let G' be the graph G altered by oyt (G') = Uout (G) @ Tout (G) for two
vertices u,r. Then S is an (EVEN, EVEN)-set of G if and only if S is an (EVEN,
EVEN)-set of G'.

Proof. Outgoing neighbors for any vertex z # u are identical in G and G'. For the
forward direction of the proof it therefore suffices to show that |usu(G') N S| =
[Uout (G) N S| + |Tout (G) N'S| — 2|tuout (G) N 7oue (G) N S| is even. But since S is an
(EVEN, EVEN)-set of G, all 3 terms in the right-hand side of the above equality
are even and thus so is their sum. Conversely, we have |uut(G) N S| = |Uout(G') N
S| = rout (G) N S| + 2|tout (G) N rout(G) N S| also even for similar reasons.

Our algorithm will for each of the n vertices in G maintain an in-flag and an
out-flag, initially all lowered. In the ith stage of the algorithm we choose a vertex c
with lowered in-flag that has at least one incoming neighbor r with lowered out-flag.
In addition to raising the in-flag of ¢ and the out-flag of r the code for this stage
consists of the loop:

for each u € ¢in \ {r} do Uout := Uout ® Tout

In the resulting graph G(?) the vertex ¢ will have only the single incoming neigh-
bor r. Once flags are raised they are never lowered, thus after n successful stages
each vertex would have exactly one incoming and one outgoing neighbor. Clearly,
such a graph can have no (EVEN, EVEN)-set. However, if there is a vertex in G
with lowered in-flag which has no incoming neighbor with lowered out-flag, then an
(EVEN, EVEN)-set exists and we halt. Before proving this fact we give the algo-
rithm formally below. Sets C' and R represent the subsets of vertices having raised
in-flags and out-flags, respectively.

3 (EVEN, EVEN)-SET ALGORITHM
input: digraph G = (V, E)

C:=R:=0

1:=0

while (i <n) and (Az € V\C : z;, CR) do
{i:==i+1

pick c € V'\ C and set C :=C U {c}
pick r € ¢;n \ R and set R:= RU{r}
for each u € ¢ijpn \ {7} do Uout := Uout ® Tout }
if (i = n) then A (EVEN, EVEN)-set
else {letz e V\C:24 CR
S:={z}U{v€C :v € yYour Ny € z4} is an (EVEN, EVEN)-set }

Lemma 3. Ifi < n upon completion of the algorithm then S is an (EVEN, EVEN)-
set of the current graph G,

Proof. A vertex v ¢ R has no outgoing edges to C so |vou: N S| = 0. Note that
|Zin| = {v € C : v € Your NY € Tin}| since z;,, C R and each vertex of R has
exactly one, distinct, outgoing neighbor in C. Each vertex v € z;, has therefore
2 outgoing neighbors in S, namely 2 and vy; N C, while any vertex w € R with
w & T;, has no outgoing neighbors in S.

By applying Lemma 2 inductively it follows that the algorithm for existence of
(EVEN, EVEN)-sets is correct. Its time complexity is O(n®) since in each of the at
most n stages the chosen vertex c has at most n incoming neighbors that each have
their at most n outgoing neighbors updated.

Theorem 4. The algorithm decides, in time O(n3), if the input graph has an (EVEN,
EVEN)-set or not.

3. Gaussian elimination on boolean matrices

Consider what the existence of an (EVEN, EVEN)-set S in a graph G implies
for the boolean adjacency matrix Ag of G. Clearly, the columns corresponding to
vertices in S sum to the all-zero vector (over GF(2)). Conversely, any non-empty
set of columns summing to the all-zero vector is linearly dependent and the corre-
sponding vertices form an (EVEN, EVEN)-set. Thus the matrix Ag has less than
full rank, i.e. is singular, i.e. has determinant zero, if and only if G has an (EVEN,
EVEN)-set.

Theorem 5. A square boolean matrix is singular if and only if its associated directed
graph has an (EVEN, EVEN)-set.

Note that the algorithm given for the existence of (EVEN, EVEN)-sets works
for any digraph, even one with self-loops. In fact, viewing it as a matrix algorithm
over GF(2) it is equivalent to Gauss-Jordan elimination, as follows: In the main loop
of the algorithm a new column (¢ ¢ C) is processed, a non-zero pivot (entry rc) is
chosen from the remaining pivot rows (r ¢ R), and row operations are performed
to make all other entries in column ¢ equal to zero. If the algorithm completes all
n stages then we are left with a permutation matrix, and otherwise we find a set of
columns that are linearly dependent.

Even if it has the same asymptotic time complexity, Gaussian elimination is
usually preferred over Gauss-Jordan in practice, as the constant term is smaller.
Let us consider Gaussian elimination as an algorithm for determining existence of
(EVEN, EVEN)-sets. The changes from the previous algorithm are in: (i) labelling
of chosen vertices for ease, (ii) all in-neighbors of ¢! in R (previously only r?) are
left untouched in the main loop, and (iii) definition of (EVEN, EVEN)-set S.

GAUSS 3 (EVEN, EVEN)-SET ALGORITHM
input: digraph G = (V, E)

C:=R:=0

1:=0

while (i <n) and (Az € V\C : z;, CR) do
{i:==i+1

pick ¢ € V' \ C and set C := C U {c}
pick 7' € ¢!, \ R and set R:= RU {r'}
for each u € ¢t,, \ R do Uout := Uout ® T, }
if (i = n) then A (EVEN, EVEN)-set
else { S :={z}
for k:=i downto 1 if |rk,, N S| is odd then S := S U {c*}
S is an (EVEN, EVEN)-set}

Lemma6. The GAUSS 3 (EVEN, EVEN)-set algorithm is correct.

Proof. Assume the algorithm completes with ¢ < n. Then each v € V' \ R has zero
out-neighbors to z by the halting condition of the main loop, and zero outgoing
neighbors to {c!,c?,...,c'} as the only arcs to c* left after iteration k of the main
loop are from {r!,...,rk=1} C R. Since r* has an arc to c¥, but none to {c!, ...,ck1}
the reverse ordering of the final loop in the definition of S implies that each 7* € R
will have an even number of out-neighbors to S. Hence, S is an (EVEN, EVEN)-set.

On the other hand, if i = n, we show by reverse induction on & that ¢* cannot
belong to an (EVEN, EVEN)-set S. Assume ¢, ...,ck*! ¢ S, for k < n. We cannot
have ¢ € S as the only out-neighbor of r¥ among {c, ..., c¥} is ¥, so that r* would
then have had exactly one out-neighbor in S.

We thus have a combinatorial interpretation of Gaussian elimination for square
boolean matrices.

4. Existence of domination mod-2 sets

In this section we prove the following result.

Theorem 7. The existence of (o, p)-sets of type (ODD, ODD), (ODD, EVEN) and
(EVEN, ODD) in directed graphs can be decided in polynomial time.

Proof. Let G have n vertices and let Ag be its adjacency matrix. We denote by 1 and
0 the all-one and all-zero vectors of dimension n and by I the n x n identity matrix.
We have observed that G has an (EVEN, EVEN)-set if and only if there is a non-
zero vector x such that Agx = 0. Similarly, a vector x is the characteristic vector
of an (ODD, ODD)-set if and only if Agx = 1. Similarly, for an (ODD, EVEN)-set
we have (Ag + I)x = 0 and for an (EVEN, ODD)-set we have (Ag + I)x = 1.
Thus, deciding the existence of these kinds of sets can be done in polynomial time
by solving linear equations.

5. Existence of sets of a given size

In this section we show that deciding the existence of independence and domi-
nation mod-2 sets of a given size k, whether exactly k, at least k or at most k, is

NP-complete even for undirected graphs. Note that the properties studied are not
hereditary, so that a graph may for example have an (EVEN, EVEN)-set of size k,
but none of size larger or smaller than k. Our reductions will be from NP-complete
problems in coding theory, that for our purposes can be described as follows:

Codeword of given weight: Given a binary r x ¢ matrix H and an integer w,
is there a vector x with w ones s.t. Hx = 07

This problem on binary linear codes was shown NP-complete in [1]. The problem
Codeword of maximal weight, asking for a vector of weight at least w is also
NP-complete for binary codes [6]. Finally, the problem Codeword of minimal
weight for binary linear codes, asking for a non-zero vector of weight at most w
was conjectured NP-complete in [1], and finally proven to be so in a recent paper
[9]. These problems are equivalent to asking if the orthogonal complement of the
linear space generated by the columns of H contains a non-zero vector of weight
w, at least w, or at most w (in other words, if there are exactly w, at least w,
or nonempty set of at most w columns of H that sum up to the all-zero vector).
They are thus very close to (EVEN, EVEN)-set problems. However, inputs to the
(EVEN, EVEN)-set problems are square matrices, and for undirected graphs also
symmetric matrices with zeros on the diagonal. We first show NP-completeness for
the maximum, minimum and exact versions of the (EVEN, EVEN)-set undirected
graph problems, and then use these results to give reductions for the other three
properties.

Theorem 8. The problems Codeword of mazimal weight and Codeword of minimal
weight remain NP-complete for symmetric matrices with all-zero diagonals.

Proof. The problems are clearly in NP. We first resolve the maximal weight version
by giving a polynomial-time reduction from the NP-complete problem Codeword of
maximal weight. Given a boolean r x ¢ matrix H and an integer w we construct a
symmetric matrix with all-zero diagonals G such that G has a codeword of size at
least k = 2r +w iff H has a codeword of weight at least w. G will have the following
form:

0 0 H
0 0 H
HtHt 0

where H? is the transpose of H, the lower-right 0 is the ¢ x ¢ all-zero matrix, and
the other Os are r X r all-zero matrices. This is a square (2r +¢) x (2r + ¢) symmetric
matrix with zeros on the diagonal. Since the leftmost 2r columns sum to the all-zero
vector, we conclude that this matrix has a set of at least 2r + w columns summing
to the all-zero vector iff H has a set of at least w columns summing to the all-zero
vector.

We next resolve the minimal weight version by reduction from Codeword of
minimal weight. Given a boolean 7 x ¢ matrix H and an integer w, we construct a

symmetric all-zero diagonal matrix G such that G has a codeword of size at most
k = w iff H has a codeword of weight at most w.

We may assume wlog that r is even, since we could add an all-zero row to H
otherwise. G will have (w + 1) x (w + 1) blocks Wjj,i,j = 1,2,...,w + 1 where
Wl,w+1 = H and Ww+1’1 = Ht. The blocks Wl,w = hwtl—i = iw+2—i for
1 =2,...,w will contain the symmetric permutation matrix P of size r by r with
the unique 1-entry in each row and column in position (r + 1 —4,%),% = 1..r (since
r is even P has zeroes on the diagonal.) All other blocks are all-zero matrices of
appropriate size. For the case w = 3 the matrix G thus becomes:

covv

H
0
0
0

Tyoo
oo

This is a 3r + ¢ by 3r + ¢ (wr + ¢ by wr + ¢) symmetric matrix with zeros on
the diagonal consisting of 4 by 4 (w + 1 by w + 1) blocks. The placement of the
permutation matrices ensures that choosing a column from any but the rightmost
column of blocks will force a choice of a column from all the columns of blocks, i.e.
forcing a choice of at least w + 1 = 4 columns. Hence the matrix has a set of at
most w = 3 columns summing to the all-zero vector iff all columns come from the
rightmost block, i.e. from H. A similar argument applies to the general case.
Corollary 9. Given an undirected graph G and an integer k, deciding if G has a
non-empty (EVEN, EVEN)-set of size at least k, at most k, or exactly k is NP-
complete.

The corollary is immediate since the minimum and maximum versions are equiv-
alent to the analogous codeword problems and the exact version follows by a Cook
reduction from either of the other two. We turn to the other problems.

Theorem 10. The mazimum, minimum and exact versions of the (ODD, ODD),
(ODD, EVEN) and (EVEN, ODD) problems are all NP-complete, even for undi-
rected graphs.

Proof. Given a graph G as input to a known NP-complete problem (as spec-
ified below), Figure 1 shows the constructed graphs Gy, ...,Gs for five separate
NP-completeness reductions for maximization and minimization versions, and NP-
completeness of the exact versions will follow from this. For each graph in Figure
1 is shown two vertices of the graph G, and the corresponding subgraph that is
attached to every vertex of G to form G;. In all reductions below, G is a graph with
vertices {v1,...,Un}.

The first reduction is from min and max versions of (EVEN,EVEN) to min
and max versions of (ODD,EVEN). Given a graph G and an integer k subject to
min or max variant of (EVEN,EVEN) problem, we construct G; and ask for an
(ODD,EVEN)-set in Gy of size at most or at least 2k, respectively. Let G be the
graph consisting of a copy of G plus added leaf vertices {z1, ..., 2, } with z; adjacent
to v;.

G G, G

® INS

G, G,

Fig. 1. The constructed graphs Gi, ..., Gs for five separate reductions. For each graph is
shown two vertices of the given graph G, and the corresponding subgraph that is attached
to every vertex of G to form G;. The two unique possibilities for membership in a (o, p)-set
S' of G; are shown, with black vertices belonging to S’ and white not.

Claim 1 G has an (EVEN, EVEN)-set of size k if and only if G1 has an (ODD,
EVEN)-set of size 2k.

Proof. Let S be an (EVEN, EVEN)-set of G of size k. We show that S’ = SU{z; :
v; € S} is an (ODD, EVEN)-set of G;. The new leaf vertices have either 1 or 0
S'-neighbors depending on whether they belong to S’ or not, as desired. A vertex
v € V(G) with v € S has |vout(G1) N S'| = [vout(G) NS| + 1, an odd number, while
v € V(G) with v € S has the same S'-neighbors as S-neighbors, an even number.
Thus, S’ forms an (ODD, EVEN)-set of size 2k. Conversely, an (ODD, EVEN)-set
S" of G; contains a new leaf vertex z; if and only if it contain its neighbor v;, so
that S’ NV (G) forms an (EVEN, EVEN)-set of G of appropriate size.

We now give a reduction from the max (EVEN,EVEN) problem to the max
(EVEN,0DD) problem. Given a graph G and an integer k subject to the max

(EVEN,EVEN) problem, we construct G2 and ask for an (EVEN, ODD)-set in G2
of size at least 2k + n. Let G3 be the graph consisting of a copy of G plus added
vertices {Z1,¥1,21, .-, Tn,Yn, Zn} With z; adjacent to v;,yi, z;. G2 is thus G with a
two-level complete binary tree attached to each vertex of G.

Claim 2 G has an (EVEN, EVEN)-set of size k if and only if G2 has an (EVEN,
ODD)-set of size 2k + n.

Proof. Let S be an (EVEN, EVEN)-set of G of size k. We show that S’ = SU{z; :
v; € S}U{yi,z; : v; € S} is an (EVEN, ODD)-set of G3. The new vertices have
0 S’-neighbors if they belong to S’ and either 3 or 1 if they do not, as desired. A
vertex v € V(G) with v € S has no new S'-neighbors, while v € V(G) with v ¢ S
has gained the S’-neighbor z;. Thus S’ forms an (EVEN, ODD)-set of size 2k + n.
Conversely, in any (EVEN, ODD)-set S’ of G2 either both y; and z; are in S’ or
none of them are. If they both are then z; € S’ but v; € S’ while if none of them are
then z; € S’ but v; € S’. We conclude that SNV (G) forms an (EVEN, EVEN)-set
of G of appropriate size.

Since G2 always has an (EVEN,0DD)-set of size n, consisting of z; for each 4, it
cannot be used in a reduction for the min (EVEN, ODD) problem. Instead, given a
graph G and an integer & subject to the max (EVEN,EVEN) problem, we construct
a new graph G5 and ask for an (EVEN, ODD)-set in G5 of size at most 5n — 2k.
(G5 is constructed by attaching a three-level complete binary tree to each vertex of
G. Such a tree thus contains one vertex at level 1, two at level 2, and four at level
3.

Claim 3 G has an (EVEN, EVEN)-set of size k if and only if G3 has an (EVEN,
ODD)-set of size bn — 2k.

Proof. For any (EVEN,EVEN)-set S of G we have an (EVEN,0DD)-set S’ of G
consisting of vertices in S and vertices at alternate levels of each attached tree, so
that a tree attached to a vertex in S (respectively, not in S) has both vertices at
level 2 in S’ (respectively, all five vertices at levels 1 and 3 in S’). If S has size
k, S' has size 3k + 5(n — k) = bn — 2k. For the other direction, note that any
(EVEN,ODD)-set of G5 must, for each attached tree, contain all the vertices at
alternate levels, and it contains the vertex at level 1 if and only if its neighbor from
G is not in the (EVEN, ODD)-set.

We now give a reduction from the max (EVEN,EVEN) problem to the max
(ODD,0ODD) problem. Given a graph G and an integer k& subject to the max
(EVEN,EVEN) problem, we construct G4 and ask for an (ODD, ODD)-set in G4 of
size at least 2k + 2n. Let G4 be the graph consisting of a copy of G plus added ver-
tices {Z1,Y1,21, W1, -y Tn,Yn, 2n} With a triangle on y;, z;, w; and with z; adjacent
to v; and to y;.

Claim 4 G has an (EVEN, EVEN)-set of size k if and only if G4 has an (ODD,
ODD)-set of size 2k + 2n.

Proof. It will suffice to show that any (ODD,0ODD)-set S’ of G4 must for each
1 < i < n contain exactly the vertices {v;, z;, z;, w;} or {z;,y;}. This holds since
out of the triangle-forming vertices y;, z;, w; either y; is the only member of S’, or

zi, w; are members of S’ but y; is not. In the former case, x; is also a member of
S’ but v; is not, while in the latter case both z; and v; are in S’. We conclude that
S'NV(Q) forms an (EVEN, EVEN)-set of G of appropriate size.

Since G4 always has an (ODD,0ODD)-set of size 2n, consisting of z; and y; for
each 4, it cannot be used in a reduction for the min (ODD, ODD) problem. Instead,
given a graph G and an integer k subject to the max (EVEN,EVEN) problem, we
construct a new graph Gy and asgk for an (ODD, ODD)-set in G5 of size at most
6n —2k. G5 is constructed from a copy of G by adding 6n vertices {7, y7, ..., 2%, 3}
for j = 1,2,3, with xf adjacent to both v; and yf (G5 can be constructed by first
adding three leaves to each vertex and then subdividing each new edge.)

Claim 5 G has an (EVEN, EVEN)-set of size k if and only if G5 has an (ODD,
ODD)-set of size 6n — 2k.

Proof. Let S be an (EVEN, EVEN)-set of G of size k. We show that S’ = SU {xz :
1<j<31<i<n}U {yf :v; ¢ S} is an (ODD, ODD)-set of G5. The new
vertices all have a single S’'-neighbor as desired, while a vertex v; € V(G) gains
the 3 extra S'-neighbors z},z?,z3, so that S’ forms an (ODD, ODD)-set of G5 of
size 3n + 3(n — k) + k = 6n — 2k. Conversely, any (ODD, ODD)-set S’ of G5 must
contain zz ,1<5<3,1<4%<n and it contains yzj iff it does not contain v;. Hence,
S'NV(QG) forms an (EVEN, EVEN)-set of G of appropriate size.

This concludes the proof of the Theorem.

6. Conclusion

We have resolved the complexity of (o, p)-set existence, maximization, minimiza-
tion and exact size problems for the cases where o,p € {EVEN,0DD}. The only
other cases of polynomial-time solvable (o, p)-set existence problems we know are
either the trivial cases, for example o = {0},p = {1,2,...} where the answer is al-
ways positive since every graph has an independent dominating set, those solvable
by a simple greedy algorithm, see [8], or by exhaustive search, see [3]. We believe
these are the only easy cases.

Conjecture 1 The only (o, p)-set existence problems solvable in polynomial time,
apart from the trivial cases and those resolved by exhaustive search or a simple
greedy algorithm, are when o,p € {EVEN,0ODD}.

To decide if a graph had an (EVEN,EVEN)-set we essentially did Gaussian
elimination on its boolean adjacency matrix. The more general graph property
resolved by Gaussian elimination on square matrices over the finite field Z, for
a prime p is: Given an edge-weighted digraph, can we assign vertex weights (not
all zero) in such a way that after multiplying each edge weight by the weight of its
sink vertex, the weights of edges leaving each vertex sum to zero mod p?

References

1. E. Berlekamp, R.J. McEliece and H.C.A. van Tilborg, On the inherent intractability
of certain coding problems, IEEE Trans. Inform. Theory. Vol.29, No.3, 1978, 384-386.

2. M. Halldérsson, unpublished.

3. M. Halldérsson, J. Kratochvil and J.A. Telle, Independent sets with domination con-
straints, Proceedings ICALP’98 - 25th International Colloquium on Automata, Lan-
guages and Programming, Aalborg, Denmark, July 1998, LNCS vol. 1443, 176-187

4. M. Mahajan and V. Vinay, Determinant: combinatorics, algorithms, complexity,
Chicago Journal of Theoretical Computer Science, 1997:5, 1997. Preliminary version
SODA’97.

5. M. Mahajan and V. Vinay, Determinant: Old Algorithms, New Insights, in Proceed-
ings SWAT’98 - 6th Scandinavian Workshop on Algorithm Theory, Stockholm, Swe-
den, July 1998, LNCS Vol. 1432, 276-287.

6. S.C. Ntafos and S.L. Hakimi, On the complexity of some coding problems, IEEE
Trans. Inform. Theory, Vol. 27, 1981, 794-796.

7. J.A. Telle, Characterization of domination-type parameters in graphs, Proceedings
of 24th Southeastern International Conference on Combinatorics, Graph Theory and
Computing -Congressus Numerantium Vol.94 1993, 9-16.

8. J.A. Telle, Complexity of domination-type problems in graphs, Nordic Journal of Com-
puting 1(1994), 157-171.

9. A. Vardy, The intractability of computing the minimum distance of a code, IEEE
Trans. Inform. Theory. Vol.43 No. 6, 1997, 1757-1766. Preliminary version STOC’97.

This article was processed using the BTEX macro package with LLNCS style

