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Abstract

Scheduling jobs with pairwise conflicts is modeled by the graph multicoloring problem.

It occurs in two versions: in the preemptive case, each vertex may get any set of colors, while

in the non-preemptive case, the set of colors assigned to each vertex has to be contiguous.

We study these versions of the multicoloring problem on trees, under the sum-of-completion-

times objective. In particular, we give a quadratic algorithm for the non-preemptive case, and

a faster algorithm in the case that all job lengths are short, while we present a polynomial-

time approximation scheme for the preemptive case.

1 Introduction

In many real-life situations, non-sharable resources need to be shared among users with conflict-

ing requirements. This includes traffic intersection control [B92], frequency assignment to mobile

phone users [DO85, Y73], and session management in local area networks [CCO93]. Each user

can be identified with a job, the execution of which involves the exclusive use of some resource,

in a given period of time. Indeed, scheduling such jobs with pairwise conflicts is a fundamental

problem, in the above areas as well as in distributed computing (see, e.g., [L81, SP88]).

The problem of scheduling dependent jobs is modeled as a graph coloring problem, when all

jobs have the same (unit) execution times, and as graph multicoloring for arbitrary execution

times. The vertices of the graph represent the jobs and an edge in the graph between two

vertices represents a dependency between the two corresponding jobs, which forbids scheduling

these jobs at the same time.

More formally, for a weighted undirected simple graph G = (V,E) with n vertices, let the

length of a vertex v be a positive integer denoted by x(v) and called the color requirement of

v. A multicoloring of the vertices of G is a mapping into the power set of the positive integers,
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Ψ : V 7→ 2Z+

, such that |Ψ(v)| = x(v) and adjacent vertices receive non-intersecting sets of

colors.

The traditional optimization goal is to minimize the total number of colors assigned to G.

In the setting of a job system, this is equivalent to finding a schedule, in which the time when

all the jobs have been completed is minimized. Such an optimization goal favors the system.

However, from the point of view of the jobs themselves, an important goal is to minimize the

average completion time of the jobs (or equivalently, the sum of the completion times). This

optimization goal is the concern of this paper. Formally, in the sum multicoloring (SMC) problem

[BKH+00] we look for a multicoloring Ψ that minimizes
∑

v∈V fΨ(v), where fΨ(v) is the largest

color assigned to v by Ψ. This reduces to the sum coloring problem [K89] in the case of unit

color requirements.

There are two variants of the sum multicoloring problem. In the preemptive (pSMC) problem,

each vertex may get any set of colors, while in the non-preemptive (npSMC) problem, the set

of colors assigned to each vertex has to be contiguous. The preemptive version corresponds to

the scheduling approach commonly used in modern operating systems [SG98], where jobs may

be interrupted during their execution and resumed at a later time. The non-preemptive version

captures the execution model adopted in real-time systems, where scheduled jobs must run to

completion.

In the current paper we study the sum multicoloring problems on trees. Given the hardness

of these problems on general graphs (see below), it is natural to seek out classes of graphs where

effective solutions can be obtained efficiently. Trees constitute the boundary of what we know

to be efficiently solvable, and represent perhaps the most frequently naturally occurring class of

graphs.

A natural application, in which the resulting conflict graph is a tree, is packet routing on a

tree network topology: each node can conflict over its neighboring links, either with its parent

or children in the tree. Thus, the conflict graph is induced by the network topology. Conflicts

among processes running on a single-user machine (e.g. PCs) are typically for shared data. In

many operating systems, the creation of a new process is done by ‘splitting’ an existing process,

via a ‘fork’ system call (see, e.g., [B86]). Thus, the set of processes forms a tree where each

process is a node. Conflicts over shared data typically occur between a process and its immediate

descendents/ancestor in that tree, as these processes will share parts of their codes. Thus, the

conflict graph is also a tree.

1.1 Our results

For the npSMC problem, we give in Section 3 two exact algorithms, with incomparable com-

plexity: the first one is quadratic, i.e. O(n2) where |V | = n, while the second is more effective

if the maximum color requirement p is small, running in time O(np). In both cases, non-trivial

optimizations have been made to reduce the time complexity. The first algorithm is still more

efficient for the special case of paths, running in time O(n · log p/ log log p). (Unless specified

otherwise, all the logarithms in this paper are to the base of 2.)
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For the case of pSMC, we present in Section 4 a polynomial time approximation scheme

(PTAS), along with an exact algorithm for a limited special case. A partitioning result of

[HK02] allows us to improve the time-approximation tradeoffs of this method. Specifically, we

give a PTAS for pSMC using at most 1/ε3 · (log 1/ε)2 preemptions per vertex, running in time

exp((1/ε · log 1/ε)3)n. This implies that we can obtain 1+O((log log n/ log n)1/3)-approximation

in polynomial time, and for any fixed ε, we can achieve a (1 + ε)-approximation in linear time

with a constant number of preemptions in the coloring of each vertex.

Finally, we discuss in Section 5 several generalizations of the problem, to which our algorithms

continue to apply, and mention open problems for further study.

1.2 Related work

The sum multicoloring problem was introduced by Bar-Noy et al. [BKH+00]. They presented

a comprehensive study of the approximability of both the pSMC and the npSMC problems, on

general and special classes of graphs.

The sum coloring problem was introduced by Kubicka [K89], who gave a polynomial algo-

rithm for trees. Jansen [J97] extended the dynamic programming strategy to partial k-trees.

These dynamic programming algorithms can be seen to generalize to multicoloring, leading to

algorithms that are polynomial in n and p, e.g. O(p2n log n). However, the additions in this

paper are needed to obtain an algorithm polynomial in n only, or to reduce the complexity to

O(pn).

Known hardness results for the sum coloring problem carry over to the sum multicoloring

problem. It is NP-hard on interval graphs [S99], planar graphs [HK02], and line graphs [BBH+98],

and NP-hard to approximate within some constant c ≥ 1 on bipartite graphs [BK98]. On gen-

eral graphs, it is hard to approximate within factor n1−ε, for any ε > 0 unless NP = ZPP

[FK96, BBH+98].

Marx [M02] has recently shown that pSMC is NP-hard on trees, answering a question posed

in an earlier version of this paper [HKP+99]. His result holds for even binary trees when the

weights are polynomially bounded.

Resource-constrained scheduling has recently been investigated in the vast literature of

scheduling algorithms (see e.g. [BK96, K96]). A special case involves the scheduling of mul-

tiprocessor jobs on dedicated processors. Kubale [K96] studies the complexity of scheduling

biprocessor jobs, which corresponds to multicoloring line graphs. He also investigates special

classes of graphs, and shows that npSMC of line graphs of trees is NP-hard in the weak sense,

but leaves it open for pSMC.

Halldórsson and Kortsarz [HK02] have generalized some of the results of this paper to

the class of partial k-trees (or, graphs of bounded treewidth). In particular, they gave an

O(n(p log n)k+1) algorithm for npSMC, and a (1 + ε)-approximation in time nO(1/ε)3 for pSMC.

Notice that for both models, the algorithms of this paper have considerably better complexity

bounds for the case of trees (k = 1). The [HK02] paper also gave PTASes for planar graphs in

both models.
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2 Definitions and Notation

An instance of a multicoloring problem is a pair (G, x) where G = (V,E) is a graph and

x : V → Z+ is a vector of color requirements (or lengths) of the vertices. We denote by

p = maxv∈V x(v) the maximum color requirement in G.

A multicoloring of G is an assignment Ψ : V → 2Z+

, such that each vertex v is assigned

x(v) distinct colors and adjacent vertices receive non-intersecting sets of colors. The start time

(finish time) of a vertex v under Ψ is the smallest (largest) color assigned to v, denoted by

sΨ(v) = min{i|i ∈ Ψ(v)} (fΨ(v) = max{i|i ∈ Ψ(v)}). A multicoloring Ψ is contiguous, or

non-preemptive, if for any v, fΨ(v) = sΨ(v) + (x(v) − 1). The sum of a multicoloring Ψ of an

instance (G, x) is the sum of the finish times of the vertices
∑

v∈V fΨ(v). The minimum sum of

a preemptive (non-preemptive) multicoloring of G is denoted by pSMC(G) (npSMC(G)).

We denote by n the number of vertices of the input instance. For a vertex v, d(v) is the

degree and N(v) is the set of neighbors of v. When T is a rooted tree, we denote by Tv the

subtree rooted at v, ch(v) denotes the set of children of v, and p(v) its parent. Finally, we denote

by [x, y] the interval of natural numbers {x, x + 1, . . . , y}.
We use the following bound on the number of colors used. Let us view coloring as a sequential

process where in each step i an independent set is selected and the respective vertices assigned

the color i. This can be viewed as a timeline, with the color requirements of the vertices being

satisfied incrementally.

Lemma 2.1 Consider an optimal sum multicoloring (preemptive or non-preemptive) of a bipar-

tite graph, and let n′ be the number of vertices that are not fully colored at some point. Then,

at least n′/2 of these vertices are fully colored after additional 2p steps.

Proof. We focus on the delay costs of the remaining n′ vertices, i.e. the number of time steps

before their completion during which they are not being colored. A coloring of these n ′ vertices

that completes less than half of them in 2p steps incurs a delay of more than pn ′/2.

Consider the following alternative coloring. If V1, V2 is a bipartition of the graph with |V1| >
|V2|, color V1 first to completion, followed by V2. The delay incurred is at most p|V2| ≤ pn′/2.

Lemma 2.1 implies the following claim, since at most one vertex remains after 2p log n steps.

Claim 1 Optimum sum multicolorings (preemptive or non-preemptive) of a bipartite graph use

at most O(p · log n) colors.

A bound on the number of colors in an approximate solution was given in [HK02]. We state

its preemptive version for bipartite graphs.

Claim 2 Any bipartite graph G has a (1 + ε)-approximate preemptive sum multicoloring that

uses at most 2p(lg 1/ε + 2) colors.

Proof. Observe that a round-robin schedule of G, that colors the bipartitions alternately in

odd and even time steps, completes each job within twice its length. Thus, pSMC(G) ≤ 2S(G),

where S(G) =
∑

v∈V x(v). It follows that in an optimal sum coloring, at most S(G)/p vertices

remain to be completed by step 2p. By repeated applications of Lemma 2.1, at most S(G) · ε/p
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remain after 2p lg 1/ε additional steps. If we now truncate the optimal coloring there, and 2-

color the remaining vertices using 2p colors, the added cost of coloring these vertices is at most

p · S(G) · ε/p ≤ pSMC(G) · ε. The total number of colors used will be p(4 + 2 lg 1/ε).

3 Non-preemptive multicoloring

We say that vertex v is grounded in a multicoloring Ψ, if the smallest of v’s colors is 1, i.e. sΨ(v) =

1, and v is flanked in Ψ by a neighbor u, if the smallest color of v is one larger than the largest

color of u, i.e. sΨ(v) = 1 + fΨ(u). We call a sequence of vertices v0, v1, . . . , vm a grounding

sequence of vm, if v0 is grounded and, for all 0 ≤ i < m, vi+1 is flanked by vi. Then, vm is said

to be grounded in v0. The following observation is called for.

Observation 3.1 (Flanking property) In an optimum npSMC coloring of a graph, each

vertex v is either grounded or has a flanking neighbor.

It is not difficult to see that this holds for any minimal coloring, where the coloring of any one

vertex cannot be reduced without creating an improper coloring. It follows from the Flanking

property that a grounding sequence v0, v1, . . . , vm of a vertex vm completely determines the

coloring of vm. In fact, sΨ(vm) equals the sum of color requirements of v0, . . . , vm−1 plus 1.

In our search for an optimum npSMC coloring on trees, we examine possible grounding

sequences. We note that since each pair of vertices can be connected by a single path, the

total number of paths is
(n
2

)

; thus, the number of grounding sequences is n2. This is the

property of trees that is not shared by important larger classes of graphs. It easily leads to a

polynomial algorithm for trees. We shall introduce additional ideas to reduce the complexity to

O(nmin(n, p)).

Our general approach is based on dynamic programming. We arbitrarily root the tree, and

give inductive definitions of some attributes of the vertices and their corresponding subtrees in

terms of the attributes of their children. These attributes can be evaluated in any bottom-up

order, e.g. within a DFS or postorder traversal of the tree. Essentially, we compute for each

node v and for each plausible coloring of v, the cost of the optimal solution of the subtree rooted

at v, assuming this particular coloring of v. The plausible colorings of v correspond, in the first

algorithm, to the n possible groundings of v, and in the second algorithm, to all ways in which

the neighbors of v can delay v.

We specify the coloring of vertices in terms of finishing times. The finishing times f(u) and

f(v) of adjacent vertices u and v must satisfy

[f(u)− x(u) + 1, f(u)] ∩ [f(v)− x(v) + 1, f(v)] = ∅ ,

for the coloring to be valid, in which case we say they are compatible.

Remark: We observe that the optimum non-preemptive sum multicoloring can be computed

in time independent of p. This may be important within an applied context, for small values of

n. Namely, for each vertex v, there are at most d(v) + 1 flanking choices for v: either flanking

one of its neighbors, or being grounding. Thus, the number of minimal multicolorings is at most
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Figure 1: The three possible cases for grounding of w and p(w).

nn. Each can be generated and checked in linear time, hence the complexity is O(nn+1). This

bound is essentially tight, since the number of minimal schedules in a clique on n vertices is

n! = Ω(n/e)n.

3.1 An O(n2) algorithm for npSMC of trees

Assume that the tree T is arbitrarily rooted in vertex r. We give a dynamic programming

algorithm that computes bottom-up a matrix A, where A[u, v] contains the minimum cost of a

coloring of the subtree Tu, under the constraint that u is grounded in v. The desired solution is

then given by minv A[r, v]. Let fv(u) denote the finishing time of u when grounded in v. Namely,

fv(u) is the sum of the lengths of the vertices on the unique path from v to u.

Adjacent vertices must satisfy the following constraints on their groundings. Let w be a

non-root vertex with parent u = p(w). There are only three possibilities for grounding of w and

p(w):

(i) w and p(w) both grounded in v ∈ Tw. Then p(w) is flanked by w.

(ii) w and p(w) both grounded in v 6∈ Tw. Then w is flanked by p(w).

(iii) w grounded in z ∈ Tw and p(w) grounded in v 6∈ Tw. Then fv(p(w)) and fz(w) must be

compatible finishing times.

Figure 3.1 illustrates the three cases.

The minimum cost of the subtree Tu when u is grounded in v, A[u, v], is given by the

finishing time of u when grounded in v, plus the minimum costs of grounding all subtrees of u

in a compatible manner. We thus get the formula

A[u, v] = fv(u) +
∑

w∈ch(u)







A[w, v] v ∈ Tw

min
z∈Tw∪{v}

(A[w, z] : fv(u), fz(w) compatible) v 6∈ Tw. (1)

Since the optimizations in the right-hand side of the formula for A[u, v] involve only vertices

in the subtree of u, this gives us a rule for computing the matrix A bottom-up, thus solving the

problem. Note that when u = p(w) is grounded in a vertex v ∈ Tw, w must also be grounded in
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v. This is the easy case (i). When u = p(w) is grounded in a vertex v 6∈ Tw, we have either the

similarly easy case (ii) where w is also grounded in v, or else the harder case (iii) where we need

to optimize over all groundings of w among those z ∈ Tw that are compatible with grounding

p(w) in v. Because of this harder case (iii), we only have an O(n) bound on the computation of

each of the n2 entries of A giving an O(n3) algorithm overall. In the remainder of this section

we show how to compute the entries in constant amortized time with some preprocessing, giving

an O(n2) algorithm overall.

In computing case (iii), we need to find compatible finishing times. To do this quickly, we

precompute, for each vertex in the tree, a sorted list of the finishing times corresponding to the

n different ways of grounding this vertex. The following lemma shows how to do this efficiently.

Defined the length of a path to be the sum of the lengths of the vertices on the path.

Lemma 3.2 Given a rooted tree T and a length function x : V (T )→ Z+, one can compute in

O(n2) time a sorted list, for each vertex u ∈ V , of the lengths of the paths in T originating in u.

Proof. The algorithm has a bottom-up phase followed by a top-down phase. In the bottom-up

phase, we compute for each vertex u the sorted list Lu of all lengths of paths from u to vertices

in the subtree Tu. Each entry has the index of the originating vertex as a satellite data. For a

leaf u, Lu contains only x(u). For a non-leaf vertex u, Lu is obtained by merging the children’s

lists, then adding x(u) to each entry and prepending the entry x(u) to the resulting list.

In the top-down phase, each non-root vertex u of T processes the completed sorted list of

its parent p(u). The entries involving descendants of u will appear in the same order in that list

as in Lu (with values that have been augmented by x(p(u))), and can thus be identified while

scanning the two lists. We extract the entries of non-descendants of u, augment their values by

x(u), and merge the resulting list with Lu. This gives the complete list for u. The work done

at each vertex in each phase is O(n), for a total time complexity of O(n2).

For u = p(w) grounded in vertex v 6∈ Tw we now show how to deal with case (iii), i.e. how

to compute efficiently minz∈Tw(A[w, z] : fv(u), fz(w) compatible). Let zi, i = 1, . . . , t, be the

vertices of Tw ordered such that fz1
(w) ≤ . . . ≤ fzt(w).

First, we extract the list A[w, z1], . . . , A[w, zt]. Next, we compute two vectors P and S,

corresponding to prefix and suffix minimas of A[w, z1], . . . , A[w, zt]. Namely,

P [w, i] = min
1≤j≤i

{A[w, zj ]}, S[w, i] = min
i≤j≤t

{A[w, zj ]}.

Consider the sorted list fv1
(u) ≤ . . . ≤ fvn(u) of all finishing times for the parent u of

w. Observe that each fvi
(u) is incompatible only with fzj

(w), where j lies in some interval

j = li + 1, . . . , ri− 1. Conversely, fvi
(u) is compatible with precisely fz1

(w), . . . fzli
(w) and with

fzri
(w), . . . , fzt(w). The minimum costs of these ranges are given by P [w, li] and S[w, ri]. Thus,

given P and S, we can for u grounded in vi 6∈ Tw easily compute minz∈Tw{A[w, z]|fvi
(u), fz(w) compatible} =

min(P [w, li], S[w, ri]) in constant time per element. It remains to show how to compute the vec-

tors l and r.

Observe that both the start and endpoints of these incompatibility intervals are monotone

nondecreasing sequences. Thus, we can compute li and ri, for all i, 1 ≤ i ≤ n, by a single scan

through the two lists of finishing times for w and p(w). Namely,
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fzt+1
(w)←∞.

l0 ← 0, r0 ← 1

for i← 1 to n do

li ← li−1, ri ← ri−1

while (fvi
(p(w)), fzli+1

(w) compatible and ri > li + 1)

li ← li + 1

while (fvi
(p(w)), fzri

(w) are incompatible, or fzri
(u) < fvi

(p(w)))

ri ← ri + 1

Observe that the processing time for computing the vectors P, S, l and r is O(n) for each

vertex. We can therefore compute A[u, v] for all pairs u, v bottom-up over u in O(n2) time. The

value of the overall optimum cost, npSMC of T , is given by minv∈T (A[r, v]). We have obtained

the following theorem.

Theorem 3.3 The npSMC problem can be solved for a tree in O(n2) time.

3.1.1 Special cases

In the case of paths, we can improve the complexity by observing that grounding sequences

must be short.

Lemma 3.4 The maximum number d of vertices in a grounding sequence v1, . . . , vd in a path

is O(log p/ log log p).

Proof. Suppose the vertices v0, v1, . . . , vd (d > 2) form a grounding sequence in an optimum

npSMC coloring Ψ∗ of a path. Then, we claim that

x(vi) ≥ (d− i)
∑

0≤j<i

x(vj), for 2 ≤ i < d. (2)

It then follows that

x(vd−1) ≥ (d− 2)!
∑

1≤j<2

x(vj) ≥ (d− 2)!

Since p ≥ x(vd−1) = dΩ(d), we have the desired bound.

To show inequality (2), consider the coloring obtained from Ψ∗ by grounding the sequence

vi, . . . , vd−1 in vi. This may necessitate flanking vi−1 by vi. The former decreases the cost (with

respect to SMC(G,Ψ)) by
∑

0≤j<i x(vj), for each vertex vi+1, . . . , vd−1, while the latter increases

the cost by at most x(vi). Thus, the cost difference is x(vi)− (d− i)
∑

0≤j<i x(vj), which by the

assumed optimality of Ψ∗ must be nonnegative.

Corollary 3.5 The npSMC problem can be solved for a path in O(n log p/ log log p) time.

A reduction in the complexity of the tree algorithm can also be obtained when the tree has

few distinct path lengths. We state the following claim without a proof. It implies, e.g., that the

npSMC of a tree of constant height with constant number of different lengths can be computed

in linear time.

Claim 3 Suppose a tree T has the property that from any vertex v, there are at most q different

lengths of paths originating from v. Then, npSMC of T can be computed in time O(qn).
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3.2 An O(n · p) algorithm for npSMC on trees

We now give an algorithm whose running time is linear in n when p ≥ 1 is a constant.

The algorithm Tree-color proceeds bottom-up on the rooted tree T . The coloring of each

vertex v involves two tasks:

(a) Evaluate the cost of the possible finish times of v and select the optimal one, from which

to derive the corresponding minimum multicolor sum of Tv.

(b) For v 6= r, prepare a set of at most x(v) + x(p(v)) − 1 < 2p alternative finish times for v,

in the event that p(v) chooses a finish time that interferes with v.

Observe that the finish time of v in a minimal coloring is at most

B(v) = x(v) +
∑

u∈N(v)

(x(u) + x(v)− 1) = (d(v) + 1)x(v) +
∑

u∈N(v)

(x(u)− 1).

Namely, each neighbor u of v can delay the completion of v by at most x(u) steps, from its own

length, plus x(v) − 1, from leaving a “gap” in the set of available colors for v.

The data required for these computations will be kept in the following integer arrays:

− costv[B(v)], in which the ith entry gives the minimum cost of coloring Tv, when the finish

time of v is set to be i.

− altv[B(v)], of alternative finish times for v, in which the jth entry is the optimal finish time

for v when p(v) has finish time j.

Let f(v) be the finish time of v that minimizes the cost of coloring Tv, and minCost(v) =

costv[f(v)] be that cost.

Each vertex v fills the arrays in four phases.

(i) In the initial phase, v fills the array costv with values appropriate for the case that no

collisions occur with the optimal colors of its children. Let

SubtreeCost(v)←
∑

u∈ch(v)

minCost(u).

Then, for i = x(v), . . . , B(v), set

costv[i]← SubtreeCost(v) + i.

(ii) In the second phase, v adjusts the cost array to reflect collisions with the optimum col-

orings of the subtrees rooted at its children. Specifically, for any finish time i of v that

is incompatible with f(u), for u ∈ ch(v), v updates the ith entry of costv, using the ith

entry of the array altu.

Namely, for each u ∈ ch(v) and i = f(u)− x(u) + 1, . . . , f(u) + x(v)− 1,

costv[i]← costv[i] + costu[altu[i]]−minCost(u).

The optimal finish time, f(v), is the value i that minimizes costv[i].
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(iii) In this phase, two help vectors P and S are computed from costv. The prefix index-

minima of i, P [i], is the index in which costv is minimal, in the range [x(v), i]. That is,

for i = x(v), . . . , B(v),

P [i] = arg min
x(v)≤p≤i

costv[p].

Thus, e.g., costv[P [i]] ≤ costv[p], for x(v) ≤ p ≤ i.

Similarly, the suffix index-minima of i, S[i] = arg mini≤s≤B(v) costv[s], is the index in the

range [i, B(v)] in which costv is minimal.

(iv) Finally, alternative finish times are computed. For each possible finish time j for p(v) that

is incompatible with f(v), altv[j] should be the index minimizing costv. The constraint

implies that either v is scheduled before p(v), finishing no later than j − x(p(v)), or it is

scheduled after p(v), finishing no earlier than j + x(v). The index minimizing costv in the

former case is then given by P [j−x(p(v))], while in the latter case it is given by S[j+x(v)].

Thus, we assign altv[j] the better of the two possibilities.

Theorem 3.6 Tree-color solves npSMC on trees in O(np) time.

Proof. We consider separately the phases performed by a vertex v. The first phase takes

O(B(v)) steps. In phase (ii), for each child u of v, at most x(u) + x(v)− 1 entries are updated

in costv, for a combined complexity O(B(v)). In phase (iii), the vectors P and S can be

computed inductively, in O(B(v)) steps each. Initially, P [x(v)− 1] ← S[B(v)+1]←∞, and for

x(v) ≤ i ≤ B(v),

P [i]←
{

i if costv[i] ≤ costv[P [i− 1]]

P [i− 1] otherwise,
S[i]←

{

i if costv[i] ≤ costv[S[i + 1]]

S[i + 1] otherwise.

Finally, the O(p) entries of altv are computed in constant time each. Observe, that

∑

v

B(v) ≤
∑

v

(2d(v) + 1)x(v) ≤ (4n− 3)p.

Thus, summing up the complexity over all the vertices yields the theorem.

4 Preemptive case

We turn our attention in this section to the preemptive version of the multicoloring problem.

Here, we do not have a polynomial algorithm for trees, nor a proof of NP-hardness. Instead,

we give the next best possible: a polynomial-time approximation schema. We also mention an

exact algorithm for the case of small color requirements.

4.1 Algorithm overview

The algorithm is a standard dynamic programming algorithm, but one that attempts to find a

restricted type of a solution. These solutions have the property that there are at most (1/ε)O(log p)

10



possible colorings of each vertex. Given such a property, a straightforward dynamic programming

algorithm will examine the vertices bottom-up, trying each possible coloring of a vertex, and

storing the cost of the subtree for each such choice. The main part of the argument is to show

the existence of a restricted solution whose sum is within 1 + ε of optimal.

We partition the color spectrum of an optimal coloring into layers, whose sizes are geometric

powers of 1 + ε. Consider the ith layer Li and the coloring of a vertex v within that layer. Note

that as long as f(v) /∈ Li, we may alter the colors assigned to v within Li. This follows since

the objective function only takes into account the finish time f(v). Now suppose that we know

the amount of colors that each vertex has in layer Li. Let s(Li) and f(Li) be the minimum

and maximum colors in Li. If we can “fit” all the required amounts of colors for each vertex v

within the interval [s(Li), f(Li)], this does not affect the f(v) values, as long as f(v) /∈ Li. For

each layer i, this results in a makespan (minimizing the number of colors used) instance: fit the

required amount of colors per vertex in layer i so that the makespan is minimized. Using the

minimum makespan coloring, we are guaranteed not to overstep Li.

It is interesting to note that the makespan problem for bipartite graphs is trivially solvable

using a natural greedy algorithm (see next subsection). From this discussion it follows that when

given the quantities of colors per vertex in each layer, we can easily approximate the multicolor

sum within (1 + ε). Indeed, f(v) may increase by (1 + ε) due to the changes in the last layer of

v (the layer i such that f(v) ∈ Li). But since in all the other layers the colors do not overstep

to the next layer this is the only increase.

If, on the other hand, we exceed the number of colors of Li by a small amount, we may afford

to push all the colors of v upwards. Indeed, we may expand each layer Li by a factor of 1 + ε,

increasing f(v) only by the same amount. We use this idea as follows. Let ci(v) be the exact

number of colors assigned to v in Li. “Guessing” the exact numbers ci(v) for each v turns out to

be too expensive. Instead, we guess those quantities up to an additive factor of ε ·ci(v). Namely,

we guess the multiple of ε · (f(Li) − s(Li)) of colors that v has in each layer i. This decreases

the number of possible choices down to 1/ε. We may be assigning up to ε · (f(Li)− s(Li)) extra

colors per vertex, per level i. However, this only increases the finish time of each node by 1 + ε,

and the final multicoloring sum is within a factor of (1 + ε)2 from optimal.

4.2 Polynomial time approximation scheme for pSMC of trees

We first study the makespan problem on bipartite graphs. For simplicity of exposition, we allow

multicolorings where at least x(v) colors are assigned to each vertex v; clearly, this does not

make the problem any easier.

Lemma 4.1 Let (G, x) be a bipartite instance, and let ε > 0. Let q = maxuv∈E(x(u) + x(v))

and let si = bεiqc, for i = 0, . . . d1/εe. Then, there is a contiguous coloring Ψ′ of (G, x) using

b(1+ ε)qc colors, such that for each vertex v there are integers j, j ′ such that Ψ′ assigns to v the

interval [sj + 1, . . . , sj′ ] of colors.

Proof. Observe that q is a lower bound on the number of colors needed. Let R,B be a bipartition
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of G, and let r = b(1 + ε)qc. Consider the contiguous coloring Ψ0 where

Ψ0(v) =

{

[1, x(v)], when v ∈ R

[r − x(v) + 1, r], when v ∈ B.

Observe, that there are at least r− q = bεqc values that separate the colors assigned to any pair

of adjacent vertices. Hence, this coloring can be extended to a coloring Ψ′, given by

Ψ′(v) =
⋃

j

{[sj + 1, sj+1] : [sj + 1, sj+1] ∩Ψ0(v) 6= ∅} .

Let χΨ = maxv fΨ(v) be the makespan (maximum color used) of a multicoloring Ψ. We

now show how a given multicoloring can be massaged into one satisfying several properties. The

idea is to partition the range of possible colors into “layers” of geometrically increasing sizes.

We apply Lemma 4.1 to schedule the colors of all vertices inside each layer, and to provide us

with the desired restrictions on the possible colorings. The completion times of the vertices

may increase for two reasons: the expansion factors of each level, and because of changes in the

highest level that a vertex is colored in, but we can bound both factors by 1 + ε.

Theorem 4.2 Let (G, x) be a bipartite instance, and ε > 0. Then, for any multicoloring Ψ of

G, there is multicoloring Ψ′, such that for each vertex v,

1. fΨ′(v) ≤ (1 + ε)fΨ(v),

2. Ψ′(v) is the union of at most O(log1+ε χΨ) contiguous segments, and

3. There are O(1/ε) choices for the beginning and the end of each segment.

Proof. Let ε0 =
√

1 + ε− 1. For 1 ≤ i ≤ blog1+ε χΨc, let qi = d(1 + ε0)
ie and Li = [qi−1, qi− 1].

Define the instances (G, xi), where xi(v) = |Ψ(v) ∩ Li|.
Apply Lemma 4.1 to obtain colorings Ψ′

i on (G, xi). Form Ψ′ by concatenation:

Ψ′(v) =
⋃

i







z +
i−1
∑

j=0

b(1 + ε0)qjc : z ∈ Ψ′
i(v)







.

If the highest color of Ψ(v) was in the layer Li, then fΨ(v) > qi−1, while

fΨ′(v) ≤ b(1 + ε0)qic ≤ (1 + ε0)
2qi−1 ≤ (1 + ε)fΨ(v),

establishing part 1 of the theorem. Parts 2 and 3 also follow from properties of the Ψ ′
i colorings

of Lemma 4.1. Specifically, start and end points within each layer Li are of the form qi−1 + j ·
ε · (qi − qi−1) where 0 ≤ j ≤ b1/εc.

Theorem 4.3 For each ε > 0, the pSMC problem on trees can be approximated within 1 + ε

factor in time (p · log n)O(1/ε·log(1/ε)) · n.
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Proof. Let Ψ be an optimal pSMC solution, and recall the properties of the solution Ψ ′ that

Theorem 4.2 has shown to exist. We now argue that we can find a solution with such properties.

Traverse the tree in postorder, or any other bottom-up order. For each vertex we compute

a table of size ry, where y = O(log1+ε χΨ) is the number of segments in the coloring Ψ′ and

r = 1/ε is the number of possible starting or end points of each segment. There is an entry for

each possible coloring of v under the constraints on Ψ′ of Theorem 4.2, where we record the

minimum cost of a coloring of the subtree rooted at v, given that coloring of v. For each such

coloring, we search through the tables of the children of v for the cheapest colorings of their

subtrees consistent with that assignment to v, and record the minimum.

The amount of computation for a given vertex v is then rO(y)d(v), for a combined time

complexity of rO(y)n. Since χΨ = O(p · log n) by Claim 1, and ln(1+ ε) ≤ ε, the theorem follows.

As presented, the time complexity is only pseudo-polynomial. It is not hard to change the

dependency on p to a dependency on n. However, following the early version of this paper

[HKP+99], a structural result was given in [HK02] that leads to substantial improvements in

the time complexity and/or approximation factors of the above approximation scheme.

Let pG = maxv∈G x(v), and lG = minv∈G x(v). Let SMC(G,Ψ) denote the sum of a mul-

ticoloring Ψ on G. The following is implicit in [HK02, Prop. 1]; for completeness, we give the

proof in the appendix.

Theorem 4.4 Let G be a multicoloring instance and q = q(n) ≥ 1 an integer. We can partition

G in polynomial time into subgraphs G1, G2, . . . , Gt with the following two properties:

1. The ratio pGi
/lGi

of maximum to minimum color requirements is at most q.

2. Suppose we are given colorings Ψi of Gi, i = 1, . . . , t, each using at most k · pGi
colors, for

some fixed number k. Then, we can concatenate the Ψi to obtain a coloring Ψ of G with

SMC(G,Ψ) ≤
t
∑

i=1

SMC(Gi,Ψi) +
k√
ln q
· pSMC(G).

This allows us to improve the running time of the approximation scheme.

Theorem 4.5 There is a PTAS for pSMC using at most O(1/ε3 · (log 1/ε)2) preemptions per

node, running in time exp((1/ε · log 1/ε)3)n.

Proof. Let ε > 0 be given, and set ε2 = ε/3 and ε1 = ε/4. Let q = e(6/ε·(lg 1/ε+4))2 .

Apply Theorem 4.4 with the above q, partitioning G into subgraphs Gi. Color each of the

Gi independently as follows. By Claim 2, there is a 1+ ε1-approximate pSMC coloring Ψi using

2pGi
(lg 1/ε1 + 2) colors. Apply the dynamic programming strategy of Theorem 4.3 to find a

coloring Ψ′
i that satisfies the properties of Theorem 4.2 for the ε2 given. Finally, concatenate

the colorings Ψ′
i to obtain a coloring Ψ of G.

Observe that the colorings Ψ′
i satisfy

SMC(Gi,Ψ
′
i) ≤ (1 + ε2)SMC(Gi,Ψi) ≤ (1 + ε1)(1 + ε2)pSMC(Gi).
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Note that lg 1/ε1 = lg 1/ε + 2, and that 2(lg 1/ε + 4)/
√

ln q = ε/3. By Theorem 4.4, the cost of

Ψ is bounded by

SMC(G,Ψ) ≤
t
∑

i=1

SMC(Gi,Ψ
′
i) +

2(lg 1/ε1 + 2)√
ln q

· pSMC(G)

≤ ((1 + ε1)(1 + ε2) + ε/3)pSMC(G)

≤ (1 + ε)pSMC(G).

The complexity and preemption requirements are direct functions of the number of seg-

ments stipulated by Theorem 4.2 for each Gi. Part 2 of the statement of Theorem 4.2 can be

strengthened to bound the number of segments by

O(log1+ε2 χΨi
/lGi

) = O(log1+ε q) = O(1/ε3 · (log 1/ε)2).

This is also the upper bound on the number of preemptions per vertex. By the argument of

Theorem 4.3, the time complexity is bounded by

(1/ε)O(log1+ε q) = 2O(1/ε·lg 1/ε)3

per node.

In particular, for any fixed ε > 0, a 1+ε-approximation using O(1)-preemptions can be com-

puted in linear time, and a 1 + O(log log n/ log n)1/3-approximation using O(log n)-preemptions

can be computed in polynomial time.

4.3 Exact algorithm for small lengths

Recall that the pSMC problem on trees is NP-hard, even when lengths are polynomially bounded.

We observe that the problem remains solvable when the lengths are small.

Claim 4 The pSMC problem on trees admits a polynomial solution when p = O(log n/ log log n).

Proof. Recall that by Claim 1 the number of colors used by an optimum solution for pSMC is

O(p · log n). Thus, each vertex is to be assigned at most p colors in the range 1, . . . , O(p · log n).

Consequently, the number of different possible preemptive assignments of colors to a vertex is
(

O(p · log n)

p

)

= O(poly(n)). (3)

which is polynomially bounded since p = O(log n/ log log n). Hence, the straightforward dynamic

programming algorithm can compute an optimal solution in polynomial time by exhaustively

evaluating all possible assignments of colors to v.

5 Extensions

The exact algorithms that we have given apply to several generalizations of the npSMC problem

on trees. We mention here a few such generalizations.
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The Optimum Chromatic Cost Problem (see [J97]) generalizes the Sum Coloring problem,

in that the color classes come equipped with a cost function c : Z+ → Z+, and the objective

is to minimize the value of
∑

v∈V c(f(v)). We can generalize this to multicolorings, in which

case it is reasonable to assume that the color costs are non-decreasing. Our O(n2) and O(np)

algorithms hold then here as well.

The Channel Assignment problem comes with edge lengths ` : E → Z+ and asks for an

ordinary coloring, where the colors of adjacent vertices are further constrained to satisfy |f(v)−
f(w)| ≥ `(vw). A non-preemptive multicoloring instance corresponds roughly to the case where

`(vw) = (x(v) + x(w))/2. Our algorithms handle this extension equally well, and can both

handle the sum objective as well as minimizing the number of colors. The argument for paths

can be revised to hold for this problem (and the OCCP problem), in which case we can argue

an O(log p) bound on the length of a grounding sequence.

Various different measures and cost functions considered in scheduling theory can also be

handled by our algorithms. The introduction of release dates, the points at which jobs become

available, are accommodated by adjusting the feasibility of a proposed coloring of a node. A

vertex will now be grounded if execution is initiated at its release time. Due dates and/or

deadlines are treated by modifying the objective function, and the same holds for vertex weights.

Common objective functions that can be handled include weighted sum of completion times,

weighted number of late jobs, total tardiness, and the maximum (or sum) of monotonous non-

decreasing functions of the completion times. Additionally, precedence constraints that follow

the structure of the tree have the effect of directing the edges within the tree, and are easily

accommodated by allowing only grounding consistent with those directions.

5.1 Open questions

Our study leaves a few open problems. Is the pSMC problem hard on paths? More generally,

for which non-trivial, interesting classes of graphs, is the pSMC problem solvable in polynomial

time? (It is possible to prove, that the problem can be easily solved on stars; we omit the details

here). Can npSMC be optimally solved on other classes of graphs? Our current arguments rely

on a polynomial bound on the number of paths, which only holds for highly restricted extensions

of trees.

References

[B86] M. Bach. The Design of the UNIX Operating System Prentice Hall, 1986.

[B92] M. Bell. Future directions in traffic signal control. Transportation Research Part

A, 26:303–313, 1992.

[BBH+98] A. Bar-Noy, M. Bellare, M. M. Halldórsson, H. Shachnai, and T. Tamir. On chro-
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[HK02] M. M. Halldórsson and G. Kortsarz. Tools for Multicoloring with Applications to

Planar Graphs and Partial k-Trees. Journal of Algorithms, 42(2), 334-366, February

2002.
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A Proof of Theorem 4.4

The theorem follows from two lemmas.

Lemma A.1 Let r and s be real numbers, s < r, and let f be a function defined on [s, r]. Then,

for some t ∈ [s, r],

tf(t) ≤ 1

ln(r/s)

∫ r

s
f(x)dx.

Proof. Let t be the value x in the interval [s, r] that minimizes xf(x). Then,

∫ r

s
f(x)dx =

∫ r

s
xf(x) · 1

x
dx ≥ tf(t)

∫ r

s

1

x
dx = tf(t) ln(r/s).

We use Lemma A.1 to partition the instance into compact segments with good average

weight properties. For a (multi-)set X of numbers, let S(X) denote
∑

xi∈X xi; for a graph G,

let S(G) denote
∑

v∈V (G) x(v). Define g(x) to be the number of xi greater than or equal to x,

i.e. g(x) = |{xi : xi ≥ x}|.
Proposition A.2 Let X = {x1, . . . , xn} be a set of non-negative reals, and let q be a natu-

ral number. Then, there is a polynomial time algorithm that generates a sequence of integral

breakpoints bi, i = 1, 2, . . ., with
√

q ≤ bi+1/bi ≤ q, such that

m
∑

i=1

g(bi) · bi ≤
1

ln
√

q
S(X).

Proof. Let b0 be the smallest xi value, and inductively let bi be the breakpoint obtained by the

Lemma A.1 on the set Xi = {xj : xj ≥ bi−1} with s = bi−1 ·
√

q and r = bi−1 · q. Terminate the

sequence once bi exceeds the maximum length p.

Since bi ≥ bi−1
√

q, we have that bi ≥ qi/2, and the loop terminates within 2 logq p iterations.

In each iteration, the ratio r/s is at least
√

q. By Lemma A.1,

bi · g(bi) ≤
1

ln
√

q

∫ bi−1q

bi−1

√
q
g(x)dx.
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Note that bi ≥ bi−1
√

q and thus the intervals [bi−1
√

q, bi−1q) are disjoint. Hence,

∑

i

big(bi) ≤
1

ln
√

q
·
∑

i

∫ bi−1q

bi−1

√
q
g(x)dx ≤ 1

ln
√

q

∫ ∞

0
g(x)dx =

S(X)

ln
√

q
.

The algorithm that finds the bi partition can easily be implemented in linear time.

To obtain a proof of Thm. 4.4, let b0, b1, . . . , bt as generated by the algorithm of Prop. A.2

and let Gi be the graph induced by nodes with lengths in the range (bi−1, bi), for i = 1, 2, . . . , t.

The first property of the theorem of the length ratio is immediately satisfied.

The cost of the multicoloring is derived from two parts: the sum of the costs of the subprob-

lems, and the delay costs incurred by the colorings of the subproblems (considering the coloring

of each Gi as a subproblem). For each Gi, the delay occurred is reflected by the number of

colors used in this subproblem, times the number of yet uncolored vertices (namely, the number

of colors used times the total number of vertices included in later problems which are vertices

of higher lengths). The number of colors used on Gi is assumed to be at most k · bi, while g(bi)

represents the number of vertices delayed. By Proposition A.2, this combined cost is thus

t
∑

i=1

k · big(bi) ≤
t
∑

i=1

k√
ln q
· S(Gi) ≤

k√
ln q
· pSMC(G).
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