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Abstract. Exemplar-based explainable artificial intelligence (XAI) aims
at creating human understanding about the behaviour of an AI system,
usually a machine learning model, through examples. The advantage of
this approach is that the human creates their own explanation in their
own internal language. However, what examples should be chosen? Exist-
ing frameworks fall short in capturing all the elements that contribute to
this process. In this paper, we propose a comprehensive XAI framework
based on machine teaching. The traditional trade-off between the fidelity
and the complexity of the explanation is transformed here into a trade-
off between the complexity of the examples and the fidelity the human
achieves about the behaviour of the ML system to be explained. We anal-
yse a concept class of Boolean functions that is learned by a convolutional
neural network classifier over a dataset of images of possibly rotated and
resized letters. We assume the human learner has a strong prior (Kar-
naugh maps over Boolean functions). Our explanation procedure then
behaves like a machine teaching session optimising the trade-off between
examples and fidelity. We include an experimental evaluation and several
human studies where we analyse the capacity of teaching humans these
Boolean function by means of the explanatory examples generated by our
framework. We explore the effect of telling the essential features to the
human and the priors, and see that the identification is more successful
than by randomly sampling the examples.

1 Introduction

In the field of eXplainable AI (XAI), there are multiple ways to explain humans
how an AI system works, one of them being example-based XAI [16, 21, 24],
where the XAI system aims to find examples showing how the machine learn-
ing system acts in different situations. Machine teaching is the research area of
actively selecting an optimal (e.g., minimal) set of examples so that a learner
can identify a given concept or model [27]. The goal is for the teacher to find

⋆ A preliminary version of this work was presented as a poster at AAIP@IJCLR2022.
Supported by the Norwegian Research Council, project Machine Teaching for XAI.
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the smallest training set —known as the teaching or witness set— such that, a
learning algorithm, when given the teaching set as an input, produces a target
concept. In this work, we propose a framework based on machine teaching tech-
niques where the XAI system (the teacher) provides explanatory examples to
humans (the learners). The target concept is (a part of) the black-box AI sys-
tem that needs explanation. The machine teaching algorithm must find a small
set of labelled examples that will allow the human to build their own model of
the AI system and thereby arrive at an explanation of the target concept [19,
17]. We demonstrate the validity of our proposal by including some results of an
experimental evaluation where we evaluate the results of teaching a black-box
model to humans. Specifically, the black box to explain is an artificial neural net-
work learned from images generated by Boolean expressions. We choose Boolean
functions because the notions of prototype, centroid, anchors or boundary ex-
amples are more elusive in discrete concept classes like this, but we also use
neural networks that might use some other features. We analyse the effect of
giving humans information about how the examples were chosen and indications
about the relevant features. The results show that our framework can generate
explanatory examples useful to teach humans Boolean functions, better than
sampling examples at random.

The paper is structured as follows. In Section 2 we review part of the litera-
ture related to XAI and machine teaching. Section 3 describes the framework we
developed to generate explanatory witness sets. We instantiate that method for
explaining neural network classifiers of images representing Boolean concepts in
Section 4. Section 5 describes the experiments and human studies, and discusses
the results. Finally, Section 6 closes the paper with conclusions and future work.

2 Machine Teaching for XAI

Explainable AI (XAI) is an active research field aiming at explaining the deci-
sions of AI systems [16]. Machine learning is a key component of many AI sys-
tems, and therefore XAI usually focuses on explaining machine learning models
[7, 22].

Explainable AI must usually face several trade-offs, such as the tension be-
tween fidelity (level of coincidence between the predicted or understood be-
haviour of the system and the actual behaviour of the model) and compre-
hensibility (how much effort it takes for the human to understand) [5]. In gen-
eral, making useful explanations among these tensions requires a great deal of
abstraction, additionally modelling machine behaviour [20] in a way that is com-
prehensible to humans.

XAI approaches are divided into two families. In the first one, the goal is to
extract an abstract representation of the AI system to serve as an explanation to
a human. An example of this approach is extracting comprehensible rules from
models [3]. In the second family, the goal is to use examples such that humans
can infer their explanation themselves, known as exemplar-based explanations.
An example of this approach is using anchors or partial examples [21].
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Machine teaching [26] is a research field that is sometimes considered as
an inverse problem to machine learning. In machine teaching the examples are
chosen wisely by a teacher to teach a concept to the learner. Figure 1 shows
a situation where the teacher has the concept of reversing a list. The teacher
could try to explain the concept, but the languages employed by the learner
and teacher might not be the same. In this situation, as happens with humans
frequently, a few examples may be more effective. In the image, the teacher sends
a couple of input-output pairs to the learner, thinking that this would be useful
for the learner to build and identify the concept.

Learner Teacher

reverse
(abcd, dcba), 

(aaabbb, bbbaaa)  

?

Fig. 1. Machine teaching example. The teacher tries to teach the concept of the reverse
of a string. The teacher selects two examples carefully and shows them to the learner:
the input string abcd being mapped into dcba, and the input string aaabbb being mapped
into bbbaaa. The learner must infer the concept from only these two examples.

Mainly, machine teaching has been used to comprehend and depict how hu-
mans teach. An example is the analysis conducted by [12], which examines the
teaching of 1D concepts (intervals) to machines, comparing a machine teach-
ing environment with a curriculum learning environment. In both instances, the
question is whether humans provide examples at the boundaries to assist the
learner in replicating these boundaries or if they provide examples in clear areas
so that the user can interpolate, as outlined by [1].

Our focus lies in machine teaching for the purpose of explaining concepts to
humans [8]. In certain models, the teacher can interact with the learner by posing
questions (e.g., [15]). On the other hand, some methods have attempted to ex-
pand the machine teaching framework by using examples to achieve explainable
AI. A few proposals stray from the traditional machine teaching approach and
instead utilize well-selected demonstrations in inverse reinforcement learning [9],
or in the Cooperative Inverse Reinforcement Learning (CIRL) framework [6].

Yang et al. [25] evaluated the effectiveness of example-based explanations for
AI using Bayesian Teaching, with a focus on high sensitivity and high specificity,
and we will compare our findings to theirs. Another approach to teaching for
XAI is the decomposition of the learner’s hypothesis into an attention function
and a decision function, as proposed by Chen et al. [2]. Ouyang [18] presents an
algorithm for the Bayesian inference of regular expressions using examples. The
teaching paradigm proposed is also linked to how humans communicate and how
the speaker chooses the appropriate word based on their listener.
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3 A MT framework to generate explanatory teaching sets

In machine teaching, the teacher T is viewed as a function from concepts to sets
of labelled examples, with T (θ) = S denoting the labelled examples S the teacher
employs to teach concept θ. Likewise, the learner L is viewed as a function from
sets of labelled examples to concepts, and we require that the concept guessed by
the learner is compatible with the given examples S, denoted L(S) |= S. Correct
teaching is achieved if L(T (θ)) = θ, i.e. the guessed concept is indeed the one
the teacher had in mind. To achieve an efficient teaching protocol we employ
simplicity β on concepts and δ on example sets (Occam’s razor), as in [23]. β
is shared by learner and teacher, and δ is used to prioritise simple witness set.
When applying this to XAI the concept θAI can be the entire AI model to be
explained or some particular substructure. To build our XAI system we employ
i) an machine learning algorithm LM modelling the human learner LH with its
simplicity prior β on guessed concepts, ii) a simplicity prior δ on example sets,
and iii) a loss function λ giving a penalty for deviations of the guess θM from
the intended θAI .

We propose a parameterised framework to generate explanatory examples
from a black-box model θAI . In the framework, we explore the trade-off between
fidelity (squared error of the guessed model compared to the black-box model)
and teaching complexity (measured as the complexity of the set of labelled ex-
amples used as a teaching set) [14, 24]. The framework is defined as:

T (θAI) = argmin
S:θAI |=S

{δ(S) + µ · λ(θAI , θM ) : LM (S) = θM} (1)

LM (S) = argmin
θM :θM |=S

{β(θM )}

In these equations T is a teacher, aiming to teach a concept θAI to a human
learner LH , by finding a teaching set S such that LH(S) = θAI . To achieve
automation and increase iteration speed a model LM of LH is used, and the
teacher will therefore aim for T (θAI) = S s.t. LM (S) = θAI . The fidelity func-
tion becomes 1−λ and it measures how closely the guessed concept θM matches
the concept θAI , while the factor µ allows us to balance the influence of com-
plexity (δ) and fidelity (1− λ). In this work, we present an implementation3 of
Equation 1 tested on a machine learning model trained on images generated by
basic Boolean functions.

4 Obtaining explanatory examples from a neural network

In this section we discuss how the framework presented in the previous section
is applied to a black-box model represented by a neural network learned from
images generated by basic Boolean functions.

3 https://github.com/BrigtHaavardstun/ExplainableAI
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4.1 The black-box model θAI

For the experimental setting, we implemented our own θAI , with the task of
learning a Boolean function on four variables, ϕ(A,B,C,D). Determining the
subjective difficulty of learning Boolean functions has been addressed in the
literature, see e.g. [4]. The input to θAI will be a bitmap containing a subset of
letters from the alphabet Σ = {A,B,C,D}, with the letters present being the
variables set to True. The bitmaps thus represent an example, with letters being
rotated and scaled and placed randomly. This gives us the possibility of extensive
training data for our AI. The output space of θAI is {0, 1}. For instance, with
the concept ϕ = (A∧B)∨ (C ∧D), we label an example 1 if ϕ evaluates to True,
and 0 if ϕ evaluates to False.

We chose a Convolutional Neural Network (CNN)[13], as a common technique
for images, while at the same time not interpretable by themselves, making them
a good choice for generating our θAI . We implemented a CNN with 8 layers in
Python using Keras and TensorFlow.

4.2 The model of the human LM

For simplicity, our model LM of the human learner will not be given bitmaps as
examples. Instead, it takes as input the letters present in each image. We thus
hypothesise that the human will pay attention to the letters present in the image
and disregard other information such as rotation, size and position.

The hypothesis class of LM will consist of all Boolean functions over the 4-
letter alphabet. Then, given a teaching set like S = {(AC, 0), (AD, 0), (BD, 0),
(AB, 1), (BC, 1), (CD, 1)}, we must decide how LM will act. We assume a human
constructs something like a partial truth table, in this case with 3 rows out of
24 = 16 rows total filled with True, 3 rows filled with False, and 10 rows filled
with Don’t-Cares (x). Applying Occam’s razor, we need to define the function
β, to choose the Boolean function that is most simple and adheres to these
constraints. A commonly accepted answer is the use of Karnaugh maps[11].

We use disjunctive normal form (DNF) which mimics human reasoning. To
verify a positive instance you need only to confirm one clause, whereas to confirm
a negative instance you always need to check all clauses. The resource-heavy
task of confirming a negative compared to a positive is somewhat similar to how
humans are poor at negations [10]. For each teaching set the Karnaugh map
technique can find many possible DNFs, and in the spirit of K-map minimization
we use the following scheme to pick the simplest. The DNFs are sorted in order
by fewest clauses, and to break ties we compare clauses starting from the simplest
one, using the criteria 1) fewest variables, 2) fewest negations, 3) lexicographic
order. This defines β and gives us a unique Boolean formula in DNF form for
each teaching set.

4.3 The fidelity function 1 − λ

When we want to compare θAI and θM , we need to view the former as an ap-
proximation to some Boolean function, but also being affected by the location,
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rotation, etc., of the letter. Consequently, for each subset of letters (logical ex-
ample), we estimate the percentage of images containing exactly these letters
that θAI evaluates to True on new images, based on the full training set. We
get values like the top row in Table 1. We observe that θAI predicts some letter
groups the same and is more undecided on other letter combinations.

Table 1. Top row shows the percentage of bitmaps on letters for that column for which
θAI evaluates to True. Bottom row shows the truth table of θM = (A∧B)∨ (C ∧¬A),
and λ(θAI , θM ) = 0.2222

16
≈ 0.0139 is the MSE of the difference of all 16 columns, giving

fidelity 0.9861.

Symbol ∅ A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
θAI predicts 0.00 0.00 0.00 0.95 0.00 0.99 0.02 0.00 0.63 0.02 0.91 1.00 1.00 0.04 0.74 1.00
θM evaluates 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 1

To evaluate how well the θM , returned by the learner as the Boolean formula
minimizing β, matches θAI , we use its truth table as in the bottom row of Table
1. We then compare the two rows (for θAI and θM ) using Mean Square Error
(MSE) to get λ and fidelity 1− λ.

We have experimented with various definitions for the complexity function,
to punish large and complicated teaching sets S. The chosen δ is a simple squared
sum of the number of variables present in each example, plus 0.1 for the empty
set (corresponding to setting no variable to True). We thus keep low the total
number of variables in all examples while simultaneously putting a high cost on
a single large example. Note that the δ values are typically much higher than
the λ values, so in our first set of experiments we set the multiplicative factor
µ = 800 when computing the aggregated score δ(S) + µ · λ(θAI , θM ).

4.4 The teacher T

The goal of the teacher is to find a teaching set explaining θAI , by iterating
over potential teaching sets. For each teaching set S, we compute LM (S) = θM
as described earlier, and the aggregate score δ(S) + µ · λ(θAI , θM ). During the
iteration we retain the best aggregate score. For these experiments the iteration
is an exhaustive search.

5 Experimental evaluation

Given the previous setting we performed a set of experiments using different
concepts and parameters to analyse the effect of several elements in the machine
teaching process on explaining the behaviour of various AI models. In particular,
we played with AI models trained on different sized training sets, which approx-
imate the original Boolean function to different levels of accuracy. Depending on
how well the AI is approximated by a Boolean function the trade-off parameter
µ between fidelity (1− λ) and teaching complexity (δ) has different effects.
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5.1 Generation of teaching sets

5.1.1 Fixed µ for varying models We trained nine different ΘAI models
with differently sized data sets. In this first experiment, all models are trained
with the ground truth ϕ = (A ∧ B) ∨ C and the alphabet Σ = {A,B,C}. The
data set sizes used in the experiment are: {10, 50, 100, 500, 1000, 2000, 5000,
10000, 50000}. Accordingly, we denote the different models: {AI10, AI50, AI100,
AI500, AI1000, AI2000, AI5000, AI10000, AI50000}.

In Table 2 we show several results. In the first row we see the expected result
that the accuracy of the models wrt the original concept ϕ increases as more
training examples were given to the neural network. In the next rows we show the
Boolean expression that best approximates the model, with its associated highest
possible fidelity (1− λ) over all Boolean functions. We see that the language of
Boolean functions obtains a perfect match for the case of AI10 (because the
underlying concept is very simple, always predicting True, which is a Boolean
function) and almost perfect for AI10000 and AI50000 (because the number of
training examples leads to a concept that is very close to ϕ). Note that also in
other cases the most accurate Boolean function is ϕ (from AI2000 and up).

Table 2. Several ΘAI models AIt trained for size t of training examples for ϕ =
AB + C = (A ∧B) ∨ C. We first show accuracy with respect to ϕ. The next two rows
show the closest Boolean expression (AB+C from AI2000 and on) and its fidelity value
1 − λ. Then we do teaching with µ = 800, and show the Boolean concept taught by
the system, the teaching set and its complexity, the fidelity and aggregate score.

AIs AI10 AI50 AI100 AI500 AI1000 AI2000 AI5000 AI10000 AI50000
Accuracy AB+C 62.50 72.85 78.38 81.01 88.47 91.42 94.74 98.72 99.36
Boolean with high-
est 1 − λ

Always
True

A+B+C A+B+C AB+
AC+BC

AB+
AC+BC

AB+C AB+C AB+C AB+C

Highest 1 − λ 1 0.927 0.9578 0.9226 0.9843 0.9752 0.9936 0.9994 0.9999
Model taught θM Always

True
A+B+C A+B+C A+C AB+

AC+BC
AB+C AB+C AB+C AB+C

Teaching Set S {(∅,1)} {(∅,0),
(A,1),
(B,1),
(C,1)}

{(∅,0),
(A,1),
(B,1),
(C,1)}

{(∅,0),
(A,1),
(C,1)}

{(A,0),
(AB,1),
(AC,1),
(B,0),
(BC,1),
(C,0)}

{(A,0),
(AB,1),
(B,0),
(C,1)}

{(A,0),
(AB,1),
(B,0),
(C,1)}

{(A,0),
(AB,1),
(B,0),
(C,1)}

{(A,0),
(AB,1),
(B,0),
(C,1)}

δ(S) 0.1 3.1 3.1 2.1 15 7 7 7 7
1 − λ(AIx, θM ) 1 0.927 0.9578 0.9179 0.9843 0.9752 0.9936 0.9994 0.9999
δ + 800λ 0.1 61.52 36.71 67.82 27.63 26.84 12.17 7.49 7.09

Now let us look at the next few rows showing results for the teaching frame-
work when run with the chosen parameter µ = 800. First we show the Boolean
concept θM that is actually taught by the system and note that it is almost al-
ways equal to the Boolean concept with highest fidelity (1− λ) value in the 2nd
row. The only exception is AI500 where the trade-off between δ and λ favours
the Boolean concept A ∨ C instead of (A ∧B) ∨ (A ∧ C) ∨ (B ∧ C) because the
teaching set for the former is much simpler (δ = 2.1) than the teaching set for
the latter (δ = 15 as can be seen under AI1000). The next rows show the teaching
set employed, its δ value, the fidelity value and the aggregate score.
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There are three clear cases in the table (AI10, AI10000 and AI50000) where
a simple teaching set allows the teacher to convey a concept to the learner
that very closely captures the model. But there are other cases, such as AI1000
and AI2000, where the situation is less clear. For AI1000 the fidelity is not bad
(1 − λ = 1 − 0.0157 = 0.9843) but the complexity of teaching becomes high
(δ = 15) so even if a sufficiently accurate concept can be taught this is at the
cost of a higher effort from the learner. For AI2000 we see that this cost is reduced
but the fidelity is worse (1− λ = 1− 0.0248 = 0.9752).

5.1.2 Varying µ for a single model In a second experiment we trained a
ΘAI model on a data set of size 350 for ϕ = (A ∧B) ∨ (C ∧D) = AB + CD on
4 variables/letters. The accuracy was 78.25% and the closest Boolean function,
with a fidelity value 1− λ of 1− 0.06 = 0.94, turned out to be ABC + ABD +
ACD+BCD, which can be interpreted as “True if and only if at least 3 letters
present”. To investigate the trade-off between fidelity and complexity, teaching
was done with varying values of µ, see left column in Table 3. We see that as µ
increases more emphasis is put on fidelity at expense of complexity. Note that at
µ = 3200 the fidelity is as good as possible (i.e. highest possible 1− λ) since the
teaching set at µ = 3200 is optimal for that optimal θM so increasing µ will have
no effect. Of course, this comes at the expense of a high complexity. An option
worth exploring is to take the characteristics of the human user into account
when deciding on the fidelity vs complexity trade-off, e.g., having a high value
of µ for an expert and a low value for a non-expert.

Table 3. Results for a single AI model where the closest Boolean function turned out
to be ABC+ABD+ACD+BCD. Teaching was done with varying values of µ, see left
column. As µ increases more emphasis is put on lower fidelity 1− λ = 1− λ(θAI , θM )
at expense of higher teaching complexity δ.

Range µ Model taught θM 1− λ δ Teaching set

16 A 0.812 1.1 {(∅, 0),(A,1)}
160-960 AC+BD 0.9119 12 {(A,0),(B,0),(C,0),(D,0),(AC,1),(BD,1)}
1120-1840 AC+BCD+AD 0.9282 30 {(A,0),(AC,1),(AD,1),(BC,0),(BD,0),(CD,0)}
1920-2400 AC+ABD+BCD 0.9344 42 {(AC,1),(AB,0),(AD,0),(BC,0),(BD,0),(CD,0),

(ABD,1),(BCD,1)}
3200 - ∞ ABC+ABD+

ACD+BCD
0.94 60 {(AB,0),(AC,0),(AD,0),(BC,0),(BD,0),(CD,0),

(ABC,1),(ABD,1),(ACD,1),(BCD,1)}

This second experiment also shows that it is not difficult to determine when
the language used for the explanation leads to low fidelity and/or complex ex-
planations. Actually, in this case, since the function captured by the AI model
does not have a clean Boolean concept, we can detect that teaching will either
lead to low fidelity or complex explanation (or both). In sum, the use of the
complexity of the teaching set in the trade-off is not only the right choice when
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doing example-based XAI but it also leads to the same insights as when the
complexity of the concept is taken into account.

5.2 Different hypothesis spaces

This section will examine the effects of different hypothesis spaces (representa-
tion languages) between the AI model, the ground truth, the model of the learner
LM and the actual human learner LH . In our exemplar-based explanation sys-
tem, we added letter rotations, letter resizing and letter location as cognitive
noise and extra features, so that we have more confounders, and motivated by
these spurious variations the neural network will have error with respect to the
ground truth. This makes things more realistic, with the neural network creating
patterns that are not fully captured by LM . A neural network trained on images
can in principle model functions over all possible images creating an enormous
hypothesis space Hpix. On the other hand, the ground truth labelling function
is on a small set of features, i.e. the presence or absence of k letters, giving the
small hypothesis space Hpk , with p = {0, 1} indicating the two possibilities of
present or absent. When the actual human learner LH is given a set of labelled
images from the example space Hpix, they will create a rule based on the features
of the images they consider relevant.

Our exemplar-based explanation system has a focus on the simplicity of ex-
amples, and so far this has been with respect to the δ function. But simplicity
also comes into play when generating images with certain letters present. The
simplest images contain letters that all have the same size, with no rotation
and with uniform placement, and these can be used as the simplified examples
most compatible with the smaller example space Hpk . The research question we
want to address with the following experiment is whether using such simplified
examples helps align the hypothesis spaces.

The experiment will compare the options for aligning the hypothesis spaces,
by three groups that are given the teaching sets in different formats

– Group I: Use original images.

– Group II: Use simplified images, without irrelevant features.

– Group III: Use original images, but alert learners to essential features

We created a 2AFC (two-alternative forced choice) survey. Participants were
shown a teaching set of carefully selected images and the (binary) classification
of these images into Box 1 or Box 2 (True/False). They were then shown a
test set of unclassified images and tasked to classify each image into one either
Box 1 or Box 2. In Figure 2, we display how these tasks were presented to the
participants.

The teaching sets were selected according to the system presented in the
earlier sections. The test sets were randomly selected with the restriction that
exactly one image should contain the same letter combination as one in the
teaching set.
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Fig. 2. Participants in group II were presented with this screen when tested on the
formula ϕ3 (C or both A and B). Note the teaching set for Box 1 (True) and Box
2 (False) have images without the noise (rotation, resizing and relocation) found in
the five images of the Test Set. For Groups I and III also the teaching set had noise.
For group III the following text was displayed prominently: “NB: Size, placement and
rotation do not matter. Focus on present/absent letters.”

In total, we trained six AI models (called ‘robots’ in the survey) to be tested.
All of them were trained to a high degree of accuracy. Each robot was trained
on a different Boolean expression ϕ.

We asked each participant to classify five test instances for each Boolean ex-
pression ϕ. The participant’s answer to the ith test is denoted p(ϕ, i). The correct
answer to each test is given by ϕ(i). To calculate a participant’s score for a single

Boolean expression, we use the following formula: p(ϕ) = 1
6

∑6
i=1[p(ϕ, i) = ϕ(i)]

where: p(ϕ, i) = ϕ(i) is 1 if the participant’s answer is correct and 0 otherwise.
We then calculate the score of the jth participant across all Boolean expressions
as follows: pj = 1

6

∑6
i=1 p(ϕi). Here, p(ϕi) represents the participant’s score for

the ith Boolean expression.
In total, we had 42 voluntary participants, who were master students, doc-

toral students or faculty in informatics, none of whom received compensation.
The participants were presented with the survey and freely choose to participate.
The participants were randomly assigned to the groups, with 12 participants in
group I, 17 in group II, and 13 in group III.

The average scores for Groups I, II, and III were 0.564, 0.664, and 0.732,
respectively. Furthermore, we observed that group III had the highest average
score on 5 out 6 test instances. Though the results are not conclusive due to the
small sample size4, we decided to move on with option III, as we know that the
teacher should do something to align the hypothesis spaces of LM and LH to
achieve efficient learning. Next, we look at the quality of the teaching sets, by
comparing our teacher to a teacher randomly selecting teaching sets of similar
complexity, with both presenting the teaching sets as group III.

4 We conducted t-tests for all pairs of groups to test whether means differ statistically
significantly and got p-values 0.0297, 0.0013, and 0.0747 for pairs (I, II), (I, III)
and (II, III), respectively.
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5.3 Compare to teaching sets chosen randomly

In this section, we discuss a second survey where we compare the teaching sets
given by our exemplar-based explanation system (the smart teacher) to a system
where the teaching sets are chosen randomly but correctly labelled and without
repetitions (the random teacher).

To make the comparison of the random teacher and smart teacher fair, both
will present their teaching sets as in group III. For a given Boolean formula, we
first find the teaching set SS used by the smart teacher, and then we ensure that
the random teaching set SR has a complexity (δ∗-value5) close to SS (i.e. within
some ±ϵ additive difference) by choosing SR as follows, while making sure that
no letter combination is repeated in SR:

1. while δ(SR) < δ(SS)− ϵ → add a random new image to SR

2. if δ(SS)− ϵ ≤ δ(SR) ≤ δ(SS) + ϵ → use SR

3. if δ(SS) + ϵ < δ(SR) then set SR = ∅ and restart from 1.

To avoid bias from the previous survey, we changed most Boolean expres-
sions for the new survey. They were (again) chosen with a variation in terms of
expected difficulty, see Table 4. The formulas used can be found in Table 4.

Table 4. Boolean expressions used in the second survey.

Nr Prior LH Short description Boolean expression

ϕ1 High Less Than Two Letters
(¬A ∧ ¬B ∧ ¬D) ∨ (¬B ∧ ¬C ∧ ¬D)∨
(¬A ∧ ¬C ∧ ¬D) ∨ (¬A ∧ ¬B ∧ ¬C)

ϕ2 Medium A or both B and D (B ∧D) ∨A

ϕ3 Medium B or D B ∨D

ϕ4 High Exactly One Letter
(A ∧ ¬B ∧ ¬C ∧ ¬D) ∨ (¬A ∧B ∧ ¬C ∧ ¬D)∨
(¬A ∧ ¬B ∧ C ∧ ¬D) ∨ (¬A ∧ ¬B ∧ ¬C ∧D)

ϕ5 Medium No D ¬D

Both groups GS given smart teaching sets and GR given random teaching
sets will be shown the same test sets, and we now discuss how to generate the
testing sets. When generating testing sets, we want them to be fair with regards
to both teaching sets SS and SR so that none of them get an unfair advantage.
Define l(S) to be the set of letter combinations in the teaching set S, and define
X to be the set of all images. We generate test sets for SS and SR by choosing
images from X as follows, while ensuring that each letter combination appears
at most once:

1. As long as there are new letter combinations in l(X)/(l(SR)∪ l(SS)), choose
such an image at random.

2. Otherwise, fill the test set with images from the set of letter combinations
in l(SR) ∩ l(SS), chosen randomly

5 We use δ∗ = Number of present letters
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We select a test set of size five by the above protocol, for each Boolean
expression, see Table 6. We will thus be able to make a fair comparison between
the random and smart teaching sets.

Table 5. Teaching sets used for GS on left and GR on right (B1=Box 1, B2=Box 2).

Nr Teaching set group GS δ∗(GS) Teaching set group GR

ϕ1
B1:{ A , B , C , D }
B2:{ AB , AC , AD , BC , BD , CD } 16

B1:{ ∅ , A , B , C }
B2:{ AC , ACD , AD , BCD , CD }

ϕ2 B1:{ A , BD } B2:{ B , D } 5 B1:{ A , AC } B2:{ B }
ϕ3 B1:{ B , D } B2:{ ∅ } 2.1 B1:{ D } B2:{ C }

ϕ4
B1:{ A , B , C , D }
B2:{ ∅ , AB , AC , AD , BC , BD , CD } 16.1

B1:{ A , B , C }
B2:{ AB , ABC , ABD , AD , BCD }

ϕ5 B1:{ ∅ } B2:{ D } 1.1 B1:{ ∅ } B2:{ BD }

Table 6. Test sets used for both GS and GR.

Nr Test set

ϕ1 { ABC , ABCD , ABD , C , AD }
ϕ2 { ABD , ACD , C , ∅ , AD }
ϕ3 { ABC , BD , ABCD , AB , ACD }
ϕ4 { ACD , ABCD , B , AD , C }
ϕ5 { AC , CD , A , ABC , BC }

5.4 Overall results

We will now discuss the results of the second survey. In total, we had 56 partic-
ipants, none of them overlapping with the previous test. The participants were
students in a university-level informatics course. The participants were randomly
assigned into two groups, with 22 participants in group GS and 34 in group GR.

We start by looking at each group’s average score for each ϕi. The results
are shown in Figure 3. Our initial observation is that the group GS has average
accuracy over all 5 Boolean expressions of 0.809 versus 0.699 for the group GR,
suggesting that the smart teaching sets have an advantage. This difference is
statistically significant (p = 0.00016 from t-test). There are two cases where GR

exhibits slightly higher average accuracy than GS , namely for ϕ1 and ϕ4. Notice
these concepts are the ones we classified to have high prior for LH in Table 4
and if we look at Table 5 we see these are also the concepts where our automatic
system generates teaching sets with large size (δ-value). When the system is
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Task Group GS Group GR GS +GR

ϕ1 0.882 0.924 0.908

ϕ2 0.954 0.759 0.836

ϕ3 0.827 0.547 0.657

ϕ4 0.873 0.888 0.882

ϕ5 0.509 0.376 0.428

Total 0.809 0.699 0.742

Fig. 3. The table shows average accuracy in Groups GS , GR and GS +GR, for each ϕi

and Total. The bar plot shows average accuracy in GS , GR for each ϕi.

aligned6, as with ϕ2 and ϕ3, our system achieves substantially higher accuracy
than the random teacher.

Fig. 4. Boxplot showing results of the two survey groups, to the left teaching sets with
the exemplar-based explanation system, and to the right the random teaching sets.
There is a clear difference between the groups.

Table 7 gives information on the most common answers for each robot. The
most common answer vector of group GS is the correct one for 4 of the 5 ϕis,
while for GR it is the correct one for 3 of the 5.

5.4.1 Detailed discussion of ϕ4 (Exactly One Letter in Box 1) Note
in Table 7 that for ϕ4 a full 85 % of the participants in GR had all answers
correct, whereas this drops to 64 % for group GS . We believe this is because

6 We say that the system is aligned when the prior of LM is similar to the prior of
LH .
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Table 7. The most common answer for both groups. We show how correct the answer
is, with 1.0 being all 5 tests correct, and we also show how common it is.

Concept
Most common
answer GS

Score
[0..1]

Fraction of
participants GS

Most common
answer GR

Score
[0..1]

Fraction of
participants GR

ϕ1 [2,2,2,1,2] 1.0 59% [2,2,2,1,2] 1.0 76%

ϕ2 [1,1,2,2,1] 1.0 82% [1,1,2,2,1] 1.0 44%

ϕ3 [1,1,1,1,1] 1.0 68% [2,1,1,2,1] 0.6 29%

ϕ4 [2,2,1,2,1] 1.0 64% [2,2,1,2,1] 1.0 85%

ϕ5 [2,2,2,2,2] 0.2 41% [2,2,2,2,2] 0.2 53%

the smart teaching set happens to be compatible with the (wrong) concept ‘Odd
Number of Letters’. Thus when shown the test set containing ‘ACD’ almost a
third (7/22) of those thought with smart teaching set made a wrong choice, while
less than a tenth (3/34) of those taught with the random teaching set selected
the wrong box. The teaching sets are in Table 5. This is why we believe the
random teaching set is slightly better (accuracy 0.888 vs 0.873, see Figure 3)
for formula ϕ4 where the procedure built on Karnaugh map used in our system
generates a very large smart teaching set.

We also asked participants for how they themselves would explain what they
thought each robot was doing. This information is useful to elucidate why the
smart teaching set does worse than the random teaching set on ϕ4.

In the group GS (the smart teaching set), 10 of the 22 subjects did not write
any explanation while 12 subjects had an explanation. 7 people answered wrong
for test ‘ACD’ and 3 of these had no explanation, whereas the other 4 confirm
our suspicion that they are focusing on odd/even numbers of letters.

In the group GR (the random teaching set) 27 subjects had an explanation.
3 people answered wrong for test ‘ACD’ and 2 of these had no explanation,
whereas the 3rd had an explanation that actually should have led the subject to
classify ‘ACD’ correctly.

6 Conclusions

The results of the paper are indeed promising and have the potential to advance
the field of explainable AI. Our proposed framework based on machine teaching
can effectively teach complex functions to humans using explanatory examples,
with a clear advantage over choosing the examples randomly. These findings
demonstrate that machine teaching is a valid approach for exemplar-based ex-
plainable AI, but also that the expectations on the features and the priors of the
humans is critical to get effective explanations from as few examples as possible.
As future work, we propose the study of LM models better aligned with hu-
mans. Also, we are considering the use of teaching examples generated by recent
language models.
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