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Abstract. The Lexicographically First Maximal Independent Set Problem on
graphs with bounded degree 3 is at most

� �
-complete, and thus very likely

not parallelizable in a fine-grained setting. On the other hand, we show that in
a coarse-grained setting (few processors and a lot of data) the situation is differ-
ent, by giving a work-optimal algorithm on a shared memory machine for

�
and� such that �	��
������������
��� ���

.

1 Motivation and Background

It is commonly believed that not all problems are parallelizable, but what paralleliz-
able means in practice and what theoretical models are able to capture differs some-
what. If ����� �"! is the best sequential runtime on an input of size � , then with # pro-
cessors the best parallel runtime we can hope for is $�� � � �%�"!'&(#)! , yielding a work-
optimal algorithm. Most actual parallel computers are coarse-grained, having # orders
of magnitude smaller than � for practical problems. However, the well-known paral-
lel complexity class NC requires a parallel runtime polylogarithmic in � , implying
#+*-,��%� � � �"!'&.#�/10%2304/�5)�%�"!6! , and this we call fine-grained. Showing that a problem
is P-complete, meaning that it is not in NC unless P=NC, is therefore an argument
for non-parallelizability only on a fine-grained computer, and may not have practical
implications.

To remedy this situation Kruskal et al[10] studied parallel complexity classes EP,
AP and SP that require only parallel runtime 7�� � � � �"! �.8)9 ! for some :<;>= . EP implies
work-optimality, whereas AP (and SP) allows a factor polylogarithmic (and polyno-
mial) in � away from work-optimality. Vitter et al showed that some P-complete prob-
lems indeed are parallelizable in this sense [14]. Condon[2] extended this work also
with non-parallelizability results by showing, roughly, problems that could not have
7��@? � �.8)9 ! parallel runtime unless all problems in P had a similar parallel speedup over
its best sequential runtime. She showed this for the Lexicographically First Maximal
Independent Set (LFMIS) problem, among others.

In the current paper, we look for a positive parallel result for the LFMIS problem,
for which Condon gave only the negative result. The requirement that a lexicographic
ordering of vertices must be respected gives the problem an inherently sequential flavor.
A
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Hardly any results are known on parallel algorithms for LFMIS, whereas efficient par-
allel solutions exist if the ordering requirements are dropped, see e.g Ferreira and Sch-
abanel [5] and Gebremedhin et al. [6]. Uehara [12] gave an NC algorithm for LFMIS
restricted to graphs with a #�/10%2304/�5)�%�"! bound on the length of the longest path respecting
the lexicographic order given in the input.

We instead focus on a variant of LFMIS that is known to remain P-complete [11],
that we call LFMIS3, where input graphs have bounded degree 3. We first extend Con-
don’s result on the hardness of LFMIS to LFMIS3. Then, our main result is stated as
follows:

Theorem 1. There is a parallel algorithm for LFMIS3 that is work-optimal for all �
and # such that #�� ����� #�� 7�� ����� �"! .

The paper is organized as follows. In the following section, we will introduce the
models of parallel computation that will be used throughout the paper. We also provide
a brief discussion about the complexity issues involved. Then Section 3 will introduce
the problem and our main technique to handle it which we call block graph. The parallel
algorithm itself is described in Section 3, followed by two sections that discuss the two
different phases of preprocessing that this parallel algorithm needs. The main part of
the paper being presented for a PRAM, in Section 7 we find it convenient to outline
how the assumption of using a shared random access memory might be relaxed. This is
done by specifying a concrete communication pattern between different processors.

2 Parallel machine models and performance measures

Although our research was guided by the more practical and realistic coarse grained
machine models for parallel computation, see [13, 3, 4, 7], we will for this paper use
simply the PRAM while taking the granularity restriction into account. This is done to
make the approach as transparent as possible and not get lost behind certain (practically
motivated) constraints of the coarse-grained models. At the end of this paper we will
indicate how our results can be extended to a distributed coarse-grained setting.

We use a convenient modification of the classical CREW-PRAM1, see [9] for an
overview. The algorithm that we give will use bit-parallelism so we have to be more
precise about the “RAM” part of the machine description. We will assume that each
processor is a word-RAM with word size 	 and that it supports all conventional op-
erations (e.g memory access, addition, subtraction, bitwise and and or) on machine
words in constant time.

The choice of a word-RAM as a base for the machine model is in contrast to some
of the complexity theoretic work cited above, e.g [2]. The difference in the perfor-
mance measures as presented hereafter when using a more restricted RAM (so mainly
considering bit complexity) would be a 	 -factor on time and cost. To allow for a fair
comparison, that factor would have to be taken into account for both sequential and
parallel algorithms. So, as long as we handle such a factor consistently when measuring

1 Concurrent Read Exclusive Write - Parallel Random Access Machine
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the speed up of a parallel algorithm over a sequential one this effect would cancel out.
Thus we may choose this variant of the PRAM for convenience.

We will assume that the word-size of our machine is at least logarithmic in the input
size (here the number of vertices of a graph � ) since otherwise our input could not be
randomly addressed in its entirety, i.e.

����� ��� 	�� (1)

The main performance measures of a PRAM algorithm � are its parallel running
time ��� � �"! and its overall work or cost �	� � �"! * ��� � �"! #
� � �"! , where #�� � �"! denotes
the number of processors used by � . Unless such PRAM algorithms are work-optimal,
i.e. ��� �%�"! * 7��%���� � �"!'! , they will show poor performance when scaled down, using
Brent’s principle, see [1], to fewer processors.

An inconvenience of requiring work-optimality is the fact that the definition de-
pends on � � , an optimal sequential algorithm that for a specific problem may not be
known. But for this paper we luckily avoid this since the problem we will consider has
a linear-time sequential algorithm. So for work-optimality it will be sufficient to prove
a linear upper bound on � � � �"! .

When we want algorithms that are scalable for a range of processors their running
time � � �#��6�"! and cost � � �#��6�"! become also functions of # , the number of processors.
In this paper we aim for an algorithm � that will be work-optimal for � and # such
that #�� ����� # � 7�� � � � �"! . To be more precise on the quantifications there are constants����� ��� ; = and #
� (all independent from � and # ) such that for all � and # that fulfill
# � #
� and

# ����� #�� � � � � ��� (2)

we have
� � �#��6�"!������ � ���%�"! (3)

or equivalently

� � � #��'�"!���� � � � � �"!
# � (4)

To ease the design and presentation of our algorithm � we will consider # as being
determined by � , namely maximal # such that it fulfills (2). The full algorithm ��� with
input of size � and # � processors would then consist of computing the right value of
# as imposed by maximizing for (2) and then simulating � (with � and # ) via Brent’s
principle on #�� processors. The only obstacle for the design of ��� is the computation of
# on #
� processors in time 7��%� &(#�� ! which can be done easily for what is needed here.
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3 LFMIS and the Block Graph

Given a linear ordering on the vertices of a graph, the lexicographically first maximal
independent set is the subset of vertices built starting from the empty set by considering
vertices in the order given, and adding the considered vertex to the set if it does not have
a neighbor already in the set. The problem that is treated in Theorem 1 is the following,
see the book [8] for an overview.

Problem 1 (Lexicographically First Maximal Independent Set-3 (LFMIS3)).
Input: An undirected graph � * ��� ��� ! of maximum degree 3 with an ordering� � � � � � � ��� on � such that the edges are lexicographically sorted, and a designated ver-
tex � .
Output: Is vertex � in the lexicographically first maximal independent set?

The assumption on the ordering of the edges which is a bit more than is usually re-
quired for LFMIS has no impact on parallel complexity of the problem: because of the
bounded degree of the graph it can be achieved efficiently if necessary by a linear-work
algorithm: in 7�� ����� �"! time on a PRAM, or in 7�� � &.#�! time in a conventional coarse
grained setting.

The LFMIS3 problem is P-complete even if the input graph is restricted to be pla-
nar and have maximum degree 3, see [11]. From now on we consider only graphs of
maximum degree � . We first note that the P-completeness proof given for LFMIS3 by
Miyano in [11] in fact also shows that LFMIS3 is hard in the sense defined by Condon
in [2].

Corollary 1. The LFMIS3 problem is at most ? � -complete for P.

Proof. In the paper [11] LFMIS3 is shown to be P-complete by a reduction from the
circuit value problem CVP, which itself was shown in the paper [2] to be at most ? � -
complete for P. Since the given reduction preserves the input size, i.e. the graph is linear
in the circuit given as input, it follows from the results of [2] that also LFMIS3 is at most
? � -complete for P. �	

This corollary means, roughly, that if anyone would give a parallel algorithm for
LFMIS3 with a parallel runtime 7�� � 9 ! for :�


�� then all problems in P would have a
parallel algorithm with polynomial speedup over their best sequential algorithm.

We now turn to our parallel algorithm for LFMIS3. In the following we will in
fact not solve the decision problem as given by the definition, but give an algorithm
that produces the corresponding independent set. We will derive our algorithm from a
straightforward linear-time sequential algorithm, see Algorithm 1.

The idea presented in this paper to obtain a parallel algorithm is to alter the conven-
tional data structure for the input graph so that several processors will be able to handle
a set of different edges concurrently. Therefore we will need to compress information
concerning certain vertex and edge sets into machine words. To obtain such a “com-
pressed” representation of the input graph, we partition it into vertex blocks of fixed
size � , and consider the representation of intra-block and inter-block edges.
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Algorithm 1 Sequential LFMIS3

Input: A graph � * � � � � ! of max degree 3 with an ordering � � � � � � � ��� on � .
Output: The lexicographically first maximal independent set

�
.

Data Str.: Boolean vector S � � � � � � ����� with S � ����� * = only if ���	�� � .
begin

for 
 * = to � do S � ����� * �
for 
 * = to � do

for all edges ��� �� � � with 
 
�� do
if S � � � � * * �

then S � � � � * =
output � ��� S � ��� * * ���

end;

Definition 1. Given an undirected graph � * � � � � ! of max degree 3 with an ordering
of vertices � � � � � � � � � and an integer

� � � �>� , we define the � -block graph of � by
the following:

vertex partition We partition � into ��� &���� blocks � � � � � � � ��� ������� following the given
vertex ordering, i.e. with � � *�� �����! � � � � � � ������ "� � for = �#
 �%$�� &���&(' � and
��� �)�*��� the remaining vertices. For simplicity we may assume w.l.o.g. that � divides
� . A vertex � * � � of � is thus given a a block number + � � � ! *,$-
6&���& and a
relative number . � � � ! * �/
"0 �21 � !"3 � between

�
and � within its block.

inter-block edges The vertices of block � � have neighbors in at most � � other vertex
blocks � � with 
 
4� . Each such pair 
 �5� constitutes an inter-block edge � ��6 � . For
each of these inter-block edges we store a vector � �/6 � � � � � � � � � that encodes the
induced subgraph between vertices of blocks � � and � � . It has entries �879';: � �87<'� ���)7 , for

� �=7�� � , containing the relative number of the � possible neighbors
that the 7 th relative vertex in � � has in � � .

intra-block edges Intra-block edges inside a vertex block � � are represented by a sim-
ilar vector � � � � � � � � � � .
See Figure 1 for an example. A relative vertex number . � � � ! requires � ����� �>� bits

of storage. Total storage in bits for the block graph is therefore at most

� �%� & � ! � �? @BA C
# inter edges

3 � & �? @DA C
# intra edges

! � � � � � �? @BA C
vector encoding

* 7�� � � ����� � ! � (5)

So this encoding of our graph is in fact not compressed in the sense that it occupies less
space than a conventional one. If we assume in addition that

:�� ����� � 
 � � � � (6)

by our bound for the word size (1) we obtain

: � � � � � 
 	�� (7)

So the number of machine words needed for this new encoding is still linear in the
number of vertices (and edges).
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Fig. 1. The
�

-block of a graph with max degree � and vertices ordered ��������� for
��� � , i.e. �

vertices per block. Black vertices are in the LFMIS.

To discuss the example of Figure 1 we will write machine words as a vector of
(small) numbers. We note such words as ���	+�� � �! #" where ����+ � � � � are numbers that are
written with $ bits and that are concatenated in the machine word. E.g% � � : =& � �'� = = =& � �'� � � =& �)(+* *,��:.- � = �:�/0 *

*,� = � � = = = = = = = = = = ��� � = =0 � (8)

which represents the decimal number 12/ � �8: .
Inter-block edges between �
� and � � are represented by a vector of � � numbers

in the range = � � � � , namely
% � � : =& � �2��= = =& � �2� � � =& �)( * , with � � : =& �43 :�-

denoting that vertex
�

is adjacent to - and 5 (which have relative numbers
�

and :
in � � ), � = = =& � 3 = denoting that vertex : has no adjacencies, and � � � =0 � 3 :2/
denoting that vertex � is adjacent to vertices - and 6 (which have relative numbers

�
and � ). Likewise, intra-block edges for ��� are represented by the vector% �8: = =& � �'� � � =& � �'��: = =& � ( * 3 � �8:�/21'6 � (9)

Taking a � -block graph as input we still have a simple sequential linear-time algorithm
for LFMIS3, but now with a potential for parallelization in the innermost for-loop,
see Algorithm 2. The subroutines Intra-block-update and Inter-block-update in that al-
gorithm are quite distinct. Intra-block-update is no simpler than the original LFMIS3
problem, and could for example be handled by the standard algorithm restricted to the
subgraph induced by the vertex block.

Inter-block-update returns a bit-vector that has a = in a particular position if the
corresponding vertex should not be in

�
and a

�
otherwise. So anding the bits of S � � � �

with this value accumulates the constraints (of not being in
�

) imposed by different
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Algorithm 2 Sequential Block-LFMIS3

Input: The � -block graph of some � with max degree 3, with an ordering
� � � � � � � � ����� on vertex blocks, intra-block edges � � � � � � � � � � and inter-block
edges � �/6 � � � � � � � � � (if non-empty) for =�� 
 
 � � � &�� .
Output: The lexicographically first maximal independent set

�
of � .

Data Str.: Boolean matrix S � � � � � � � �)�*� � � � � � � � �
Invariant: S � � ��� � 7 � * * = only if the 7 th vertex of � � (i.e. the vertex
number 
 � 3 7 ' � ) is known not to be in

�
.

begin
for 
 * = to � & � do S � � � � *,� � � � � � � �  �
for 
 * = to � & � do

S � � �/� * Intra-block-update ��� � � � � � � � � � � S � � ��� !
for all � ; 
 with � �/6 � � � � � � � � � non-empty do

S � � � � * S � � � � bit-and Inter-block-update � � �/6 � � � � � � � � � � S � � ��� !
output � ��� S � + � � � ! � � . � � � ! � * * ���

end;

neighbors. Inter-block-update has no dependency constraints coming from the vertex
ordering, as we simply have to find the vertices of block � � that have a neighbor in
� ��� � .

4 The parallel algorithm

We now consider a CREW PRAM implementation of Algorithm 2, see Algorithm 3.
The representation of the block graph will be computed in a pre-processing step that
we discuss in Section 4. Moreover, the subroutine calls Intra-block-update and Inter-
block-update will be handled by simple table lookups, and these two tables will also be
computed in a pre-processing step discussed in Section 5. The index to the tables will
be the parameters for the subroutine calls, namely: � � � � � � � � � � (where each entry has� � � � bits) plus S � � ��� � � � � � � � (with boolean entries) for Intra-Block and � ��6 � � � � � � � � �
plus S � � � � � � � � � � � for Inter-Block. These indices consist of � � � � � �=3 � bits which
by (7) fit into one word of our machine.

We choose the block-size equal to the number of processors, # * � . To ensure that
we can compute the lookup tables in 7��%� &(#)! time, we must constrain the table size to
� &(# , thus

� : # 3 � ! � � � #�� � � � � (10)

Constraints (7) and (10) are both met with the granularity condition (2).
Thus the � ��� ..� and � ��� �. tables will have about � &.# entries each. Using table

lookup, the initialization of all � &.# entries of the S vector and all � &(# intra-block up-
dates are done in 7�� � &(#)! time by a single processor. For the inter-block edges, there are
at most � # such edges out of block � � , going to at most � # distinct blocks in increasing
order � ��� � � ��� � � � � ��� ��	�
��� and processor ��� , =�� 7 
 # will be responsible for those
going to � ��� � � � 
�� � ��� ��� 
�� � .
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Algorithm 3 Parallel LFMIS3 with processors � � , 
 * = � � � � # ' �
such that

#	� ����� # ��� $ � � � � � & and � * # .

Input: A graph � * � � � � ! of max degree 3 with an ordering � � � � � � � � � on � .
Output: The lexicographically first maximal independent set

�
.

Data Str.: Boolean matrix S � � � � � � � �)�*� � � � � � � � � with S � � � � � 7 � * * = only if 7 th
vertex of � � �� � .

Vectors for intra-block edges � � � � � � � � # � and inter-block edges � ��6 � � � � � � � # � (if
non-empty) for =�� 
 
�� � � &(# .

Tables � ��� ..� � � � � �6� &.# � and ����� �.2� � � � � � &(# � giving instructions for
Intra-block-update and Inter-block-update.

begin
Compute the # -block graph of � , see Section 4.
Compute lookup tables ����� ..� and ����� �. , see Section 5.
for 
 * = to � &(# do ��� : S � � � � � 7 � *,� � � � � � � �  �
for 
 * = to � &(# do

��� : S � � � � * ����� ..� � � � � � � � � � � � , S � � � ���
foreach � � in-parallel do

for � * = to : do
S � � ��� 
�� � � * S � � ��� 
�� � � bit-and � ��� � .2� � ��6 ��� 
�� � � � � � � � � � , S � � �/��� (*)

foreach � � in-parallel do
for � * = to � &.# � ' � do

for � * �
to # do

if S � �����  � � � � � * * �
then output �
	 ���  �����  �

end;

For the example graph in Figure 1, when handling inter-block edges from � � , pro-
cessor � � will first update S � � � � , since � � � * � � , by setting

S � � � � * S � � � � bit-and � ��� �.
� % � � : =& � � � = = =0 � �2� � � =& � ( * � � � = �  �� (11)

(since � � 6 � *
% � � : =& � �2� = = =0 � �'� � � =& � ( * and S � � � � * � � = �  � ) while � � will

update S � � � � since � � � * � � (there are not enough vertex blocks in the example to see
the parallel scheme in full effect). The processors will lookup the inter-block update ac-
tion in parallel, thus possibly reading concurrently, and then write the new information
to distinct blocks.

Apart from the pre-processing involved in computing the representation of the block
graph and the tables, discussed in the next section, we see that this algorithm takes time
7�� � &(#)! using # processors on a CREW PRAM.
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Algorithm 4 Compute # -block graph with processors � � , 
 * = � � � � # ' � such that
#	� ����� # ��� $ � � � � � &
Input: A graph � * � � � � ! of max degree � with an ordering � � � � � � � � � on � .
Data Str.: Vectors for intra-block edges � � � � � � � � # � ,
and inter-block edges � �/6 � � � � � � � # � (if non-empty) for =�� 
 
 � � � &(# .
begin

foreach � � in-parallel do
for 
 * = to � &.# � ' � do

foreach edge � * ��� ��� with � 
 + and � � � � �)� � �  � do
compute block number � of ��� and relative numbers of ��� and ���
if � * 7 � &(# � 3 
 , i.e. � is an intra-block edge do

update � � �)� � �  � � � � � � � # �
else do

if � is the first inter-block edge � � ��� � �  � � � � do
initialize � � ��� � �  � 6 � to 0-vector

update � � ��� � �  "��6 � in correct position by �
end;

5 Pre-processing: the � -block graph

We indicate how to compute the representation of the # -block graph of � using #
processors on a CREW PRAM in time 7��%� &(#�! , see Algorithm 4. Processor � � ��= �
7 � � &(# will be uniquely responsible for the � &.# �

blocks with contiguous indices
73� &(# �

��73� &.# � 3 � � � � � � 73� &(# � 3 � &.# � ' � thus avoiding any write conflicts. A single
processor will go through all the at most � # edges out of a block and will spend con-
stant time per edge for total time 7�� � &(#)! . When processing edges out of a block � � ,
say an edge � � � � with � 
4+ , the processor must first find the block number and relative
number of � � and � � , and based on this information it can write to the appropriate word
in memory. If this is the first edge between these two blocks initialize � �/6 � � � � � � � # � to
the 0-vector, otherwise update � ��6 � � � � � � � # � in the correct bit positions using an OR-
operation with the old � �/6 � � � � � � � # � and an appropriate mask. Consider an example: For
the graph in Figure 1 when computing the intra-block edge between � � and � � a sin-
gle processor will go through the edges in order � � �#- ! � � � �!5 ! ��� � � - ! � � � � 6 ! and for each
of these (say � � ��5�! ) the processor merely computes the low-endpoint block-number,
= , and high-endpoint block-number,

�
, and low-endpoint relative number,

�
, and high-

endpoint relative number, : , and this allows it to find the correct � � � � � ���  * slot in the
� � 6 � intra-block edge, and within this slot it first checks if � � is = (assume no) then
sees if � � is = (assume yes) so it now has the appropriate mask to update � � 6 � � � � � ��� # �
in the correct bit positions using an OR-operation with the old � � 6 � � � � � � � # � , thereby
inserting the correct relative number, : , at � � .
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Algorithm 5 Compute lookup tables with processors � � , 
 * = � � � � # ' � such that
#	� ����� # ��� $ � � � � � & .
Data Str.: Tables � ��� ..� � � � � � : � ��� ��� � � � � � �*: � � and ����� �.2� � � � �*: � ��� ��� � � � � � �*: � �
begin

foreach � � in-parallel do
for 
 * = to � &.# � ' � do update � ��� . � � 73� &(# � 3 
 � and � ��� �.2� 73� &.# � 3 
 �

end;

6 Pre-processing: the lookup tables

Now we consider the computation of the lookup tables for block-size # , see Algo-
rithm 5. Note that this is independent of the input graph � , except for the fact that
# is chosen as a function of � such that the tables will have � &.# entries. The table � ��� �.
has indices of the form � ��6 � � � � � � � # � (where each entry has

����� # bits) plus S � � ��� � � � � � # �
(with boolean entries) thus consisting of � # ����� # 3 # bits total. For each boolean index
of this length, we must compute the corresponding update word. The processors will
each be responsible for � &(# �

entries, and can spend 7�� #�! time per entry.
For the example of Figure 1, S � � � � is updated by inter-block edges from � � to � �

by setting

S � � � � * � ��� �.
� % � � : =& � �'��= = =& � � � � � =0 �)(+* � � � = �  �  (12)

(since � � 6 � *
% � � : =0 � �2� = = =& � �'� � � =& �)( * and S � � � � * � � = �  � ). This data

forces all vertices of � � to be not in
�

, thus the lookup table must be set

� ��� �.
� % � � : =& � �2� = = =& � � � � � =& � ( * � � � = �  �  * � = = =& � � (13)

As mentioned earlier the crucial point is to find the vertices of block � � that have a

neighbor in � � � � . In the index
% � � : =& � � � = = =0 � �2� � � =& � ( * � � � = �  � the second

component � � = �  � tells us that only the first and third parts of the first component, i.e.� � : =& � and � � � =& � are of interest. From these we must union all numbers mentioned,
and those bit positions in the output word should be set to 0. All this can be done, for
each index, by 7��#)! word operations.

For the intra-block table � ��� . � the procedure is slightly more complicated, as the
vertex ordering is important. Thus, for the graph in the example, the update operation

S � � � � * ����� ..� � % ��: = =& � �'� � � =& � �2��: = =& � ( * � � � � �  �� (14)

accounts for edges inside block �
� . This data forces the second vertex of �
� to be not
in
�

, thus the lookup table must be set

����� ..� � % �): = =& � � � � � =0 � �2�): = =& � ( * � � � � �  �� * � � = �  � � (15)



A work-optimal coarse-grained PRAM algorithm for LFMIS 11

Here we need a sequential traversal through the # parts of the first and second index
components simultaneously. Again, this can be done using 7�� #�! word operations.

7 Organizing the communication

The force of the recent coarse grained parallel models (e.g BSP [13], CGM [4] and
PRO [7]) is that they are able to account for communication more realistically than
the PRAM. They assume that each processor has its private share of memory and that
all information needed by more than one processor has to be communicated explicitly
between the processors via messages. When doing so, they account for the sending and
receiving of message. So to be efficient, in general an algorithm has to ensure that at
any moment every processor sends out and also receives about the same amount of data.
Otherwise the running time on the different processors would desequilibrate.

To fit into such a setting we have to replace the random access to memory by com-
munication between processors. Therefore we have to design a communication pattern
that is able to fulfill these constraints of sending and receiving the same amount of data
at any processor and time. In fact, for most of what was described above this is easy
to do: e.g in Algorithm 4 the processors mainly do all computation by their own. They
only have to communicate the tables that they computed at the very end.

The memory access that is difficult to handle is the line (*) in Algorithm 3. We
will assume that each processor ��� will assemble the values S � � �/� for all 7 such that

 * � � # 3 7 for some � .

The algorithm performs in steps where each processor � � performs the following:

1. Receive a previously computed value S � � ��� � for some 
 � from � � 8 � .
2. Perform the line (*) for at most three block-edges, namely such that the source

block-vertex of the edge is before � ��� � and the target block-vertex is � � .
3. Send a value S � � � � � � for some 
 � � to processor � �  � .

Some tedious choice of the indices 
 � � 
 � � and for the block-edges and some com-
putation shows that the number of steps can be bounded to 7��%� &(#�! . We postpone the
detailed arguments and proofs to the journal version of this paper.

8 Conclusion

We have shown that the behavior of a problem that is notoriously hard in a fine grained
PRAM setting may be solved work-optimally compared to a sequential algorithm, if the
number of processors # is restricted to some (slowly) growing function in � . This result
is first of all a theoretical, we would not expect it to be efficiently implemented in a
realistic setting. Nevertheless, it proves the potential of such a setting and shows that
the complexity of problems can be quite different in fine grained and coarse grained
settings.

Perhaps more subproblems or algorithms known from sequential algorithmics could
in principle be used for the design of parallel (coarse grained) algorithms than what is
commonly thought. A prominent example would be the computation of a DFS-tree in a
coarse grained setting.
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For each problem
�

it might also be interesting to look at the borderline for what
function of # in � such work-optimal parallel algorithms exist, see e.g [7] for such an
approach.
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