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Abstract
It was recently shown [18] that satisfiability is polynomially solvable when the incidence graph
is an interval bipartite graph (an interval graph turned into a bipartite graph by omitting all
edges within each partite set). Here we relax this condition in several directions: First, we show
that it holds for k-interval bigraphs, bipartite graphs which can be converted to interval bipartite
graphs by adding to each node of one side at most k edges; the same result holds for the counting
and the weighted maximization version of satisfiability. Second, given two linear orders, one for
the variables and one for the clauses, we show how to find, in polynomial time, the smallest k
such that there is a k-interval bigraph compatible with these two orders. On the negative side we
prove that, barring complexity collapses, no such extensions are possible for CSPs more general
than satisfiability. We also show NP-hardness of recognizing 1-interval bigraphs.

1 Introduction

Constraint satisfaction problems (CSPs) such as satisfiability are both ubiquitous and diffi-
cult to solve. It is therefore essential to identify and exploit any special structure of instances
that make CSPs susceptible to algorithmic techniques. One large class of such structured
instances comprises CSPs whose constraints can be arranged in a linear manner, presum-
ably reflecting temporal or spatial ordering of the real-life problem being modeled. A well
known example is the car sequencing class of CSPs proposed by the French automobile
manufacturer Renault in 2005 and reviewed in [21].

But defining what it means for a CSP to have “a linear structure” is not straightfor-
ward. The linear structure should be reflected in the incidence graph of the instance, but
how exactly? Previous work has considered satisfiability instances with incidence graphs of
bounded tree-width or bounded clique-width [5, 15, 19, 20, 23]. Instances that are in some
sense close to efficiently solvable instances have been studied in terms of backdoors [7, 24],
in particular for CNF formulas that have a small number of variables whose instantiations
give formulas of bounded treewidth [8]. An important special case of bounded tree-width is
bounded path-width, a measure of how path-like a graph is and a strong indication of linear
structure. Bounded clique-width is a stronger notion, in which the graph’s cliques have a
linear structure.

Recently another direction for defining linear structure in CSPs was proposed, based in a
time honored graph-theoretic conception of linear structure: interval graphs, the intersection
graphs of intervals on the line. Interval graphs are a well-known class of graphs, going
back to the 1950s, used to model temporal reasoning [9], e.g. in resource allocation and
scheduling [1]. However, the incidence graphs we care about are bipartite, and the only
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connected interval graphs that are bipartite are trees. A bipartite version of interval graphs
was introduced by Harary et al. in 1982 [11]: An interval bigraph is, informally, a bipartite
graph1 in which each vertex is associated with an interval, and there is an edge between
two vertices on different sides if and only if the corresponding intervals intersect. Interval
bigraphs form a natural and fairly rich class of bipartite graphs, containing, e.g., all bipartite
permutation graphs, which have been shown to have unbounded clique-width and thus also
unbounded treewidth or pathwidth [2].

Interval bigraphs have been studied quite extensively, and several important facts are
known about them. First, they can be recognized in polynomial time: In 1997 Müller gave
an algorithm with running time O(|V ||E|6(|V |+|E|) log |V |) [13], and a 2012 technical report
[16] gives an algorithm with running time O(|V |(|E|+ |V |)). Importantly, Hell and Huang
[12] gave in 2004 a useful alternative characterization of interval bigraphs as all bipartite
graphs whose set of vertices can be ordered on the line so that the set of neighbors of each
vertex coincides with an interval whose high end is the position of the vertex (see Lemma 2
below for the formal statement).

Interval bigraphs constitute a natural basis for identifying an important class of CSPs
possessing a linear order: Define an interval CSP as a CSP whose variable-constraint in-
cidence graph is an interval bigraph. In [18] a general dynamic programming approach to
solving a class of CSPs was developed, and one consequence of that framework is that satis-
fiability — even weighted MAXSAT and #SAT — on interval CNF formulae with m clauses
and n variables can be solved in time O(m3(m+ n)) (stated as Theorem 3 below). See also
the work of Brault-Baron et al [3] which sets out the wider context of the results of [18].

The present work is about extending Theorem 3 in several natural directions:

1. Many CSPs are not interval CSPs. Can the definition of interval CSPs be extended
usefully, so that a limited number of “faults” in the interval structure of CSPs is tolerated
by polynomial time algorithms?

2. In a variety of applications there is a natural linear ordering of both variables and con-
straints, but not of their union. One well-studied application is car sequencing [22],
where sliding-window constraints [17] naturally come with an ordering of the variables
and the constraints. In other temporal or scheduling settings, variables can be ordered
according to the discrete timestep they are relevant to. Even when one is only given an
ordering of the variables, one can greedily order the constraints; for example by their
earliest variable in the variable-ordering or more domain-dependent methods. Under
what circumstances is it possible to merge these two linear orders into one, so that the
resulting bipartite graph is an interval bigraph?

3. If an order as in (2) above does not exist, can at least a merged order be found so
the resulting bipartite graph is as close as possible (presumably in some algorithmically
useful sense as in (1) above) to an interval bigraph?

4. Finally, to what extent can these algorithmic results be extended to CSPs beyond satis-
fiability?

In this paper we address and largely resolve these questions. In particular, our contri-
butions are the following:

1. We define a useful measure of how much the incidence graph of a CSP instance differs
from an interval bigraph: The smallest number k such that the incidence bigraph becomes

1 We use “bigraph” and “bipartite graph” interchangeably.
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interval if each constraint vertex of the bigraph has at most k edges added to it. Deciding
if k ≤ 1 is NP-hard (Theorem 6) but we show (Theorem 9) that given an ordering
certifying a value of k such instances of satisfiability with m clauses and n variables
can be solved in O(m34k(m+ n)) time. Ditto for MAXSAT and #SAT; the exponential
dependence on k is, of course, expected.

2. We give a simple characterization of when two linear orders, one for constraints and one
for variables, can be merged so that the resulting total order satisfies the Hell-Huang
characterization of interval bigraphs.

3. We also show that, if no such merging is possible, we can find in polynomial time —
through a greedy algorithm — the minimum k such that the incidence graph becomes
interval with the addition of at most k edges to each constraint vertex. Hence, in the
case of satisfiability, if this minimum is bounded then polynomial algorithms result.

4. Finally, we show that the approach in (1) above — which started us down this path —
does not work for general CSPs, in that CSP satisfiability is intractable even when the
incidence graph has the same favorable structure as in (1), with bounded k (Theorem
10).

Definitions and Background
Since we mostly deal with satisfiability, we denote our bipartite graphs as G = (cla, var, E),
where cla stands for clauses and var for variables.

I Definition 1. A bipartite graph G = (cla, var, E) is an interval bigraph if every vertex
can be assigned an interval on the real line such that for all x ∈ var and c ∈ cla we have
xc ∈ E if and only if the corresponding intervals intersect. A Boolean formula in conjunctive
normal form (CNF) is called an interval CNF formula if the corresponding incidence graph
(cla the clauses, var the variables, E the incidences) is an interval bigraph.

A most interesting alternative characterization of interval bigraphs by Hell and Huang
[12] is stated here, expressed in terms of interval CNF formulas.

I Lemma 2. [12] A CNF formula is an interval CNF formula if and only if its variables
and clauses can be totally ordered (indicated by <) such that for any variable x appearing
in a clause C:
1. if x′ is a variable and x < x′ < C then x′ also appears in C, and
2. if C ′ is a clause and C < C ′ < x then x also appears in C ′.
We call an ordering of the variables and clauses of an interval CNF formula satisfying the
lemma an interval ordering. Interval bigraphs can be recognized in polynomial time [13],
see also [16].

2 k-interval Bigraphs

Recent work has articulated efficient algorithms in the dynamic programming style for in-
terval CNF formulae.

I Theorem 3. [18] Given an interval CNF formula on n variables and m clauses and an
interval ordering of it, #SAT and weighted MaxSAT can be solved in time O(m3(m+ n)).

Combining Theorem 3 with the recognition algorithm of [13] gives the following:

I Corollary 4. Given a CNF formula, it can be decided if it is an an interval CNF formula,
and if so #SAT and weighted MaxSAT can be solved in polynomial time.
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We want to generalize this result to a larger class of formulae. To this end we introduce
the following graph classes and formula classes, parametrized by k ≥ 1.

I Definition 5. A bipartite graph G = (cla, var, E) is a k-interval bigraph if we can add
at most k edges to each vertex in cla such that the resulting bipartite graph is an interval
bigraph. A CNF formula is called a k-interval CNF formula if its incidence graph (with
clause vertices being cla) is a k-interval bigraph.

Note that 0-interval bigraphs are the interval bigraphs, and 1-interval bigraphs allow as
many exceptions (added edges) as there are clauses. Unfortunately, the recognition problem
for k-interval bigraphs becomes hard, already when k = 1. The proof is by reduction from
the strongly NP-hard 3-Partition problem and is given in Section 5.

I Theorem 6. Given a bipartite graph G and an integer k, deciding if G is a k-interval
bigraph is NP-hard, even when k = 1.

The alternative characterization of Lemma 2 can be extended to k-interval bigraphs.

I Lemma 7. A CNF formula is a k-interval CNF formula if and only if its variables and
clauses can be totally ordered such that for any clause C there are at most k variables x not
appearing in C where either
1. a variable x′ appears in C with x′ < x < C, or
2. x appears in a clause C ′ with C ′ < C < x.

Proof. The lemma follows directly from Definition 5 and Lemma 2. J

I Definition 8. For a k-interval CNF formula we call a total ordering of the kind guaranteed
by Lemma 7 a k-interval ordering.

Our first algorithmic result is that, given a k-interval ordering of a k-interval CNF
formula, #SAT and MaxSAT can be solved via a fixed-parameter tractable (FPT, see [4])
algorithm parameterized by k.

I Theorem 9. Given a CNF formula and a k-interval ordering of it, we solve #SAT and
weighted MaxSAT in time O(m34k(m+ n)).

Proof. The full proof for #SAT and weighted MaxSAT is given in Section 4; here we give
a straightforward construction establishing a weaker result for satisfiability only.

The basic observation is that the satisfiability of a CNF formula is not affected if a clause
C is replaced by a particular set of clauses, defined next. Fix any set of ` ≥ 0 variables
not occurring in C, and replace C with the 2` clauses of the form (C ∨Dj) : j = 1, . . . , 2`,
where Dj ranges over the 2` possible clauses containing the ` variables. It is easy to see
that a truth assignment satisfies the new formula if and only if it satisfied the original one.
It is further clear that the satisfiability of the formula remains unaffected if all clauses are
so replaced, for different sets of variables and ` ≥ 0. Finally, if a CNF formula is k-interval,
then it has such an equivalent variant whose incidence graph is an interval bigraph. An
FPT algorithm (albeit with running time O(m38k(m2k + n)) instead of O(m34k(m + n)))
results. J

We next show that the k-interval structure is not helpful for general CSPs:

I Theorem 10. Given a CSP instance I with variable-constraint incidence graph G and an
interval bigraph G′ obtained from G by adding at most k edges to each constraint vertex,
deciding the satisfiability of I is W [1]-hard parameterized by k.
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Figure 1 Obstructions to merging into an interval bigraph ordering: variables ordered x < y < z,
clauses A < B < C, with solid lines indicating edges of the incidence graph and dotted lines
indicating non-edges, with remaining possibilities being any combination of edges or non-edges.

Proof. Gottlob and Szeider [10] observed that CSP is W [1]-hard parameterized by the
number of variables, recasting a W[1]-hardness proof for conjunctive queries in databases
[14] to CSPs. The reduction is from clique, where for a graph G = (V,E) and an integer
parameter k, the question is whether there is a clique of size k in G, i.e., a set of k pairwise
adjacent vertices. In the language of CSPs, their reduction construct a CSP with k variables
x1, . . . , xk, each with domain V . Intuitively, variable xi represents the ith vertex of the
clique we are looking for. For each pair of variables xi, xj with i 6= j, add a constraint with
scope (xi, xj) whose constraint relation contains (u, v) iff uv ∈ E. Now, the CSP has a
solution iff G has a clique of size k. Given a CSP instance with k variables, we can turn
its incidence graph into an interval bigraph by adding all possible edges between variables
and constraints. This creates a complete bipartite graph and adds at most k edges to each
constraint vertex. J

3 Merging Linear Orders

Theorem 10 tells us that our ambition for new algorithmic results based on the concept
of k-interval bigraph should be limited to CSPs of the satisfiability kind, while Theorem 6
suggests that the new concept of k-interval bigraph can only extend the class of solvable
problems either in special cases, or indirectly, in specific contexts. In this section we derive
an algorithmic result of the latter type.

Suppose that the real life situation modelled by the CNF formula has linearly ordered
clauses, and linearly ordered variables, but there is no readily available linear order for both.
That is, we assume the input comes with two linear orderings, one for the variables and one
for the clauses. We wish to find the minimum value of k such that there exists a k-interval
ordering compatible with both.

Problem: Merging to minimum k-interval bigraph ordering
Input: Bipartite graph G = (cla, var, E), a total order of cla, and a total order of var
Output: The minimum k such that we can merge the two orders into a k-interval ordering
of cla ∪ var.

Consider first the case k = 0.

I Lemma 11. If a formula is given with variable ordering, clause ordering, and incidences
containing one of the obstructions in Figure 1, then it cannot be merged into an interval
bigraph ordering.

Proof. Consider the left-hand obstruction in Figure 1. We cannot insert z after C, since we
get A < C < z violating Condition 2 in Lemma 2. On the other hand, we cannot insert z
before C, since we get x < z < C violating Condition 1 in Lemma 2.
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c1 c2 c3
c4 c5

x1 x4x3x2

Figure 2 Consider the above input, with non-incidences indicated by non-edges. The bold edges
and gray nodes show two overlapping obstructions as on the right side of Figure 1. Applying Lemma
2 these obstructions can be fixed in at least two ways: adding edge c2x4 by positioning c3 < x2; or
adding edges c3x2 and c3x3 by positioning c2 > x4. In this last case a new obstruction appears,
see Figure 3.

c1 c2 c3
c4 c5

x1 x4x3x2

Figure 3 Assume we fixed the obstructions from Figure 2 by adding edges c3x2 and c3x3. We
then get a new obstruction based in bold edges and gray nodes.

Consider the right-hand obstruction in Figure 1. We cannot insert z after B, since we
get A < B < z violating Condition 2 in Lemma 2. On the other hand, we cannot insert y
before C, since we get x < y < C violating Condition 1 in Lemma 2. Thus, since B < C

this leaves no place to insert z without violating Lemma 2. J

It turns out that, if there are no obstructions as in Figure 1 then Merging to minimum
k-interval bigraph ordering has a solution with k = 0. Thus, for any instance where
the solution has value k > 0 we can view the task as one of iteratively adding edges until
the result has no obstruction as in Figure 1. On the face of it this is non-trivial, as there is
more than one way of fixing an obstruction, with varying edge costs, and some ways may
lead to a new obstruction appearing. For an example of this see Figures 2 and 3.

Nevertheless, a greedy approach will efficiently solve Merging to minimum k-interval
bigraph ordering. Let us describe it. Assume the input ordering on variables and clauses
is x1, ..., xn and c1, ..., cm. All orderings we consider will be compatible with these input
orderings. The greedy strategy works as follows. Start with k = 0 and consider clauses by
decreasing index cm, cm−1, etc. Insert ci among the variables in the highest possible position,
below the position of ci+1, that does not lead to more than k edges being added to ci. If
no such position exists then increase k and start all over again with cm. The correctness of
this strategy relies on the following observation.

I Observation 12. For any fixed position of ci among the variables the number of edges we
must add to clause ci does not depend on where the other clauses are inserted, as long as
c1, ..., ci−1 end up below ci and ci+1, ..., cm above ci.

Proof. By Lemma 7 we must add to ci exactly one edge for each variable x not appearing
in ci, where x satisfies one of the two conditions stated in Lemma 7. For the first condition
note that C ′ can be any of c1, ..., ci−1 but no other clause. For the second condition note that
it does not depend on any other clause, only on the position of ci among the variables. J
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In our greedy strategy, when deciding where to insert ci the only restriction imposed
on us by earlier decisions is that ci must end up below the position of ci+1. To allow the
maximum degree of freedom we simply ensure that we have inserted ci+1 in the highest
possible position. The pseudocode is in Figure 4.

Greedy Algorithm for merging to minimum k-interval bigraph ordering
input: G = (cla, var, E), orderings cla = c1, c2, ..., cm and var = x1, x2, ..., xn

output: minimum k such that cla and var can be merged into a k-interval ordering

q := −1;
success := false;
while not success

q := q + 1;
start with the ordering x1, x2, ..., xn;
for i = m downto 1

insert ci at the highest position, below ci+1, where EdgesAdded(ci) ≤ q;
if no such position exists for clause ci then break out of the for loop;

if all clauses have been inserted then success := true;
output q;

EdgesAdded(C):= number of variables satisfying one of the conditions of Lemma 7

Figure 4 Greedy Algorithm for merging to minimum k-interval bigraph ordering

I Theorem 13. The Greedy Algorithm for Merging to minimum k-interval bigraph
ordering is correct and can be implemented to run in time O(|E| log k).

Proof. Let us first argue for correctness. Consider an iteration of the inner loop that
successfully found a position for clause ci among the variables. For the current value of
q it is not possible to insert ci higher than this position without some cj needing more than
q edges added, for some i ≤ j ≤ m. This is in fact a loop invariant, as we inserted the
clauses of higher index in the highest possible positions under exactly this constraint, and
by Observation 12 their position does not influence the number of edges added to other
clauses. Similarly, if for some ci and current value of q we encounter ’no such position
exists’ then in any ordering of cla ∪ var compatible with the input orders there will be
some cj , i ≤ j ≤ m which will need more than k edges added. Thus, when the algorithm
successfully finds positions for all clauses then the current value of q is the correct answer.

Let us now argue for the running time. For the log k factor, rather than iterating on q
until we succeed, we can search for the minimum k by what is known as galloping search,
i.e. try q equal to 1, 2, 4, 8, etc until we succeed for an integer q, and then do binary search
in the interval [q/2..q]. To decide on positions for the clauses in time O(|E|), for a fixed q,
we need several program variables. The pseudocode is in Figure 5.

We maintain for each x ∈ var the value live(x) as the number of live clauses x appears
in, where a live clause is one whose position has not been decided yet. Also, we maintain
livevar as the number of variables indexed higher than the current xt and appearing in a
live clause. Finally, var(ci) are the variables in clause ci and low(ci) the index of its lowest
indexed variable. The number of edges needed for ci if inserted immediately after xt is then

EdgesAdded(ci) = livevar + t− low(ci)− |var(ci)|

This is so since we must add to ci exactly one edge for each variable x not appearing in ci,
where x satisfies one of the two conditions stated in Lemma 7. The first condition counts
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Deciding if we can merge to a q-interval ordering, for fixed q, in O(|E|) time

∀x ∈ var: live(x) := number of clauses x appears in
∀c ∈ cla: var(c) := the set of variables in c

low(c) := i, lowest i with xi ∈ var(c)
livevar := 0;
t := n;
start with the ordering x1, x2, ..., xn;
for i := m downto 1

inserted := false;
while not inserted /* try to insert ci after xt */

if livevar + t− low(ci)− |var(ci)| ≤ q then
insert ci after xt;
inserted := true;
∀xj ∈ var(ci) : live(xj) := live(xj)− 1;

if live(xj) = 0 and j > t then livevar := livevar − 1;
else if t = 0 then halt: ’no for this value of q’;
else t := t− 1; if live(xt) > 0 then livevar := livevar + 1;

’yes for this value of q’;

Figure 5 Deciding if we can merge to a q-interval ordering, for fixed q, in O(|E|) time

the number of variables indexed higher than the current xt and appearing in some clause
indexed lower than ci, i.e. livevar, minus the number of variables in ci of index higher than
t. The second condition counts the number of variables strictly between xlow(ci) and xt+1,
i.e. t − low(ci), minus the number of variables in ci of index t or less. Summing these two
counts we get the above. J

4 Proof of Theorem 9

In this section we prove Theorem 9, namely that if we are given a CNF formula and a k-
interval ordering of it, we can solve #SAT and weighted MaxSAT in time O(m34k(m+n)).
We do this by showing that the input has linear ps-width at most m2k + 1 and applying the
following result.

I Theorem 14. [18] Given a CNF formula F with n variables var and m clauses cla, and
a linear ordering of cla∪var showing that F has linear ps-width at most p, we solve #SAT
and weighted MaxSAT in time O(p2m(m+ n)).

We need to clarify what is meant by the linear ps-width of a formula. We start with
the related notion of ps-value of a CNF formula F on variables var and clauses cla. For
an assignment τ of var, we denote by sat(F, τ) the inclusion maximal set C ⊆ cla so that
each clause in C is satisfied by τ . Such a subset C ⊆ cla is called projection satisfiable. The
ps-value of F is defined to be the number of projection satisfiable subsets of clauses, i.e.
|PS(F )|, where

PS(F ) = {sat(F, τ) : τ is an assignment of var} ⊆ 2cla.

Now, consider a linear ordering e1, e2, ..., en+m of var ∪ cla. For any 1 ≤ i ≤ n + m

we define two disjoint subformulas F1(i) and F2(i) crossing the cut between {e1, ..., ei} and
{ei+1, ..., en+m}. We define F1(i) to be the subformula we get by removing from F all clauses
not in {e1, ..., ei} followed by removing from the remaining clauses each literal of a variable
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not in {ei+1, ..., en+m}, and we define F2(i) vice-versa, as the subformula we get by removing
from F all clauses not in {ei+1, ..., en+m} followed by removing from the remaining clauses
each literal of a variable not in {e1, ..., ei}.

The ps-width of this linear ordering is defined to be the maximum ps-value over all
the 2(n+m) subformulas F1(1), F2(1), F1(2), ..., F2(n+m) that cross a cut of the ordering.
The linear ps-width of F is defined to be the minimum ps-width of all linear orderings of
var ∪ cla.

Before giving the lemma that will prove Theorem 9 we state a useful result.

I Lemma 15. [18] Any interval ordering of an interval CNF formula has ps-width no more
than the number of its clauses plus one.

I Lemma 16. Let F be a k-interval CNF formula on m clauses. Then any k-interval
ordering of it has ps-width at most m2k + 1.

Proof. Starting from F on m clauses and its k-interval ordering π we first construct an
interval CNF formula F ′ having at most m2k clauses. Any clause C of F for which Lemma
7 prescribes k′ ≤ k added edges from C to some k′ variables, will be replaced in F ′ by a
set of 2k′ clauses consisting of the clause C extended by all linear combinations of these k′
variables. Note that F ′ is then an interval CNF formula with an interval ordering π′ we get
from π by naturally expanding a clause C in π to the 2k′ clauses, in any order, that replace
C in F ′.

Applying Lemma 15 all we need to finalize our proof is to show that the ps-width of the
k-interval ordering π of F is no larger than the ps-width of the interval ordering π′ of F ′.
To do this we must consider cuts of π.

Consider subformulas F1(i) and F2(i) of F crossing a cut of π. We show that for the
corresponding cut in π′ (i.e. we cut π′ in the corresponding place without splitting any of the
expanded set of clauses) the ps-values of the subformulas F ′1 and F ′2 of F ′ associated with
this cut has ps-value no smaller than the ps-values of F1(i) and F2(i). That is |PS(F1(i))| ≤
|PS(F ′1)| and |PS(F2(i))| ≤ |PS(F ′2)|. Note that the variables of F1(i) and F ′1 are the same,
and similarly the variables of F2(i) and F ′2 are the same. W.l.o.g., we focus on F1(i) and
F ′1, which we assume have variables var1.

We need to show that if two assignments a, b of var1 have sat(F1(i), a) 6= sat(F1(i), b)
then also sat(F ′1, a) 6= sat(F ′1, b). W.l.o.g., assume some clause C ∈ sat(F1(i), a) but
C 6∈ sat(F1(i), b). We show that we can find a clause C ′ that distinguishes a and b in F ′1 as
well. Clause C of F1(i) comes from an original clause (possibly larger, since C lives across
a cut) in F . Assume this original clause was expanded in F ′ to 2k′ clauses, for some k′ ≤ k,
by extending it with all linear combinations of the k′ new variables. Depending on which
variables are on the other side of the cut the clause C of F1(i) has been expanded to a set
of 2k′′ , for some k′′ ≤ k′, clauses in F ′1, still consisting of all linear combinations of the k′′
variables not in C. Since a satisfies C and C is a part of all these expanded clauses we have
assignment a satisfying all of them. Since b does not satisfy C there will be exactly one of
these 2k′′ clauses that are not satisfied by b, namely the one where the linear combination
of the new variables is falsified by assignment b. This means that sat(F ′1, a) 6= sat(F ′1, b).

Thus the ps-width of the k-interval ordering of F is no more than the ps-width of the
interval ordering of F ′ and we are done. J

Combining Theorem 14 with Lemma 16 we arrive at Theorem 9. Combining with The-
orem 13 we get the following.
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I Corollary 17. Given a CNF formula and two total orderings, one for its m clauses and
one for its n variables, we can in polynomial time find the minimum k such that these two
orders can be merged into a k-interval ordering and then solve #SAT and MaxSAT in time
O(m34k(m+ n)).

5 Proof of Theorem 6

In this section we prove Theorem 6, namely that it is NP-hard to recognize k-interval
bigraphs, already for k = 1.

Proof. We give a polynomial time reduction from the 3-Partition problem, which is
strongly NP-hard [6]. Given an integer b, a set A of 3n elements, and a positive integer s(a)
for each a ∈ A such that b/4 < s(a) < b/2 for each a ∈ A and

∑
a∈A s(a) = n ·b, the question

is whether A can be partitioned into disjoint sets A1, . . . , An such that
∑

a∈Ai
s(a) = b for

each i ∈ {1, . . . , n}.
For a 3-Partition instance (b, A, s), we construct an instance G = (V,E) for the 1-

interval bigraph recognition problem as follows. We assume, w.l.o.g., that b ≥ 4, and
therefore, s(a) > 1 for each a ∈ A.

We add a set of slot vertices S =
⋃n

i=1 Si with Si = {si,1, . . . , si,b+1}. For all i, j with
1 ≤ i ≤ n and 1 ≤ j ≤ b we add a vertex `i,j that is adjacent to both si,j and si,j+1, so that
(si,1, `i,1, si,2, `i,2, . . . , si,b, `i,b, si,b+1) is a path for each i ∈ {1, . . . , n}.

For each i ∈ {1, . . . , n− 1} we add a delimiter vertex sd
i , and two vertices `d,1

i and `d,2
i .

We make `d,1
i adjacent to si,b, si,b+1, sd

i , and si+1,1 and we make `d,2
i adjacent to si,b+1, sd

i ,
si+1,1, and si+1,2. The set of delimiter vertices is D =

⋃n−1
i=1 {sd

i }.
We add a track vertex t that is adjacent to each vertex in S ∪D \ {sd

1}.
We add left anchor vertices al, `a,l, and make `a,l adjacent to al, s1,1, and s1,2. Sym-

metrically, we add right anchor vertices ar, `a,r, and make `a,r adjacent to ar, sn,b+1, and
sn,b. See Figure 6 for an illustration of the graph constructed so far.

For each element a ∈ A, we add a numeral gadget which is obtained from a path on
2 · s(a) + 1 new vertices (`n

a,0, na,1, `
n
a,1, . . . , na,s(a)−1, `

n
a,s(a)−1, na,s(a), `

n
a,s(a)) and the track

vertex t is made adjacent to na,1, . . . , na,s(a). See Figure 7 for an illustration of a numeral
gadget.

We will now show that (b, A, s) is a Yes-instance for 3-Partition if and only if G is
a 1-interval bigraph. For the forward direction, consider a solution A1, . . . , An to the 3-
Partition instance. We construct an interval representation following the scheme outlined
in Figure 6, which is missing the numeral gadgets. Now, for each Ai = {x, y, z}, we can
intersperse the intervals si,1, . . . , si,s(x)+1 with the intervals nx,1, . . . , nx,s(x), intersperse the
intervals si,s(x)+1, . . . , si,s(x)+s(y)+1 with the intervals ny,1, . . . , ny,s(y), and intersperse the
intervals si,s(x)+s(y)+1, . . . , si,b+1 with the intervals nz,1, . . . , nz,s(z). In this way, each vertex
`i,j , 1 ≤ i ≤ n, 1 ≤ j ≤ b, is non-adjacent to exactly one vertex (from {na,1, . . . , na,s(a) : a ∈
A}) whose corresponding intervals overlap, and each vertex `n

a,j , a ∈ A, 1 ≤ j ≤ s(a) − 1,
is non-adjacent to exactly one vertex (from {si,2, . . . , si,b : 1 ≤ i ≤ n}) whose corresponding
intervals overlap. This certifies that G is a 1-interval bigraph.

For the backward direction, we observe that our construction enforces the rigid structure
from Figure 6. Intuitively, for each i ∈ {1, . . . , n}, the vertices `i,j enforce an ordering
of the intervals corresponding to the vertices in Si, and the delimiters glue the different
sections of Si vertices together in a linear fashion. Observe that between two vertices si,j

and si,j+1, we can still insert one vertex if it is adjacent to t, and we exploit this property
to intersperse the numerals. The anchor vertices are used to stretch the structure of the slot
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al s1,1
s1,2 s1,3

. . .

s1,b s1,b+1 sd
1 s2,1 s2,2

. . .

`a,l `1,1 `1,2 `1,3 `1,b−1 `1,b `d,1
1 `d,2

1
`2,1 `2,2

t

s1,1 s1,2 s1,3 s1,b s1,b+1

sd
1
s2,1 s2,2

t

`1,1

`1,2

`1,3

. . .

`1,b−1

`1,b

`d,1
1

`d,2
1

`2,1

`2,2

. . .

al

`a,l

Figure 6 A part of the graph constructed by our reduction and a corresponding 1-interval
representation formed by the all the vertices except the numeral gadgets. The top two rows of
intervals correspond to the vertices in one partite set of the bipartition and the bottom rows to
vertices in the other partite set.

vertices beyond the left and the right of the track t. This ensures then that the numerals
need to be interspersed with the slots. Since there are no elements a ∈ A with s(a) = 1, it
is also not possible for a numeral gadget to intersperse a section Si of slot vertices before
si,1 or after si,b+1. In addition, the delimiters ensure that numerals do not straddle different
Si’s. Therefore, we can obtain a solution to the 3-Partition instance by setting Ai to the
elements from A that we used to construct the numeral gadgets that are interspersed with
the slots in Si. J

6 Discussion

The algorithmic challenge of CNF satisfiability and constraint satisfaction is central in both
computational theory and practice, and new angles of attack to these age-old problems
keep emerging. Here we focused on instances which possess a linear structure, and we
proposed a new approach to dealing with local departures from such structure, as well as
for deducing linear structure from partial evidence; we also identified complexity obstacles
to fully exploiting and extending our approach. Our work raises several questions:

What if only one side of the bipartite incidence graph is ordered? Say we are given an
ordering of variables and asked if the clauses can be inserted so as to yield a k-interval
ordering. For the case k = 0 we can use the obstructions in Figure 1 to guide us towards
a linear ordering also of the clauses, e.g., for a pair of clauses A,C with two variables
x < z where xC, zA are edges and zC is a non-edge we must place C before A. We
believe such an approach should solve the k = 0 case in polynomial time, but we are less
optimistic about the general case of minimizing k.
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na,1
na,2 na,3

. . .

na,s(a)−1

na,s(a)

`n
a,0 `n

a,1 `n
a,2 `n

a,s(a)−1 `
n
a,s(a)

t

na,1 na,2 na,3 na,s(a)−1na,s(a)

`n
a,0

`n
a,1

`n
a,2

`n
a,3

. . .

`n
a,s(a)−2

`n
a,s(a)−1

`n
a,s(a)

Figure 7 A numeral gadget for element a ∈ A.

What if we are given a partial order, with some special properties, on variables and
clauses? Note that already the approach for k = 0 hinted at above could yield a situation
with a linear order on variables and a partial order on clauses.
For which industrial CNF instances can we find k-interval orderings for low values of k?
Our greedy algorithm for merging two linear orders to a minimum k-interval ordering
is practical and can be applied to large instances in the SAT corpora. In light of the
hardness result for recognizing 1-interval bigraphs, heuristics or domain expertise could
be used to generate orders for clauses and variables, when they are not already given.
Which other classes of interval bigraph CSP instances can be solved efficiently? Our
hardness result is for general CSPs with large domains. For CSPs with Boolean domains
we can show a similar hardness result albeit not for k-interval bigraph instances, instead
for a different notion of “imperfection” where we are given k pairs of clause vertices in
the incidence graph such that merging each such pair results in an interval bigraph.
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