PRO: aModdl for Parallel Resource-Optimal Computation *

Assefaw Hadish Gebremedhin
Department of Informatics
University of Bergen, Norway
assefaw@ii.uib.no

Jens Gustedt

LORIA & INRIA Lorraine, France

gustedt@loria.fr

Abstract

We present a new parallel computation model that en-
ables the design of resource-optimal scalable parallel algo-
rithms and simplifies their analysis. The model rests on the
novel idea of incorporating relative optimality as an inte-
gral part and measuring the quality of a parallel algorithm
in terms of granularity.

Keywords: Parallel computers, Parallel models, Parallel algo-
rithms, Complexity analysis

1. Introduction

One of the challenges in parallel processing is the devel-
opment of a general purpose and effective model of parallel
computation. Unlike the realm of sequential computation,
where the Random Access Machine (RAM) has success-
fully served as a standard computational model, no such
single unifying model exists in the field of parallel computa-
tion. From an algorithmic point of view, the performance of
a sequential algorithm is adequately evaluated using its exe-
cution time making the RAM powerful enough for analysis
and design. On the other hand, the performance evaluation
of a parallel algorithm involves several metrics, the most
important of which are speedup, optimality (or efficiency),
and scalability. Speedup and optimality are relative in na-
ture as they are expressed with respect to some sequential
algorithm. The notion of relativity is also relevant from a
practical point of view. A parallel algorithm is often not

*Research supported by IS AUR 02-34 of The Aurora Programme, a
France-Norway Collaboration Research Project of The Research Council
of Norway, The French Ministry of Foreign Affairs and The Ministry of
Education, Research and Technology.

Isabelle Guérin Lassous

LIP & INRIA Rhone-Alpes, France
| sabelle.Guerin-Lassous@inria.fr

Jan Arne Telle
Department of Informatics
University of Bergen, Norway
telle@ii.uib.no

designed from scratch, but rather starting from a sequential
algorithm.

We believe that a parallel computation model should in-
corporate the most important performance evaluation met-
rics of parallel algorithms as the RAM does for sequential
algorithms. In light of this, the objective of the current work
is to develop a model that simplifies the design and analysis
of resource-optimal scalable parallel algorithms.

In an interesting survey paper [21], Maggs et al. suggest
that an ideal parallel computation model be designed within
“the philosophy of simplicity and descriptivity balanced
with prescriptivity”. The Parallel Resource-Optimal (PRO)
computation model proposed here is developed within this
spirit. The key features of the PRO model that distinguish
it from existing parallel computation models are relativity,
resource-optimality, and a new quality measure referred to
as granularity.

Relativity pertains to the fact that the design and anal-
ysis of a parallel algorithm in PRO is done relative to the
time and space complexity of a specific sequential algo-
rithm. Consequently, the parameters involved in the anal-
ysis of a PRO-algorithm are the number of processors p,
the input size n, and the time and space complexity of the
reference sequential algorithm A.,.

A PRO-algorithm is required to be both time- and space-
optimal (hence resource-optimal). A parallel algorithm is
said to be time- (or work-) optimal if the overall computa-
tion and communication cost involved in the algorithm is
proportional to the time complexity of the sequential algo-
rithm used as a reference. Similarly, it is said to be space-
optimal if the overall memory space used by the algorithm
is of the same order as the memory usage of the underlying
sequential version. As a consequence of its time-optimality,
a PRO-algorithm always yields linear speedup relative to
the reference sequential algorithm; i.e., the ratio between

the sequential and parallel runtime is a linear function of p.

The quality of a PRO-algorithm is measured by the range
of values p can assume while linear speedup is maintained.
This range is captured by an attribute of the model called
the granularity function Grain(n). In other words, a PRO-
algorithm with granularity Grain(n) is required to be fully
scalable for all values of p such that p = O(Grain(n)). The
granularity function Grain(n) determines the quality of one
PRO-algorithm over another relative to the same sequential
time and space complexity. The higher the function value
Grain(n) the better the algorithm. Note that since optimal-
ity (consequently linear speedup) is ‘hard-wired’ into the
model, the runtime cannot be a quality measure for a PRO
algorithm. However, in a sense, the time and space com-
plexity of the reference sequential algorithm A,., can also
be seen as a quality measure of the PRO-algorithm. This
means that the selection of the reference sequential algo-
rithm is of significant importance.

The rest of the paper is organized as follows. In Sec-
tion 2 we give an overview of existing parallel computation
models and highlight their limitations. In Section 3 the PRO
model is presented in detail and in Section 4 it is compared
with a selection of existing parallel models. In Section 5
we illustrate how the model is used in design and analysis
using the matrix multiplication problem as an example. In
Section 6 we give a PRO-algorithm for one-to-all broadcast,
as an example of a primitive communication routine found
in a potential PRO library. Finally, we conclude the paper
in Section 7 with some remarks.

2. Existing models and their limitations

There exists a plethora of parallel computation models
in the literature. On the theoretical end, we find the Parallel
Random Access Machine (PRAM) model [8, 17] which in
its simplest form posits a set of p processors, with global
shared memory, executing the same program in lockstep. In
this model, every processor can access any memory location
at unit cost of time regardless of the memory location. This
assumption is in obvious disagreement with the reality of
practical parallel computers.

However, despite its serious limitation of being an “ide-
alized” model of parallel computation, the standard PRAM
model still serves as a theoretical framework for investigat-
ing the maximum possible computational parallelism in a
given task. Specifically, on this model, the NC versus P-
complete dichotomy [14] is used to reflect the ease/hardness
of finding a parallel algorithm for a problem. Recall that
NC denotes the class of problems which have PRAM-
algorithms with polylogarithmic runtime and polynomial
number of processors in the input size. A problem is said
to be P-complete if an NC-algorithm for it would imply
that all polynomial time sequential problems have NC-

algorithms. The problem of whether or not P = NC'is
a long time open problem.

The NC versus P-complete dichotomy has its own prac-
tical limitations. First, P-completeness does not depict a
full picture of non-parallelizability since the runtime re-
quirement for an N C parallel algorithm is so stringent that
the classification is confined to the case where up to poly-
nomial number of processors in the input size is available
(fine-grained setting). For example, there are P-complete
problems for which less ambitious, but still satisfactory,
runtime can be obtained by parallelization in PRAM [23].
In a fine-grained setting, since the number of processors p
is a function of the input size n, it is customary to express
speedup as a function of n. Thus the speedup obtained using
an N(C-algorithm is sometimes referred to as exponential.
In a coarse-grained setting, i.e., the case where n and p are
orders of magnitude apart, speedup is expressed as a func-
tion of only p and some recent results [4, 7, 9, 15] show
that this approach is practically relevant. Second, an NC-
algorithm is not necessarily work-optimal, and thus not
resource-optimal considering runtime and memory space as
resources that one wants to use efficiently. Third, even if we
restrict ourselves to work-optimal NC-algorithms and ap-
ply Brent’s scheduling principle, which says an algorithm
in theory can be simulated on a machine with fewer proces-
sors by only a constant factor more work, implementations
of PRAM algorithms often do not reflect this optimality in
practice [6]. This is mainly because the PRAM model does
not account for non-local memory access (communication),
and a Brent-type simulation relies heavily on cheap com-
munication.

To overcome the defects of the PRAM related to its fail-
ure of capturing real machine characteristics, the advocates
of shared memory models propose several modifications to
the standard PRAM model. In particular, they enhance the
standard PRAM model by taking practical machine features
such as memory access, synchronization, latency and band-
width issues into account. Pointers to PRAM family of
models can be found in [21].

Critics of shared memory models argue that the PRAM
family of models fail to capture the nature of existing par-
allel computers with distributed memory architectures. Ex-
amples of distributed memory computational models sug-
gested as alternatives include the Postal Model [2] and the
Block Distributed Memory (BDM) model [18]. Other cat-
egories of parallel models such as low-level, hierarchical
memory, and network models are briefly reviewed in [21].

A more recent category of parallel models is that of
‘bridging” models, a notion popularized by Valiant with
his introduction of the Bulk Synchronous Parallel (BSP)
model [22]. The BSP model is a distributed memory coarse-
grained model in which parallel computation proceeds as
a sequence of barrier synchronized supersteps where local

computation and communication are distinct rather than in-
termingled phases. Culler et al. [5] extended the BSP model
by allowing asynchronous execution and better accounting
for communication overhead. Their model is coined LogP,
an acronym for the four parameters involved. A common
feature of the BSP, LogP, and other related models is their
lack of simplicity: each model involves relatively many pa-
rameters making analysis and design of algorithms cumber-
some.

The Coarse Grained Multicomputer (CGM) model [4, 7]
was later proposed in an effort to retain the advantages of
BSP while keeping the model simple (making the number
of parameters fewer). The BSP and its special case CGM
have been the primary inspirations for our model. Thus, we
believe that many optimal CGM and BSP algorithms can
easily be adapted to PRO.

The PRO model attempts to partially address the limi-
tations of existing parallel models highlighted in the fore-
going discussion and compromises between theoretical and
practical considerations. One of its advantages from a the-
oretical point of view is that it is a step forward towards the
identification of the class of problems for which ‘good’ par-
allel algorithms exist in a more realistic (practical) way than
the existing N C versus P-complete classification.

Our main goal in suggesting the PRO model is to enable
the development of scalable and resource-optimal parallel
algorithms and to simplify their analysis. The model iden-
tifies the salient features of a parallel algorithm that make
its practical scalability and optimality highly likely. In this
regard, it can be considered as a set of ‘guidelines’ for the
algorithm designer in the quest for developing scalable and
efficient parallel algorithms. Hence, PRO can be seen as
a mix of a parallel computation model and a parallel al-
gorithm design scheme which makes it biased towards the
software side in its role as a bridging model.

3. The PRO mode

The PRO model is an algorithm design and analysis tool
used to deliver a practical, optimal, and scalable parallel al-
gorithm relative to a specific sequential algorithm whenever
this is possible. Let Time(n) and Space(n) denote the time
and space complexity of a specific sequential algorithm for
a given problem with input size n. The PRO model is de-
fined to have the following attributes.

Machine The underlying machine is assumed to consist
of p processors with M = O(SpacTe(”)) private mem-
ory each, interconnected by some communication net-
work (or shared memory) that can deliver messages in
a point-to-point fashion. A message can consist of sev-
eral machine words.

Coarseness We assume that p < M, i.e., the size of the

local memory of each processor is big enough to store
p Words.

Execution For any value p = O(Grain(n)), a PRO algo-
rithm,

e consists of O(Tim—‘i(”)) supersteps. A superstep

consists of a local computation phase and an in-
terprocessor communication phase. In particular,
in each superstep, each processor

— sends at most one message to every other
processor,

— sends and receives at most M words in total,
and pays a unit of time per word sent and
received,

— performs local computation, and pays a unit
of time per operation,
Time(n))

o has parallel runtime Time(n, p) = O(—,

Note that the granularity function Grain(n) is a quality
measure of a PRO-algorithm.

As discussed in the LogP paper [5], technological fac-
tors are forcing parallel systems to converge towards sys-
tems formed by a collection of essentially complete com-
puters connected by a robust communication network. The
machine model assumption of PRO is consistent with this
convergence and maps well on several existing parallel
computer architectures. The memory requirement M =
O(SPMTW) ensures that the space utilized by the under-
lying sequential algorithm is uniformly distributed among
the p processors. Since we may, without loss of generality,
assume that Space(n) = Q(n), the implication is that the
private memory of each processor is large enough to store
its ‘share’ of the input and any additional space the sequen-
tial algorithm might require. When Space(n) = ©(n), note
that the input data must be uniformly distributed on the p
processors. In this case the machine model assumption of
PRO is similar to the assumption in the CGM model [7].

The coarseness assumption p < M is consistent with the
structure of existing parallel machines and machines to be
builtin the foreseeable future. The assumption is required to
simplify the implementation of collecting messages (from
possibly all other processors) on a single processor.

The execution of a PRO-algorithm consists of a sequence
of supersteps (or rounds). The length of (time spent in) a
superstep on each processor is determined by the sum of
the time used for communication and the time used for lo-
cal computation. The length of a superstep s in the parallel
algorithm seen as a whole, denoted by Time,(n, p), is the
maximum over the lengths of the superstep on all proces-
sors. We can conceptually think as if the supersteps are
synchronized by a barrier set at the end of the longest su-
perstep across the processors. However, note that in PRO

the processors are not in reality required to synchronize at
the end of each superstep. The parallel runtime Time(n, p)
of the algorithm is the sum of the lengths of all the super-
steps. Notice that the hypothetical barriers result in only a
constant factor more time compared with an analysis that
does not assume the barriers.

In PRO, since a processor sends at most one message to
every other processor in each superstep, each processor is
involved in at most 2(p — 1) messages per superstep. There-
fore, the requirement Steps = O(Tim—i(”)) on the number of
supersteps implies that the overall time paid per processor
for communication overhead and latency is O(Time(n)/p)
and hence can be neglected from the analysis since our goal
is to achieve an O(Time(n)/p) parallel runtime. Notice
that the bandwidth restriction of the underlying architec-
ture which in turn contributes to the communication cost
is accounted for since each processor pays a unit of time
per word sent and received. This is not an unrealistic as-
sumption noting that the network throughput (accounted in
machine words) on modern architectures such as high per-
formance clusters is relatively close to the CPU frequency
and to the CPU/memory bandwidth.

The condition Time(n,p) = O(T'mTe(")) requires that a
PRO-algorithm be optimal and yield linear speedup relative
to the sequential algorithm used as a reference. This re-
quirement ensures the potential practical use of the parallel
algorithm.

Observation 1 A PRO algorithm relative to a sequential
algorithm with runtime O(Time(n)) and space require-
ment O(Space(n)) has maximum granularity Grain(n) =
O(min{+/Space(n), \/(Time(n)}) = O(/Space(n)). A
PRO algorithm that achieves this is said to have optimal
grain.

Observation 1 is due to the limit on the memory size of
each processor, the coarseness assumption, and the bound
on the number of supersteps. The limit on the size of the
private memory of each processor (M = O(SPMTW)) to-
gether with the coarseness assumption p < M imply p =
O(+/Space(n)). The fact that the number of supersteps of
a PRO-algorithm should be Steps = O(Time(n)/p?), gives
p = O(y/(Time(n)/Steps)) upon resolving and we clearly
have Steps > 1. Finally, note that Time(n) > Space(n),
since an algorithm has to at least read the input.

Since a PRO-algorithm vyields linear speedup for any
p = O(Grain(n)), a result like Brent’s scheduling principle
is implicit for these values of p. But Observation 1 shows
that we cannot start with an arbitrary number of proces-
sors and efficiently simulate on a fewer number. So Brent’s
scheduling principle does not hold with full generality in
the PRO model, which is in accordance with practical ob-
servations.

The design of a PRO-algorithm may sometimes involve
subroutines for which there does not exist sequential coun-
terparts. Examples of such tasks include communication
primitives such as broadcasting, data (re)-distribution rou-
tines, and load balancing routines. Such routines are often
required in various parallel algorithms. With a slight abuse
of notation, we call such parallel routines PRO-algorithms
if the overall computation and communication cost is linear
in the input size to the routines.

4. Comparison with other models

In this section we compare the PRO model with PRAM,
QSM, BSP, LogP, and CGM. Our tabular format for com-
parison is inspired by a similar presentation in [13], where
the Queuing Shared Memory (QSM) model is proposed.
The columns of Table 1 are labeled with the names of the
selected models in our comparison and some relevant fea-
tures of a model are listed along the rows.

The synchrony assumption of the model is indicated in
the row labeled synch. Lock-step indicates that the pro-
cessors are fully synchronized at each step (of a univer-
sal clock), without accounting for synchronization. Bulk-
synchrony indicates that there can be asynchronous oper-
ations between synchronization barriers. The row labeled
memory shows how the model views the memory of the
parallel computer: sh. indicates globally accessible shared
memory, dist. stands for distributed memory and priv. is an
abstraction for the case where the only assumption is that
each processor has access to private (local) memory. In the
last variant the whole memory could either be distributed
or shared. The row labeled commun. shows the type
of interprocessor communication assumed by the model.
Shared memory (SM) indicates that communication is ef-
fected by reading to and writing from a globally accessible
shared memory. Message-passing (MP) denotes the situa-
tion where processors communicate by explicitly exchang-
ing messages in a point-to-point fashion. The MP abstrac-
tion hides the details of how the message is routed through
the interprocessor communication network.

The parameters involved in the model are indicated in
the row labeled parameters. The number of processors is
denoted by p, n is the input size, A, is the reference se-
quential algorithm, [is the communication cost (latency), L
is a single parameter that accounts for the sum of latency
(1) and the cost for a barrier synchronization, g is the band-
width gap, and o is the overhead associated with sending
or receiving a message. Note that the machine characteris-
tics [and o are are taken into account in PRO, even though
they are not explicitly used as parameters. Latency is taken
into consideration since the length of a superstep is deter-
mined by the sum of the computational and communica-
tion cost. Communication overhead is hidden by the PRO-

PRAM [8] | QSM [13] | BSP[22] LogP [5] | CGM [4] | PRO
synch. lock-step | bulk-synch. | bulk-synch. | asynch. asynch. asynch.
memory sh. sh. dist. dist. priv. priv.
commun. SM SM MP MP MP/SM | MP/SM
parameters | n D,g,n p,g,L,n p,g,l,o,n | p,n D, 1, Ageq
granularity | fine fine coarse fine coarse Grain(n)
speedup NA NA NA NA NA O(p)
optimal NA NA NA NA NA rel. Ageq
quality time time time time rounds Grain(n)

requirement that states Steps = O(

Table 1. Comparison of parallel computational models

Time(n))

We want to design a PRO-algorithm relative to the stan-

The row labeled granularity indicates whether the model
is fine-grained, coarse-grained or a more precise measure is
used. We say that a model is coarse-grained if it applies to
the case where n > p and call it fine-grained if it relies
on using up to polynomial number of processors in the in-
put size. In PRO granularity is exactly the quality measure
Grain(n), and appears as one of the attributes of the model.

The rows labeled speedup and optimal indicate the
speedup and resource optimality requirements imposed by
the model. Whenever these issues are not directly addressed
by the model or are not applicable, the word ‘NA’ is used.
Note that these requirements are ‘hard-wired’ in the model
in the case of PRO. The label ‘rel. A,.,” means that the al-
gorithm is optimal relative to the time and space complexity
of Aseq. We point out that the goal in the design of algo-
rithms using the CGM model [7, 4] is usually stated as that
of achieving optimal algorithms, but the model per se does
not impose an optimality requirement.

The last row indicates the quality measure of an algo-
rithm designed using the different models. For all other
models except CGM and PRO, the quality measure is run-
ning time. In CGM, the number of supersteps (rounds) is
usually presented as a quality measure. In PRO the quality
measure is granularity, one of the features that make PRO
fundamentally different from all existing parallel computa-
tion models.

5. Algorithm example: matrix multiplication

In this section we illustrate how the PRO model is used,
by starting from a given sequential algorithm and then de-
signing and analyzing a parallel algorithm relative to it. We
use the standard matrix multiplication algorithm with three
nested for-loops as an example. This example is chosen for
its simplicity and since our objective at this stage is to illus-
trate the use of a new model rather than solving a “difficult”
problem.

Consider the problem of computing the product C' of
two m x m matrices A and B (input size n = m?2).

dard sequential matrix multiplication algorithm which has
Time(n) = O(n?%) and Space(n) = O(n).

We assume that the input matrices A and B are dis-
tributed among the p processors Py, ..., P,—1 so that pro-
cessor P; stores rows (respectively columns) % i+ 1to
% -(i+1) of A (respectively B). The output matrix C will
be row-partitioned among the p processors in a similar fash-
ion. Notice that with this data distribution each processor
can, without communication, compute a block of ’;}—22 of the

mTZ entries of C' expected to reside on it. In order to com-

pute the next block of 7;—22 entries, processor P; needs the
columns of matrix B that reside on processor P;1;. In each
superstep the processors in the PRO algorithm will therefore
exchange columns in a round-robin fashion and then each
will compute a new block of results. Note that each column
exchanged in a superstep constitutes one single message.
Note also that the initial distribution of the rows of matrix
A remains unchanged. In Algorithm 1, we have organized
this sequence of computation and communication steps in a
manner that meets the requirements of the PRO model.

Algorithm 1: Matrix multiplication
Input: Two m x m matrices A and B. The rows
(columns) of A (B) are divided into m/p
contiguous blocks, and stored on processors
Py, Py, ... P,_; respectively
Output: The product matrix C' where the rows are
stored in contiguous blocks across the p pro-
Cessors
for superstep s = 1to p do
foreach processor P; do
P; computes the local sub-matrix product of
its rows and current columns;
Plit1ymodp S€NAs its current block of columns
to P;;
P; receives a new current block of columns
from Pt 1)modp:

Algorithm 1 has p supersteps (Steps = p). In each su-
perstep, the time spent in locally computing each of the
m?/p? entries is ©(m) resulting in local computing time
O(m3/p*) = O(n? /p?) per superstep. Likewise, the to-
tal size of data (words) exchanged by each processor in a
superstep is ©(m?/p) = ©(n/p). Thus, the length of a
superstep s is Time,(n, p) = O(n2/p? + n/p). Note that
for p = O(y/n), Time,(n,p) = O(nz/p®). Hence, for
p = O(n), the overall parallel runtime of the algorithm is

Time(n,p) = Y _ O(n? /p*) = ©(n* /p) = O(Time(n)/p).
Steps
(1)

Noting that Space(n) = ©(n), we see that the mem-
ory restriction of the PRO model is respected, i.e., each
processor has enough memory size to handle the transac-
tions. In order to be able to neglect communication over-
head, the condition on the number of supersteps, which
in this case is just p, should be met. In other words, we
need p = O(Time(n)/p%) = O(n2 /p?), which is true for
p = O(y/n). Thus the granularity function of the PRO-
algorithm is Grain(n) = y/n.

In summary,

Lemma 1 Multiplication of two m by m matrices has a
PRO-algorithm with Grain(n) = m relative to a sequen-
tial algorithm with Time(n) = m? and Space(n) = m?
(input size n = m?).

From Observation 1, we note that Algorithm 1 achieves
optimal granularity. Note that on a relaxed model, where the
assumption that p < M is not present, the strong regular-
ity of matrix multiplication and the exact knowledge of the
communication pattern allows for algorithms that have an
even finer granularity than m. For example, a systolic ma-
trix multiplication algorithm has a granularity of m?2. How-
ever, PRO is intended to be applicable for general problems
and practically relevant parallel systems.

6. Communication primitive example: one-to-
all broadcast

A good parallel computation model should have a selec-
tion of algorithms for primitive communication tasks avail-
able in its algorithm design tool-box. The PRO model is
intended to meet this demand, but for lack of space we give
only an example.

In this section we illustrate how the PRO model allows
optimal one-to-all broadcasting among its processors. Since
there is no sequential basis algorithm in this case, we want
an algorithm whose overall communication and computa-
tion cost is linear in the input and output sizes. More pre-
cisely, we consider the situation where the input consists

of a vector of size m on a single processor and the output
should be a copy of this vector on each of the p processors,
and we want an algorithm that achieves this in O(m) time
using O(m) memory on each processor. See Algorithm 2.

Algorithm 2: One-to-All Broadcast
Input: A vector V' of size m on processor P
Output: A copy of V' on each processor
s1 P, divides V' into p equal sized parts;
Py sends the i*" part of V' to processor P;, for each
0<i<p;
foreach processor P;, i > 0 do processor P; receives
the ¢*" part from Py;
s2 foreach processor P; do
L P, sends out the i part to P;, for each j # i and
0<j<p.
foreach processor P;,j # 0 do
L P; receives the i*" part from P;, for each i # j
and0<i<p

Lemma2 PRO Algorithm 2 implements a one-to-all
broadcast of m memory words in two supersteps using
O(m) time and O(m) space per processor, for any number
of processors p < m.

Proof: First, we note that the algorithm correctly broad-
casts the desired vector V/, while observing the space re-
striction, in two supersteps. We turn to the timing. In step
S1 processor P, in total sends out the whole vector V' and
each of the other processors receives a message of size m/p.
In step S2 processor P; in total sends out ”T_Qm words. Pro-

cessor P;, j # 0, in total receives =L, words.

The total time is dominated by the communication which
is

-2 -1
m+m/p+p—m+p—m: (2
p p
mp+1+p—2+p—1)/p<3m 3)
for total time O(m) as claimed. O

7. Conclusion

We have introduced a new parallel computation model
(called PRO) that enables the development of efficient scal-
able parallel algorithms and simplifies the complexity anal-
ysis of such algorithms.

The distinguishing feature of the PRO model is the novel
focus on relativity, resource-optimality, and a new quality
measure (granularity). In particular, the model requires a
parallel algorithm to be both time- and space-optimal rela-
tive to an underlying sequential algorithm. Having optimal-
ity as a built-in requirement, the quality of a PRO-algorithm
is measured by the maximum number of processors that
could be used while the optimality of the algorithm is main-
tained.

The focus on relativity has theoretical as well as prac-
tical justifications. From a theoretical point of view, the
performance evaluation metrics of a parallel algorithm in-
cludes speedup and optimality, both of which are always
expressed relative to some sequential algorithm. Moreover,
there is an inherent asymmetry between sequential and par-
allel computation. A parallel algorithm would always imply
a sequential algorithm, whereas the converse is usually not
true. Thus, in a sense, it is natural to think of an underlying
sequential algorithm whenever one speaks of a parallel al-
gorithm. From a practical point of view, one notes that the
development of a parallel algorithm is often built on some
known sequential algorithm.

The fact that optimality is incorporated as a requirement
in the PRO model enables one to concentrate only on paral-
lel algorithms that are practically useful.

However, the PRO model is not just a collection of some
‘ideal” features of parallel algorithms, it is also a means to
achieve these features. In particular, the attributes of the
model capture the salient characteristics of a parallel al-
gorithm that make its practical optimality and scalability
highly likely. In this sense, it can also be seen as a par-
allel algorithm design scheme. Moreover, the simplicity of
the model eases analysis.

We believe that the PRO model is a step forward towards
the identification of problems for which “practically good’
parallel algorithms exist. Much work remains to be done,
and we hope that other members of the research community
will join in. As a first item on the agenda, the PRO model
needs to be tested for compatibility with already existing
practical parallel algorithms.

8. Acknowledgments

We are grateful to the anonymous referees for their help-
ful comments.

References

[1] A.G. Alexandrakis, A. V. Gerbessiotis, D. S. Lecomber, and
C. J. Siniolakis. Bandwidth, space and computation efficient
PRAM programming: The BSP approach. In Proceedings of
the SUP’EUR ’96 Conference, Krakow, Poland, September
1996.

[2] A. Bar-Noy and S. Kipnis. Designing broadcasting algo-
rithms in the Postal Model for message passing systems. In
The 4th annual ACM symposium on parallel algorithms and
architectures, pages 13-22, July 1992.

[3] R. P. Brent. The parallel evaluation of generic arithmetic
expressions. Journal of the ACM, 21(2):201-206, 1974.

[4] E. Caceres, F. Dehne, A. Ferreira, P. Locchini, I. Rieping,
A. Roncato, N. Santoro, and S. W. Song. Efficient paral-
lel graph algorithms for coarse grained multicomputers and
BSP. In The 24th International Colloquium on Automata
Languages and Programming, volume 1256 of LNCS, pages
390-400. Springer Verlag, 1997.

[5] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von Eicken.
LogP: Towards a realistic model of parallel computation. In
4th ACM SIGPLAN Symposium on principles and practice
of parallel programming, San Diego, CA, May 1993.

[6] F. Dehne. Coarse grained parallel algorithms. Algorithmica
Special Issue on ““Coarse grained parallel algorithms™,
24(3/4):173-176, 1999.

[7] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable paral-
lel computational geometry for coarse grained multicom-
puters. International Journal on Computational Geometry,
6(3):379-400, 1996.

[8] S. Fortune and J. Wyllie. Parallelism in random access ma-
chines. In 10th ACM Symposium on Theory of Computing,
pages 114-118, May 1978.

[9] A.H. Gebremedhin, I. Guérin Lassous, J. Gustedt, and J. A.
Telle. Graph coloring on a coarse grained multiprocessor. In
U. Brandes and D. Wagner, editors, WG 2000, volume 1928
of LNCS, pages 184-195. Springer-Verlag, 2000.

[10] A. V. Gerbessiotis, D. S. Lecomber, C. J. Siniolakis, and
K. R. Sujithan. PRAM programming: Theory vs. practice.
In Proceedings of 6th Euromicro Workshop on Parallel and
Distributed Processing, Madrid, Spain. IEEE Computer So-
ciety Press, January 1998.

[11] A. V. Gerbessiotis and C. J. Siniolakis. A new randomized
sorting algorithm on the BSP model. Technical report, New
Jersey Institute of Technology, 2001.

[12] A. V. Gerbessiotis and L. G. Valiant. Direct bulk-
synchronous parallel algorithms. Journal of Parallel and
Distributed Computing, 22:251-267, 1994.

[13] P. B. Gibbons, Y. Matias, and V. Ramachandran. Can a
Shared-Memory Model Serve as a Bridging Model for Par-
allel Computation? Theory of Computing Systems, 1999.

[14] R. Greenlaw, H. Hoover, and W. L. Ruzzo. Limits to Parallel
Computation: P-Completeness Theory. Oxford University
Press, New York, 1995.

[15] I. Guérin Lassous, J. Gustedt, and M. Morvan. Handling
graphs according to a coarse grained approach: Experiments
with MPIl and PVM. In J. Dongarra, P. Kacsuk, and N. Pod-
horszki, editors, 7th European PVM/MPI Users’ Group

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Meeting, volume 1908 of LNCS, pages 72-79. Springer Ver-

lag, 2000.
K. Hawick et al. High performance com-
puting and communications glossary. see

http://nhse. npac. syr. edu/ hpccgl oss/.

J. Jaja. An Introduction to Parallel Algorithms. Addison-
Wesley, 1992.

J. JaJ4 and K. W. Ryu. The Block Distributed Memory
model. IEEE Transactions on Parallel and Distributed Sys-
tems, 8(7):830-840, 1996.

R. M. Karp and V. Ramachandran. Parallel Algorithms
for Shared-Memory Machines. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A, Al-
gorithms and Complexity, pages 869-941. Elsevier Science
Publishers B.V., Amsterdam, 1990.

C. P. Kruskal, L. Rudolph, and M. Snir. A complexity the-
ory of efficient parallel algorithms. Theoretical Computer
Science, 71(1):95-132, march 1990.

B. M. Maggs, L. R. Matheson, and R. E. Tarjan. Models
of parallel computation: A survey and synthesis. In 28th
HICSS, volume 2, pages 61-70, January 1995.

L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103-111, 1990.

J. S. Vitter and R. A. Simons. New classes for parallel com-
plexity: A study of unification and other complete problems
for P. IEEE Transactions on Computers, C-35(5):403-418,
1986.

