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Abstract. We consider three types of locally constrained graph homo-
morphisms: bijective, injective and surjective. We show that the three
orders imposed on graphs by existence of these three types of homomor-
phisms are partial orders. We extend the well-known connection between
degree refinement matrices of graphs and locally bijective graph homo-
morphisms to locally injective and locally surjective homomorphisms by
showing that the orders imposed on degree refinement matrices by our
locally constrained graph homomorphisms are also partial orders. We
provide several equivalent characterizations of degree (refinement) ma-
trices, e.g. in terms of the dimension of the cycle space of a graph related
to the matrix. As a consequence we can efficiently check whether a given
matrix M is a degree matrix of some graph and also compute the size of
a smallest graph for which it is a degree matrix in polynomial time.

1 Introduction

By graph homomorphisms we mean edge-preserving mappings, i.e. vertex map-
pings where images of two adjacent vertices are also adjacent in the target graph.
Relating pairs of graphs by the existence of a graph homomorphism defines a
quasi-order on the class of all graphs, which can be further factorized into a
partial order. For a comprehensive survey of these structures see the recent
monograph [15].

In this paper we study similar structural properties derived from locally con-
strained graph homomorphisms [10], where for any vertex u the mapping f in-
duces a function from the neighborhood of w to the neighborhood of f(u) which
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is required to be either bijective [1,17], injective [9,10], or surjective [18,13].
See [18, 8] for a more general model of locally constrained conditions.

Locally bijective homomorphisms (also known as local isomorphisms or full
covers) have important applications, for example in distributed computing [5],
in recognizing graphs by networks of processors [2, 3], or in constructing highly
transitive regular graphs [4]. Locally injective homomorphisms (local epimor-
phisms or partial covers) are used in distance constrained labelings of graphs [11]
and as indicators of the existence of homomorphisms of derivate graphs (line
graphs) [21]. Locally surjective homomorphisms (role assignments) are of inter-
est in social network theory where individuals of the same social role relate to
other individuals in the same way [7].

Just as in a graph isomorphism, a locally bijective homomorphism maintains
vertex degrees and degrees of neighbors and degrees of neighbors of neighbors
and so on. The existence of such a mapping from G to H therefore implies
equality of the so-called degree refinement matrices of G and H. Since these
are easy to compute, they provide both an important necessary condition and a
heuristic for the graph isomorphism problem (cf. [19]).

Our results

Degree refinement matrices belong to the class of degree matrices corresponding
to degree partitions of the vertex set of a graph. In Sect. 3 we present four equiv-
alent characterizations of degree matrices, e.g. by conditions on the dimension of
the cycle space of some matrix-related graph. Given the rather long history and
fame of the graph isomorphism problem it is surprising that no characterization
of degree (refinement) matrices had been shown previously. As a consequence
we can efficiently check whether a given matrix M is a degree matrix or not.
We also prove that the size of a smallest graph corresponding to some degree
matrix can be computed in polynomial time. In Sect. 4 we prove that the prob-
lem whether a given (degree) matrix M is a degree refinement matrix can be
solved in polynomial time. In Sect. 5 we introduce three orderings, in which a
graph H is smaller than a graph G if a homomorphism from G to H exists,
locally constrained to be respectively bijective, injective or surjective. We prove
that these are partial orderings and in Sect. 6 we show that these partial orders
can be further extended to degree matrices of graphs. These results generalize
the use of degree refinement matrices to locally injective and locally surjective
homomorphisms. We emphasize that such a relationship was not originally ex-
pected, since such degree conditions are not obvious for the non-bijective local
constraints.

2 Preliminaries

If not stated otherwise graphs considered in this paper are finite and simple, i.e.
without loops and multiple edges. For graph terminology not defined below we
refer to [6].



For a function f : Vg — Vg and a set S C Viz we use the shorthand notation
f(S) to denote the image set of S under f, i.e., f(S) = {f(u) | u € S}. For any
x € Vi, the set f~'(z) is equal to {u € Vg | f(u) = z}.

For a vertex u € Vg we denote its neighborhood by Ng(u) = {v| (u,v) € Eg}.
A k-regular graph is a graph, where all vertices have k neighbors (i.e. are of degree
k). A (k,l)-regular bipartite graph is a bipartite graph where vertices of one class
of the bi-partition are of degree k and all others are of degree .

A graph homomorphism from G = (Vg,Eg) to H = (Vi, En) is a vertex
mapping f : Vg — Vg satisfying the property that for any edge (u,v) in Eg, we
have (f(u), f(v)) in Ex as well, i.e., f(Ng(u)) C Nu(f(u)) for all u € V. Two
graphs G and G' are called isomorphic, denoted by G ~ G', if there exists a
one-to-one mapping f : Vg — Vg, where both f and f~! are homomorphisms.

Definition 1. For graphs G and H we denote:

e G 25 H if there exists a so-called locally bijective homomorphism
[ Vo = Vi satisfying:

for all u € Vg : f(Ng(u)) = Nu(f(u)) and |f(Ng(u))| = |Ng(u)|.

e G 5 H if there exists a so-called locally injective homomorphism
f Vo = Vi satisfying:

for all u € Vi : |f(Ng(w))| = |Ng(w)|-

e G =5 H if there exists a so-called locally surjective homomorphism
f Vo = Vg satisfying:

for all u € Vg : f(Ng(u)) = Nu(f(u))-

Note that a locally bijective homomorphism is both locally injective and sur-
jective. Hence, any result valid for locally injective or for locally surjective ho-
momorphisms is also valid for locally bijective homomorphisms. We provide an
alternative definition of these three kinds of mappings via subgraphs induced
by preimages of edges. As far as we know this quite natural definition has not
previously appeared in the literature.

Observation 1 Let f : G — H be a graph homomorphism. For every edge (u,v)
of H, the subgraph of G induced by f~1(u) U f~1(v) is a

e perfect matching if and only if f is locally bijective,
e matching if and only if f is locally injective,
e bipartite graph without isolated vertices if and only if f is locally surjective.

Note that for locally bijective homomorphisms the preimage classes all have the
same size and for locally surjective homomorphisms all the preimage classes have
size at least one. This yields the following observation:

Observation 2 If G % H, then either |Vg| > |Vi| or else G ~ H.



For a connected graph G the universal cover is defined in [2] as the only (possibly
infinite) tree Tg that allows a locally bijective homomorphism T = G. The
vertices of T can be represented as walks in G starting in a fixed vertex u that do
not traverse the same edge in two consecutive steps. Edges in Tz connect those
walks that differ in the presence of the last edge. The mapping fo : Tg — G
sending a walk in Vr, to its last vertex is a locally bijective homomorphism.

Proposition 1 ([12]). Let G and H be two connected graphs. From any func-
tion f : G 5 H a locally injective homomorphism f': Tg — Ty can be derived.
sFrom any function g : G = H a locally surjective homomorphism ¢' : Tg — Tx
can be derived.

In the sequel we consider all isomorphism classes of connected simple graphs.
We assume that each of these classes is represented by one of its elements, and
these representatives form the set C, called the set of connected graphs.

3 Degree matrices

Any locally bijective graph homomorphism, with graph isomorphism as a special
case, preserves not only vertex degrees but also degrees of neighbors and degrees
of neighbors of these neighbors and so on. To capture this property the following
notions have been defined (cf. [20,19]).

Definition 2. A degree partition of a graph G is a partition of the vertex set
Ve into blocks B = {Bu,..., By} such that whenever two vertices u and v belong
to the same block B;, then for any j € {1,...,k} we have |[Ng(u) N B;| =
|[Ng(v) N Bj| = my,;. The k x k matriz M such that (M);; = m;; is a degree
matrix.

Observe that a graph G can allow several degree matrices, with an adjacency
matrix itself being the largest one. Degree refinement matrices, which will be
considered in the next section, are on the other extreme.

Observation 3 The vertex set Vg of any graph G that has a k x k matric M
as one of its degree matrices can be partitioned into By U ... U By such that
mi,j|B,~| = mj,,'|Bj| holds for all 1 <i < j <k.

This immediately implies that for any degree matrix M of size k,
m;; > 0if and only if m;; >0foralll <i < j <k.

We call integer matrices that have the above property well-defined. It is easy to
see that there exist well-defined matrices that are not degree matrices of a finite
graph. This makes the following decision problem interesting.

DEGREE MATRIX DETERMINATION (DMD)
Instance: A square matrix M.
Question: Is M a degree matrix of a finite graph G?



To determine the complexity of DMD we introduce the following definitions. A
directed graph D = (Vp, Ep) is called symmetric if there exists an arc (j,4) € Ep
whenever there exists an arc (i,j) € Ep. Let w : Ep — N be a positive weight
function defined on the arc set of D. We call such a graph with positive arc
weights a symmetric directed product graph (sdp-graph). We say that a cycle
Vg, V1, - .., Ue, Vg in an sdp-graph D has the cycle product identity if

5 w(vi,vig1)
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where the subscript of v;41 is computed modulo ¢+ 1. In other words, a cycle has
the cycle product identity if the product of arc weights going clockwise around
the cycle is the same as the product counter-clockwise. We say that the sdp-
graph D has the cycle product identity if every cycle of D has the cycle product
identity. Using induction on the cycle length immediately yields:

Observation 4 An sdp-graph D has the cycle product identity if and only if
every induced cycle of D has the cycle product identity.

For a square matrix M we define the weighted directed graph Fis as follows. Its
vertex set Vp,, consists of vertices {1,...,k}. There is an arc from ¢ to j # i
with weight m; ; if and only if m;; > 1. Note that Fj is an sdp-graph if and
only if M is well-defined.

Let F}, be the underlying undirected graph of Fy, ie., Vpr = Vp,, =
{1,...,k} and (4, 5) is an undirected edge of F},;, whenever both (i, j) and (3, )
are directed arcs of Fj;. We define the weighted incidence matriz IM to be the
|EF; | x k matrix whose rows are indexed by edges e = (i, j) € Er;,, i < j and
its only non-zero entries in the e-th row are (IM), ; = m; ; and (IM )¢ ; = —m; ;.

The kernel and rank of a matrix M are denoted by ker(M) and rank(M)
respectively. The transpose of a matrix M is denoted by M7T. We represent each
e € Eg by a unit vector in the vector space RFc !, called the edge space Eg
of a graph G. The cycle space Sg of G is the linear subspace of £; generated
by all cycles in G. We denote the dimension of a linear subspace D by dim(D).
For every edge e not in a spanning tree T of G there is a unique cycle Ce in
the graph T + e. Since there are |[Eg| — |Ve| + 1 of these edges, it is clear that
dim(Sg) = [Eg| — [Va| + 1.

We now present our characterization of degree matrices.

Theorem 1. The following statements are equivalent:

(i) M is a degree matriz of a graph G € C.

(i) Far is a connected sdp-graph satisfying the cycle product identity.
(i) M is well-defined and dim(ker(IM)) = 1.

(iv) M is well-defined and dim(ker(IM™)) = dim(Sp_ ).

Proof. (i) = (i3) Since M is a degree matrix, M is well-defined. Hence, Fis
is an sdp-graph. Obviously, Fjs is connected. Let C' = 4p,...,%c,799 be a cycle



in Fjy, where vertex v; corresponds to block B;. Use Observation 3 for pairs
(10,41),- - -, (ic,%0) to show that C satisfies the cycle product identity.

(#4) = (i4¢) Since Fur is an sdp-graph, M is well-defined. Consider a path P;
in Fiy from the vertex 1 to any vertex i corresponding to the i-th row of M.
We apply Observation 3 for consecutive pairs on P;;. Combining these equalities
yields a rational b; > 0 such that |B;| = b;|B1| for the blocks B; and B; of any
possible graph G with degree matrix M. Because F)y satisfies the cycle product
identity, taking another path PJ; between vertices 1 and ¢ would lead to exactly
the same equality |B;| = b;|B1|. Define by = 1. Then any solution of ker(IM) is
a multiple of the vector b = (by,...,bg).

(791) = (i) We first determine the block sizes of a candidate graph G. We do
this with respect to the following two facts. (1) For p > 1 there exists a p-regular
graph on n vertices if and only if n > p+ 1 and np is even. (2) There exists a
(p, g)-regular bipartite graph with the degree-p side having m vertices and the
degree-q side having n vertices if and only if m > ¢,n > p and mp = ng. We
now choose an integer solution s of ker(IM) such that

o s; >m;; + 1 for all i.
e s;m;,; is even for all i. (*)
e s; >m;; for all i and all j # i.

Then the following graph G has M as one of its degree matrices. Its vertex set
Vi can be partitioned into blocks By U ---U By, with |B;| = s; for all 1 <4 < k.
Its edge set Eg can be chosen such that:

e The subgraph induced by B; is m; ;-regular for 1 <14 < k.
e The induced bipartite subgraph between vertices of blocks B; and B; is
(my,j,m;;)-regular for all 1 <4 < j < k.

(iii) < (iv) Note that dim(ker(IM)) = 1if and only if rank(IM7T) = rank(IM) =
k — 1 if and only if dim(ker(IMT)) = |EFr | — rank(IMT) = |Epr | =k +1
dlm(SFJI\/I) O

Corollary 1. The DMD problem can be solved in polynomial time.

Proof. First we check whether the matrix M is well-defined. If it is, we construct
the graph Fjs. Let My, ..., M, be the submatrices of M corresponding to the
components of Fjs. For each M; we compute ker(IM;) and use Theorem 1. O

In this paper we only consider matrices that are the degree matrix of some finite
connected graph. If we allow infinite graphs, then we only have to check whether
a matrix M is finite and has connected F);. This is since for any such matrix M
we can construct its universal cover Tyy by taking as root of the (possibly infinite)
tree Ths a vertex corresponding to row 1, thus of row-type 1, and inductively
adding a new level of vertices while maintaining the property that each vertex
of row-type ¢ has exactly m; ; neighbors of row-type j.

Theorem 1 and Corollary 1 immediately imply that for examining whether an
sdp-graph has the cycle product identity we do not have to check all (induced)
cycles explicitly.



Corollary 2. The problem whether a symmetric directed graph with positive
edge weights has the cycle product identity can be solved in polynomial time.

Corollary 3. For any degree matriz M the block sizes of a smallest graph G
that has M as one of its degree matrices can be computed in polynomial time.

Proof. Let m = max{m; ; | 1 <1i,j < k}. Let (m) be the number of bits required
to encode m. Then the input size of a k x k matrix M can be defined as k*(m).

If we compute coeflicients b; as in the proof of Theorem 1, then we find that
both nominator and denominator of each b; have size at most k(m). Let o be
the product of all denominators of elements b;. Let b’ be a solution of ker(IM)
with entries b, = ab; for all 1 < i < k. We divide each b} by the greatest
common divisor of b},...,b,. This way we have obtained the smallest integer
solution b* of ker(IM) in polynomial time. Now we choose the integer v such

ii+1 ii . . . .
that v > maxlgivjsk{mb’—f, T4}, where v is required to be even if for some 4

the product bfm;; is odd. Then b = yb* satisfies all three conditions (x), i.e.,
it yields the block sizes of a smallest graph G in the same way as in the proof of
Theorem 1. (The size of G itself might be exponential in (b).) O

4 Degree refinement matrices

For many pairs of graphs (G, H) we can easily determine that a locally bijective
homomorphism from G to H does not exist.

Definition 3. The degree refinement matriz drm(G) of G is the degree matrix
corresponding to the canonical (as explained below) coarsest degree partition of
G, i.e., with the fewest number of blocks.

If drm(G) # drm(H) then no locally bijective homomorphism exists between G
and H, and this condition can be checked by computing both minimum degree
partitions by procedure MDP CONSTRUCTION that runs in O(n?) time (cf. [2]).

MDP CONSTRUCTION
Input: A graph G.
Output: The minimal degree partition B.

0. Set B® = {BY} = {Vg}, t=1.
1. For each vertex u compute the degree vector
d(u) = (|N(u) N B, |N(u) mBg|,__.)_
2. Set t :=t + 1 and define the new partition B of Vg such that
e u,v € B! if and only if d(u) = d(v),
e u € Bt ve B!, with i <i if and only if
x either u € B;‘l, v € B4 with j < j,
* Or u,v € B;‘l and d(u) >pex d(v),
where >1ex is the lexicographic order on integer sequences.
3. If Bt = Bt~! then set B = B! and stop,
otherwise continue by step 1.




We modify this procedure into the efficient algorithm DRM CONSTRUCTION.
Given a degree matrix M it computes a matrix M’ such that M' = drm(G) for
any graph G with degree matrix M. Moreover, given a graph G it computes the
degree refinement matrix of G when we take an adjacency matrix of G as its
input. Note that in steps 2 and 3 the canonical order of the blocks is defined.

DRM CONSTRUCTION

Input: A degree partition matrix M.

Output: A degree refinement matrix M’ that encodes all graphs with degree
matrix M.

0. Set R® ={R%} ={1,...,k},t=1.
1. For each row r = 1,..., k compute the row-degree vector
d(—Ts = (EieRtl My, ZieRé My, - - )
2. Set t := t + 1 and define the new partition R? of {1,...,k} such that
e r,s € B! if and only ifd(_rs = d(_ss,
e r € B, s € B, with i <4’ if and only if
x either r € B!, s € Bl with j < j,

* Orr,s € B;_l, and cﬁ >lex d(‘ss

d(r):r € R}
3. If Rt =R ! then set M' = | d(r) : v € Ry | and stop,

otherwise continue by step 1.

By applying the above algorithm and Corollary 1 we immediately obtain the
following.

Theorem 2. Checking if a given matriz M is a degree refinement matriz can
be done in polynomial time.

5 Partial orders on graphs

It is well-known that graph homomorphisms define a quasiorder on the class
of all graphs, which can be factorized into a partial order. For an overview of
these results see the recent monograph [16]. We show that a similar interesting
structure exists on the class of connected graphs C for locally constrained ho-
momorphisms. For this purpose we will view =%, = and =5 as binary relations
on C, denoted by (C, i)) if necessary, where * will indicate the appropriate local
constraint. We show that (C,~) is a partial order for any of the three local
constraints *x = B, I, S.

Observe first that for any G € C the identity mapping ¢ : Vg — Vg clarifies
that all three relations — are reflexive.

The composition of two graph homomorphisms of the same kind of local
constraint (B,I,S) is again a graph homomorphism of the same kind. Hence
each 5 is also transitive.



For antisymmetry, suppose for G, H € C that f : G 5 H, g: H 5 G, where
f, g are of the same local constraint. For x = B, S we can invoke Observation 2
to conclude that G ~ H. For x« = I we use the following result.

Theorem 3 ([12]). Let G be a (possibly infinite) graph and let H be a graph
in C. If G allows both a locally injective and a locally surjective homomorphism
to H, then both these homomorphisms are locally bijective.

For x = I we have gof : G & G and G £+ G by the identity mapping. By Theo-
rem 3 the mapping go f is locally bijective. Since G is connected, (go f)(Vg) = Vg
implying that f is (globally) injective. By the same kind of arguments we deduce
that g is injective. This means that f is surjective, and hence f is a graph isomor-
phism from G to H. Hence, all three relations are antisymmetric. We would like
to mention that the antisymmetry of = also follows from an iterative argument
of [21].
Combining the results above with Theorem 3 yields the following.

Theorem 4. All three relations (C,=),(C, =) and (C,=5) are partial orders
with (C, =) = (C, )N (C,=).

6 Partial orders on degree refinement matrices

We again recall the fact that a locally bijective homomorphism from a graph
G to a graph H may exist only if G and H have the same degree refinement
matrix.

Theorem 5 ([19]). Two graphs G,H € C have a common degree refinement
matriz if and only if their universal covers are isomorphic as well as if and only
if there exists a graph F' € C allowing locally bijective homomorphisms to both G
and H.

In view of this theorem we can also define the universal cover Ty associated
with a degree refinement matrix M as the universal cover Tg = Ty of any
graph G with drm(G) = M. This implies that the symmetric and transitive
closure of the partial order (C,Z») is an equivalence relation whose classes can
be naturally represented by degree refinement matrices. It is natural to ask if the
other two kinds of locally constrained homomorphisms are also conditioned by
the existence of a well-defined relation on the degree refinement matrices. Here,
we prove that such a relation exists and moreover, that it is a partial order.

Definition 4. We denote the set of all degree refinement matrices of graphs in
C by M. We define three relations 25, &5, and =5 respectively, on M as follows.
For two matrices M,N € M we have M = N if there exist graphs G € C with
drm(G) = M and H € C with drm(H) = N such that G = H holds for the
appropriate local constraint.



As stated above (M, 23) is a trivial order where no two distinct elements are
comparable. For the other two relations, the reflexivity of the relation follows
directly from the existence of the identity mapping on any underlying graph.
Antisymmetry and transitivity require more effort.

For proving antisymmetry we involve the notion of universal cover. Assume
that M & N and N & M. By Proposition 1, there exist locally injective
homomorphisms f' : Tyy — Ty and ¢' : Ty — T Recall from Sect. 2 that
there exist a locally bijective homomorphism fy : Ths — G1. As in the previous
section we now invoke Theorem 3 to conclude that foo g’ o f' : Thy = Gy
is locally bijective. This implies that both f' and g’ are locally bijective, and
consequently the universal covers Th; and Tn are isomorphic. Hence M = N
due to Theorem 5. The antisymmetry of =+ can be proven according to exactly
the same arguments.

The transitivity property of = follows directly from the next lemma.

Lemma 1. Let G, Ga, Hy, Hy € C be such that G1 & H; and G2 & H,, where
H, and G2 share the same degree refinement matriz. Then there exists a graph
F €C such that F 5 Hy and F 2 G4.

B

Proof. Using Theorem 5 we first construct a finite graph F' such that F' = H;
and F' 25 Gy. The projection 7y : F' =5 G5 composed with the locally injective
homomorphism g : G2 <+ H» gives that F' <5 H,. See Fig. 1.

F f F'
T T &
G1 H, G> H,
drm : M N . N Q

Fig. 1. Commutative diagram for transitivity of £> where horizontal mappings are
injective and others are bijective.

As F' 2 H, via projection m;, by Observation 1 the preimage 77 *(z) has
the same size for all vertices x € Vg, , say k. We assume that all vertices of F’
that map onto a vertex z are labeled {1, 2, ..., 2t}

The vertex set of the desired graph F' is the Cartesian product Vg, x{1,..., k}.
For simplicity we abbreviate (u,%) as u;. Define the edges of F' as follows:

(ui,vj) € EF ¢ (u,v) € Eg, and (f(u);, f(v);) € Ep'.

We define two mappings f': u; = f(u); and 7 : u; = u. According to Observa-
tion 1, f’ is a locally injective homomorphism from F to F' and = is a locally



bijective homomorphism from F to G;. The mapping g o w2 o f’ is a locally
injective homomorphism F' = H,. ]

The same assertion can be proven for the order <+ with exactly the same argu-
ments, the only difference is that the preimage in F' of any edge (z;,y;) € Ep
is a spanning bipartite graph.

Theorem 6. For any constraint x = B, I,S the relation (M, =) is a partial

order. It arises as a factor of the order (C,=), when we unify the graphs that
have the same degree refinement matrices.

Any locally injective homomorphism G' &+ H can be extended to a locally bi-
jective homomorphism G' =+ H, where G C G' [17]. This yields an alternative
definition of the order (M, =+): For matrices M, N holds M = N if and only if
there exists graphs G and H with degree refinement matrices M and N, respec-
tively, such that G is a subgraph of H. This straightforwardly implies the first
claim of the observation below. The second claim (and the first claim as well)
follows by Proposition 1 and a simple inductive argument on the two trees Ty
and T.

Observation 5 For any degree refinement matrices M, N € M it holds that if
ML N then Ty CTw, and if M = N then Ty C T

The reverse is not true: for = take M = drm(P;) and N = drm(P3). The
counterexample for = requires a bit more effort (see [14]).

Theorem 3 can now be translated to matrices. If M <+ N and M =5 N, then
M 2 N,ie, M =N.

Corollary 4. (M,3) = (M, 5)N (M, ) = (M, {(M,M) : M € M}).

Proof. Suppose G1 = H; and G = Hs hold with drm(G;) = M and drm(H;) =
N (i =1,2). By Observation 5, we have that Ty C Ty and T C Tas. We rep-
resent these inclusions by locally injective homomorphisms f' : Ty — T and
g' : Ty = Tay- Then we may conclude M = N by the same arguments as in the
proof of antisymmetry of <. 0

7 Conclusion

We have proved that graph homomorphisms with local constrains between fi-
nite graphs impose interesting orders on the class of degree matrices. We have
also shown that such matrices can be easily detected and, moreover, a canonical
representative of a class of equivalent matrices can be computed by an efficient
algorithm. The generalization of these concepts beyond the class of degree ma-
trices of finite graphs and their applications in theoretical computer science is
subject of further study.
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