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Abstract. A graph G on n vertices is a k-leaf power (G ∈ Gk) if it is
isomorphic to a graph that can be “generated” from a tree T that has n

leaves, by taking the leaves to represent vertices of G, and making two
vertices adjacent if and only if they are at distance at most k in T . We
address two questions in this paper:
(1) As k increases, do we always have Gk ⊆ Gk+1 ?
Answering an open question of Andreas Brandstädt and Van Bang Le
[2, 3, 1], we show that the answer, perhaps surprisingly, is “no.”
(2) How should one design algorithms to determine, for k-leaf powers, if
they have some property?
One way this can be done is to use the fact that k-leaf powers have
bounded cliquewidth. This fact, plus the FPT cliquewidth approxima-
tion algorithm of Oum and Seymour [14], combined with the results of
Courcelle, Makowsky and Rotics [7], allows us to conclude that proper-
ties expressible in a general logic formalism, can be decided in FPT time
for k-leaf powers, parameterizing by k. This is wildly inefficient. We ex-
plore a different approach, under the assumption that a generating tree
is given with the graph. We show that one can use the tree directly to
decide the property, by means of a finite-state tree automaton. (A more
general theorem has been independently obtained by Blumensath and
Courcelle [5].)
We place our results in a general context of “tree-definable” graph classes,
of which k-leaf powers are one particular example.

1 Introduction

A graph G is a tree power if there is an integer k and a tree T on the same
vertex set as G such that two vertices are adjacent in G if and only if they are at
distance at most k in T [11]. A leaf-power graph is defined similarly except that
the vertex set of G now corresponds to the leaves of T . Leaf powers, and k-leaf
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powers where the power k is specified, were introduced by Nishimura, Ragde,
Thilikos [13] in 2002 and have attracted a considerable amount of attention.
These graphs have applications in the reconstruction of the evolutionary history
of species and admit efficient algorithms for generaly difficult problems, that
mainly exploit the tree structure of the underlying tree. Note that k-leaf powers
can have arbitrarily large cliques, which means that the class of k-leaf powers is of
unbounded treewidth. It was recently shown that a k-leaf power has cliquewidth
at most 3k/2 [10]. It was known that (k − 1)-leaf powers are k-leaf powers
for k ∈ {1, 2, 3, 4} [2], but it was an open question whether this containment
relationship continued. In this paper we show that this is not the case.

Leaf-power graphs are only one example of graphs with nice algorithmic
properties that rely on an underlying tree structure. In this paper, we generalise
the main concepts. The definition of leaf-power graphs consists of three elements:
a tree, a selection of tree vertices and an adjacency condition. For a fixed k, the
selected vertices are the leaves of the tree and the adjacency condition is a
distance condition. “Being a leaf, i.e., a vertex of certain degree” and “being
a pair of vertices at bounded distance” are predicates that can be expressed
already in limited logic. Based on these observations, we introduce the notion of
tree-definable graph classes. A tree will then define a graph where the vertex set
is selected by a unary graph predicate and adjacency is defined by a binary graph
predicate. We show that every problem that is definable in monadic second-order
logic allowing quantification over sets of vertices can be solved in linear time on
a tree-definable graph class, when the representing tree is given. When allowing
quantification over sets of edges the results are not so positive, and we apply a
Myhill-Nerode argument to show that the set of trees generating Hamiltonian
3-leaf powers does not have finite index. The logical expressions used to generate
4-leaf powers and 5-leaf powers are very similar and yet we show that there exists
a 4-leaf power which is not a 5-leaf power, thereby answering an open question
of Andreas Brandstädt and Van Bang Le [2, 3, 1].

The paper is organised as follows. In the next section, we define the notion of
tree-definable graph class. In Section 3, we show that well-known graph classes
such as cographs and fixed leaf-power classes are tree-definable. We also show
that not every 4-leaf power is a 5-leaf power. Algorithmic consequences for tree-
definable graph classes are discussed in Section 4. In the final Section 5, we
present open problems.

2 Tree-definable graph classes

We give a very general method for defining graphs. It has three ingredients: a
tree, a logical expression extracting the vertex set of the graph from the tree,
and another logical expression extracting the adjacencies in the graph from the
tree. In the next section, we will show for some well-known graph classes that
they can be defined in this uniform way. (We have recently learned that some of
our results were obtained earlier, in a very general setting, by Blumensath and
Courcelle [5], where they study rational transductions of relational systems.)



To begin, we specify the logic that we use in this paper. An M2O graph

expression has four types of variables, for vertices, edges, sets of vertices, sets of
edges, and is formed from the following elements:

– equality for each of the four variable types
– the two predicates x ∈ X and e ∈ Y for x a vertex variable, X a vertex

set variable, e an edge variable and Y an edge set variable and the two
predicates adj(u, v) and inc(u, e) for u and v vertex variables and e an edge
variable

– the connectives ∧,∨,¬ and the quantifiers ∀, ∃.

Every variable type allows quantification. Clearly, x ∈ X is true if x is interpreted
by a vertex contained in X ; similarly for e ∈ Y . And adj(u, v) is true if u and v
are interpreted by adjacent, in particular different, vertices, and inc(u, e) is true
if u is an endpoint of e, i.e., e is incident to u. A graph expression without free
variables is called graph sentence. For an M2O graph sentence Φ we say that a
graph G is a model for Φ, denoted as G |= Φ, if Φ is true on G.

Definition 1. Let Φ1 = Φ1(x) and Φ2 = Φ2(x1, x2) be M2O graph expressions

with x, x1 and x2 vertex variables. For a tree T , the graph G represented by T
with respect to (Φ1, Φ2), denoted as GΦ1,Φ2

(T ), is defined as follows:

– V (G) =def {u ∈ V (T ) : T |= Φ1(u)}
– E(G) =def {uv : u, v ∈ V (G) and u 6= v and T |= Φ2(u, v)}.

We denote by G(Φ1, Φ2) the class of graphs defined by Φ1, Φ2, i.e., G(Φ1, Φ2) =
{GΦ1,Φ2

(T ) : T a tree}. We say that G(Φ1, Φ2) is a tree-definable graph class.

Note that every tree represents a graph with respect to every pair (Φ1, Φ2) of
graph expressions, but the represented graph may be the empty graph or may
have no edges. The definition of tree-definable graph classes raises immediate
questions of three types, that we will address in this paper. Let (Φ1, Φ2) and
(Φ′

1, Φ
′
2) be pairs of graph expressions.

1) Given a tree T , how difficult is it to compute the graph that is represented
by T with respect to (Φ1, Φ2), i.e., the graph GΦ1,Φ2

(T )?
2) Given a graph G, how difficult is it to compute a tree T such that T represents

G with respect to (Φ1, Φ2), i.e., such that G = GΦ1,Φ2
(T )?

3) How difficult is it to decide whether G(Φ1, Φ2) is contained in G(Φ′
1, Φ

′
2), i.e.,

whether G(Φ1, Φ2) ⊆ G(Φ′
1, Φ

′
2)?

In view of question 2 we remark that we restrict to named graphs. If graphs have
unnamed vertices, question 2 should be rephrased as an isomorphism problem.
Questions 1 and 2 are very natural, as they state the verification problem and a
restricted version of the graph class recognition problem. Question 3 is partially
motivated by a later result about the existence of efficient algorithms for certain
problems. We address the three questions, among others, in different parts of
this paper.



Another, in some sense more concrete question asks about graph classes that
are captured by our model. Are well-known graph classes tree-definable? In the
next section, we answer this question in the affirmative and give two examples.
This also supports our opinion that the definition of tree-definable graph classes
is indeed a natural approach to unify graph classes.

3 Examples of tree-definable graph classes

As our first example we show that all (fixed) leaf-power classes are tree-definable.
For a number k ≥ 1, a graph G is a k-leaf power if there is a tree T such that the
vertices of G are in 1-to-1 correspondence with the leaves of T and two vertices
of G are adjacent if and only if the distance of the corresponding leaves is at
most k in T . Hence, for the definition of the two predicates, the vertex selection
predicate should be true only for leaves, and adjacency is a simple distance
condition. Let

– L(x) =def ∃u∀v(adj(x, v) → u = v)
– P1(x1, x2) =def (x1 = x2 ∨ adj(x1, x2))

Pi+1(x1, x2) =def ∃u(Pi(x1, u) ∧ P1(u, x2)) for all i ≥ 1.

For a graph G = (V, E), two (not necessarily different) vertices u, v of G and a
number k ≥ 1, the following holds:

– G |= L(u) if and only if dG(u) ≤ 1
– G |= Pk(u, v) if and only if there is a u, v-path of length at most k in G.

Hence, G(L, Pk) is the class of k-leaf powers. Using the example of k-leaf powers,
we show that the inclusion relation of tree-definable graph classes is not easy to
determine from the logical expressions directly, thereby settling an open problem.
It is known that k-leaf powers are (k + 1)-leaf powers for k ∈ {1, 2, 3}, i.e.,
G(L, P1) ⊆ G(L, P2) ⊆ G(L, P3) ⊆ G(L, P4) [2]. It was an open question whether
this containment relationship continues. The following result shows that this is
not the case.

Lemma 1. There is a 4-leaf power that is not a 5-leaf power.

Proof. Consider the tree T in Figure 1. Let G be the square of T , i.e., the graph
on the vertices of T where two vertices are adjacent if and only if they are at
distance at most 2 in T . It is clear that G is a 4-leaf power. We show that G is
not a 5-leaf power. For a contradiction, assume that G is a 5-leaf power. Let G be
the 5-leaf power of tree S′. Since G has no true twins, no vertex of S′ is adjacent
to two leaves. Let S be the subgraph of S′ induced by all non-leaf vertices. It
holds that G is isomorphic to an induced subgraph of the third power of S. For
ease of notation, let vertices of S have the name of their corresponding vertex
as in Figure 1.

Since vertices 2, 3 and 4 are pairwise adjacent in G, it holds for the distances
between the three vertices: dS(2, 3), dS(2, 4), dS(3, 4) ≤ 3. If dS(2, 3) = 3 then
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Fig. 1. The square of the depicted tree, i.e., the graph on the vertex set of the tree
with vertices adjacent if they are adjacent in the tree or have a common neighbour, is
a 4-leaf power but not a 5-leaf power.

dS(2, 4) 6= dS(3, 4). Hence, one of the three distances is at most 2. Without loss
of generality, dS(2, 3) ≤ 2. Consider the path P between 5 and 9 in S: since 5
and 9 are adjacent to 1 in G, it holds dS(5, 9) ≤ dS(5, 1) + dS(9, 1) ≤ 6. We
consider different cases. Let 5 ≤ dS(5, 9) ≤ 6. Then, 1 lies on P , at distance 3
to 5 or 9; by symmetry we can assume dS(1, 5) = 3. If 3 lies on the 1, 5-path
in S then 5 is adjacent also to 3. Hence, 3 does not lie on the 1, 5-path in S.
If the 3, 9-path in S contains two vertices of the 1, 5-path then dS(3, 9) ≥ 4.
Hence, 2 and 3 are contained in different connected components of S−1. The
distance condition dS(2, 3) ≤ 2 then shows that 2 and 3 are neighbours of 1
in S. In particular, 2 is vertex on the 1, 5-path in S. This also implies that
dS(1, 9) = 3, since 4 ≤ dS(2, 9) ≤ 1+dS(1, 9). Then, 3 lies on the 1, 9-path in S.
Summarising, we obtain that the 5, 9-path in S is the following: (5, x, 2, 1, 3, y, 9)
for some vertices x and y. Now, consider vertex 6. It is adjacent to 1, 2, 5 and
non-adjacent to 3. Hence, 6 is a neighbour of x in S. Now, consider vertex 7.
The neighbours of 7 are 2 and 5, but there is no tree that allows assignment of 7.
Hence, dS(5, 9) = 4. Note that every vertex of G that corresponds to a vertex on
P besides 5 and 9 is a common neighbour of 5 and 9. Since 1 is the only common
neighbour of 5 and 9 in G, 2 and 3 are not contained in P . This, however, is
only possible for dS(2, 3) ≥ 4. We conclude that G cannot be a 5-leaf power.

Hence, Lemma 1 shows G(L, P4) 6⊆ G(L, P5). This example also shows that
the inclusion question, given M2O predicates Φ1, Φ2, Φ

′
1, Φ

′
2 to decide whether

the inclusion G(Φ1, Φ2) ⊆ G(Φ′
1, Φ

′
2) holds, cannot be determined easily from

just looking at the expressions.
As a second example, we show that cographs are tree-definable. Cographs are

the P4-free graphs, i.e., the graphs that do not contain the induced path on four
vertices as induced subgraph. Our result is based on the cotree characterisation
of cographs. A rooted tree whose non-leaf vertices are labelled 0 or 1 is called
a cotree. It holds that a graph G is a cograph if and only if there is a cotree T
such that the vertices of G correspond to the leaves of T and two vertices u, v of
G are adjacent if and only if the least common ancestor of u and v is labelled 1.



Proposition 1. The class of cographs is a tree-definable graph class.

Proof. We prove the proposition in two steps. We first extend the definition of
tree-definable graph classes to coloured trees, and then we show that coloured
trees are captured by our model.

We need five vertex colours with the following meanings: leaf, root vertex with
label 0, root vertex with label 1, non-root vertex with label 0, non-root vertex
with label 1. First, we give a predicate that checks whether a given coloured tree
represents a cotree correctly. This means that every vertex has a colour, there
is exactly one root vertex and the leaves are exactly the vertices with the leaf
colour. The colour class predicates are denoted as C1, C2, C3, C4, C5.

– L(x) =def ∃u∀v(adj(x, v) → u = v)
– Q =def ∀u((L(u) → C1(u)) ∧ (C1(u) → L(u)))
– R =def ∃u((C2(u) ∨ C3(u)) ∧ ∀v((C2(v) ∨ C3(v)) → u = v))
– P =def ∀u(C1(u) ∨ C2(u) ∨ C3(u) ∨ C4(u) ∨ C5(u)) ∧ Q ∧ R

It holds for a 5-coloured tree T that T |= P if and only if T correctly represents
a cotree, in particular, has a unique root vertex and all leaves are coloured with
the unique leaf colour. It remains to define adjacency. To find the first common
vertex of two leaf-root paths, we need predicates for ‘path’ and ‘first common
vertex’. The following expressions describe ‘path’ in the following way, precisely,
predicate X is true if the vertices in Z describe a path between a and b.

– N≥2(x, a, b, Z) =def ∃v1∃v2(v1, v2 ∈ Z ∪ {a, b} ∧ v1 6= v2 ∧ adj(x, v1) ∧
adj(x, v2))

– N≤2(x, a, b, Z) =def ∃v1∃v2∀u((u ∈ Z ∪ {a, b} ∧ adj(x, u)) → (u = v1 ∨ u =
v2))

– X(a, b, Z) =def ∀u(u ∈ Z → (N≥2(u, a, b, Z) ∧ N≤2(u, a, b, Z))) ∧ ∃u(u ∈
Z ∧ adj(a, u)) ∧ ∃u(u ∈ Z ∧ adj(b, u)) .

To determine the first common vertex of two root paths, we apply the same ideas
but omit this here.

For the second step, we encode vertex colours into an uncoloured tree. The
idea is to represent colours by the number of leaves adjacent to a non-leaf vertex.
Predicate L verifies whether a vertex is a leaf or a non-leaf, and similar to
predicates N≤2 and N≥2 we can formulate predicates that check whether a non-
leaf vertex has exactly 1, 2, 3 or 4 or at least five adjacent leaves. The final
expressions then select the non-leaf vertices with exactly one adjacent leaf to
represent the vertices of the graph and two vertices are adjacent if and only if
the tree is syntactically correct and the two paths to the root meet first on a
1 labelled vertex, i.e., a vertex with exactly three adjacent leaves. If the tree
is not syntactically correct, the represented graph has no edges. This is also a
cograph. It follows with the cograph characterisation via cotrees that cographs
are tree-representable.

It is a well-known fact that the cographs are exactly the graphs of clique-
width at most 2.



4 Efficiently solvable problems

In this section, we mainly show that the computational bottleneck for many
problems on tree-definable graphs is the computation of a representing tree.
We show that all problems that can be formulated in a restricted version of
M2O have efficient algorithms on input a representing tree. Our result is based
on Courcelle’s celebrated theorem about solvability of problems on graphs of
bounded treewidth [6].

We show that problems that are expressible in a restricted version of M2O
logic can be solved efficiently on the representing trees as input. This restricted
logic does not allow edge set variables in expressions, and we call such expressions
M1O graph expressions.

Lemma 2. Let Φ1 be a unary M2O graph expression and let Φ2 be a binary

M2O graph expression. Let Ψ be an M1O graph sentence. There is an M2O graph

sentence Ψ ′ such that for all trees T : GΦ1,Φ2
(T ) |= Ψ if and only if T |= Ψ ′.

Proof. We modify Ψ to obtain Ψ ′. Consider the following predicate P :

P (X) =def ∃a∃b∀c(a ∈ X ∧ b ∈ X ∧ ¬(a = b) ∧ (c ∈ X → (c = a ∨ c = b)) ∧

Φ1(a) ∧ Φ1(b) ∧ Φ2(a, b))

where a, b, c are vertex variables and X is a vertex set variable. Let G be a
graph and let U be a set of vertices of G. Then, the following holds:

• G |= P (U) if and only if U = {u, v} for some vertices u, v of G, u 6= v, and
G |= Φ1(u) and G |= Φ1(v) and G |= Φ2(u, v).

We show the claim of the lemma by induction over the definition of our graph
expressions. Note that, by assumption, Ψ does not contain e ∈ Y for e an edge
variable and Y an edge set variable as subexpression. For the proof, we have
to consider arbitrary graph expressions without edge set variable occurrences.
For an M2O graph expression F without edge set variable occurrences we write
F = F (α, β, γ) where α is a list of the vertex variables that occur in F , β is a list
of the vertex set variables that occur in F and γ is a list of the edge variables that
occur in F . Expression H denotes the equivalent expression after modification.
We begin with atomic expressions.

– F (〈x1, x2〉, 〈〉, 〈〉) = (x1 = x2) for x1, x2 vertex variables
H(〈x1, x2〉, 〈〉) =def (x1 = x2)

– F (〈〉, 〈X1, X2〉, 〈〉) = (X1 = X2) for X1, X2 vertex set variables
H(〈〉, 〈X1, X2〉) =def (X1 = X2)

– F (〈〉, 〈〉, 〈y1, y2〉) = (y1 = y2) for y1, y2 edge variables
H(〈〉, 〈Y1, Y2〉) =def (Y1 = Y2)

– F (〈x〉, 〈X〉, 〈〉) = (x ∈ X) for x a vertex variable and X a vertex set variable
H(〈x〉, 〈X〉) =def (x ∈ X)

– F (〈x1, x2〉, 〈〉, 〈〉) = (adj(x1, x2)) for x1, x2 vertex variables
H(〈x1, x2〉, 〈〉) =def Φ2(x1, x2)



– F (〈x〉, 〈〉, 〈y〉) = (inc(x, y)) for x a vertex variable and y an edge variable
H(〈x〉, 〈Y 〉) =def (x ∈ Y )

We continue with the non-atomic expressions. Clearly, it suffices to consider only
∃-quantified variables. By H ′, we denote the expression inductively obtained for
F ′.

– F (α, β, γ) = ∃xF ′(〈x〉 ◦ α, β, γ) for x a vertex variable
H(α, β ◦ γ′) =def ∃x(Φ1(x) ∧ H ′(〈x〉 ◦ α, β ◦ γ′))

– F (α, β, γ) = ∃XF ′(α, 〈X〉 ◦ β, γ) for X a vertex set variable
H(α, β ◦ γ′) =def ∃X(∀a(a ∈ X → Φ1(a)) ∧ H ′(α, 〈X〉 ◦ β ◦ γ′))

– F (α, β, γ) = ∃yF ′(α, β, 〈y〉 ◦ γ) for y an edge variable
H(α, β ◦ γ′) =def ∃Y (P (Y ) ∧ H ′(α, β ◦ 〈Y 〉 ◦ γ′))

– the cases for ∧, ∨, ¬ are obvious.

This completes the proof.

Theorem 1 ([6]). Let Ψ be an M2O graph sentence. There is a linear-time

algorithm that decides on input a tree T whether T |= Ψ .

Corollary 1. Let G be a tree-definable graph class, defined by the two M2O
graph expressions Φ1 and Φ2. Let there be an algorithm that on input a graph G
from G computes a tree T such that GΦ1,Φ2

(T ) = G in time O(f(n, m)). Then,

for every problem Ψ definable as an M1O graph sentence, there is an algorithm

that decides Ψ on input graphs from G in time O(f(n, m)).

Proof. The algorithm is simple: on input a graph G from G, compute a rep-
resenting tree for G in time O(f(n, m)). Note that T has at most O(f(n, m))
vertices. Lemma 2 shows that there is an M2O graph sentence Ψ ′ such that
T |= Ψ ′ if and only if G |= Ψ . It is important to note that Ψ ′ does not depend on
T . By Theorem 1 there exists an algorithm for deciding T |= Ψ ′ in time linear
in the size of T . Thus, there is an algorithm for deciding whether G |= Ψ in
time O(f(n, m)).

With Corollary 1, the main algorithmic challenge for graph problems express-
ible in M1O logic is to design efficient algorithms for computing a representing
tree. An important parameter determining the running time of such an algo-
rithm is the size of the output. In general, a graph can have a large representing
tree. As an example, our formulas for cographs in Proposition 1 allow trees that
can be obtained from cotrees by subdividing arbitrary edges with vertices of
label 0. Therefore, it is an interesting question to determine bounds on the size
of representing trees. Lower bounds additionally provide lower bounds on the
running times of algorithms.

Besides the questions about running time, the main question is which prob-
lems can be solved by our approach. We consider a famous example. A Hamil-

tonian cycle in a graph G is a cycle that visits every vertex of G exactly once.
It is known that Hamiltonicity, the problem asking whether a graph contains
a Hamiltonian cycle, is not expressible in M1O logic [12]. The essence of our



approach is to use the trees that generate the graphs in the family (e.g., k-leaf
powers). We may be interested in a property (such as Hamiltonicity) where
Corollary 1 does not apply, but it still might be the case that the property (of
the graphs generated by the trees) might be recognizable by a finite-state tree
automaton acting on the generating trees. However, for Hamiltonicity, we next
show that this cannot be done for k-leaf powers.

Our argument uses the “Myhill-Nerode” point of view, such as exposited in
[8].

Our non-expressibility result is obtained in two steps. We first show that the
problem is not finite-state for a special congruence relation. For rooted trees T1

and T2 with roots R1 and R2, respectively, the result of the operation ⊕ on T1

and T2, denoted as T1⊕T2, is the composition of T1 and T2 by gluing the two trees
together on R1 and R2. The compound graph, that is a tree, has root the glue
vertex (R1, R2). The relation ∼F over a set F of rooted trees is defined as follows:
for two rooted trees T1 and T2, T1 ∼F T2 if and only if T1⊕T ∈ F ⇔ T2⊕T ∈ F
for all rooted trees T . Informally, two rooted trees are considered equivalent with
respect to F if they behave equally after compounding with the same tree.

Lemma 3. Let F be the set of rooted trees that represent a 3-leaf power with a

Hamiltonian cycle. Then, ∼F does not have finite index.

Proof. Let G be a graph whose vertex set can be partitioned into a clique A and
an independent set B. Furthermore, let every vertex in A be adjacent to every
vertex in B. Such graphs are called complete split graphs. It obviously holds that
G has a Hamiltonian cycle if and only if |A| ≥ |B|, since two vertices of B cannot
appear consecutively on the cycle.

First we show that complete split graphs are 3-leaf powers. Let G be a com-
plete split graph with vertex partition (A, B) such that A is a clique and B is
an independent set. A star is a tree with a universal vertex. We obtain a tree
for G from the star on |B| + 1 vertices by attaching a new leaf to every leaf of
the star and |A| new leaves to the universal vertex of the star. Let the new tree
be rooted at the universal vertex of the star. For r ≥ 1, denote by Gr the star
on r + 1 vertices, which is a complete split graph, and denote by Tr the corre-
sponding rooted tree due to the above construction. Note that, for arbitrary i
and l, Ti ⊕ Gl is a tree for a complete split graph with independent set of size i
and clique of size l + 1. We assume that Gl has root a universal vertex.

Second we show that all Tr are in different equivalence classes of ∼F , thus
showing that ∼F does not have finite index. Let 1 ≤ i < j. By the discussions
about, Ti ⊕ Gj−i has no Hamiltonian cycle and Tj ⊕ Gj−i has a Hamiltonian
cycle. Hence, Ti 6∼F Tj.

In view of Corollary 1, the above provides an alternate proof that Hamil-
tonicity cannot be expressed in M1O logic. It also shows that an attempt to
mimic the form of Lemma 2 by having the “extractor” graph expressions in
M1O logic, does not support a conclusion that properties expressible in M2O
logic are finite-state recognizable by automata acting on the generating trees.
The proof of Lemma 3 is easily modified to show a similar result for any fixed



k ≥ 3. We contrast the above with a limited positive result for a problem that
cannot be formulated in M1O.

Lemma 4. Let F be the set of rooted trees that represent a 2-leaf power with a

Hamiltonian cycle. Then, ∼F has finite index.

Proof. Note that 2-leaf powers are exactly the disjoint unions of complete graphs.
So, it holds that a 2-leaf power contains a Hamiltonian cycle if and only if it is
connected and has at least three vertices. Hence, a 2-leaf power has a Hamiltonian
cycle if and only if it is represented by a star with at least three leaves. We show
that ∼F defines three equivalence classes on the set of rooted trees on at least
four vertices: stars with root the centre vertex, stars with root a leaf, rooted
trees that are not stars.

Let T and T ′ be rooted trees. First, let T not be a star. This means that
there is a path of length at least 3 between two leaves in T . Then, there is a path
of length at least 3 between two leaves also in T ⊕ T ′, which means that T ⊕ T ′

represents a disconnected 2-leaf power, and T ⊕T ′ is not in F . Second, let T be
a star with root vertex a leaf. We distinguish two cases for T ′. If T ′ has exactly
one vertex then T ⊕ T ′ represents the same 2-leaf power as T , if T ′ has at least
two vertices then T ⊕ T ′ contains two leaves at distance at least 3. Hence, all
trees in the second class behave equally. Third, let T be a star with root vertex
the centre. Again, we distinguish two cases. If T ′ is a star with root a universal
vertex then T ⊕T ′ is a star with root a universal vertex, if T ′ is a star with root
not a universal vertex or T ′ is not a star then T ⊕ T ′ contains a pair of leaves
at distance at least 3. Hence, the trees in this class behave equally.

We have seen that ∼F partitions the set of rooted trees on at least four
vertices into three classes. Since there is only a finite number of rooted trees on
at most three vertices, ∼F partitions the set of rooted trees into a finite number
of classes, which shows the claim of the lemma.

5 Conclusions and Open Problems

We have shown that graphs of bounded leaf-power is not a well-behaved monoto-
nic parameter, answering a noted open problem: there are graphs that are 4-leaf
powers but not 5-leaf powers. Recently, we learned that Brandstädt and Wagner
have generalized our construction of a 4-leaf power that is not a 5-leaf power,
based on an early draft of the present paper [9], to construct for any k ≥ 4 a
k-leaf power that is not a k+1-leaf power [4]. But maybe it can be shown that
in some sense the notion is “almost monotonic” for some suitable interpretation
of almost.

We have also explored how the generating trees for k-leaf powers can be
used directly to decide properties of graphs in these families, and have shown if
a property is expressible in M1O logic, then this approach can be carried out.
Such expressibility is sufficient, but not necessary for the approach to succeed.
We have shown that Hamiltonicity, a property that is not expressible in M1O,
is finite-state for 2-leaf powers, but not for k-leaf powers for k ≥ 3.



The issue has been explored in the general setup that the graphs are extracted

from the trees in some manner, and then we want to know if the trees might be
exploited for finite-state recognition of properties. Our general result, Lemma 2,
shows that if the extraction is by means of M2O expressions, and the properties
are expressible in M1O, then the program succeeds. (We have recently learned
that our general lemma seems to be a special case of results in a very general
setting independently and recently published by Blumensath and Courcelle [5].)

However, this area merits much more investigation. Our main motivation is
to try to find general FPT results for classes of problems, for graphs in graph
families extracted from trees, much as Courcelle’s Theorem does for graphs of
bounded treewidth. But not just general FPT results, we also want to explore
how such results can be obtained in an efficient manner.

Another possibility for handling the extraction of the graphs from the trees
would be by means of finite-state automata. For example, consider the (some-
what artificial) parameterized family of graphs Fk defined where two leaves l
and l′ of the generating tree T are adjacent in the extracted graph G(T ) if there
exists a cutwidth at most k layout of T with u and v consecutive. Using the ap-
proach of [8] (Theorem 6.82) one can construct a fairly efficient tree-automaton
for this extraction. Is there an efficient and general way to decide properties of
such graphs? Can we get good quantitative bounds on the sizes of the automata
involved in these kinds of approaches?
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