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Abstract
Over the past decades in the field of machine teach-
ing, several restrictions have been introduced to
avoid ‘cheating’, such as collusion-free or non-
clashing teaching. However, these restrictions for-
bid several teaching situations that we intuitively
consider natural and fair, especially those ‘changes
of mind’ of the learner as more evidence is given,
affecting the likelihood of concepts and ultimately
their posteriors. Under a new generalised prob-
abilistic teaching, not only do these non-cheating
constraints look too narrow but we also show that
the most relevant machine teaching models are par-
ticular cases of this framework: the consistency
graph between concepts and elements simply be-
comes a joint probability distribution. We show a
simple procedure that builds the witness joint distri-
bution from the ground joint distribution. We prove
a chain of relations, also with a theoretical lower
bound, on the teaching dimension of the old and
new models. Overall, this new setting is more gen-
eral than the traditional machine teaching models,
yet at the same time more intuitively capturing a
less abrupt notion of non-cheating teaching.

1 Introduction
In machine teaching [Zhu et al., 2018], what we may also
call algorithmic teaching, the goal of the teacher is to find an
optimal witness, a collection of labelled examples, that will
steer the learner toward a target concept. An important com-
plexity notion is the teaching dimension (TD) of a concept
class C, which is the minimum number of examples, from
a set of ground elements X , needed to teach any concept in
the class. As the teaching complexity depends on the pro-
tocol between teacher and learner and their shared informa-
tion, different teaching models lead to different values for the
teaching dimension.

Over the last quarter century several teaching models have
been proposed, for example, the classical teaching (CT)
model [Goldman and Kearns, 1995], the optimal teacher (OT)
model [Balbach, 2008], recursive teaching (RT) [Zilles et al.,
2011; Doliwa et al., 2010; Doliwa et al., 2014], preference-
based teaching (PBT) [Gao et al., 2017b; Gao et al., 2017a],

and non-clashing teaching (NCT) [Kirkpatrick et al., 2019].
In all these models, the teacher T : C → W is viewed as a
mapping from concepts c ∈ C to witness w ∈ W (usually
sets of possibly labelled examples from X) and the learner
L : W → C as a partial mapping in the opposite direc-
tion. Moreover, the examples T (c) employed to teach con-
cept c must be consistent with c, and the guessed concept
L(w) when given example set w must also be consistent with
w. A successful teacher-learner pair has L(T (c)) = c for any
concept in the class.

Clearly, any formal model of teaching must disallow cheat-
ing, or unfair collusion between teacher and learner. As de-
scribed by Moran et al [Moran et al., 2015], “roughly speak-
ing, a collusion occurs when teacher and student agree in
advance on some unnatural encoding of information about
the concept c using the bit description of the chosen exam-
ples, instead of using attributes that separate c from the other
concepts”. Goldman and Mathias [1996] proposed that a
model should be called collusion-free if whenever T (c) ⊆ w
and w is consistent with c, denoted by c |= w, then also
L(w) = L(T (c)) = c (hereafter called GM-collusion-free).
Many abstract teaching models in the literature were intro-
duced specifically to improve the teaching complexity of pre-
vious models while remaining GM-collusion-free. For ex-
ample, the five models mentioned above (CT, OT, RT, PBT
and NCT), in this order, have strictly improving teaching
complexities, and all remain GM-collusion-free. The non-
clashing model is provably the end of this line, as it can be
shown that if every concept in class C can be taught with
at most k examples by some GM-collusion-free model then
the same holds for the non-clashing model, since the non-
clashing model actually adheres to no other constraints than
those formulated by the Goldman and Mathias condition.

Note that in a GM-collusion-free model a learner guess-
ing c is not allowed to change its mind if given additional
examples consistent with c. Consider a learner that sees
the witness w = {3}, composed of one single ground ele-
ment 3 ∈ X = N, and assigns some plausibility to the hy-
pothesis that the underlying concept is the set of odd num-
bers codd. Some other plausibility is given to other hypothe-
ses, such as the powers of three cpow3, the prime numbers
cprime, etc. Based on simplicity of consistent concepts, the
learner guesses codd. Now, if the same learner sees the wit-
ness {3, 29} or {3, 11}, the powers of three is ruled out. But



the likelihood of these examples for cprime now looks higher,
even higher than for codd, so that the learner now guesses
cprime. Adding more examples consistent with a concept
(initially guessed as the odd numbers) may end up in a change
of the guess (to the prime numbers), in a very natural way,
while forbidden in all GM-collusion-free models.

We claim that all this is more naturally understood by ex-
tending the notion of the consistency graph between concepts
and witness into a witness joint distribution p : C ×W →
[0, 1]. Both teacher and learner share p(c, w) for every pair
of concept and witness, with p(c, w) > 0 if and only if
c |= w. In this framework, the learner L is just defined as
choosing the concept that uniquely maximises the posterior
L(w) = arg!maxc p(c|w), which can be calculated from the
witness joint distribution and its marginals as p(c, w)/p(w),
whenever a particular w is given by the teacher. With this
framework we clearly see that the CT model simply assumes
p(c, w) such that p(w|c) and p(c) are both uniform, while
the PBT model allows for non-uniform concept priors p(c).
However, we get the new maximum likelihood (MLE) teach-
ing model, where p(w|c) is free but p(c) is uniform, and the
most general case, the maximum a posteriori (MAP) teach-
ing model, where all probabilities are chosen freely provided
they make up a valid joint distribution p(c, w).

If the learner does derive its posterior from p(c, w), should
p(c, w) be defined in any natural way? In the beginning,
teacher and learner share a set of ground elements X , from
which the whole teaching process is built: a witness is a new
structure that is composed in different ways depending on the
teaching paradigm. One common way of building the set of
witness objects is simply W = 2X , i.e., a witness is a set
of ground elements. But we can also have negative examples
with W = 2X×{−,+}. These two cases represent a situation
where the witness is built by composing elements from X
without replacement. But we can also build witnesses with
replacement, as when W = X∗, with X∗ being the set of all
finite sequences that can be built fromX . Under this perspec-
tive, we see that the witness joint probability p(c, w) should
derive from a more fundamental distribution, the ground joint
distribution q(c, x), defined as q : C × X → [0, 1], as
an extension of the consistency graph between concepts and
ground elements.

We claim that a natural setting for non-cheating teaching
must be based on teacher and learner only sharing q, the joint
distribution on ground elements and concepts. We claim that
whatever this q is, if it corresponds to the beliefs teacher and
learner have about the factual world, then there is no cheat-
ing. From here, witnesses can be constructed by composing
these ground elements in different ways, e.g., sets of positive
examples, multisets of positive examples, sets of positive and
negative examples, or other structures. In this paper we fo-
cus on the first two, sets and multisets. We present a unifying
way of deriving p from q in these situations, which is based on
the notion of Witness Sampling Composition (WSC), where
the joint distribution of concepts and witnesses is derived by
composing the witnesses by sampling from the ground ele-
ments, with or without replacement depending on the case
of multisets or sets. We postulate that this model intuitively
matches the notion of non-cheating teaching.

LBTD++ = JDTD++ <WSCTD++ ≤
≤ LBTD+ = JDTD+ <WSCTD+ ≤ NCTD+

Figure 1: Summary of relationships shown between teaching dimen-
sions of the old and new machine teaching models.

The main contributions of this paper are:

• We show that the use of witness joint distribution is a
unifying framework, by fleshing out that several teach-
ing paradigms can be expressed by different constraints
on priors and likelihoods (Table 1). The GM-collusion
property and a probabilistic version of it known as
monotonocity hold when the likelihood is uniform.

• For the two new machine teaching paradigms in Table 1,
MLE and MAP, we show that monotonicity and GM-
collusion do not hold (and are not equivalent).

• We propose a new notion of non-cheating machine
teaching, where we argue that T and L can share any
factual joint distribution on ground elements q. Assum-
ing WSC we derive the witness joint distribution p for
witness sets and multisets by applying a composition of
probabilities as sampling process from the joint distribu-
tion without and with replacement respectively.

• We show that the theoretically lowest-bound TD for sets
(LBTD+) and multisets (LBTD++) of positive exam-
ples can be achieved by some witness joint distribu-
tion (JDTD). The new WSC machine teaching model
(WSCTD) is less powerful than JDTD , but more pow-
erful than the Non-Clashing TD (NCTD). The precise
chain is shown in Figure 1. In sum, we show that WSC
allows for multiple changes of mind, and can achieve
lower TD than other classical teaching models, while be-
ing non-cheating under our new setting.

The new generalised probabilistic framework presented in
this paper reconnects the traditional notions of machine
teaching with modern probabilistic views of machine teach-
ing (including Bayesian teaching), and gives a completely
different perspective on what teacher and learner should be
allowed to share and how they should derive their choices ac-
cording to this shared information.

2 Cheating and Probabilities in MT
In the classical model for machine teaching of Goldman and
Kearns (1995) the shared information between teacher and
learner consists of whether every example is consistent with
a concept or not. Note that this information is between the
ground elements in X , and the concepts in C. Then, a wit-
ness set can be built in different ways. When only positive
examples are allowed, W = 2X and this consistency infor-
mation is extended from X to W . If c is consistent with x1
and x2 then it has to be consistent with {x1, x2}. We will call
this compatibility relation the consistency graph and view it
as a bipartite graph between concepts and witnesses with ad-
jacency denoting consistency, as done by Kirkpatrick et al
(2020). A witness w will then uniquely identify a concept c
if the only edge incident to w is cw.
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Figure 2: Consistency graph with |C| = |X| = 4 and witness
sets W = 2X . No concept consistent with a witness of size 3
or 4. Teacher mapping in red, Learner mapping in red and green.
NCTD = 1, CTD= 2, PBTD= 2. Right: Adding c2 |= 1 increases
NCTD .

This demand seemed too strict, and other models where
lower complexity could be achieved were considered. How-
ever, it became paramount to avoid cheating. In 1996 Gold-
man and Mathias proposed that a model was collusion-free if
further consistent evidence did not make the learner change
its mind, i.e., ifL(T (c)) = c then for any supersetw′ of T (c),
if cw′ is an edge of the consistency graph then L(w′) = c.

Consider Figure 2 (left); under the classical setting where
the only shared information is the consistency graph on black
edges, we have minimal GM-collusion-free teaching dimen-
sion (NCTD = 1) by the teacher function corresponding to
the red matching saturating the concepts. However, TD=1
cannot be achieved with a learner based on concept prefer-
ences only, as there is a long cycle for the singletons and we
thus have CTD=PBTD=2. Note that if we add c2 |= 1 and the
edges c2{1} and c2{1, 2} and c2{1, 2, 3} to the consistency
graph (Figure 2 right) then NCTD = 2. In particular, the red
matching is no longer GM-collusion-free, as w = {1, 2} is a
superset of both T (c1) and T (c2).

Kirpatrick et al in [2019] proved a theorem stating that a
teacher function allows for GM-collusion-free teaching if and
only if the consistency graph does not have any induced cy-
cle on 4 edges with 2 of them being chosen by the teacher
(as would happen in Figure 2 right, if the red edges in left are
chosen by the teacher). They called such a teaching protocol
non-clashing and one could view it, in retrospect, as an alter-
native definition for a GM-collusion-free model of teaching.

In preference-based teaching (PBT) the unique identifica-
tion rule is relaxed so that the learner will identify c from w,
i.e. L(w) = c, as long as w has no edge in the consistency
graph to any concept c′ with higher preference than c. It is
easy to see that for any teacher and learner adhering to this
rule the resulting protocol is GM-collusion-free, as for any
node w′ representing a superset of w, the neighbours of w′
will be a subset of the neighbours of w, so if T (c) = w and
L(w) = c then also L(w′) = c. Note that PBT is a weaker
protocol than NCTD, as we see in Figure 2 (left).

Somewhat in parallel with this evolution of consistency-
based teaching, there have been some other views of machine
teaching, from cases where experiments with humans are per-
formed [Khan et al., 2011] to the use of machine teaching for

explainable AI [Yang et al., 2021]. In this case, the teacher
selects examples that maximise the explainee’s probability of
a correct inference. A teaching framework aimed at Bayesian
learners is introduced in [Zhu, 2013]. The framework is ex-
pressed as an optimisation problem over batch teaching ex-
amples that balance the future loss of the learner and the
effort of the teacher. A new conceptualisation of expected
teaching dimension using a learning and a sampling prior is
presented in [Hernández-Orallo and Telle, 2020]. Shafto et
al. [2014] present the idea that learning can be modelled as
Bayesian inference, selecting a small subset of the data that
will, with high probability, lead a learner model to the cor-
rect inference. A general framework for selecting examples
to teach probabilistic learners is presented in [Eaves-Jr. and
Shafto, 2016]. Yang and Shafto [2017] use a Bayesian ap-
proach where teacher and learner interact and converge on the
likelihood of the data given the model on the teacher’s side
and the posterior of the model given the data on the learner’s
side inspired by iterative teaching [Liu et al., 2017]. Over-
all, these papers present an interactive, non-batch setting, do
not consider the notion of teaching or do not calculate teach-
ing dimensions. In the traditional machine teaching setting
we follow, we assume that the teacher works in a batch mode
and sends a witness (e.g., a set of examples) once and for all.
Even our use of the term ‘changing mind’ is metaphorical, as
the examples do not come incrementally.

In this paper we study probabilistic teaching models, where
the teacher and learner share a generalisation of the consis-
tency graph (which is based on the binary function |= on pairs
of concepts and ground elements, which derives into a binary
function |= on pairs of concepts and witnesses) in the form
of a joint probability distribution of concepts and witnesses
p : C ×W → [0, 1]. In this paper we consider only finite
concept classes. Even if probabilities could be exploited by
teacher and learner to extract confidence in the identification
or set different thresholds for p(c|w), in this paper we will re-
quire unique identification. This reduces to following p, and
since p(c|w) = p(c, w)/p(w) this means:

L(w) = arg!max
c∈C

p(c|w) = arg!max
c∈C

p(c, w)

where arg!max only returns an element if it is unique, other-
wise L(w) is undefined (recall that L is a partial mapping).
Now, for the teacher, following p means that if T (c) = w we
must have p(c|w) > p(c′|w) for all concepts c′ 6= c, as the
teacher assumes that the learner simply follows the posterior
and can identify one concept uniquely with it.

3 MT Models as Witness Joint Distributions
The extension of the consistency graph into a joint distribu-
tion assumes that if c andw are inconsistent then p(c, w) = 0,
but if c and w are consistent, then p(c, w) > 0 could take any
possible value, provided, of course, it is well-defined, i.e.,∑
c∈C,w∈W p(c, w) = 1. Basically, the extension converts

possibility into probability. The learner then follows:

p(c|w) =
p(c, w)

p(w)
=
p(w|c)p(c)
p(w)



Table 1 shows a summary of possible cases, depending on the
constraints on p(w|c) and p(c) to build estimators for p(c|w).
By uniform prior we mean ∀c, c′ : p(c) = p(c′). By uniform
likelihood we mean ∀c, w,w′, c |= w, c |= w′ : p(w|c) =
p(w′|c). Note that ifw and c are inconsistent then p(w|c) = 0
because p(w, c) = 0. We define the coverage of c as Wc =
{w : c |= w}. If this set is finite, then p(w|c) = 1

|Wc| .
When both the likelihood and concept prior are consid-

ered uniform we have a few situations already. The gen-
eral case is actually a new machine teaching model, when
coverage sizes |Wc| differ between concepts. Only if the
coverage size |Wc| is the same for all c, then we have the
extreme case ∀c, c′, w, w′, c |= w, c′ |= w′ : p(w|c) =
p(w′|c′). This happens in some well-studied situations, such
as any class of Boolean concepts when using both positive
and negative examples, since then for any concept c and any
w ⊆ 2X there is a unique assignment of negative and pos-
itive to elements of w that will be consistent with c. This
case really corresponds to the classical teaching (CT) dimen-
sion model of Goldman and Kearns [1995]: no preference
exists between posteriors and the learner is undefined un-
less there is unique consistency. If the coverage size is not
equal, then the likelihood is higher the smaller the coverage
of the concept is, and this would be a specific case of the
preference-based teaching (PBT) model of [Gao et al., 2017b;
Mansouri et al., 2019], with smaller concepts (in coverage)
having preference.

When only the likelihood is assumed uniform we are in a
situation that follows the concept prior p(c) and the coverage
size of the concept when choosing among several consistent
hypotheses. Again, if coverage sizes are equal, we are clearly
in the PBT model again, with the priors leading directly to the
preferences. However, if coverage sizes are not equal, we can
still have an equivalent PBT model that follows the priors by
choosing them in an extreme way such that the effect of the
likelihood does not affect the choice from the posterior1. For
instance, Occam’s razor, which selects the simpler one of any
two consistent hypotheses, could be represented in this way.

When only the concept prior is assumed uniform we are in
a common situation that receives the name “maximum like-
lihood estimation” (MLE). Finally, in the general case where
both the likelihood and concept prior can vary, we have the
also common “maximum a posteriori” (MAP).

For the two first rows in Table 1, but not the following two
rows, we have that they are GM-collusion-free.

Proposition 1. If likelihood is uniform then a learner L
based on the posteriors is GM-collusion-free.

Proof. In general, p(c|w) = p(w|c)p(c)
p(w) so that p(c|w) >

p(c′|w) ⇔ p(w|c)p(c) > p(w|c′)p(c′). Thus if the likeli-
hood is uniform then for any two witnesses w,w′ both con-
sistent with c and c′, if we have p(c|w) > p(c′|w) then also
p(c|w′) > p(c′|w′), which means that no change of mind can

1We would have to choose a ratio in the priors so high to beat
any effect of the likelihoods, i.e, ∀c, c′, if p(c) > p(c′) then
p(c)/p(c′) > k such that k is greater than any likelihood involv-
ing these two concepts.

occur for a learner acting on the posteriors, i.e. we have GM-
collusion-freeness.

The notion of GM-collusion-freeness is related to the intu-
itive principle that increasing consistent evidence should re-
inforce our beliefs. In a non-probabilistic setting, this is un-
derstood as not changing mind for any superset, but this is
too extreme an interpretation. A more natural interpretation,
which we call the monotonicity property, is that the more ex-
amples a learner is given that are consistent with a concept,
the more plausibility the learner should assign to that con-
cept, as it rules out other concepts. However, in a probabilistic
setting, the probability for a concept c1 can still increase (or
not decrease) but another competing concept c2 can increase
its probability more, now beating the first. We can translate
the monotonicity property to our probabilistic setting as fol-
lows. We say that p is monotone iff:

∀c ∀w,w′ ∈W : c |= w ∧ w′ ⊆ w ⇒ p(c|w′) ≤ p(c|w)

Note that the above property and the definition of GM-
collusion-free are very similar. For the two first rows in Ta-
ble 1 we show that monotonicity is preserved, but this does
not hold for the last two rows.

Proposition 2. If likelihood is uniform then p is monotone.

Proof. Assume c |= w and w′ ⊆ w. By Bayes Rule and the
uniform likelihoods:

p(c|w)

p(c|w′)
=

p(w|c)p(c)/p(w)

p(w′|c)p(c)/p(w′)
=
p(w′)

p(w)

Also, since the likelihood is uniform, and w′ is consistent
with at least the same concepts as w, the marginal p(w′) =∑
c p(w

′|c)p(c) ≥
∑
c p(w|c)p(c) = p(w). So we have that

p(c|w) ≥ p(c|w′), which shows the monotonicity property.

To see why we need to go beyond the first two rows of
Table 1, we show in Table 2 an example where changing mind
is not necessarily cheating (even if not GM-collusion-free).
This is a situation where neither p(w|c) nor p(c) are uniform,
but a similar example can be found with p(c) uniform.

We turn to proving results for the last two rows of Ta-
ble 1, and show that the degree of freedom they allow is very
high. We start by defining the minimum teaching dimensions
achievable for these new paradigms when likelihoods can be
freely chosen (MLE and MAP teaching).

Definition 1. For C on ground elements X , let JDTD+(C)
be the lowest teaching dimension achievable by any teacher
and learner protocol following a Joint Distribution p : C ×
2X . By JDTD++(C) we denote the analogous quantity for
p : C×X∗, i.e. multisets. We may also require that p is MLE.

Note JDTD+ ≤ JDTD++ as the former is choosing from
a set of witness objects that is a strict subset of the latter.
How powerful are these new paradigms? Does the use of
any joint distribution p that is restricted only by p(c, w) >
0⇔ c |= w allow us to reach the minimum possible teaching
dimension in all situations? The answer is Yes. We first define
a theoretical lower bound on teaching dimension.



Case Existing Specific MT Models p(w|c) p(c) Results

Uniform Prior
and Likelihood

CT [Goldman and Kearns, 1995] (if all con-
cepts same coverage), PBT [Gao et al., 2017b]
(concepts with smaller coverage prevail)

Uniform Uniform Monotone and GM-collusion-
free

Free Prior and
Uniform Likeli-
hood

PBT [Gao et al., 2017b] and Learning Prior
[Hernández-Orallo and Telle, 2020] (if all con-
cepts same coverage or extreme priors)

Uniform Free Monotone and GM-collusion-
free

MLE - Free Uniform Achieves lower bound on TD
MAP - Free Free Achieves lower bound on TD

Table 1: Four different new teaching models depending on constraints on likelihood or the concept prior as per Bayes’ rule.

Concept p(c) p(c, ∅) ... p(c, {3}) ... p(c, {3, 11})
ceven 0.35 0.15 ... 0 ... 0
codd 0.35 0.15 ... 0.022 ... 0.004
cpow3 0.1 0.08 ... 0.013 ... 0
cprime 0.2 0.125 ... 0.013 ... 0.005

Table 2: Part of a witness joint probability with |C| = 4 over
W = 2N with decreasing probabilities for larger sets and larger
probabilities for simpler concepts. As a result, we have a ‘change of
mind’ between {3} and {3, 11}, as the identified concept (in bold-
face) changes from codd to cprime. This seems natural, as 11 is more
specifically prime than odd (higher likelihood p(w|c), not shown),
but this is not GM-collusion-free.

Definition 2. For C on ground elements X and witness set
W , and positive integer k, let Gk(C) be the bipartite graph
with a vertex for each concept c ∈ C and a vertex for each
w ∈ W of at most k > 0 elements from X , and with an edge
cw whenever c |= w. Define LBTD+(C) (for W = 2X , i.e.
sets) and LBTD++(C) (for W = X∗, i.e. multisets), as the
minimum k such that Gk(C) has a matching saturating C.

For any teacher mapping T where c |= T (c) we have these
variants of LBTD(C) being a Lower Bound on the Teaching
Dimension k achieved by T , as the edges {cT (c)}c∈C will
form a matching saturating C in the graph Gk(C).

Proposition 3. JDTD+ = LBTD+ and JDTD++ =
LBTD++, even for MLE distributions. For any concept class
C on positive examples, with or without repetitions, there is
an MLE joint distribution p such that a learner acting on pos-
teriors achieves lowest possible teaching dimension.

Proof. Assume k = LBTD+(C), or k = LBTD++(C),
as per Definition 2 and consider the graph Gk(C) with the
set of k matching edges M saturating C. We construct p
by assigning values to a joint distribution matrix C × W ,
which we assume is an n by m matrix. We partition the
nm values p(c, w) into 3 classes: those where c 6|= w which
we set to p(c, w) = 0, those where cw ∈ M , and the re-
maining. To a concept c consistent with d witnesses we set
p(c, w) = 2

n(d+1) for the unique w such that cw ∈ M , and
p(c, w) = 1

n(d+1) for the remaining d − 1 witnesses consis-
tent with c. Note that the marginals for each of the n con-
cepts (rows) is 1/n, so this is an MLE joint distribution. The
teacher mapping follows the matching, with T (c) = w for
cw ∈ M . Given T (c) = w the learner will follow the pos-

teriors and since p(c′, w) < p(c, w) for all c′ 6= c the learner
will correctly guess c.

We have seen that for the two new machine teaching
paradigms MLE and MAP in Table 1, and any Boolean
concept class, the theoretically lowest possible TD can be
achieved by cherry picking the joint distribution. While it
may be the case that these arbitrary distributions are actually
the true information about the world that teacher and learner
share, for an external observer this is impossible to tell. In or-
der to clarify this, we now take a step back and define a class
of joint distributions over witness sets that are MLE and MAP
but where the distribution is constructed in a meaningful way.

4 The Witness Sampling Composition Model
The original notion of consistency is defined between con-
cepts in C and ground elements in X . As we said at the be-
ginning of section 2, if c is consistent with x1 and x2 then
c must be consistent with {x1, x2}. Inconsistencies are also
extended from X to W . So, does it make sense that p, the
witness joint distribution, is not an extension of the ground
joint distribution q? For instance, if q(c, x1) < q(c′, x1) and
q(c, x2) < q(c′, x2), could p(c, {x1, x2}) > p(c′, {x1, x2})?

In order to derive p : C ×W → [0, 1] from q : C ×X →
[0, 1], we are going to assume that when two or more elements
in X are composed in W their composition is performed as
a sampling process. We call this assumption Witness Sam-
pling Composition (WSC), and we define it as follows: WSC
means that the construction of witnesses is modelled as a
sampling procedure from X where the extraction of one el-
ement does not affect the relative probabilities of extracting
the remaining elements (with or without replacement). We
define the WSC construction of p from q recursively, with the
base case given by p(c, λ) = r(0) · q(c) where λ represents
the empty witness (no example has been sampled yet) and r
is a regularisation term (with

∑
n r(n) = 1) we will explain

later. The recursive step is defined as follows:

p(c, w) = r(|w|) ·
∑

xi:w=w′⊕xi

[
p(c, w′)

r(|w′|)
· q(xi|c, w′)

]
=

r(|w|)
r(|w| − 1)

·
∑

xi:w=w′⊕xi

p(c, w′) · q(c, xi)∑
x∈X−w′ q(c, x)

(1)

where |w| represents the dimension ofw (number of elements
inw), andw = w′⊕xi represents that witnessw is composed



Concept q(c) ... q(c, 3) ... q(c, 11) ...
ceven 0.35 0 0
codd 0.35 0.087 0.0054
cpow3 0.1 0.05 0
cprime 0.2 0.05 0.0062

Table 3: Part of a joint distribution q with |C| = 4 on ground set
X = N. With regularisation terms r(0) = 0.5, r(1) = 0.25,
r(2) = 0.125, ... and using WSC without replacement this q gives
the witness joint distribution p in Table 2.

of a smaller witness w′ (of dimension |w| − 1) and xi ∈ X .
Finally, with x ∈ X−w

′
we denote any x that can be sam-

pled from X after w′ has been sampled (with replacement or
not). Note the difference between the first and second line
of the previous derivation is just a normalisation keeping the
proportions (which is q(c) when there is replacement).

Proposition 4. Under WSC, the concept priors are preserved
between q and p, i.e.: ∀c ∈ C : p(c) = q(c)

Proof. We have p(c) =
∑
w∈W q(c, w) by definition. We

first prove, by induction on i, this Claim:∑
w:|w|=i

p(c, w) = r(i)q(c)

The base case i = 0 of the Claim follows from the base
case given right before Equation (1) of the recursive defini-
tion of p from q by WSC in the main paper, which says that
p(c, λ) = r(0)q(c).

For the induction step of the Claim we apply Equation (1)
from the main paper to get

∑
w:|w|=n

p(c, w) =

=
∑

w:|w|=n

r(n) ·
∑

xi:w=w′⊕xi

[
p(c, w′)

r(n− 1)
· q(xi|c, w′)

]

= r(n)
∑

w′:|w′|=n−1

∑
xi:w=w′⊕xi

[
p(c, w′)

r(n− 1)
· q(xi|c, w′)

]

= r(n)
∑

w′:|w′|=n−1

p(c, w′)

r(n− 1)

∑
xi:w=w′⊕xi

[q(xi|c, w′)]

= r(n)
1

r(n− 1)

∑
w′:|w′|=n−1

p(c, w′)

and applying the inductive assumption for n− 1, we get:

∑
w:|w|=n

p(c, w) = r(n)
1

r(n− 1)
r(n− 1)q(c) = r(n)q(c)

which completes the proof of the Claim.
Now, since

∑
n r(n) = 1, applying the Claim, we have:

p(c) =
∑
w∈W

p(c, w) =
∑
n

∑
w:|w|=n

p(c, w) =

=
∑
n

r(n)q(c) = q(c)

and we are done with the proof of the proposition.

The meaning of the regularisation term r comes from the
fact that ∀c ∀n ≥ 0 :

∑
w∈W :|w|=n p(c, w) = r(n) · q(c)

but, as q(c) = p(c) =
∑
w∈W p(c, w), then r is actually a

regularisation probability r : N → [0, 1], where r(n) repre-
sents how likely all the witnesses of dimension n are. In other
words, if we are given the ground joint distribution q, express-
ing how likely any pair of concept and witness is, and we are
also given how likely each dimension is, then we can derive
the witness joint distribution. The choice of r does not affect
the behaviour of the learner (arg!maxc p(c|w)), as when w is
given, we have the same r(|w|) for all concepts.

We give two examples of ground distributions q and the re-
sulting WSC derived witness distributions p. One for subsets
of natural numbers and sampling without replacement, with
q in Table 3 and p in Table 2, and one example with coins
illustrating sampling with replacement in Table 4.

5 Teaching Dimension of the WSC Model
This section shows the remaining inequalities in Figure 1.

Definition 3. For C over ground elements X , let
WSCTD+(C) be lowest teaching dimension achievable by
p : C×2X derived by WSC from joint distribution q : C×X ,
with WSCTD++(C) the analogous for p : C ×X∗.

We start with the case of sets. First, is WSC a real restric-
tion over the free case in Table 1? We can answer this in the
affirmative with a simple proof.

Proposition 5. JDTD+ < WSCTD+. There is a concept
class C where JDTD+(C) <WSCTD+(C).

Proof. Consider X = {x1, x2} and C = {c1, c2, c3, c4}
with W = 2X . We have 4 concepts and 4 witnesses.
With a free joint distribution we can simply do our 4 × 4
cells as p(c1, ∅) = 0.25 − ε/4, p(c2, {x1}) = 0.25 − ε/4,
p(c3, {x2}) = 0.25− ε/4, p(c4, {x1, x2}) = 0.25− ε/4 and
p(c, w) = ε/12 for the other 12 combinations, with ε a suffi-
ciently small number. JDTD+ is hence 2.

Now, let us try to think of a possible ground joint distribu-
tion q, of dimension 2×4, to get the same teaching dimension
when deriving p using WSC. Here, for each cwe have that p is
simply built from q by constructing a set of elements w ⊂ X
using sampling without replacement from X . By Equation
(1) in the main paper, we have for the empty set:

p(c, ∅) = r(0) · q(c)

and for a set of size 1:

p(c, {x}) = r(1) · q(c, x)

and a set of size 2:

p(c, {x1, x2}) = r(2)·

[
q(c, x1)q(c, x2)∑

x6=x1
q(c, x)

+
q(c, x2)q(c, x1)∑

x 6=x2
q(c, x)

]
=



Concept p(c) q(c,H) q(c, T ) p(c, {H}) p(c, {T}) p(c, {HT}) p(c, {HTT})
coin1 0.25 0.2 0.05 0.05 0.0125 0.005 0.0005
coin2 0.25 0.125 0.125 0.031 0.031 0.0078 0.0020
coin3 0.25 0.10 0.15 0.025 0.037 0.007 0.00225
coin4 0.25 0.05 0.2 0.0125 0.05 0.005 0.0020

Table 4: Coin example with |C| = 4, |X| = 2 and W = X∗. A ground joint probability distribution q and part of the WSC derived witness
probability p of 4 biased coins with uniform p(c). Coin 1: heavily biased Heads. Coin 2: Fair. Coin 3: mildly biased Tails. Coin 4: heavily
biased Tails. p derived by WSC sampling with replacement and using r(0) = 0.5, r(1) = 0.25, r(2) = 0.125, .... Note TD = 3.

= r(2) ·
[
q(c, x1)q(c, x2)

q(c, x2)
+
q(c, x2)q(c, x1)

q(c, x1)

]
=

= r(2) · [q(c, x1) + q(c, x2)] = r(2) · q(c)
And we see that the concept choice for both w = ∅ and

w = {x1, x2}, since r(0) and r(2) are constants, is dom-
inated by q(c). Thus, we will have arg!maxc(p(c, ∅)) =
arg!maxc(p(c, {x1, x2})). Thus, 2 of the 4 witnesses can-
not both be used to distinguish between concepts, and so we
must have WSCTD+(C) > 2.

Our next result shows that WSCTD+, even when re-
stricted to MLE distributions, is as powerful as any non-
clashing teaching model. To prove this proposition we con-
struct a ground joint distribution that cherry-picks the non-
clashing teacher function, by assigning small values to q(c, x)
if c |= x but x 6∈ T (c). Note however that these values are
not exponentially small, as they satisfy q(c, x) > 1/|C|3.

Proposition 6. WSCTD+ ≤ NCTD+. For any C we have
an MLE distribution q : C ×X such that p : C × 2X derived
by WSC from q shows that WSCTD+(C) ≤ NCTD+(C).

Proof. Consider some C on ground set X and set of witness
objects W (positive examples only). Assume a teacher map-
ping T : C → 2X and for all c 6= c′ either c 6|= T (c′) or
c′ 6|= T (c), i.e. non-clashing/GM-collusion-free.

We assign values to a joint distribution matrix q : C ×
X . Assume |C| = n and |X| = m. We will construct an
assignment so that q(c) = 1/n for all c ∈ C, thus MLE, and
so that a learner following the posteriors of the WSC without
replacement derived distribution p : C × 2X will correctly
guess c when given the witness set defined by T (c), to prove
the proposition.

Let ε > 0 be a small value to be decided later. Consider
some c ∈ C and assume that |T (c)| = k and that c consistent
with a further d ground elements. Assuming d > 0 we assign:
q(c, x) = 0 for c 6|= x, and q(c, x) = ε/d for the d ground
elements consistent with c but not in T (c). Note these values
sum to ε, so we have 1/n − ε left to assign for this c and we
do this by setting q(c, x) = (1/n − ε)/k = 1−εn

kn for each
ground element x ∈ T (c). If d = 0 we assign: q(c, x) = 0
for c 6|= x, and q(c, x) = 1/(kn) for each x ∈ T (c).

To prove the proposition we show that the joint distribu-
tion p : C × 2X derived by WSC from this q will have the
following main property: ”for any two concepts c 6= c′ we
have p(c, T (c)) > p(c′, T (c))”. Let |T (c)| = k. We have 2
cases:

(1): c′ 6|= T (c). Then p(c′, T (c)) = 0 and we are done.
(2): not (1) so since T is non-clashing we have c 6|= T (c′).

Assume |T (c′) − T (c)| = t and |T (c) − T (c′)| = s. We

have t ≥ 1 and s ≥ 0. We have k ground elements in T (c),
and q(c, x) = 1−εn

kn for all, while for s of them q(c′, x) will
be at most ε/s, and since |T (c′)| ≥ k + 1 − s then for the
remaining k − s of them we have q(c′, x) ≤ q(c, x) k

k+1−s .
We thus have Σx∈T (c)q(c, x) = 1−εn

n and Σx∈T (c)q(c
′, x) =

1−εn
n × k−s

k−s+1 + ε. Since we can choose ε > 0 as low as
we want, we now have a situation where the k values for
q(c, x) are all equal and both their sum and their product,
respectively, is larger than the sum and the product, respec-
tively, of the k values q(c′, x). Since q is MLE and hence by
Proposition 4 also p is MLE, we therefore must have that the
WSC computation of probabilities when sampling without re-
placement, gives that p(c, w) > p(c′, w). Note that choosing
ε = 1/|C|2 suffices, as we then will have the first sum (val-
ues for c) being (n− 1)/n and the second sum (values for c′)
being ((n− 1)2 + 1)/n2.

Now we turn to the set of witness objects being multisets
over X . Firstly, as in the set case, there is an easy proof
showing that WSC++ is not as free as JDTD++.

Proposition 7. JDTD++ < WSCTD++. There is a con-
cept class C where JDTD++(C) <WSCTD++(C).

Proof. Consider any |C| = 5 and |X| = 2 with T : C → X∗

using 2 witnesses of size 1 and 3 witnesses of size 2, as can be
done with the completely free choice of p allowed by JDTD
to give JDTD++(C) = 2. As WSC is not able to achieve
both p(c, {x, x}) > p(c′, {x, x} and p(c′, {x}) > p(c, {x}
we must have WSCTD++(C) > 2.

This proof actually shows that WSCTD avoids a very un-
natural situation which looks like cheating, e.g. tossing a
coin where Tail is more likely than Head but two Heads more
likely than two Tails, and this is forbidden by WSCTD . Fi-
nally, we show a somewhat surprising result comparing teach-
ing dimensions using witness objects that are multisets versus
sets, showing that WSCTD++ restricted to MLE distribu-
tions will achieve the theoretical lower bound LBTD+. To
prove this proposition we construct a ground joint distribu-
tion that cherry-picks any given matching in Gk(C) as per
Definition 2, by assigning small values to q(c, x) if c |= x but
x 6∈ T (c). These values satisfy q(c, x) > 1/(|C||X|)2.

Proposition 8. WSCTD++ ≤ LBTD+ = JDTD+. For
any concept class C over X and set of witness objects W =
2X , there exists an MLE joint distribution q : C × X such
that p : C×X∗ derived by WSC with replacement from q has
teaching dimension LBTD+(C) = JDTD+.



Proof. The latter equality follows from Proposition 3. As-
sume k = LBTD+(C) as by Definition 2 and consider the
graph Gk(C) with the set of matching edges M = {cw}c∈C .
We assign values to a joint distribution matrix q : C × X .
Assume |C| = n and |X| = m. We will construct an assign-
ment so that q(c) = 1/n for all c ∈ C, thus MLE, and so that
a learner following the posteriors of the WSC with replace-
ment derived distribution p : C × X∗ will correctly guess c
when given the witness set defined by T (c) = w : cw ∈ M ,
to prove the proposition.

Let δ = 1/(nm2). Consider some c ∈ C and assume
that |T (c)| = k and that c consistent with a further d ground
elements. Assuming d > 0 we assign: q(c, x) = 0 for c 6|= x,
and q(c, x) = δ/d = 1/(nm2d) for the d ground elements
consistent with c but not in T (c). Note these values sum to δ,
so we have 1/n− δ left to assign for this c and we do this by
setting q(c, x) = (1/n− δ)/k = (m2 − 1)/(knm2) for each
ground element x ∈ T (c). If d = 0 we assign: q(c, x) = 0
for c 6|= x, and q(c, x) = 1/(kn) for each x ∈ T (c).

To prove the proposition we show that the joint distribu-
tion p : C × X∗ derived by WSC- witness sampling com-
position - with replacement - from this q will have the fol-
lowing main property: ”for any two concepts c 6= c′ we
have p(c, T (c)) > p(c′, T (c))”. Let T (c) = {x1, x2, ..., xk}.
Since p is defined by doing sampling with replacement, and
since q is MLE and hence by Proposition 4 also p is MLE,
to prove p(c, T (c)) > p(c′, T (c)) it suffices to show that
Πk
i=1q(c, xi) > Πk

i=1q(c
′, xi). We have 3 cases.

(1): if there exists x ∈ T (c) such that c′ 6|= x then
q(c′, x) = 0 so that p(c′, T (c)) = 0 and we are done.

(2): not (1) but we have T (c) ⊂ T (c′) and thus |T (c)| <
|T (c′)|. We settle this case by showing that for every x ∈
T (c) we have q(c′, x) < q(c, x). We observe that q(c′, x) ≤
1/((k + 1)n) and q(c, x) ≥ (m2 − 1)/(knm2) for any
x ∈ T (c), so the inequality that needs to be shown, after
rearranging, is that m2/(m2− 1) < (k+ 1)/k and this holds
since k < m.

(3): not (1) or (2), so we have some x′ ∈ T (c) − T (c′)
with c′ |= x′. Let |T (c)− T (c′)| = s. To show p(c, T (c)) >
p(c′, T (c)) the hardest case is when all the q(c′, x) values for
x ∈ T (c) are as high as possible. This will occur when s = 1
and T (c′) ⊂ T (c) so |T (c′)| = k−1, and we have q(c′, x) =
(m2−1)/((k−1)nm2) for x ∈ T (c′)∩T (c) and q(c′, xi) =
1/(nm2) for the unique xi ∈ T (c) − T (c′), while q(c, x) =
(m2 − 1)/(knm2) for all x ∈ T (c). Thus we need to show

1

nm2
× (m2 − 1)k−1

((k − 1)nm2)k−1
<

(m2 − 1)k

(knm2)k

After rearranging this resolves to showing k × (k/(k −
1))k−1 < m2 − 1. Note we can assume that m > k, as
m = k would imply that both c and c′ consistent with every
ground element and hence c = c′. Thus we need to show
k × (k/(k − 1))k−1 < (k + 1)2 − 1, which holds since with
k′ = k − 1 we have (k/(k − 1))k−1 = ((k′ + 1)/k′)k

′
=

(1 + 1/k′)k
′
< e < 2.72 and thus we need to show 2.72k <

(k + 1)2 − 1 which holds for any k ≥ 1.
Thus for all 3 cases, we have shown for any pair of con-

cepts c 6= c′ that p(c, T (c)) > p(c′, T (c)), and we are done

with the proof of the proposition.

6 Discussion
[Kirkpatrick et al., 2019] was a remarkable paper clarifying
the limits of the classical view of cheating as GM-collusion,
by reinterpreting it as non-clash machine teaching. This
seemed the culmination of over twenty years work of find-
ing more and more powerful GM-collusion-free models, i.e.,
the most powerful non-cheating teaching models. However,
we have challenged this very notion of cheating, under a nat-
ural probabilistic view. The notion of full-proof identification
is replaced by the inductive notion of a guess, and the learners
can ‘change their mind’ as posteriors are affected by chang-
ing likelihoods. We have also shown that in some particular
cases (e.g., dealing with the empty set), the GM-collusion-
free paradigm can allow some unnatural assignments.

The use of a witness joint probability p has been shown
powerful enough to equal the best achievable teaching dimen-
sion, LBTD, and in some cases, it can also do some unnatural
assignments. Instead, we have proposed to derive p from the
ground joint distribution q using WSC, in the same way as the
consistency graph for witnesses derives from the consistency
graph for ground elements, depending on how witnesses are
composed. The new teaching models deriving from WSC
are shown to be slightly less powerful than LBTD, but avoid
the unnatural situations. As a result, whether a teacher and
learner do any cheating depends on whether the ground joint
distribution corresponds to the joint beliefs about the world.
If a teacher and learner know that a coin has 73% bias for
heads, using this information for identifying the coin is not
cheating. Cheating would be if both agreed that this coin had
a different bias from the actual, one more convenient for the
identification. We see a very promising avenue of future work
on the analysis of how much information teacher and learner
share by measuring the entropy of the joint distributions and
connecting the teaching dimensions to it. Also, we could pur-
sue the idea that some choices of r could lead to a likelihood
that is guiding the teacher, as in Bayesian teaching.

The general and refreshing probabilistic perspective syn-
thesised in Table 1, and the connections with the classical
teaching models, suggest that our paper could help bridge two
very different conceptions of machine teaching in artificial in-
telligence. There is the classical notion of identification, asso-
ciated with theoretical results about the teaching dimension,
and a more modern view of machine teaching as a probabilis-
tic (or Bayesian) process. This should lead to future work
connecting our schema to areas such as MDL/MML [Wal-
lace and Dowe, 1999] inference, or interactive extensions, or
when teacher and learner can adapt their probabilities. All
this can be explored with a more natural paradigm of non-
cheating teaching that allows changes of mind.
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