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Abstract. We study H(p, q)-colorings of graphs, for H a fixed simple
graph and p, q natural numbers, a generalization of various other vertex
partitioning concepts such as H-covering. An H-cover of a graph G is a
local isomorphism between G and H, and the complexity of deciding if
an input graph G has an H-cover is still open for many graphs H. In this
paper we show that the complexity of H(2p, q)-COLORING is directly
related to these open graph covering problems, and answer some of them
by resolving the complexity of H(p, q)-COLORING for all acyclic graphs
H and all values of p and q.

1 Introduction

Colorings of graphs is a well-studied subject. In some cases the ‘colors’ to be
assigned are the vertices of a fixed graph H , and model a situation where
certain pairs of colors are treated specially. For example, in the well-known
H-COLORING problem we ask for an assignment of ‘colors’ to the vertices
of an input graph G such that adjacent vertices of G obtain adjacent ‘colors’,
defining a homomorphism between G and H . H-COLORING is known to be
solvable in polynomial time for bipartite H , and NP-complete otherwise [9]. In
the H-COVER problem a vertex v ∈ V (G) is assigned a ‘color’ u ∈ V (H) of the
same degree, in such a way that the set of ‘colors’ assigned to the neighbors of v
is exactly the set of ‘colors’ adjacent to u, defining a local isomorphism between
G and H . Graph coverings come from algebraic graph theory [3], and form a
special case of covering spaces from algebraic topology [17], with applications in
topological graph theory [8]. The first applications in computer science were to
graph recognition by parallel networks of processors [2,6]. The question of the
computational complexity of H-COVER was first posed in 1989 [4], a variety of
results have been shown, see e.g. [12,13,14,7], but it is still unclear what char-
acterizes the class of simple graphs H that lead to polynomial time H-COVER
problems.
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A wide generalization of both H-coloring and H-covering is given by the
so-called H(σ, ρ)-colorings for subsets of natural numbers σ and ρ [15], and in
this paper we focus on the case of |σ| = |ρ| = 1. For a fixed graph H and
natural numbers p and q, the H(p, q)-COLORING problem studied in this pa-
per asks if an input graph G has a mapping f : V (G) → V (H) where the
neighbors of any v ∈ V (G) are mapped to the closed neighborhood of f(v),
with exactly p neighbors mapped to f(v), and exactly q neighbors mapped to
each neighbor of f(v). From the definition it is clear that H(0, 1)-coloring is
equivalent to H-covering, but it is maybe more surprising that for any simple
graph H and any p ≥ 0, q ≥ 1 there exists a multigraph M such that H(2p, q)-
coloring is equivalent to M -covering. In fact, the first graph covering problem
shown to be NP-complete in [1] was equivalent to P2(2, 1)-COLORING, P2 an
edge. Moreover, it is known that resolving the complexity of M -COVER for all
multigraphs M (where the covering definition is somewhat more complicated) is
necessary and sufficient for resolving the complexity of H-COVER for all sim-
ple graphs H [12]. Via this link, the results in this paper, on the complexity
of H(p, q)-COLORING, contribute directly towards the partial solution of the
open problem mentioned above.See Fig. 1 for an example of a tree T and values
of p and q (for which T (p, q)-COLORING is NP-complete), the corresponding
simple graph H (for which H-COVER then is NP-complete), and the linking
multigraph M .

p = 2

T

q = 2

M

H

Fig. 1. A tree T (for which T (2, 2)-COLORING is NP-complete), the corresponding
simple graph H (for which H-COVER then is NP-complete), and the linking multi-
graph M

The degree refinement matrix MG of a graph G gives crucial information for
these problems, and it is defined as follows: The degree refinement of a multi-
graph G is the partition of its vertices into the minimum number of blocks
BG = {B1(G), . . . , Bt(G)} for which there are constants mij , such that for all
1 ≤ i, j ≤ t each vertex in Bi has exactly mij neighbors in Bj . For a given, canon-
ical, ordering of degree refinement blocks, the t× t matrix MG, MG[i, j] = mij ,
is called the degree refinement matrix.



We can now state our main theorem.

Theorem 1. T (p, q)-COLORING, for a tree T and natural numbers p and q,
is solvable in polynomial time if either:

– (trivial cases) all blocks [in the degree refinement of T ] have size 1, or q = 0,
or p = 0, q = 1,

– p = 0, q = 2 and either all blocks containing non-leaves have size 1, or they
all have size 2,

– p = 0, q ≥ 3 and all blocks have size 2,
– p = 1, q = 1 and all entries in [the degree refinement matrix] MT are at

most 2, or
– p ≥ 2, q = 1, all entries in MT are at most 2, and no block contains an

induced edge,

and is NP-complete in all other cases.

The next section contains all formal definitions, and several important obser-
vations. The remainder of the paper is then devoted to the proof of Theorem 1,
which has three different ingredients, split into three sections: Sect. 3 contains
polynomial-time algorithms, based on finding factors in regular graphs and on
reductions to 2SAT, Sect. 4 NP-completeness reductions, and Sect. 5 various
characterizations of trees, to show that all cases have been accounted for.

2 Definitions and Basic Observations

Let H be a fixed simple graph with k vertices V (H) = {u1, u2, . . . , uk}, and
let p and q be natural numbers. An H(p, q)-coloring of a simple graph G is a
partition V1, V2, . . . , Vk of V (G), such that for all 1 ≤ i, j ≤ k

∀v ∈ Vi : |NG(v) ∩ Vj | =







p if i = j
q if uiuj ∈ E(H)
0 otherwise ,

where NG(v) denotes the open neighborhood of v in G. We will also view the
partition as a vertex mapping f : V (G) → V (H), with f(v) = vi for v ∈ Vi.
Note that this is equivalent to the definition given in Sect. 1.

In this paper we investigate the complexity of the following problem.

H(p, q)-COLORING
INSTANCE: Simple graph G.
QUESTION: Does G have an H(p, q)-coloring?

For a simple graph H , H(0, 1)-COLORING is precisely the same as the
H-COVER problem. Moreover, any H(2p, q)-coloring will correspond to an
M -covering for some multigraph M , as we now show. The usual definition of
topological covering spaces requires that to cover a multigraph M by a graph



G we must specify, in addition to a vertex mapping f : V (G) → V (M), also an
edge mapping g : E(G) → E(M). The edge map must respect the vertex map,
and for every vertex v ∈ V (G), and every edge e incident to f(v), there must be
exactly one edge incident to v that is mapped to e. Moreover, for every self-loop
s on f(v) there must be exactly two edges (or one self-loop) incident to v mapped
to s.

For a simple graph H and natural numbers p and q, let Hp
q be the multigraph

obtained from H by adding p self-loops to each vertex of H , and replacing each
edge of H by q multiple edges.

Observation 1 A simple graph G has an H(2p, q)-coloring if and only if it has
an Hp

q -cover.

Proof. The forward direction of the proof follows from [12] which shows that
even if multigraph-covering requires an edge map, this edge map always exists if
the vertex map f obeys the cardinality constraint that for every vertex v ∈ V (G)
the number of neighbors of v mapping to a vertex u ∈ V (H) is the same as the
number of multiple edges between u and f(v). Likewise, the number of neighbors
of v mapping to f(v) should be twice the number of self-loops on f(v). Clearly,
an H(2p, q)-coloring of G does satisfy these cardinality constraints as imposed
by Hp

q . The other direction of the proof is trivial. ut

The degree refinement and degree refinement matrix of a graph are computed
in polynomial time by stepwise refinement. Start with the vertices partitioned
by their degrees and refine the partition as long as two vertices in the same block
do not have the same number of neighbors in some other block. Note that the
center of a tree, consisting of vertices whose greatest distance from any other
vertex is as small as possible, contains either one or two vertices. The following
fact is folklore.

Fact 1 If G has an H-cover f , then MG = MH , and f is a one-to-one mapping
of the degree refinement blocks.

Theorem 2. If G has an H(p, q)-coloring, and H is a simple, connected graph,
then

MG = qMH + pI .

Proof. If p = 2r we know from Observation 1 and Fact 1 that MG = MHr

q
, and

first show that MHr

q
= qMH + 2rI. When computing the degree refinement of

Hr
q , self-loops are inconsequential, since all vertices u ∈ V (Hr

q ) have exactly r
such loops. Likewise, the edge multiplicity is also inconsequential, since for all
distinct, adjacent vertices u, u′ ∈ V (Hr

q ), there are exactly q edges between u
and u′. This implies that the degree refinements of H and Hr

q have the same
block structure. Moreover, since every vertex in V (H) gets r self-loops, and every
edge in E(H) is replaced by q multiple edges, we have MHr

q
= qMH + 2rI. The

argument for odd p differs only by some technical details. ut



The following fact is now evident.

Fact 2 If G has an H(p, q)-coloring f , and H is connected, then |f−1(u)| =
|f−1(u′)| for all u, u′ ∈ V (H).

The simple (p, q)-cover of G is the graph (G 1 Kq) 2 Kp+1, where the graph
products 1 and 2 are defined as follows (in so called Nešetřil convention):

– V (G 1 G′) = V (G 2 G′) = V (G) × V (G′),
– (v, v′)(w, w′) ∈ E(G 1 G′) if and only if vw ∈ E(G), and (v′w′ ∈ E(G′) or

v′ = w′),
– (v, v′)(w, w′) ∈ E(G 2 G′) if and only if (vw ∈ E(G) and v′ = w′), or

(v′w′ ∈ E(G′) and v = w).

For an example see the simple (2, 2)-cover of P3 depicted in Fig. 2, P3 the path
on three vertices.

(G 1 Kq) 2 Kp+1

Kp+1 = K3

G 1 Kq

Kq = K2

G = P3

Fig. 2. Simple (2, 2)-cover of P3

Observe, that the operation G 1 Kq replaces an edge of vw ∈ E(G) with
a complete bipartite graph Kq,q on q copies of the vertices v and w. Similarly
the operation G 2 Kp+1 forms a clique Kp+1 on p + 1 copies of every vertex
v ∈ V (G), while the edges inside the p + 1 copies of G are maintained. Blocks in
the degree refinement of the simple (p, q)-cover correspond to the blocks in the
degree refinement of the original graph, as indicated in Fig. 2 by the black and
white vertex colors.

Lemma 1. For every graph H and every p ≥ 0, q ≥ 1, the simple (p, q)-cover
of H has an H(p, q)-coloring.

Proof. The mapping f : ((u, a), b) → u, where u ∈ V (H), a ∈ V (Kq),
b ∈ V (Kp+1) is an H(p, q)-coloring. Every vertex has p neighbors mapped to
the same target, those that differ only in the b-coordinate; and for every neigh-
bor u′ of u, ((u, a), b) is adjacent to ((u′, a′), b), for every 1 ≤ a′ ≤ q. ut



3 Polynomial Cases

Theorem 3. If MH = AH , the adjacency matrix of H, i.e. if all blocks in the
degree refinement of H are of size 1, then H(p, q)-COLORING is solvable in
polynomial time.

Proof. From Theorem 2 we know what the degree refinement matrix must be.
Theorem 2 describes the necessary condition, and when MH = AH this is also
the sufficient condition. ut

As an aside we mention that for a random graph H of the model G(n, p), it
is almost always the case that MH = AH when 0 < p = p(n) ≤ 1

2 is such that
p5n/(log n)5 → ∞ [5, ch. 3].

Lemma 2. T (0, q)-COLORING, q ≥ 2, is solvable in polynomial time for every
tree T whose degree refinement blocks are all of size 2.

Proof. We reduce to 2SAT. Let G be an instance of T (0, q)-COLORING, q ≥ 2,
where T is a tree whose degree refinement blocks are all of size 2. We construct
a formula φ, such that φ has a satisfying truth assignment if and only if G has a
T (0, q)-coloring. It will be obvious how to transform φ into a set V of variables
and a collection C of two-literal clauses, to form a 2SAT instance (V, C).

First, compute the degree refinements of G and T . If they do not obey the
constraints of Theorem 2, reject the input G. Otherwise, let BG = {B1(G), . . . ,
Bt(G)} and BT = {B1(T ), . . . , Bt(T )} be the degree refinements of G and T ,
respectively. Let Bi(T ) = {lefti, righti}, and note that for each vertex v ∈ Bi(G)
we must decide whether it should map to lefti (variable v FALSE) or righti

(variable v TRUE). When all blocks in the degree refinement of T are of size 2,
the center of T is an edge uu′, and both u and u′ belong to the same degree
refinement block B1(T ). B1(T ) is the only block containing adjacent vertices. For
every pair of adjacent vertices v, w ∈ B1(G) we insert the subformula (v < w)
into φ, and for every vertex x ∈ Bi(G), with a neighbour y ∈ Bj(G), j 6= i, we
insert the the subformula (x ⇔ y) into φ.

Let f : V (G) → V (T ) be a T (0, q)-coloring of G, and label the left and right
vertex of each block Bi(T ) with 0 and 1, respectively. Viewing the label of f(v)
as a truth assignment to variable v, we get a satisfying truth assignment τ for
φ. In the other direction of the proof we first use the degree refinement of G to
determine which block Bi(T ) in the degree refinement of T a vertex v ∈ V (G)
must map to. We then use a truth assignment τ for φ to determine if v should
be mapped to the left or right vertex of Bi(T ). ut

Let Sk denote the graph K1,k, the star on k + 1 vertices.

Lemma 3. Sk(0, 2)-COLORING is solvable in polynomial time for every k.

Proof. Let G be an instance of Sk(0, 2)-COLORING. By Theorem 2, the vertices
of G must either be of degree 2, or 2k. The vertices of degree 2k must map to
the central vertex of Sk. The remaining vertices must map to the k leaves, in



such way that the neighborhoods of the vertices mapping to the center can be
split into k disjoint pairs, where both vertices of a pair map to a unique leaf.

Contracting the vertices of degree 2 in a homeomorphic manner results in
a 2k-regular graph G′. By Petersen’s theorem, G′ can be split into k disjoint
2-factors. This split can be done in polynomial time, and we get an Sk(0, 2)-
coloring of G by mapping the vertices of degree 2 to the same leaf if and only if
the corresponding edges belong to the same 2-factor. ut

Note that in the case k = 2 the lemma also provides a polynomial time
algorithm for P3(0, 2)-COLORING.

Lemma 4. T (0, 2)-COLORING is solvable in polynomial time for every tree T
if either all blocks containing non-leaves have size 1, or they all have size 2.

Proof. Note that the condition on T implies that we have either: (1) all de-
gree refinement blocks of size 2 or more contain only leaves, or (2) all degree
refinement blocks of size not equal to 2 contain only leaves.

Case 1: Let G be an instance of T (0, 2)-COLORING, where T is a tree such
that all blocks in the degree refinement of T of size 2 or more contain only leaves.

First, compute the degree refinements of G and T . If they do not obey the
constraints of Theorem 2, reject the input G. Otherwise, let BG = {B1(G), . . . ,
Bt(G)} and BT = {B1(T ), . . . , Bt(T )} be the degree refinements of G and T ,
respectively. For each block Bi(G) corresponding to a block Bi(T ) of size 1, all
vertices of Bi(G) must map to the single vertex of Bi(T ). For each block Bj(G)
corresponding to a block Bj(T ) of size 2 or more, the vertices of Bj(G) have
neighbors in exactly one other block in the degree refinement of G; this block
must correspond to a block of size 1 in the degree refinement of T . Thus, for
each such Bj(G), the problem can be solved independently, in polynomial time
by Lemma 3, and the solutions combined into an overall T (0, 2)-coloring of G.

Case 2: Let G be an instance of T (0, 2)-COLORING, where T is a tree such
that all blocks in the degree refinement of T of size not equal to 2 contain only
leaves.

First, compute the degree refinements of G and T . If they do not obey the
constraints of Theorem 2, reject the input G. Otherwise, let BG = {B1(G), . . . ,
Bs(G), Bs+1(G), . . . , Bt(G)} and BT = {B1(T ), . . . , Bs(T ), Bs+1(T ), . . . , Bt(T )}
be the degree refinements of G and T , respectively, with B1(T ), . . . , Bs(T ) as the
blocks of size 2, and Bs+1(T ), . . . Bt(T ) as the remaining blocks. For the portion
of G induced by the blocks B1(G), . . . , Bs(G), the vertices can be mapped to
the appropriate vertices of the portion of T induced by B1(T ), . . . , Bs(T ) in
polynomial time by Lemma 2. The blocks Bs+1(G), . . . , Bt(G) can be handled
independently, in polynomial time by Lemma 3, and the solutions combined into
an overall T (0, 2)-coloring of G. ut



Lemma 5. T (p, q)-COLORING is solvable in polynomial time for every tree T
if either:

(1) p = 1, q = 1 and all entries in MT are at most 2, or
(2) p ≥ 2, q = 1, all entries in MT are at most 2, and no block in the degree

refinement of T contains an induced edge.

Proof. Both problems can be reduced to 2SAT. We only provide proof of case 1,
as the proof of case 2 is similar.

Let G be an instance of T (1, 1)-COLORING, where T is a tree such that all
entries in MT are at most 2. We construct a set V of variables and a formula
φ, such that φ has a satisfying truth assignment if and only if G has a T (1, 1)-
coloring. It will be obvious how to transform φ into a collection C of two-literal
clauses, to form a 2SAT instance (V, C).

First, compute the degree refinements of G and T . If they do not obey the
constraints of Theorem 2, reject the input G. Otherwise, let BG = {B1(G), . . . ,
Bt(G)} and BT = {B1(T ), . . . , Bt(T )} be the degree refinements of G and T ,
respectively. Let B1(T ) be the block containing the center of T , and level the
blocks of BT according to their distance from B1(T ), with B1(T ) as level 1. BG

is given the same leveling. For each vertex v ∈ Bi(G) we must decide which
vertex of Bi(T ) it should map to. When all entries in the degree refinement
matrix MT are at most 2, a vertex u ∈ Bi(T ) can have at most 2 neighbours
in Bj(T ), and B1(T ) is the only block that can contain adjacent vertices. A
block Bi(T ) on level l, l > 1, can therefore contain at most 2l vertices. Every
vertex v in a block on level l is represented by l variables v1, . . . , vl. For every
vertex v ∈ B1(G) we insert the clause (v1) into φ; for every vertex w ∈ Bi(G)
on level l, with two children x, x′ ∈ Bj(G) on level l + 1, we insert clauses
(x1 ⇔ w1), . . . , (xl ⇔ wl), (x

′
1 ⇔ w1), . . . , (x

′
l ⇔ wl), (xl+1 < x′

l+1) into φ; and
for every vertex y ∈ Bi(G) on level l, with only one child z ∈ Bj(G) on level l+1,
we insert clauses (z1 ⇔ y1), . . . , (zl ⇔ yl), (zl+1) into φ.

Let f : V (G) → V (T ) be a T (1, 1)-coloring of G, and label the vertices of T as
follows: label vertices in the center of T with 1, for all other vertices concatenate
the label of its parent with 0 if the vertex is the left child of its parent, in its
block, and concatenate the label of its parent with 1 if it is the right, or only,
child. For a vertex v ∈ Bi(G) on level l, viewing the label of f(v) as a truth
assignment to the variables v1, . . . , vl, digit by digit, we get a satisfying truth
assignment τ for φ.

In the other direction of the proof we first use the degree refinement of G to
determine which block Bi(T ) in the degree refinement of T a vertex v ∈ V (G)
must map to. If the center of T is an edge, T consists of two subtrees Tleft and
Tright, and we must decide whether a vertex v should map to the left or right
subtree. In this case B1(G) induces a 2-regular graph, which is split by following
the cycles, mapping two adjacent vertices to the left vertex of the center, two
to the right, and so on. This split of B1(G) propagates down through the rest
of G, and we map one part to Tleft, the other to Tright. Finally, we use a truth
assignment τ for φ and its restriction to variables v1, . . . vl, to determine which



vertex u ∈ Bi(T ) a vertex v ∈ Bi(G) on level l must map to, in the same manner
as described above. ut

4 NP-complete Cases

In this section all remaining T (p, q)-COLORING problems are shown to be NP-
complete. Due to lack of space we give the full proof only for Lemma 6, the
remaining proofs can be found in Appendix A. To resolve the complexity of
the open H-COVER problems mentioned in the introduction, it will probably
be necessary to generalize Lemma 6 to all graphs, hence its proof is of special
interest.

Recall that the simple (p, q)-cover of H has |V (H)| · q(p + 1) vertices. For
simplicity we write u(i−1)q+j for the vertex ((u, a), b), when a is the i-th vertex
of Kq, and b is the j-th vertex of Kp+1.

Lemma 6. If T ′ is a tree isomorphic to a connected component of the subtree
of T induced by some subset of degree refinement blocks B′

T ⊆ BT , and the degree
refinement of T ′ is identical to B′

T restricted to T ′, then T ′(p, q)-COLORING
reduces to T (p, q)-COLORING, for every p and q.

Proof. We can assume q 6= 0, otherwise both T ′(p, q)-COLORING and T (p, q)-
COLORING are solvable in polynomial time, and the reduction follows trivially.

For every u ∈ T ′ let Tu denote the component of (V (T ), E(T ) \ E(T ′))
containing u, i.e., the part of T which hangs from u, but which does not belong
to T ′. Clearly trees Tu and Tu′ are isomorphic if u and u′ belong to the same
degree refinement block.

Let G′ be an instance of T ′(p, q)-COLORING. We may assume, that the
blocks in the degree refinement of G′, BG′ = {B1(G

′), . . . , Bt(G
′)}, correspond

to the blocks B′
T , otherwise G′ has no T ′(p, q)-coloring. We construct a graph G

which will have a T (p, q)-coloring if and only if G′ has a T ′(p, q)-coloring.
For every vertex v ∈ V (G′) there is a gadget Fv. For v ∈ Bi(G

′) Fv is
constructed by taking the simple (p, q)-cover of Tu, for an arbitrary vertex
u ∈ Bi(T

′), and removing the edges connecting the q(p+1) copies u1, . . . , uq(p+1)

of vertex u. Note that gadgets Fv and Fv′ are isomorphic for vertices v and v′

from the same degree refinement block. G is constructed by making q(p + 1)
disjoint copies of G, where the a-th copy of a vertex v ∈ V (G′) is labeled va. For
every vertex v ∈ V (G) we insert the gadget Fv , and identify vertex va from the
a-th copy of G and vertex ua from Fv.

For an example of the construction of G see Fig. 3. The example shows a
reduction from P2(2, 1)-COLORING, where P2 appears as a block in T indicated
by the white vertices. For a white vertex u ∈ V (T ), the tree Tu is depicted in
the upper right corner together with the gadget Fv , the dotted edges connecting
copies of u are removed. An instance G′ and the constructed graph G are depicted
in the lower part. The dashed edges are those that belong to the copies of G′,
while the solid edges belong to the gadgets Fv .



G′ G

u

Tu

T

Fv

Fig. 3. Constructed graph G has a T (2, 1)-coloring if and only if G′ has T ′(2, 1)-
coloring, for T ′ = P2

Let BG = {B1(G), . . . , Bt(G)} be the degree refinement of G. We claim, that
each Bi(G) corresponds to the block Bi(T ) ∈ BT . Every vertex v ∈ Bi(G

′) is
connected to exactly p neighbors inside Bi(G

′), in G; every copy of va is therefore
connected to the same p neighbors inside the a-th copy of G′. Similarly, va has the
correct number of neighbors in every other block Bj(G). Take any u ∈ Bi(T ),
for Bj(G

′) ∈ BG′ , |N(va) ∩ Bj(G)| = |N(v) ∩ Bj(G
′)| = q · |N(u) ∩ Bj(T )|

holds inside each copy of G′, and for Bj(G) /∈ BG′ we get the same equality,
|N(va) ∩ Bj(G)| = q · |N(u) ∩ Bj(T )|, due to the construction of the simple
(p, q)-cover Fv of Tu. The properties of Fv assure the same for its vertices.

If G has a T (p, q)-coloring f , its restriction to a single copy of G′ is a T ′(p, q)-
coloring. Only vertices of T ′ (or its isomorphic copy in T ) may appear as colors
of G′, because the blocks in the degree refinement of T and G are in one-to-
one correspondence if any such T (p, q)-coloring exists. Conversely, any T ′(p, q)-
coloring f ′ of G′ can be extended to a T (p, q)-coloring f of G; we use the same
mapping on each copy of G′, i.e. f(va) = f ′(v) for all 1 ≤ a ≤ q(p + 1), and
extend it to each Fv as described in Lemma 1. ut

Lemma 7. If no block in the degree refinement of H contains an edge, then
H(p, q)-COLORING reduces to H(p + 1, q)-COLORING, for every p and q.

Lemma 8. P2(p, q)-COLORING is NP-complete if p ≥ 1, q ≥ 1, except for the
case p = q = 1.



Lemma 9. P3(p, q)-COLORING is NP-complete if either:

(1) p = 0, q ≥ 3, or

(2) p = 1, q = 2.

Lemma 10. Sk(0, q)-COLORING is NP-complete for k ≥ 2 if q ≥ 3.

Lemma 11. Sk(p, q)-COLORING is NP-complete for k ≥ 3 if either:

(1) p = 1, q = 1, or

(2) p = 1, q = 2.

Lemma 12. T (0, 2)-COLORING is NP-complete for every tree T whose de-
gree refinement consists of three blocks, one of size 1 and the others of size at
least 2.

Lemma 13. If T is a tree with one degree refinement block consisting of ex-
actly one vertex u, and 2T is the tree made from two disjoint copies of T , T1

and T2, joined by the edge u1u2, then T (p, q)-COLORING reduces to 2T (p, q)-
COLORING, for every p and q.

5 Completing the Proof

In the following we write v ≈G v′ if vertices v, v′ ∈ V (G) belong to the same
block in the degree refinement of G.

Lemma 14. For any tree T with degree refinement BT , one of the following
cases applies:

(1) All blocks of BT contain only one vertex,

(2) there exists a block Bi(T ) ∈ B of size 2, whose vertices induce an edge,

(3) there exists two adjacent blocks Bi(T ), Bj(T ) ∈ B whose vertices induce a
disjoint union of stars Sk, k ≥ 3, or

(4) for all pairs of adjacent blocks Bi(T ), Bj(T ) ∈ BT , their vertices either induce
a perfect matching or a disjoint union of paths P3 = S2, and at least one
pair inducing a P3 exists in T .

Proof. Assume T has at least two distinct vertices u ≈T u′, otherwise the
first case applies. Since T is connected, u and u′ are connected by a path
P = v1, . . . , vk with u = v1 and u′ = vk as its terminals. The fact u ≈T u′

implies vi ≈T vk+1−i. Therefore, if P is of odd length, its center vbk/2c, vdk/2e

induces an edge and the second case applies.

Otherwise vertices of two adjacent blocks always induce a disjoint union of
stars Sk, k ≥ 1. The last two cases distinguish whether an induced star Sk, k ≥ 3
exists, or not. ut



Proof of Theorem 1. Throughout this case study we assume that the degree
refinement of the tree T contains at least one block of size 2 or more, other-
wise a polynomial-time algorithm follows from Theorem 3. There are nine cases
depending on the values of p and q.

A. p = 0.
A1. q = 1. This case is equivalent to the tree-isomorphism problem, which is

solvable in polynomial time, even if T is not fixed.
A2. q = 2. Assume T does not satisfy the conditions of Lemma 4. Since the

center of any tree is always of size at most 2, the degree refinement of T
contains two adjacent blocks Bi(T ) and Bj(T ), with |Bi(T )| < |Bj(T )|,
and neither Bi(T ) nor Bj(T ) contain leaves. Hence, Bj(T ) is adjacent
to another block Bk(T ), |Bj(T )| ≤ |Bk(T )|. A connected component
T ′ of the subtree of T induced by Bi(T ) ∪ Bj(T ) ∪ Bk(T ) satisfies the
properties of Lemma 12, possibly with the application of Lemma 13. We
apply Lemma 6 to T ′ to show NP-completeness for T .

A3. q ≥ 3. Assume T does not satisfy the conditions of Lemma 2. The degree
refinement of T must then contain two adjacent blocks Bi(T ) and Bj(T ),
with |Bi(T )| 6= |Bj(T )|. Any connected component T ′ of the subtree
induced by Bi∪Bj is either isomorphic to Sk, k ≥ 2, or to two such stars
linked as described in Lemma 13. NP-completeness for T follows from
Lemmata 10 and 6.

B. p = 1.
B1. q = 1. Assume T does not satisfy the conditions of Lemma 5. Since

mij ≥ 3, any connected component T ′ of T , restricted to Bi(T )∪Bj(T ), is
either isomorphic to a star Sk, k ≥ 3, or two such stars linked as described
in Lemma 13. NP-completeness for T follows from Lemmata 11 and 6.

B2. q = 2. By Lemma 14, T either contains (in the sense of Lemma 6) a
block-induced subtree isomorphic to
∗ P2, in which case NP-completeness for T follows from Lemma 8,
∗ Sk, k ≥ 3, in which case NP-completeness for T follows from

Lemma 11, or
∗ P3 = S2, in which case NP-completeness for T follows from

Lemma 9.
B3. q ≥ 3. As for B2 above. For a P2 contained in T NP-completeness follows

from Lemma 8, for P3 from Lemmata 9 and 7, and for Sk, k ≥ 3 from
Lemmata 10 and 7.

C. p ≥ 2.
C1. q = 1. Assume T does not satisfy the conditions of Lemma 5. The degree

refinement of T must then either contain a block Bi(T ) inducing a P2, or
a pair of blocks Bi(T ) and Bj(T ) inducing an Sk, k ≥ 3. In the former
case NP-completeness for T follows from Lemma 8, in the latter from
Lemmata 10 and 7.

C2. q = 2. As for B2 above. For a P2 contained in T NP-completeness follows
from Lemma 8, for P3 from Lemmata 9 and Lemma 7, and for Sk, k ≥ 3
from Lemmata 11 and 7.

C3. q ≥ 3. As for C2 above, with Lemma 10 instead of Lemma 11. ut
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Appendix A NP-completeness Reductions

Lemma 7. If no block in the degree refinement of H contains an edge, then
H(p, q)-COLORING reduces to H(p + 1, q)-COLORING, for every p and q.

Proof. The problem is obviously in NP . We reduce from H(p, q)-COLORING.
Let G be an instance of H(p, q)-COLORING. We create an instance G′ of
H(p + 1, q)-COLORING, such that G′ has an H(p + 1, q)-coloring if and only if
G has an H(p, q)-coloring. G′ is made up of two copies of G, G1 and G2, with
every vertex v1 ∈ V (G1) connected to the corresponding vertex v2 ∈ V (G2) by
an edge.

If G has an H(p, q)-coloring f : V (G) → V (H), we get an H(p + 1, q)-
coloring f ′ : V (G′) → V (H) of G′ by taking f ′(v1) = f ′(v2) = f(v). Under any
H(p + 1, q)-coloring f ′ : V (G′) → V (H) of G′, both v1 and v2 must map to the
same vertex, we get a H(p, q)-coloring f of G by taking f(v) = f ′(v1). ut

Lemma 8. P2(p, q)-COLORING is NP-complete if p ≥ 1, q ≥ 1, except for the
case p = q = 1.

Proof. P2(p, q)-COLORING is equivalent to BLACK/WHITE(p, q)-COLOR-
ING which asks if the vertices of a (p + q)-regular graph can be colored black
and white such that every vertex has exactly p neighbors of the same color and
q of the other color. It has been shown to be NP-complete when p and q are
positive and not both 1, see [7]. ut

In the reduction below we use the following problem:

[(l, m, n)-SAT] l-in-m-SATISFIABILITY WITH n OCCURRENCES
INSTANCE: Set V of variables, collection C of clauses over V such that:
(1) every clause contains exactly m distinct, positive, variables, and
(2) every variable occurs in exactly n clauses.
QUESTION: Is C l-in-m satisfiable, that is, is there a truth assignment for C
such that every clause has exactly l variables that evaluate to TRUE?

(l, m, n)-SAT was shown to be NP-complete for every fixed l, m, n such that
0 < l < m and n ≥ 3 by Kratochv́ıl in [11].

Lemma 9. P3(p, q)-COLORING is NP-complete if either:

(1) p = 0, q ≥ 3, or
(2) p = 1, q = 2.

Proof. The problem is obviously in NP . We reduce from (l, m, n)-SAT in both
cases.

Case 1: We reduce from (q, 2q, q)-SAT. Let (V, C) be an instance of (q, 2q, q)-
SAT, q ≥ 3. We create an instance G of P3(0, q)-COLORING, such that G
has a P3(0, q)-coloring if and only if a satisfying truth assignment exists for C.
G is constructed by replacing every variable v ∈ V with a variable vertex vv ,



and every clause c ∈ C with a clause vertex vc. Clause vertices are connected to
the variable vertices corresponding to the variables occurring in the clause.

Let τ be a satisfying truth assignment for the (q, 2q, q)-SAT instance, we get
a P3(0, q)-coloring of the corresponding graph by mapping the clause vertices vc

to the center vertex of the P3, and the variable vertices vv to one end-vertex if
τ(v) = TRUE, and to the other end-vertex if τ(v) = FALSE. A reversal works
for the other direction of the proof.

Case 2: We reduce from (2, 4, 4)-SAT. Let (V, C) be an instance of (2, 4, 4)-
SAT with an even number of clauses. We create an instance G of P3(1, 2)-
COLORING, such that G has a P3(1, 2)-coloring if and only if a satisfying truth
assignment exists for C. G is constructed by replacing every variable v ∈ V with
a variable gadget Gv . Gv consists of two vertices vv and v′v connected by an
edge. For each clause c ∈ C there is a clause vertex vc connected to the variable
gadgets corresponding to the variables occurring in the clause. The variable gad-
get is connected in such a way that every vertex of the gadget is connected to
exactly two clause vertices, the connecting vertex can be chosen arbitrarily. Each
clause vertex is in addition connected to exactly one other [arbitrarily chosen]
clause vertex.

Let τ be a satisfying truth assignment for the (2, 4, 4)-SAT instance, we get
a P3(1, 2)-coloring of the corresponding graph by mapping the clause vertices vc

to the center vertex of the P3, and the variable gadgets Gv to one end-vertex if
τ(v) = TRUE, and to the other end-vertex if τ(v) = FALSE. A reversal works
for the other direction of the proof. ut

Lemma 10. Sk(0, q)-COLORING is NP-complete for k ≥ 2 if q ≥ 3.

Proof. The problem is obviously in NP . The star S2 is equal to the path P3 so
we know that S2(0, q)-COLORING is NP-complete if q ≥ 3. We reduce from
Sk(0, q)-COLORING to Sk+1(0, q)-COLORING.

Let G be an instance of Sk(0, q)-COLORING. We create an instance G′ of
Sk+1(0, q)-COLORING, such that G′ has an Sk+1(0, q)-coloring if and only if
G has an Sk(0, q)-coloring. G′ is constructed by adding several copies of the
complete bipartite graphs Kq,(k+1)q−1 to G. These new vertices of low degree
q will have no further neighbors and must therefore map to the leaves in any
Sk+1(0, q)-coloring. The new vertices of high degree must map to the central
vertex of the star and will each have one more new vertex as a neighbor, these
neighbors will act as connectors to G. Note that the connectors of a single copy
of Kq,(k+1)q−1 must all map to the same leaf of Sk+1. By arranging the new
copies of Kq,(k+1)q−1 in a cycle and for each adjacent pair of copies having a
pair of vertices sharing the same connector, we guarantee that all connectors
must map to the same leaf of the star (which will be the k + 1st leaf). In this
way, by taking c copies of Kq,(k+1)q−1 we get c shared connectors and c(q − 2)
non-shared connectors, lacking respectively q−2 and q−1 neighbors that will be
assigned from G. Assuming G has n vertices of high degree kq, that each needs
q new neighbors, we would like to choose c so that c(q−2)+c(q−2)(q−1) = nq,
in other words, so that the number of edges needed for connectors, is the same as



the number of new edges needed for G. Resolving, we get c(q−2) = n, so we can
do this if the number of central vertices of G divides q−2. If it does not, we first
increase G as follows. Since for any x ≥ q we have a bipartite q-regular graph with
x vertices in each partition class, we also have a connected, simple graph Fx with
x ‘central’ vertices of degree kq having an Sk(0, q)-coloring. Moreover, a graph G
has an Sk(0, q)-coloring if and only if G ∪ Fx does. Thus, if n ≡ z mod (q − 2),
then n+x ≡ 0 mod (q−2) for x = q(q−2)+(q−2−z) ≥ q and we consider instead
as input to the Sk(0, q)-coloring problem the graph G∪Fx, and in this graph the
number of new edges to the k + 1st leaf matches the number of connector edges
needed. As we have argued alongside the construction, if the constructed graph
has an Sk+1(0, q)-coloring, then the connectors must all map to the same leaf,
so that the coloring induced on the copy of G is an Sk(0, q)-coloring. Conversely,
if G has an Sk(0, q)-coloring it is easy to see that the constructed graph G′ has
an Sk+1(0, q)-coloring.

In the reduction below we use the following problem:

[k-EC] k-EDGE-COLORING
INSTANCE: Graph G.
QUESTION: Can E(G) be partitioned into k′ disjoint sets E1, E2, . . . , Ek′ , with
k′ ≤ k, such that, for 1 ≤ i ≤ k′, no two edges in Ei share a common endpoint
in G?

If G is a k-regular graph, the question becomes whether each vertex is incident to
k distinctly colored edges. This last problem was shown to be NP-complete for
k = 3 in [10] and for k ≥ 3 in [16]. We get the following result for the complexity
of Sk(1, 1)-COLORING and Sk(1, 2)-COLORING.

Lemma 11. Sk(p, q)-COLORING is NP-complete for k ≥ 3 if either:

(1) p = 1, q = 1, or
(2) p = 1, q = 2.

Proof. Both problems are obviously in NP . We reduce from k-EC on k-regular
graphs in both cases.

Case 1: Let G be an instance of k-EC, such that G is k-regular. We construct
a graph G′, such that G′ has an Sk(1, 1)-coloring if and only if G is k-edge-
colorable. G′ is made up of two copies of G, G1 and G2, with every vertex
v1 ∈ V (G1) connected to the corresponding vertex v2 ∈ V (G2) by an edge. In
addition, every edge vw ∈ E(G1) ∪ E(G2) is subdivided twice, that is, every
edge vw becomes a path v, v′, w′, w.

Let c be the center vertex of the star Sk, l1, l2, . . . , lk the leaves, and let
f : E(G) → {1, 2, . . . , k} be a k-edge-coloring of G. We get an Sk(1, 1)-coloring
from f by mapping all vertices v ∈ V (G1) ∪ V (G2) to c, and the subdivision
vertices of the edge vw to lk if and only if f(vw) = k. In the other direction of the
proof, we can let the Sk(1, 1)-coloring induced on G1 define the k-edge-coloring,
since for every edge vw of G1, and hence of G, both vertices v′ and w′ on the



subdivided path v, v′, w′, w must map to the same leaf, and we use this leaf as
the color of the edge.

Case 2: The reduction to Sk(1, 2)-COLORING is identical except that for
each edge vw ∈ E(G1)∪E(G2) we also add edges vw′ and v′w to the v, v′, w′, w-
path. ut

Lemma 12. T (0, 2)-COLORING is NP-complete for every tree T whose de-
gree refinement consists of three blocks, one of size 1 and the others of size at
least 2.

Proof. The problem is obviously in NP . We reduce from (l, m, n)-SAT. Let
B1(T ), B2(T ), and B3(T ) be the blocks in question, and assume |B1(T )| = 1,
|B2(T )| = k ≥ 2, and |B3(T )| = kt, t ≥ 1. We distinguish between the following
two cases: (1) k = 2, and (2) k ≥ 3.

Case 1: When k = 2 we reduce from (2, 4, 4)-SAT. Let (V, C) be an instance
of (2, 4, 4)-SAT. We create an instance G of T (0, 2)-COLORING, such that G
has a T (0, 2)-coloring if and only if a satisfying truth assignment exists for C.
G is constructed by replacing every variable v ∈ V with a variable gadget Gv .
Gv consists of a complete bipartite graph K2,2t where the vertices of the first
partition are labeled vv and v′v . Vertices vv and v′v are designated variable ver-
tices. For each clause c ∈ C there is a clause vertex vc connected to the variable
gadgets corresponding to the variables occurring in the clause. The variable gad-
get is connected in such a way that each variable vertex is connected to exactly
two clause vertices, the connecting vertex can be chosen arbitrarily.

Let B2(T ) = {left2, right2}, and let τ be a satisfying truth assignment for
the (2, 4, 4)-SAT instance. We get a T (0, 2)-coloring of G by mapping the clause
vertices vc to the only vertex of B1(T ), the vv- and v′v-vertices of the variable
gadgets Gv to left2 if τ(v) = FALSE, and to right2 if τ(v) = TRUE. The
remaining vertices of the variable gadgets K2,2t are mapped in pairs to the t
distinct neighbors of left2 or right2, respectively. A reversal works for the other
direction of the proof.

Case 2: When k ≥ 3 we start with the graph G from the transformation de-
scribed for case 1, and add k−2 connected bipartite gadgets Gg . Gg = (V1, V2, E)
is such that V1 consists of |C| vertices of degree 2t and V2 consists of |C| · t ver-
tices of degree 2. The gadgets Gg are connected to G by connecting each vertex
of V1 to two distinct clause vertices, and each clause vertex to two vertices from
V1. This forms an instance G′ of T (0, 2)-COLORING.

In any T (0, 2)-coloring of G′, the vertices of each V1 must map to the same
vertex of B2(T ), due to the connectedness of the gadgets Gg . Hence, two ar-
bitrarily chosen vertices from B2(T ) can be used as colors determining the
truth assignment to the variables corresponding to the vertices of the original
graph G. ut

Lemma 13. If T is a tree with one degree refinement block consisting of ex-
actly one vertex u, and 2T is the tree made from two disjoint copies of T , T1

and T2, joined by the edge u1u2, then T (p, q)-COLORING reduces to 2T (p, q)-
COLORING, for every p and q.



Proof. The problem is obviously in NP . We reduce from T (p, q)-COLORING.
Let G be an instance of T (p, q)-COLORING. We create an instance G′ of
2T (p, q)-COLORING, such that G′ has a 2T (p, q)-coloring if and only if G has a
T (p, q)-coloring. G′ is constructed by making 2q disjoint copies of G, G1, . . . G2q .
For every vertex v ∈ V (G) we form a complete bipartite graph Kq,q on the sets
{v1, . . . , vq} and {vq+1, . . . , v2q}.

For any 2T (p, q)-coloring f ′ : V (G′) → V (2T ) of G′, its restriction to a single
copy of G is a T (p, q)-coloring. In the opposite direction, any T (p, q)-coloring
f : V (G) → V (T ) of G can be extended to G′ by using the mapping to T1 on
the first q copies of G, and to T2 on the last q copies of G. ut


