
Feedback vertex set on graphs of low cliquewidth†

B.-M. Bui-Xuan J. A. Telle M. Vatshelle

Department of Informatics, University of Bergen, Norway.
[buixuan,telle,vatshelle]@ii.uib.no

Abstract

The Feedback Vertex Set problem asks whether a graph contains q vertices meeting all
its cycles. This is not a local property, in the sense that we cannot check ifq vertices meet
all cycles by looking only at their neighbors. Dynamic programming algorithms for problems
based on non-local properties are usually more complicated. In this paper, given a graphG of
cliquewidthcw and acw -expression ofG , we solve the Minimum Feedback Vertex Set prob-
lem in timeO(n222cw

2 log cw) . Our algorithm applies a non-standard dynamic programming
on a so-calledk -module decomposition of a graph, as defined by Rao [28], which is easily
derivable from ak -expression of the graph. The related notion of module-width of a graph
is tightly linked to both cliquewidth and nlc-width, and in this paper we give an alternative
equivalent characterization of module-width.

1 Introduction

The problem of finding a minimum Feedback Vertex Set (FVS) in agraph, i.e. the smallest set of
vertices whose removal results in a graph that has no cycles,has many applications, for example
to optical networks [20], circuit testing, deadlock resolution, analyzing manufacturing processes
and computational biology (see [8] and its bibliography). It is one of the classical NP-complete
problems from the 1972 list of Karp [19] and has been extensively studied from many viewpoints,
including linear programming [6], approximation algorithms [2, 11, 14, 20], exact algorithms [12]
and parameterized complexity [5, 8, 15, 23, 27].

The minimum FVS problem is2-approximable in polynomial time [1]. The fastest exact
algorithm has runtimeO(1.7548n) [12]. The fastest FPT (Fixed Parameter Tractable) algorithm
when parameterized by the sizeq of the FVS has runtimeO(5qqn2) [5]. These algorithmic results
are quite strong, but are not useful for cases of input graphshaving a large number of verticesn ,
and a large minimum FVSq , if we want the actual smallest FVS. For such cases we may instead
hope that the input graph has a bounded width parameter. For example, if G is a planar graph
of treewidth tw then Kloks et al [21] give a dynamic programming algorithm solving minimum
FVS on G in time O(2O(tw log tw)n) . A similar algorithm can be devised also for non-planarG
of treewidthtw , given with an optimal tree-decomposition, but it is an openproblem if algorithms
with runtime O(2O(tw)n) exist for minimum FVS, even though such algorithms exist fora large
variety of NP-hard problems. However, for minimum FVS it would require a small breakthrough
to get such an algorithm. One reason for this is that FVS is nota locally checkable property, in
the sense that if givenq vertices we cannot check that they form an FVS simply by looking at the
neighbors of theseq vertices. In this paper we consider instead graphs of cliquewidth cw , that

†Supported by the Norwegian Research Council, project PARALGO.

1

encompasses large classes of graphs of unbounded treewidth, and for which powerful algorithmic
results are known. For instance, we have that any graph problem expressible inMSO1 -logic, as
is the case with minimum FVS, is FPT when parameterized by cliquewidth (roughly, apply [18],
then [25, Proposition 6.3], then [7]).

In this paper we will be interested in as low exponential dependency oncw as possible, and for
this we need to use a specially designed dynamic programmingalgorithm. Dynamic programming
based on decompositions having small cliquewidth are usually more complicated than dynamic
programming on decompositions having small treewidth. Thealgorithm we give solves minimum
FVS on a graphG of cliquewidth cw in time O(22cw2 log cwn2) , when given acw -expression
of G which is a decomposition of the graph showing that it has cliquewidth cw . The only other
problems for whichO(poly(n)2poly(cw)) algorithms exist are for problems based on domination-
type properties, like Dominating Set in [22] and a class of vertex partitioning problems as in [4].

Cliquewidth is related to the notion of nlc-width of a graph [10] with which it shares most
properties but we have chosen to use cliquewidth in this paper simply because that notion is more
famous. Our algorithm applies a non-standard dynamic programming on a so-calledk -module
decomposition of a graph, as defined by Rao [28], which is easily derivable from ak -expression
of the graph. The related notion of module-width of a graph istightly linked to both cliquewidth
and nlc-width, and in this paper we give an alternative equivalent characterization of module-
width. Our dynamic programming algorithm is non-standard in the sense that we index tables by
the classes of one equivalence relation on the set of possible solutions, but store optimal solutions
at these indices that are related to another equivalence relation which is a coarsening of the first
one. We need to do this in order to achieve the stated runtime.

2 Framework

Let G be a graph with vertex setV (G) and edge setE(G) . Consider the following unifying
decomposition framework for several decomposition schemes. A binary tree is a rooted tree where
every internal node has exactly two children.

Definition 2.1 (Decomposition tree)A rooted decomposition treeof a graphG is a pair (T, δ)
whereT is a binary tree havingn = |V (G)| leaves andδ is a bijection between the vertices of
G and the leaves ofT .

Roughly, trees with their leaves in a bijection with the vertices of G are important for tech-
niques like divide-and-conquer or dynamic programming since they show how to “divide” the
graph instance into several sub-instances and recurse. Clearly, any tree with the right number of
leaves and a bijection can be considered as a decomposition tree. Then, a common technique to
select those that are more suited for some task is to use an evaluating function.

Definition 2.2 (Decomposition and width parameters)Let G be a graph,f a set function over
V (G) , and (T, δ) a rooted decomposition tree ofG. For every nodeu of T , let Vu denote the
vertex subset ofG induced by the leaves of the subtree ofT rooted atu . Thef -width of (T, δ) is
the maximum value off(Vu) , taken over every nodeu of T . An optimal f -decompositionof G
is a rooted decomposition tree ofG having minimumf -width. Thef -width of G is thef -width
of an optimalf -decomposition ofG.

If f is also required to be symmetric, namely thatf(Vu) = f(V (G) \ Vu) for everyVu , then
the above framework, up to unrooting the treeT and settingf(V (G)) = f(∅) = −∞ , is equiv-
alent to the one developed for the study of branch decomposition of symmetric and submodular

2

functions (see,e.g., [25, Section 2] for a short and recent introduction). This includes the branch-
width [29], rank-width [25], and boolean-width [4] decompositions of graphs. On the other hand,
rooted decomposition trees as defined here can be used for situations where the symmetry does not
occur, for instance with a branch-like decomposition of a submodular function that is not neces-
sarily symmetric, a cliquewidth or NLC-width expression, or a so-calledk -module decomposition
as will be presented below.

For an efficient complexity analysis of the algorithm that will be described in Section 4, we
will be interested in the following definition off -width, so-called module-width in [24, 28].

Definition 2.3 Let G be a graph and letX ⊆ V (G) be a vertex subset. A subsetA ⊆ X is a
twin set ofX if, for every z ∈ V (G) \ X and pair of verticesx, y ∈ A , we havex adjacent toz
if and only if y adjacent toz . A twin set A is a twin class ofX if A is maximal. The set of all
twin classes ofX forms a partition ofX , that we call thetwin class partition ofX .

Definition 2.4 (Module-width) The functionµG : 2V (G) → N is defined such thatµG(X) is the
number of twin classes ofX in the graphG. Themodule-width decompositions and parameters
of G refer to those of Definition 2.2 whenf = µG . The µG -width of G will be called the
module-widthof G and denoted byµw(G) .

The terminology of module-width is according to the name given to an equivalent notion that
was mentioned in [24, last two pages] and formalized in [28].More precisely, Lanlignel and Rao
defined so-calledk -module decomposition, leading to the same parameter as follows. Let G be
a graph. A vertex subsetX ⊆ V (G) is a k -moduleif there exists a partition ofX into k twin
sets.G is ak -module decomposable graphif there is a rooted decomposition tree(T, δ) such that
every vertex subset ofG that is induced by the leaves of some subtree ofT is also ak -module of
G. Themodule-widthof G is the minimum integerk such thatG is k -module decomposable.
This results in exactly the same notion of module-width of Definitions 2.4 thanks to the following
simple observations. Firstly, ifX is a k -module, then it is also a(k + 1)-module as long as
k + 1 ≤ |X| . Secondly, the minimum numberk such thatX is a k -module is exactlyµG(X) .

Clique-width and NLC-width expressions are constructionsof a graph using logic operations.
For a proper introduction to cliquewidth and NLC-width refer to [7, 10]. The underlying graphs
of cliquewidth and NLC-width expressions are rooted trees where every internal node has at most
two children and where the leaves are in a bijection with the vertices of the graph. This, up to
contracting one child nodes, can be seen as a rooted decomposition tree. The clique-widthcw(G)
and the NLC-widthnlc-w(G) of a graphG are parameters ofG having powerful algorithmic
properties. For instance, we have that any graph problem expressible inMSO1 -logic is FPT
when parameterized by one of these two parameters (roughly,apply [18], then [25, Proposition
6.3], then [7]). They are closely linked to module-width by the following property.

Theorem 2.5 ([28]) We have for any graphG that

µw(G) ≤ nlc-w(G) ≤ cw(G) ≤ 2µw(G).

We now give an alternative viewpoint of these module-width decompositions, that will link
module-width to the so-calledH -join decomposition framework [3] in an unexpected way.

Definition 2.6 Let H be a bipartite graph with color classesV1 andV2 , thusV (H) = V1 ∪ V2 .
Let G be a graph andX ⊆ V (G) a subset of its vertices. We say thatG is anH -join across the
ordered cut(X,V (G) \ X) if there exists a partition ofX with set of classesP and a partition

3

of V (G) \ X with set of classesQ , and injective functionsf1 : P → V1 andf2 : Q → V2 , such
that for anyx ∈ X andy ∈ V (G) \ X we havex adjacent toy in G if and only if x belongs to
a classPi of P andy to a classQj of Q with f1(Pi) adjacent tof2(Qj) in H .

We will abusively refer to ordered cuts simply by cuts. Twinsin a bipartite graph are vertices
in the same color class having exactly the same neighborhood. A twin contractionis the deletion
of a vertex when it has a twin. Notice thatH -joins are insensitive to twin contractions: ifH ′ is
obtained fromH by a twin contraction thenG is anH -join across some cut if and only ifG is
an H ′ -join across the same cut. Note also that we do allow a twin-free bipartite graph to have
one isolated vertex in each color class. We model the joiningin module-width decompositions by
using the following graph.

Definition 2.7 For a positive integerk we define a bipartite graphYk having for each integeri
of {1, 2, . . . , k} a vertexai ∈ A and having for each subsetS of {1, 2, . . . , k} a vertexbS ∈ B ,
with V (Yk) = A ∪ B . This givesk vertices inA and2k vertices inB . A vertex ai is adjacent
to a vertexbS if and only if i ∈ S .

The following lemma captures the crucial property of module-width decompositions, from an
H -join decomposition point of view. Its proof is straightforward.

Lemma 2.8 Let k be an integer, letH be a bipartite graph over color classesV1 ∪ V2 with
|V1| ≤ k . Then, applying successive twin contractions inH until stability will always result in a
graph that is isomorphic to an induced subgraph ofYk .

Proof Just give an arbitrary ordering over the vertices ofV1 = (v1, v2, . . . , vl) , and map them to
the l first verticesa1, a2, . . . , al of Yk , respectively (note thatl ≤ k by hypothesis). Then, for
every vertexu ∈ V2 of H , let N(u) =

⋃
i∈S vi , and mapu to vertexbS of Yk . Hence,H is an

induced subgraph ofYk . Now, applying twin contractions on a subgraph ofYk will always result
in another induced subgraph ofYk . 2

Corollary 2.9 The functionµG of Definition 2.4 is exactly equal to the functionηG defined by

ηG(X) = min{k : G is aYk-join across the cut(X,V (G) \ X)}, for all X ⊆ V (G)

Proof Let k = ηG(X) . Since G is a Yk -join across(X,V (G) \ X) , we have thatX is a
k -module and henceµG(X) ≤ k .

Now let H be the bipartite graph over color classesX andV (G)\X such thatxy ∈ E(H) ⇔
xy ∈ E(G) for all x ∈ X and y /∈ X . Clearly, G is an H -join across(X,V (G) \ X) . Now
we do twin contractions on “theX side” of H until stability, and obtainH ′ . Clearly, G is an
H ′ -join across(X,V (G) \X) . Besides, the number of vertices on “theX side” of H ′ is exactly
l = µG(X) , namely the number of twin classes ofX . We then apply Lemma 2.8 and deduce that
G is anH ′′ -join across(X,V (G)\X) for H ′′ being some induced subgraph ofYl . In particular,
this meansG is a Yl -join across(X,V (G) \ X) , and l = µG(X) ≥ k . 2

3 Computing the twin classes

In the next section we will give a dynamic programming algorithm to solve the feedback vertex set
problem on an input made by ann-vertexm-edge graphG and one of its rooted decomposition

4

tree(T, δ) . Note that the underlying graph of a clique-width expression of G is a rooted tree where
each internal node having at most two children, and the leaves are in a bijection with the vertices
of G. By contracting the internal nodes having one child, we willresult in a rooted decomposition
tree of G. Moreover, it can also be obtained from the proof of Theorem 2.5 that the module-
width of this rooted decomposition tree is at most the clique-width of the clique-width expression.
Consequently, if the input to our algorithm is the graphG and a clique-widthk expression ofG,
we can transform them in a straightforward manner to an inputmade ofG and one of its rooted
decomposition tree of module-width at mostk .

For every internal nodeu of T with Vu being the vertex subset ofG induced by the subtree
of T rooted atu , we will need to compute the twin classes ofVu as mentioned in the definition of
µG in Definition 2.4. For this, the algorithm given in [25] for transforming a rank decomposition
into a cliquewidth expression can be used for a global runtime in O(n222rw(G)) . In this section,
we will describe such a computation for every internal nodeu of T , with global runtimeO(n2) .

We will use the so-called partition refinement algorithmic technique (refer to,e.g., [16, 26] for
details). Partitions will be represented by double-linkedlists. A refinement operationof a partition
Q = (Q1, Q2, . . . , Qk) of Vu usingA ⊆ Vu as pivot is the act of splitting everyQi into Qi ∩ A
and Qi \ A . The output of a refinement operation can be of two types. It can be made of one
partition of Vu which is the result of removing all empty sets from(Q1 ∩A,Q1 \A,Q2 ∩A,Q2 \
A, . . . ,Qk ∩ A,Qk \ A) . We refer to these as one-to-one refinements. It can also be composed
of two partitions (one ofA and one ofVu \ A) which result from removing all empty sets from
(Q1∩A,Q2∩A, . . . ,Qk ∩A) and(Q1 \A,Q2 \A, . . . ,Qk \A) . We refer to these as one-to-two
refinements. With the appropriate data structure, all thesetypes of refinement operations can be
implemented to run inO(|A|) time for each operation (refer to,e.g., [16] for details).

A simple way to compute the twin class partition ofVu is to initializeQ = (Vu) and, for every
vertexz ∈ V (G) \ Vu , perform an one-to-one refinement ofQ using the neighborhoodN(z) of
z as pivot. The correctness follows directly from the definition of twin classes. This computation
would haveO(m) runtime for each internal nodeu of T , hence a globalO(nm) runtime.

The main idea to reduce this runtime is to observe that, in theabove operations, we can use
N(z) ∩ Vu as pivot instead ofN(z) (for every z ∈ V (G) \ Vu) without modifying the refined
partition of each step. However, the sum over every possibleVu and z ∈ V (G) \ Vu of the
value |N(z) ∩ Vu| might still be large. We will observe a second fact. For a partition Q =
(Q1, Q2, . . . , Qk) of X and a subsetY ⊆ X , we denote byQ[Y] the partition ofY which
results from removing all empty sets from(Q1 ∩ Y,Q2 ∩ Y, . . . , Qk ∩ Y) .

Remark 3.1 Let w be an internal node ofT with children a and b . Let Vw , Va , and Vb be the
vertex subsets ofG induced by the leaves of the subtrees ofT rooted atw , a , and b , respectively.
Let Qw = (Qw(1), Qw(2), . . . , Qw(hw)) be the twin class partition ofVw . Then, initializing
Q = Qw[Va] and refiningQ usingN(z) ∩ Va as pivot for allz ∈ Vb will result to the twin class
partition of Va .

Basically, the algorithmic difference given by the remark is that we can now be restricted to
z ∈ Vb instead of using allz ∈ V (G) \ Va as before. The main point is that the sum over every
possibleVa and z ∈ Vb of the value|N(z) ∩ Va| will be at most twice the valuen + m (every
edge ofG appears at most twice in the sum). We now implement Remark 3.1.

First of all, the bottleneck of usingN(z)∩ Va as pivot will be that, unlike the case withN(z)
which can be read simply in the adjacency list ofG, we will need to computeN(z)∩Va for every
possibleVa andz . We do this as a preprocessing step as follows.

5

We prepare the treeT as described in [17] so that afterwards we can, given two leavesx and
y of T , compute the lowest common ancestorw of x and y in T in O(1) time. This can also
be done in such a way that, ifa andb denote the children ofw , then we can inO(1) time decide
whetherx is a descendent ofa or it is a descendent ofb . Then, for every internal nodew of the
tree T , with children a and b , we initialize two tablesN b→a

w and Na→b
w that will contain, for

every vertexz in Vb (resp.Va), the neighborhood ofz in Va (resp.Vb). Now, we scan through
every edgexy of G and compute the lowest common ancestorw of x and y , as well as the
children a and b of w such thatx is a descendent ofa , and finally addx to N b→a

w [y] and y to
Na→b

w [x] . Clearly, after scanning all edges ofG, we have thatN b→a
w [z] = N(z) ∩ Va for all w ,

a , b , andz . This preprocessing takesO(n) time.

We come to the proper computation of the twin class partitions. The twin class partition
associated to the root ofT only has one class, which isV (G) . Suppose that we have computed
the twin class partitionQw of an internal nodew having childrena and b . This partitionQw is
stored in a double-linked list w.r.t. the data structure used for partition refinement. Basically, the
following operations can operate directly on this data structure, if we allow ourselves to modify
the double-linked list. However, the information on the twin classes ofVw would then be lost.
For this reason, before continuing, we duplicate the data structure ofQw so that we store the twin
classes ofVw in a private place of nodew . Then, we can computeQw[Va] andQw[Vb] simply
by performing an one-to-two refinement ofQw using eitherVa or Vb as pivot (cf.Vb = Vw \Va).
for eachw . Duplication and refinement usingVa (or Vb) as pivot takeO(n) time for every node
w , hence anO(n2) global runtime.

We then initializeQ = Qw[Va] and, for every entryz of the tableN b→a
w , refineQ using

N b→a
w [z] as pivot. As mentioned before, the main point of all these procedures is that the sum of

the size of all possible pivots will now be at most twice the value n + m . Hence, the global run-
time of this step is inO(n+m) . We deduce the following lemma, whose proof is straightforward.
Recall that from the input of a cliquewidth expression ofG, we can derive a rooted decomposi-
tion tree simply by contracting all internal nodes having one child in the underlying graph of the
cliquewidth expression. The module-width of this decomposition tree is at most the cliquewidth
of the expression.

Lemma 3.2 Given a graphG and either(T, δ) a rooted decomposition tree ofG, or a clique-
width expression tree ofG. Then inO(n2) global runtime we can compute and store, for every
internal nodeu of T with Vu being the vertex subset ofG induced by the leaves of the subtree of
T rooted atu , the partition ofVu into its twin classesQu(1), Qu(2), . . . , Qu(hu) .

4 Solving the Feedback Vertex Set Problem

Definition 4.1 A Feedback Vertex Set of a graphG is a subset of verticesS with G[V (G) \ S] a
forest. A Forest Inducing Set (FI-set) of a graphG is a subset of verticesS with G[S] a forest.

Fact 4.2 If S is a FI-set of maximum cardinality thenV (G) − S is a Feedback Vertex Set of
minimum cardinality.

We give dynamic programming algorithms that given a graphG and a rooted decomposition
tree (T, δ) of G will find the size of a minimum Feedback Vertex Set ofG, by computing the
size of a maximum FI-set inG. For a nodea of T , let Va be the vertices ofG mapped to leaves
in the subtree ofT rooted ata . The runtime of the algorithm will be expressed as a functionof
µG(Va) , i.e. the number of twin-classes of such vertex subsetsVa .

6

1 2 3 4 5 6

D
C

B

A

Figure 1: In the above figure is an example containing 6 twin-classes named 1,2,...,6 and a FI-set X
having 11 vertices. T(X) contains 4 trees named A,B,C,D. TheFI-pattern of X will be the 5-tuple
< S,W,S′,W ′, P (S) > , whereS = {12, 24, 34, 44, 33} , andW = {23} and S′ = {1, 5} and
W ′ = {2, 3, 4} andP (S) = {{12}, {24, 34, 44}, {33}} .

4.1 Two equivalence relations on FI-sets: by FI-classes andby FI-patterns

Let nodea of T haveha = µG(Va) twin-classesQa(1), ..., Qa(ha) . We first consider how a
FI-setX ⊆ Va interacts with twin-classes. We characterizeX by a 5-tuple that we callPata(X)
that records how the treesT (X) in the forest induced by the FI-setX interact with twin-classes.
Note thatT (X) may contain trees having only one vertex.

We first consider interaction ofX on the set of pairs of twin-classes. DefineZ(X) to be the
pairs(i, j) such that there is no path inG[X] between a vertex in twin-classQa(i) and a vertex in
twin-classQa(j) . DefineS(X) to be the pairs(i, j) such that there is exactly one tree inT (X)
having a path between a vertex in twin-classQa(i) and a vertex in twin-classQa(j) . Define
W (X) to be the pairs(i, j) such that there are at least two trees inT (X) having a path between
a vertex in twin-classQa(i) and a vertex in twin-classQa(j) . Note thatZ(X), S(X),W (X) is
a partition of the set of pairs of indices of twin-classes{(i, j) : 1 ≤ i ≤ j ≤ ha}, and thus given
S(X),W (X) we can uniquely identifyZ(X) . Define alsoP(S(X)) to be the partition ofS(X)
into distinct trees, i.e. with two pairs(i, j) and (i′, j′) belonging to the same class ofP(S(X))
if and only if the same tree inT (X) has both a path between vertices in twin-classesQa(i) and
Qa(j) and a path between vertices in twin-classesQa(i

′) andQa(j
′) .

Now we consider interaction ofX on twin-classes. DefineZ ′(X), S′(X),W ′(X) to be the
partition of the set of indices{1, 2, ..., ha} of twin-classes such that ifi ∈ Z ′(X) there is no
vertex inX belonging toQa(i) , and if i ∈ S′(X) there is exactly one vertex inX belonging to
Qa(i) , and if i ∈ W ′(X) there are at least two vertices inX belonging toQa(i) .

Definition 4.3 For a FI-setX ⊆ Va define the FI-patternPata(X) to be the 5-tuple
< S(X),W (X), S′(X),W ′(X),P(S(X)) > .

Our dynamic programming algorithm computing the size of a maximum FI-set in graphG will
store a tableTaba at each nodea of the rooted decomposition treeT of G. For the computation
of maximum FI-sets by a bottom-up traversal ofT the following equivalence relation on FI-sets
contained inVa is clearly important.

Definition 4.4 For two FI-setsX,Y ⊆ Va we defineX ≡a Y if for any FI-setZ ⊆ V (G) \ Va

the setX ∪Z is a FI-set if and only ifY ∪Z is a FI-set. The equivalence classes of≡a are called
FI-classes and for a FI-setX ⊆ Va we denote byFIclassa(X) the FI-class containingX .

The tableTaba will be indexed by FI-patterns, and the following lemma willbe crucial for
correctness of the algorithm.

7

Lemma 4.5 If Pata(X) = Pata(X
′) for two FI-setsX,X ′ ⊆ Va thenX ≡a X ′ , i.e. FIclassa(X) =

FIclassa(X
′) .

Proof Consider a FI-setZ ⊆ V (G) \ Va . We show that ifG[X ∪ Z] contains a cycle then
G[X ′ ∪ Z] contains a cycle, and the statement in the lemma will follow by symmetry. LetC be
a chordless cycle inG[X ∪ Z] that has a minimum number of edges between a vertex ofX and
a vertex ofZ . We call these crossing edges, and note that there are at least two crossing edges in
C .

Let u1v1 be a crossing edge ofC with u1 ∈ X, v1 ∈ Z . Let the cycleC continue from
v1 by a pathP (v1, v2) in G[B] to vertex v2 ∈ Z and then a crossing edgev2u2 , then a path
P (u2, u3) from u2 to u3 in G[X] and again a crossing edgeu3v3 , etc. We thus get a total
orderingu1v1, u2v2, ..., u2kv2k on all crossing edges ofC , with ui s in X andvi s in Z .

In this way we getk paths of cycleC belonging toG[X] , i.e. k − 1 pathsP (u2i, u2i+1) for
1 ≤ i ≤ k − 1, and also the pathP (u2k, u1) . Note that any such path will contain edges and
vertices from a single tree ofT (X) , even if such a tree may be trivial, i.e. withu2i = u2i+1 or
u2k = u1 . Moreover, since the cycleC has the minimum number of crossing edges no tree of
T (X) contains a vertex belonging to two of thesek paths.

Consider nowCT = {j : Qa(j) ∩ {ui : 1 ≤ i ≤ 2k} 6= ∅}, i.e. the indices of twin-classes
containing a vertex involved in a crossing edge. Note that|Qa(j) ∩ {ui : 1 ≤ i ≤ 2k}| can be at
most two. Thus, to be able to exchange thesek paths inG[X] by equivalent paths inG[X ′] we
only need that the set of twin-classes containing respectively zero, one or at least two vertices ofX
are the same as the set of twin-classes containing containing respectively zero, one or at least two
vertices ofX ′ , and this indeed holds sincePata(X) = Pata(X

′) implies thatS′(X) = S′(X ′)
and W ′(X) = W ′(X ′) and hence alsoZ ′(X) = Z ′(X ′) . Thus, sincePata(X) = Pata(X

′)
we can exchange the set ofk paths inG[X] , namedP (u2i, u2i+1) for 1 ≤ i ≤ k − 1 and
P (u2k, u1) , by k paths inG[X ′] namedP (u′

2i, u
′

2i+1) for 1 ≤ i ≤ k − 1 and P (u′

2k, u
′

1) , in
such a way that vertexui , for any 1 ≤ i ≤ 2k , is in the same twin class asu′

i , and also such that
all the new paths belong to distinct trees inT (Y) . The latter statement is guaranteed by the fact
that P(S(X)) = P(S(X ′))} and W (X) = W (X ′) . Since any two vertices in the same twin
class have the same neighbors inZ we have that alsoG[X ′ ∪ Z] contains a cycle and the lemma
follows. 2

Corollary 4.6 The relation on FI-sets{X ⊆ Va : X is a FI-set} given byPata(X) = Pata(Y)
is an equivalence relation that is a refinement of≡a .

4.2 Tables and algorithm

The tableTaba at nodea of the rooted decomposition treeT of G, is defined as follows:

Definition 4.7 The tableTaba will be indexed by FI-patterns. For a FI-patternPa , let FIclassa(Pa)
be the FI-class of the FI-sets having FI-patternPa , or let it be undefined if no such FI-set exists.
ThusFIclassa(Pa) = FIclassa(X) for any FI-setX ⊆ Va having Pata(X) = Pa . For a
FI-classC let max(C) be the maximum cardinality of a FI-set inC . If FIclassa(Pa) is unde-
fined then definemax(FIclassa(Pa)) to be−∞ . The tableTaba is correct when it satisfies the
following two conditions:

1. For any FI-patternPa we haveTaba[Pa] ≤ max(FIclassa(Pa))

2. For any FI-classC there is FI-patternPa with FIclassa(Pa) = C and Taba[Pa] = max(C)

8

WheneverTaba[Pa] ≥ 0 we also store with this table index some arbitrary FI-setFa with
Pata(Fa) = Pa . We are now ready to describe the algorithm computing the cardinality of a
maximum FI-set ofG. Let us start by noting that based on the above definition, themaximum
entry over all table entries at the root ofT will correctly solve the problem.

The algorithm starts by initializing all table entries to−∞ .

At any leaf a of the treeT we haveVa = {δ(a)} and setTaba[∅, ∅, ∅, ∅, ∅] = 0 (and store
the empty FI-setFa) andTaba[∅, ∅, {1}, ∅, ∅] = 1 (and store the FI-set{δ(a)} consisting ofδ(a)
belonging to the twin-classQa(1)).

In a bottom-up traversal of the treeT , when reaching an internal nodew having childrena
andb we do the following:

For all pairs of patternsPa from Taba andPb from Tabb with Tab[Pa] ≥ 0 andTab[Pb] ≥ 0
Let Fa andFb be the FI-sets stored with these indices
If G[Fa ∪ Fb] is acyclic (i.e. ifFa ∪ Fb is a FI-set)

ComputePw = Patw(Fa ∪ Fb)
If Tabw[Pw] = −∞ storeFa ∪ Fb with this index
Tabw[Pw] = max(Tabw[Pw], Taba[Pa] + Tabb[Pb])

4.3 Correctness and runtime

We consider correctness of the algorithm and start by a lemmashowing that the equivalence re-
lation given by FI-classes are well-behaved with respect tothe child-parent relation of the rooted
decomposition tree.

Lemma 4.8 Let w be an inner node ofT with childrena and b . If A ≡a A′ and B ≡b B′ then
A ∪ B ≡w A′ ∪ B′ .

Proof It suffices to show that ifC ⊆ V (G) \ Vw is a FI-set such thatA∪B ∪C is a FI-set, then
alsoA′ ∪B′ ∪C is a FI-set, and the lemma will follow by symmetry. We simply apply Definition
4.4 twice. Firstly, sinceA ≡a A′ and A ∪ (B ∪ C) is a FI-set, we have thatA′ ∪ (B ∪ C) is a
FI-set. Secondly, sinceB ≡b B′ andB ∪ (A′ ∪ C) is a FI-set, we have thatB′ ∪ (A′ ∪ C) is a
FI-set. 2

Lemma 4.9 Based on correct tables of childrenTaba, Tabb , the algorithm will correctly update
the parent tableTabw .

Proof We first show thatTabw will satisfy condition 1 in Definition 4.7. If after updatingwe
haveTabw[Pw] = k for some integerk then there must be a pairPa, Pb with Taba[Pa] = ka

andTabb[Pb] = kb with k = ka + kb , and since condition 1 holds for the children tables we have
max(FIclassa(Pa)) ≥ ka and max(FIclassb(Pb)) ≥ kb . Thus, there exists FI-setsXa ⊆ Va

and Xb ⊆ Vb with FIclassa(Xa) = FIclassa(Pa) and FIclassb(Xb) = FIclassb(Pb) and
|Xa| ≥ ka and |Xb| ≥ kb . Moreover, we have stored FI-setsFa andFb , with FIclassa(Fa) =
FIclassa(Pa) andFIclassb(Fb) = FIclassb(Pb) , by Lemma 4.5, and in the algorithm we have
checked thatFa ∪Fb is a FI-set. We now apply Lemma 4.8 to conclude that alsoXa ∪Xb is a FI-
set. By Lemma 4.8 we also get the stronger statement thatFIclassw(Fa∪Fb) = FIclassw(Xa∪
Xb) . We have thus shown that ifTabw[Pw] = k then there must exist a FI-setXa ∪ Xb with
|Xa ∪ Xb| ≥ k andFIclassw(Xa ∪ Xb) = FIclassw(Pw) so that condition 1 is satisfied.

9

We now show thatTabw will satisfy condition 2 in Definition 4.7. Consider a FI-class C of
≡w . Let Z ⊆ Vw be a FI-set in this class. Note thatZa = Z∩Va andZb = Z∩Vb must be FI-sets.
Since condition 2 holds for the children tables we thereforehavePa andPb with Taba[Pa] ≥ |Za|
andTabb[Pb] ≥ |Zb| andFIclassa(Pa) = FIclassa(Za) andFIclassb(Pb) = FIclassb(Zb) .
When the algorithm considers the pairPa, Pb we find stored FI-setsFa andFb which by Lemma
4.5 have the property thatFIclassa(Fa) = FIclassa(Za) andFIclassb(Fb) = FIclassb(Zb) .
Therefore, applying Lemma 4.8 we get that sinceZa ∪ Zb is a FI-set thenFa ∪ Fb is a FI-set.
Moreover, we also get the stronger statement thatC = FIclassw(Fa∪Fb) = FIclassw(Za∪Zb) .
We have thus shown that for any FI-classC containing a FI-setZ ⊆ Vw there will be a FI-pattern
Pw = Patw(Fa ∪ Fb) with FIclassw(Pw) = C such thatTabw[Pw] ≥ |Za| + |Zb| = |Z| . We
conclude that also condition 2 will be satisfied. 2

Theorem 4.10 Given either a rooted decomposition tree(T, δ) of module-widthk of a graphG,
or a k -expression of a graphG of cliquewidth at mostk , we can inO(22k2 log kn2) steps solve
the Minimum Feedback Vertex Set problem onG.

Proof Consider first the case of input being a rooted decompositiontree. By Lemma 3.2 we can
compute twin classes for all nodes of the tree in timeO(n2) . Note that for any nodea of the tree
T the number of twin-classes ofVa is at mostk . By Definition 4.7 and Lemma 4.9 the maximum
value over all entries in the table at the root of our dynamic programming algorithm will correctly
solve the problem.

For the runtime, the bottleneck is the inner node update procedure which loops over allpairs
of patternsPa, Pb . The number of patterns is bounded by the number of choices for the 5-tuples
S,W,S′,W ′,P(S) . An upper bound on the number of choices for the third and fourth compo-
nents jointly (3-partitions of thek twin-classes) is3k , while for the first and second components

jointly (3-partitions of unordered pairs of twin-classes)it is 3
k
2
+k

2 . The number of choices for the
fifth component can be (loosely) upper bounded by the number of partitions of unordered pairs of
indices of thek twin-classes. This gives an upper bound on the total number of patterns2k2 log k .
In the update procedure we spend for each pair of patterns time at mostO(nk2) to check if the
union of two FI-sets are a FI-set and to compute the new pattern, making use of the fact that two
vertices in the same twin class have the same neighbors across the cut. Since there are at mostn
inner nodes the runtime in the theorem follows.

Note that within the same runtime we could instead have takenas input ak -expression of a
graphG of cliquewidth at mostk . This since by Theorem 2.5 the module-width ofG is no larger
than the clique-width ofG, and from thek -expression we easily derive a rooted decomposition
tree of module-width at mostk . 2

Note: After submitting this paper we have learned that Ganian and Hliněný have a manuscript [13]
with an algorithm solving FVS in timeO(rw2|V (G)|2 + 25rw2

rw3|V (G)|) parameterized by the
rankwidthrw of G, when a rank decomposition of widthrw is given.

References

[1] V. Bafna, P. Berman, and T. Fujito. A2-approximation algorithm for the undirected feedback
vertex set problem.SIAM Journal on Discrete Mathematics12:289–297, 1999.

10

[2] R. Bar-Yehuda, D. Geiger, J. Naor, and R. Roth. Approximation algorithms for the feedback
vertex set problem with applications to constraint satisfaction and Bayesian inference.SIAM
Journal on Computing27:942–959, 1998.

[3] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle.H -join decomposable graphs and algorithms
with runtime single exponential in rankwidth.to appear in Discrete Applied Mathematics:
special issue of GROW.

[4] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast FPT algorithms for vertex subset and
vertex partitioning problems using neighborhood unions.
http://arxiv.org/abs/0903.4796

[5] J. Chen, F. Fomin, Y. Liu, S. Lu, and Y. Villanger. Improved Algorithms for the Feedback
Vertex Set Problems. InProceedings of WADS’07, LNCS 4619, pages 422–433, 2007.

[6] F. Chudak, M. Goemans, D. Hochbaum, and D. Williamson. A primal-dual interpretation
of two 2-approximation algorithms for the feedback vertex set problem in undirected graphs.
Operations Research Letters22:111–118, 1998.

[7] B. Courcelle, J.A. Makowsky, U. Rotics. Linear time solvable optimization problems on
graphs of bounded clique width.Theory of Computing Systems, 33(2):125–150, 2000.

[8] F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens. AnO(2O(k)n3) FPT
Algorithm for the Undirected Feedback Vertex Set Problem. In Proceedings of COCOON’05,
LNCS 3595, pages 859–869, 2005.

[9] R.Downey and M.Fellows.Parameterized Complexity, Springer-Verlag (1999)

[10] W. Espelage, F. Gurski, E. Wanke. How to Solve NP-hard Graph Problems on Clique-Width
Bounded Graphs in Polynomial Time. Proceedings WG 2001: 117-128

[11] G. Even, J. Naor, B. Schieber, and L. Zosin. Approximating minimum subset feedback sets
in undirected graphs with applications.SIAM Journal on Discrete Mathematics13:255–267,
2000.

[12] F. Fomin, S. Gaspers, A. Pyatkin, and I. Razgon. On the Minimum Feedback Vertex Set
Problem: Exact and Enumeration Algorithms.Algorithmica, 52:293–307, 2008.

[13] R. Ganian and P. Hliněný. On Parse Trees and Myhill-Nerode-type Tools for handling
Graphs of Bounded Rank-width.
http://www.fi.muni.cz/˜hlineny/Research/papers/MNto ols-dam3.pdf

[14] M. Goemans and D. Williamson. Primal-dual approximation algorithms for feedback prob-
lems in planar graphs.Combinatorica18(1):37–59, 1998.

[15] J. Guo, J. Gramm, F. Hüffner, R. Niedermeier, and S. Wernicke. Compression-based fixed-
parameter algorithms for feedback vertex set and edge bipartization.Journal of Computer and
System Sciences72(8):1386-1396, 2006.

[16] M. Habib, C. Paul, L. Viennot. Partition Refinement Techniques: An Interesting Algorithmic
Tool Kit. International Journal of Foundations on Computer Science, vol 10, 2, 147–170, 1999

[17] D. Harel and R. Tarjan. Fast algorithms for finding nearest common ancestors.SIAM Journal
on Computing, 13(2):338–355, 1984.

11

[18] P. Hliněný, S. Oum. Finding branch-decompositions and rank-decompositions.SIAM Jour-
nal on Computing38(3):1012–1032, 2008.

[19] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Compu-
tations, pages 85–103, 1972.

[20] J. Kleinberg and A. Kumar. Wavelength conversion in optical networks. Journal of Algo-
rithms38:25–50, 2001.

[21] T. Kloks, C. Lee, J. Liu. New Algorithms fork -Face Cover,k -Feedback Vertex Set, and
k -Disjoint Cycles on Plane and Planar Graphs. InProceedings of WG’02LNCS 2573, pages
282–295, 2002.

[22] D. Kobler, U. Rotics. Edge dominating set and coloringson graphs with fixed clique-width.
Discrete Applied Mathematics126(2-3): 197-221 (2003).

[23] A. Koutsonas and D. Thilikos. Planar Feedback Vertex Set and Face Cover: Combinatorial
Bounds and Subexponential Algorithms. InProceedings of WG’08, LNCS 5344, pages 254–
274, 2008.

[24] J.-M. Lanlignel. Autour de la décomposition en coupe.Ph. D. thesis,Université Montpellier
II, 2001.

[25] S. Oum, P. Seymour. Approximating clique-width and branch-width.J. Combin.Theory Ser.
B 96(4):514–528, 2006.

[26] R. Paige, R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing
16(6):973–989, 1987.

[27] V. Raman, S. Saurabh, and C. Subramanian. Faster fixed parameter tractable algorithms for
finding feedback vertex sets.ACM Transactions on Algorithms2(3):403–415, 2006.

[28] M. Rao. Clique-width of graphs defined by one-vertex extensions. Discrete Mathematics
308(24):6157–6165, 2008.

[29] N. Robertson, P. Seymour. Graph minors X: Obstructionsto tree-decomposition.Journal on
Combinatorial Theory Series B,52:153–190, 1991.

12

