Feedback vertex set on graphs of low cliquewidth

B.-M. Bui-Xuan J. A. Telle M. Vatshelle

Department of Informatics, University of Bergen, Norway.
[bui xuan,tell e, vatshelle] @i . uib.no

Abstract

The Feedback Vertex Set problem asks whether a graph centaiartices meeting all
its cycles. This is not a local property, in the sense that arenot check ifg vertices meet
all cycles by looking only at their neighbors. Dynamic praxgaming algorithms for problems
based on non-local properties are usually more complicétddiis paper, given a grapl of
cliguewidthcw and acw -expression of~, we solve the Minimum Feedback Vertex Set prob-
lem in time 0(71222’””2 log cw) - Qur algorithm applies a non-standard dynamic programming
on a so-calledt-module decomposition of a graph, as defined by Rao [28], wisieasily
derivable from ak-expression of the graph. The related notion of moduletwidta graph
is tightly linked to both cliquewidth and nlc-width, and ihi$ paper we give an alternative
equivalent characterization of module-width.

1 Introduction

The problem of finding a minimum Feedback Vertex Set (FVS) gmaph, i.e. the smallest set of
vertices whose removal results in a graph that has no cywdesinany applications, for example
to optical networks [20], circuit testing, deadlock reswn, analyzing manufacturing processes
and computational biology (see [8] and its bibliographytislone of the classical NP-complete
problems from the 1972 list of Karp [19] and has been extehgistudied from many viewpoints,
including linear programming [6], approximation algoritk [2, 11, 14, 20], exact algorithms [12]
and parameterized complexity [5, 8, 15, 23, 27].

The minimum FVS problem i2-approximable in polynomial time [1]. The fastest exact
algorithm has runtime)(1.7548"™) [12]. The fastest FPT (Fixed Parameter Tractable) algorith
when parameterized by the sigef the FVS has runtimé(57¢n?) [5]. These algorithmic results
are quite strong, but are not useful for cases of input grapkigg a large number of vertices,
and a large minimum FVg, if we want the actual smallest FVS. For such cases we magadst
hope that the input graph has a bounded width parameter. Xaonme, if G is a planar graph
of treewidth tw then Kloks et al [21] give a dynamic programming algorithnlvewm minimum
FVS on G in time O(20(twlogtw)p) - A similar algorithm can be devised also for non-plagar
of treewidthtw, given with an optimal tree-decomposition, but it is an opesblem if algorithms
with runtime O(2°(%)n) exist for minimum FVS, even though such algorithms existefdarge
variety of NP-hard problems. However, for minimum FVS it webtequire a small breakthrough
to get such an algorithm. One reason for this is that FVS isarotally checkable property, in
the sense that if given vertices we cannot check that they form an FVS simply by logkit the
neighbors of thesg vertices. In this paper we consider instead graphs of aligfth cw, that

fSupported by the Norwegian Research Council, project PARAL

encompasses large classes of graphs of unbounded treearidtfor which powerful algorithmic
results are known. For instance, we have that any graphgobkpressible inV/ SO -logic, as

is the case with minimum FVS, is FPT when parameterized loypeividth (roughly, apply [18],
then [25, Proposition 6.3], then [7]).

In this paper we will be interested in as low exponential deleacy oncw as possible, and for
this we need to use a specially designed dynamic programatgrogithm. Dynamic programming
based on decompositions having small cliquewidth are lysoabre complicated than dynamic
programming on decompositions having small treewidth. dlgerithm we give solves minimum
FVS on a graphG of cliquewidth cw in time 0(220“’2 logewn2) when given acw-expression
of G which is a decomposition of the graph showing that it hasueligidth cw. The only other
problems for whichO (poly(n)2r°(<w)) algorithms exist are for problems based on domination-
type properties, like Dominating Set in [22] and a class ofesepartitioning problems as in [4].

Cliquewidth is related to the notion of nlc-width of a graftO] with which it shares most
properties but we have chosen to use cliquewidth in thismsipgly because that notion is more
famous. Our algorithm applies a non-standard dynamic progring on a so-calle@-module
decomposition of a graph, as defined by Rao [28], which idyedsrivable from ak-expression
of the graph. The related notion of module-width of a graptigistly linked to both cliquewidth
and nlc-width, and in this paper we give an alternative esjaivt characterization of module-
width. Our dynamic programming algorithm is non-standarthie sense that we index tables by
the classes of one equivalence relation on the set of pessililitions, but store optimal solutions
at these indices that are related to another equivalenatarelwhich is a coarsening of the first
one. We need to do this in order to achieve the stated runtime.

2 Framework

Let G be a graph with vertex sét' (G) and edge sef(G). Consider the following unifying
decomposition framework for several decomposition scleedinary tree is a rooted tree where
every internal node has exactly two children.

Definition 2.1 (Decomposition tree) A rooted decomposition treef a graphG is a pair (T, 6)
whereT is a binary tree having. = |V (G)| leaves and’ is a bijection between the vertices of
G and the leaves df".

Roughly, trees with their leaves in a bijection with the ig$ of G are important for tech-
niques like divide-and-conquer or dynamic programmingeithey show how to “divide” the
graph instance into several sub-instances and recursarllany tree with the right number of
leaves and a bijection can be considered as a decomposiienThen, a common technique to
select those that are more suited for some task is to use hatmg function.

Definition 2.2 (Decompaosition and width parameters)Let G be a graph,f a set function over
V(G), and (T,0) a rooted decomposition tree 6f. For every node: of T', let V,, denote the
vertex subset oz induced by the leaves of the subtre€lofooted atu. The f-width of (7°,6) is
the maximum value off (V,,), taken over every node of 7'. An optimal f-decompositiorof G
is a rooted decomposition tree 6f having minimum f -width. The f -width of G is the f -width
of an optimal f -decomposition of.

If f is also required to be symmetric, namely thf&t,) = f(V(G) \ V,,) for everyV,,, then
the above framework, up to unrooting the tfBeand settingf (V (G)) = f(0) = —oo, is equiv-
alent to the one developed for the study of branch decomgosf symmetric and submodular

2

functions (seee.g, [25, Section 2] for a short and recent introduction). Thidudes the branch-
width [29], rank-width [25], and boolean-width [4] decongitions of graphs. On the other hand,
rooted decomposition trees as defined here can be usediatiits where the symmetry does not
occur, for instance with a branch-like decomposition of bnsadular function that is not neces-
sarily symmetric, a cliquewidth or NLC-width expressionaso-calledk -module decomposition
as will be presented below.

For an efficient complexity analysis of the algorithm thall wé described in Section 4, we
will be interested in the following definition of -width, so-called module-width in [24, 28].

Definition 2.3 Let G be a graph and leX C V(G) be a vertex subset. A subsdtC X is a
twin set of X if, for every z € V(G) \ X and pair of vertices, y € A, we havex adjacent toz
if and only if y adjacent toz. A twin set A is atwin class ofX if A is maximal. The set of all
twin classes ofX forms a partition ofX', that we call theéwin class partition ofX .

Definition 2.4 (Module-width) The functionug : 2V(¢) — N is defined such that;(X) is the
number of twin classes aX in the graphG. The module-width decompositions and parameters
of G refer to those of Definition 2.2 wheli = ug. The pg-width of G will be called the
module-widthof G and denoted by.w(G).

The terminology of module-width is according to the namesgito an equivalent notion that
was mentioned in [24, last two pages] and formalized in [28bre precisely, Lanlignel and Rao
defined so-called:-module decomposition, leading to the same parameter lasvfol Let G be
a graph. A vertex subseX C V(G) is a k-moduleif there exists a partition ofX into & twin
sets.G is ak-module decomposable grafitthere is a rooted decomposition tré€, §) such that
every vertex subset af that is induced by the leaves of some subtre& d$ also ak-module of
G. Themodule-widthof G is the minimum integek such thatG is k-module decomposable.
This results in exactly the same notion of module-width ofiliBons 2.4 thanks to the following
simple observations. Firstly, iX is a k-module, then it is also &k + 1)-module as long as
k+1 < |X|. Secondly, the minimum numbér such thatX is a k-module is exactlyuq(X).

Clique-width and NLC-width expressions are constructioha graph using logic operations.
For a proper introduction to cliquewidth and NLC-width nefe [7, 10]. The underlying graphs
of cliqguewidth and NLC-width expressions are rooted trebsna every internal node has at most
two children and where the leaves are in a bijection with theices of the graph. This, up to
contracting one child nodes, can be seen as a rooted deciimpé®e. The cliqgue-widthew (G)
and the NLC-widthnlc-w(G) of a graphG are parameters aofr having powerful algorithmic
properties. For instance, we have that any graph problemessible in M SO+ -logic is FPT
when parameterized by one of these two parameters (rougibyy [18], then [25, Proposition
6.3], then [7]). They are closely linked to module-width b following property.

Theorem 2.5 ([28]) We have for any grapliz that
pw(GQ) < nle-w(G) < cw(G) < 2pw(G).

We now give an alternative viewpoint of these module-widgtampositions, that will link
module-width to the so-called -join decomposition framework [3] in an unexpected way.

Definition 2.6 Let H be a bipartite graph with color class&s and V;, thusV (H) = V; U V;.
Let G be a graph and C V(G) a subset of its vertices. We say th@itis an H -join across the
ordered cut(X, V(G) \ X) if there exists a partition o with set of classes” and a partition

3

of V(G) \ X with set of classes§), and injective functionsf; : P — V; and f : Q — V4, such
that for anyx € X andy € V(G) \ X we haver adjacent toy in G if and only if z belongs to
aclassP; of P andy to a class); of @ with f;(F;) adjacent tof>(Q;) in H.

We will abusively refer to ordered cuts simply by cuts. Twims bipartite graph are vertices
in the same color class having exactly the same neighborhdddin contractionis the deletion
of a vertex when it has a twin. Notice thaf-joins are insensitive to twin contractions: i’ is
obtained fromH by a twin contraction therds is an H -join across some cut if and only & is
an H’-join across the same cut. Note also that we do allow a tvda-bipartite graph to have
one isolated vertex in each color class. We model the joimimgodule-width decompositions by
using the following graph.

Definition 2.7 For a positive integek we define a bipartite graph;, having for each integeft

of {1,2,...,k} avertexa; € A and having for each subsstof {1,2,... k} avertexbs € B,

with V(Y3) = AU B. This givesk vertices inA and 2* vertices inB. A vertex a; is adjacent
to a vertexbgs ifand only if i € S.

The following lemma captures the crucial property of moeuldth decompositions, from an
H -join decomposition point of view. Its proof is straightfard.

Lemma 2.8 Let k£ be an integer, letH be a bipartite graph over color classdg U V5 with
|[Vi| < k. Then, applying successive twin contractiongdnuntil stability will always result in a
graph that is isomorphic to an induced subgraphyaf

Proof Just give an arbitrary ordering over the verticed®f= (vy,vs,...,v;), and map them to
the [first verticesay, as, . ..,a; of Yy, respectively (note that < k& by hypothesis). Then, for
every vertexu € Vz of H, let N(u) = (J;c5vi, and mapu to vertexbg of Y;. Hence,H is an
induced subgraph of;. Now, applying twin contractions on a subgraphYaf will always result
in another induced subgraph &f, . O

Corollary 2.9 The functionu of Definition 2.4 is exactly equal to the functiga defined by
na(X) = min{k : G is aY;-join across the cutX,V(G) \ X)}, forall X C V(G)

Proof Let k = ng(X). SinceG is a Y -join across(X,V(G) \ X), we have thatX is a
k-module and hencgg(X) < k.

Now let H be the bipartite graph over color class€sand V' (G)\ X suchthatry € E(H) <
xy € E(G) forall z € X andy ¢ X . Clearly, G is an H -join across(X, V(G) \ X). Now
we do twin contractions on “theX’ side” of H until stability, and obtainH’. Clearly, G is an
H'-join across(X, V(G) \ X). Besides, the number of vertices on “theside” of H' is exactly
l = ug(X), namely the number of twin classes &f. We then apply Lemma 2.8 and deduce that
G is an H” -join across(X, V(G)\ X) for H"” being some induced subgraph¥jf. In particular,
this meangs is aY;-join across(X, V(G) \ X), andl = ug(X) > k. O

3 Computing the twin classes

In the next section we will give a dynamic programming altfori to solve the feedback vertex set
problem on an input made by anvertexm-edge graphz and one of its rooted decomposition

4

tree(7,0). Note that the underlying graph of a clique-width expressibG is a rooted tree where
each internal node having at most two children, and the feaxein a bijection with the vertices
of GG. By contracting the internal nodes having one child, we re#lult in a rooted decomposition
tree of G. Moreover, it can also be obtained from the proof of Theorehtat the module-
width of this rooted decomposition tree is at most the cligidth of the clique-width expression.
Consequently, if the input to our algorithm is the gra@ghand a clique-widthk expression of7,
we can transform them in a straightforward manner to an inpade of G and one of its rooted
decomposition tree of module-width at mdst

For every internal node. of T with V,, being the vertex subset @f induced by the subtree
of T rooted atu, we will need to compute the twin classesigf as mentioned in the definition of
ue in Definition 2.4. For this, the algorithm given in [25] fortisforming a rank decomposition
into a cliquewidth expression can be used for a global rumiimO(n22%7(%)) In this section,
we will describe such a computation for every internal nadef 7', with global runtimeO(n?).

We will use the so-called partition refinement algorithngctinique (refer toe.g, [16, 26] for
details). Partitions will be represented by double-linksts. Arefinement operatioof a partition
Q=(Q1,Qq,...,Q) of V,, using A C V, as pivot is the act of splitting ever§; into Q; N A
and Q; \ A. The output of a refinement operation can be of two types. ftlmmade of one
partition of V, which is the result of removing all empty sets frqi@; N A, Q1 \ 4,Q2N A, Q2 \
A, QN A Qr\ A). We refer to these as one-to-one refinements. It can alsorbpased
of two partitions (one ofA and one ofV, \ A) which result from removing all empty sets from
(Q1NA,Q2NA,...,QrNA)and(Q1\A4,Q2\A4,...,Qr\ A). We refer to these as one-to-two
refinements. With the appropriate data structure, all tiygses of refinement operations can be
implemented to run irO(|A|) time for each operation (refer te,g, [16] for details).

A simple way to compute the twin class partitiondf is to initialize Q = (V;,) and, for every
vertexz € V(G) \ V4, perform an one-to-one refinement @f using the neighborhood (=) of
z as pivot. The correctness follows directly from the defamitdf twin classes. This computation
would haveO(m) runtime for each internal node of 7', hence a globaD (nm) runtime.

The main idea to reduce this runtime is to observe that, irati@/e operations, we can use
N(z) NV, as pivot instead ofV(z) (for everyz € V(G) \ V,,) without modifying the refined
partition of each step. However, the sum over every possijleand = € V(G) \ V,, of the
value |N(z) N V,| might still be large. We will observe a second fact. For aifjant Q =
(Q1,Q2,...,Qr) of X and a subsel” C X, we denote byQ[Y] the partition of Y which
results from removing all empty sets frof®; N Y, Q2 NY,...,QrNY).

Remark 3.1 Let w be an internal node of” with childrena and b. Let V,,, V,, and V} be the
vertex subsets af induced by the leaves of the subtree§ afoted atw, a, andb, respectively.
Let Qy, = (Quw(1),Qu(2),...,Qw(hy)) be the twin class partition oi/,. Then, initializing
Q = Q,[V,] and refiningQ using N(z) NV, as pivot for all z € V;, will result to the twin class
partition of V.

Basically, the algorithmic difference given by the remaskhat we can now be restricted to
z € V, instead of using alk € V(G) \ V, as before. The main point is that the sum over every
possibleV, and z € V}, of the value| N (z) N V,| will be at most twice the value + m (every
edge of G appears at most twice in the sum). We now implement Remark 3.1

First of all, the bottleneck of using/(z) NV, as pivot will be that, unlike the case with (z)
which can be read simply in the adjacency listof we will need to computeV (z) NV, for every
possibleV, and z. We do this as a preprocessing step as follows.

We prepare the tre& as described in [17] so that afterwards we can, given twcekeavand
y of T', compute the lowest common ancestorof z andy in 7" in O(1) time. This can also
be done in such a way that,df and b denote the children ofy, then we can irO(1) time decide
whetherz is a descendent aof or it is a descendent df. Then, for every internal node of the
tree T', with children ¢ and b, we initialize two tablestf,—’“ and Ng—’b that will contain, for
every vertexz in V, (resp.V,), the neighborhood of in V, (resp.V},). Now, we scan through
every edgery of G and compute the lowest common ancestof = and y, as well as the
childrena and b of w such thatr is a descendent af, and finally addz to N’~¢[y] andy to
N2=P[z]. Clearly, after scanning all edges 6f, we have thatV?—4[z] = N(z) NV, for all w,
a, b, andz. This preprocessing take3(n) time.

We come to the proper computation of the twin class parstiofhe twin class partition
associated to the root df only has one class, which 18(G). Suppose that we have computed
the twin class partitior@,, of an internal nodev having childrena andb. This partition Q,, is
stored in a double-linked list w.r.t. the data structuredulee partition refinement. Basically, the
following operations can operate directly on this datacitme, if we allow ourselves to modify
the double-linked list. However, the information on thertwiasses of/,, would then be lost.
For this reason, before continuing, we duplicate the dat&tstre of Q,, so that we store the twin
classes ofl,, in a private place of node. Then, we can comput@,,[V,] and Q,,[V;] simply
by performing an one-to-two refinement %, using eitherV,, or V;, as pivot (cf.V}, = V,, \ V,,).
for eachw. Duplication and refinement usirig, (or V},) as pivot takeO(n) time for every node
w, hence arO(n?) global runtime.

We then initialize @ = Q,[V,] and, for every entry: of the table N>~¢, refine Q using
N!—9[2] as pivot. As mentioned before, the main point of all thesegdares is that the sum of
the size of all possible pivots will now be at most twice th&uean + m. Hence, the global run-
time of this step is iMD(n+m). We deduce the following lemma, whose proof is straightémv
Recall that from the input of a cliquewidth expression(®f we can derive a rooted decomposi-
tion tree simply by contracting all internal nodes having ahild in the underlying graph of the
cliguewidth expression. The module-width of this deconitpws tree is at most the cliquewidth
of the expression.

Lemma 3.2 Given a graphG and either (7',0) a rooted decomposition tree ¢, or a clique-
width expression tree off. Then inO(n?) global runtime we can compute and store, for every
internal nodeu of T' with V,, being the vertex subset 6f induced by the leaves of the subtree of
T rooted atu, the partition ofV, into its twin classe%, (1), Qu(2), ..., Qu(hy).

4 Solving the Feedback Vertex Set Problem

Definition 4.1 A Feedback Vertex Set of a graghis a subset of vertice§ with G[V(G) \ S] a
forest. A Forest Inducing Set (Fl-set) of a graphis a subset of vertice§ with G[S] a forest.

Fact4.2 If S is a Fl-set of maximum cardinality theW (G) — S is a Feedback Vertex Set of
minimum cardinality.

We give dynamic programming algorithms that given a grépland a rooted decomposition
tree (7,0) of G will find the size of a minimum Feedback Vertex Set@f by computing the
size of a maximum Fl-set it’. For a noden of T, let V, be the vertices off mapped to leaves
in the subtree ofl" rooted ata. The runtime of the algorithm will be expressed as a functibn
e (Vy), i.e. the number of twin-classes of such vertex subggts

6

C
m@
B
1 2 3 4 5 6

Figure 1: In the above figure is an example containing 6 tiasses named 1,2,...,6 and a Fl-set X
having 11 vertices. T(X) contains 4 trees named A,B,C,D. Fhpattern of X will be the 5-tuple

< S,W,S" W' P(S) >, whereS = {12,24,34,44,33}, andW = {23} and S’ = {1,5} and
W' =1{2,3,4} and P(S) = {{12}, {24, 34,44},{33}}.

4.1 Two equivalence relations on Fl-sets: by Fl-classes afly Fl-patterns

Let nodea of T' haveh, = pua(V,) twin-classes@, (1), ..., Qa(hs). We first consider how a
Fl-set X C V,, interacts with twin-classes. We characteri¥eby a 5-tuple that we calPat,(X)
that records how the tre€8(X) in the forest induced by the FI-séf interact with twin-classes.
Note thatT'(X) may contain trees having only one vertex.

We first consider interaction ok on the set of pairs of twin-classes. Defif#¢ X) to be the
pairs (i,) such that there is no path @[X] between a vertex in twin-clasg, (i) and a vertex in
twin-classQ,(j). Define S(X) to be the pairgi, j) such that there is exactly one treeftf.X)
having a path between a vertex in twin-cla@s(i) and a vertex in twin-class),(j). Define
W(X) to be the pairgi, j) such that there are at least two treegi0X) having a path between
a vertex in twin-class), (i) and a vertex in twin-clas€), (7). Note thatZ(X), S(X), W(X) is
a partition of the set of pairs of indices of twin-classgs, j) : 1 < i < j < h,}, and thus given
S(X), W (X) we can uniquely identifyZ (X). Define alsoP(S(X)) to be the partition ofS(X)
into distinct trees, i.e. with two pair§, j) and (i, ;') belonging to the same class BfS(X))
if and only if the same tree iff’(X) has both a path between vertices in twin-clas9gsi) and
Q.(7) and a path between vertices in twin-claséggi’) and Q,(j').

Now we consider interaction ok on twin-classes. Defin&’(X), S'(X), W'(X) to be the
partition of the set of indiceg1,2, ..., h,} of twin-classes such that if € Z’(X) there is no
vertex in X belonging toQ, (i), and ifi € S’(X) there is exactly one vertex iX belonging to
Q.(i), and ifi € W’/(X) there are at least two vertices X belonging toQ, (7).

Definition 4.3 For a Fl-set X C V,, define the Fl-patternPat,(X) to be the 5-tuple
<S5(X), W(X), 5"(X), W/(X),P(5(X)) >.

Our dynamic programming algorithm computing the size of aimam Fl-set in graphG will
store a tableél'ab, at each node of the rooted decomposition trée of G. For the computation
of maximum FIl-sets by a bottom-up traversal®fthe following equivalence relation on Fl-sets
contained inV, is clearly important.

Definition 4.4 For two Fl-setsX,Y C V, we defineX =, Y if forany Fl-setZ C V(G) \ V,
the setX U Z is a Fl-setif and only ifY" U Z is a Fl-set. The equivalence classesxf are called
Fl-classes and for a Fl-seX C V,, we denote by'Iclass,(X) the Fl-class containingX .

The tableTab, will be indexed by Fl-patterns, and the following lemma viiél crucial for
correctness of the algorithm.

Lemma 4.5 If Pat,(X) = Pat,(X’) fortwo Fl-setsX, X’ C V, thenX =, X', i.e. Flclass,(X) =
Flclassq,(X').

Proof Consider a Fl-setZ C V(G) \ V,. We show that ifG[X U Z] contains a cycle then
G[X' U Z] contains a cycle, and the statement in the lemma will follgveypmmetry. LetC' be
a chordless cycle iit7[X U Z] that has a minimum number of edges between a verteX @ind
a vertex of Z. We call these crossing edges, and note that there are atvi@asrossing edges in
C.

Let uyv, be a crossing edge af with u; € X,v; € Z. Let the cycleC continue from
v; by a pathP(vq1,v2) in G[B] to vertexv, € Z and then a crossing edgeus, then a path
P(ug,us) from uy to uz in G[X] and again a crossing edggus, etc. We thus get a total
orderinguivy, ugvs, ..., ugrver ON all crossing edges af, with u;sin X andv;sin Z.

In this way we getk paths of cycleC' belonging toG[X], i.e. k — 1 paths P (ug;, ug;4+1) for
1 < i< k-1, and also the pattP(uy,u1). Note that any such path will contain edges and
vertices from a single tree df(X), even if such a tree may be trivial, i.e. with; = ug;41 Or
ugx = uy. Moreover, since the cyclé€' has the minimum number of crossing edges no tree of
T(X) contains a vertex belonging to two of thelsgaths.

Consider nowCr = {j : Q.(j) N{u; : 1 < i < 2k} # (0}, i.e. the indices of twin-classes
containing a vertex involved in a crossing edge. Note that(j) N {u; : 1 < i < 2k}| can be at
most two. Thus, to be able to exchange théseaths inG[X] by equivalent paths it7[X'] we
only need that the set of twin-classes containing respedgtaero, one or at least two vertices &f
are the same as the set of twin-classes containing corgaieapectively zero, one or at least two
vertices of X', and this indeed holds sind@at,(X) = Pat,(X’) implies thatS’(X) = S'(X’)
and W/(X) = W/(X’) and hence als&’(X) = Z'(X’). Thus, sincePat,(X) = Pat,(X")
we can exchange the set &f paths inG[X], named P(ug;, u9;+1) for 1 < i < k—1 and
P(ugk,u1), by k paths inG[X'] named P (uj;, uy;) for 1 < i < k —1 and P(ul,, u}), in
such a way that vertex;, for any 1 < i < 2k, is in the same twin class ag, and also such that
all the new paths belong to distinct trees7ifY’). The latter statement is guaranteed by the fact
that P(S(X)) = P(S(X’))} and W(X) = W(X’). Since any two vertices in the same twin
class have the same neighborsdnwe have that als@/[X’ U Z] contains a cycle and the lemma
follows. O

Corollary 4.6 The relation on Fl-set§ X C V,, : X is a Fl-set} given byPat,(X) = Pat,(Y)
is an equivalence relation that is a refinement=f.

4.2 Tables and algorithm
The tableT'ab, at nodea of the rooted decomposition tréé of G, is defined as follows:

Definition 4.7 The tableT'ab, will be indexed by Fl-patterns. For a Fl-patterR, , let F'Iclass,(Py)
be the Fl-class of the Fl-sets having Fl-pattef, or let it be undefined if no such Fl-set exists.
Thus Flclassq(P,) = Flclass,(X) for any Fl-setX C V, having Pat,(X) = P,. For a
Fl-class C' let maxz(C) be the maximum cardinality of a Fl-set @. If FIclass,(P,) is unde-
fined then definenax(FIclass,(P,)) to be —oco. The tableTab, is correct when it satisfies the
following two conditions:

1. For any Fl-patternP, we haveT'ab,[P,] < max(FIclass,(P,))
2. For any Fl-classC' there is Fl-patternP, with FIclass,(P,) = C andTab,|P,| = max(C)

8

WheneverTab,[P,] > 0 we also store with this table index some arbitrary Fl-Bgtwith
Pat,(F,) = P,. We are now ready to describe the algorithm computing thdirality of a
maximum Fl-set ofG. Let us start by noting that based on the above definitionprtagimum
entry over all table entries at the root 6fwill correctly solve the problem.

The algorithm starts by initializing all table entriestax.

At any leafa of the treeT we haveV, = {§(a)} and setTab,[},0,0,0,0] = 0 (and store
the empty Fl-sef?,) and Tab, [0, 0, {1},0,0] = 1 (and store the Fl-sefti(a)} consisting of§(a)
belonging to the twin-clas€),(1)).

In a bottom-up traversal of the tré&, when reaching an internal node having childrena
andb we do the following:

For all pairs of patterng’, from T'ab, and P, from Tab, with T'ab[P,] > 0 and T'ab[P,] > 0
Let F,, and F; be the Fl-sets stored with these indices
If G[F, U Fp] is acyclic (i.e. if F, U F}, is a Fl-set)
ComputeP,, = Pat,,(F, U Fy)
If Tab,|P,] = —oo store F,, U F;, with this index
Taby[Py] = max(Taby [Py, Taby[P,] + Taby[FPp))

4.3 Correctness and runtime

We consider correctness of the algorithm and start by a lestroaing that the equivalence re-
lation given by Fl-classes are well-behaved with respettiecchild-parent relation of the rooted
decomposition tree.

Lemma 4.8 Let w be an inner node of” with childrena and b. If A =, A’ and B =, B’ then
AUuB=,A UB.

Proof It suffices to show that i C V(G) \ V,, is a Fl-set such thatl U B U C' is a Fl-set, then
also A’ U B’ UC is a Fl-set, and the lemma will follow by symmetry. We simppply Definition
4.4 twice. Firstly, sinced =, A’ and AU (B U C) is a Fl-set, we have that’ U (BUC) is a
Fl-set. Secondly, sinc®& =, B’ and BU (A’ U C) is a FI-set, we have tha®’ U (A’ U C) is a
Fl-set. O

Lemma 4.9 Based on correct tables of childréfiab,, T'aby, the algorithm will correctly update
the parent tablel’ab,, .

Proof We first show thatl'ab,, will satisfy condition 1 in Definition 4.7. If after updatinge
have T'ab, | P,] = k for some integelk then there must be a paf,, P, with T'ab,[P,] = k,
and Taby[Py] = ky with k& = k, + k;, and since condition 1 holds for the children tables we have
max(FIclassq,(P,)) > k, andmaxz(FIclassy(P,)) > ky. Thus, there exists Fl-sets, C V,
and X;, C V,, with Flclass,(X,) = Flclass,(P,) and Flclassy(Xp) = Flclassy(P,) and

| X,| > kg and | X,| > k. Moreover, we have stored Fl-sels and Fp,, with Flclass,(F,) =
FIclassq(P,) and Flclassy(Fy) = Flclassy(P,), by Lemma 4.5, and in the algorithm we have
checked thatt, U F}, is a FI-set. We now apply Lemma 4.8 to conclude that &lsaJ X, is a FlI-
set. By Lemma 4.8 we also get the stronger statementftthalass,, (F, U Fy,) = FIclass,(X,U
X3). We have thus shown that fab,[P,] = k then there must exist a FI-séf, U X; with

| X0 UXy| >k and Flclass, (X, U Xyp) = Flclass,(P,) so that condition 1 is satisfied.

9

We now show thaf"ab,, will satisfy condition 2 in Definition 4.7. Consider a Fl-slC' of
=.. Let Z C V,, be a Fl-set in this class. Note thdt = ZNV, and Z, = ZNV, must be Fl-sets.
Since condition 2 holds for the children tables we therefaee Pa and P, with T'ab,[FP,] > | Z,]
and Taby[Py] > |Zy| and FIclass,(P,) = Flclass,(Z,) and Flclassy(Py) = Flclassy(Zp).
When the algorithm considers the pai, P, we find stored Fl-set$, and F;, which by Lemma
4.5 have the property thadtIclass,(F,) = Flclass,(Z,) and Flclassy(Fy) = Flclassy(Zp).
Therefore, applying Lemma 4.8 we get that singgu 7, is a Fl-set thenf, U F;, is a Fl-set.
Moreover, we also get the stronger statementhat F'Iclass,, (F,UF,) = Flclass,(Z,UZp).
We have thus shown that for any Fl-claSscontaining a Fl-seZ C V,, there will be a Fl-pattern
P, = Paty,(F, U Fy) with Flclass,(P,) = C such thatT'ab,[Py,] > |Z.| + | Zs| = |Z|. We
conclude that also condition 2 will be satisfied. O

Theorem 4.10 Given either a rooted decomposition trég, §) of module-widthk of a graphG,
or a k-expression of a grapl& of cliquewidth at most:, we can inO(22+*1°5#,2) steps solve
the Minimum Feedback Vertex Set problem(on

Proof Consider first the case of input being a rooted decompoditem By Lemma 3.2 we can
compute twin classes for all nodes of the tree in tih@?). Note that for any node of the tree
T the number of twin-classes &f, is at mostk. By Definition 4.7 and Lemma 4.9 the maximum
value over all entries in the table at the root of our dynamagpamming algorithm will correctly
solve the problem.

For the runtime, the bottleneck is the inner node updateeghae which loops over afiairs
of patternsP,, P,. The number of patterns is bounded by the number of choicehédb-tuples
S, W, S", W' P(S). An upper bound on the number of choices for the third andtfiocompo-
nents jointly (3-partitions of thé twin-classes) is$*, while for the first and second components
jointly (3-partitions of unordered pairs of twin-classésy 3k22+k . The number of choices for the
fifth component can be (loosely) upper bounded by the numiyeartitions of unordered pairs of
indices of thek twin-classes. This gives an upper bound on the total nurri’qmttlarns2’f2 logh
In the update procedure we spend for each pair of patterrsatrmostO(nk?) to check if the
union of two Fl-sets are a Fl-set and to compute the new patteaking use of the fact that two
vertices in the same twin class have the same neighborssatisut. Since there are at mast
inner nodes the runtime in the theorem follows.

Note that within the same runtime we could instead have talseinput ak-expression of a
graphG of cliquewidth at most. This since by Theorem 2.5 the module-width®fis no larger
than the clique-width of7, and from thek-expression we easily derive a rooted decomposition
tree of module-width at most. O

Note: After submitting this paper we have learned that Ganian dim&hly have a manuscript [13]
with an algorithm solving FVS in im® (rw?|V (G)|? + 25" rw3|V (G)|) parameterized by the
rankwidth rw of GG, when a rank decomposition of widthw is given.

References

[1] V. Bafna, P. Berman, and T. Fuijito. A-approximation algorithm for the undirected feedback
vertex set problemSIAM Journal on Discrete Mathemati¢2:289-297, 1999.

10

[2] R. Bar-Yehuda, D. Geiger, J. Naor, and R. Roth. Approxioraalgorithms for the feedback
vertex set problem with applications to constraint sattéfe and Bayesian inferenc&IAM
Journal on Computin@7:942—-959, 1998.

[3] B.-M. Bui-Xuan, J. A. Telle, and M. VatshelleH -join decomposable graphs and algorithms
with runtime single exponential in rankwidthto appear in Discrete Applied Mathematics:
special issue of GROW

[4] B.-M. Bui-Xuan, J. A. Telle, and M. Vatshelle. Fast FPTQalithms for vertex subset and
vertex partitioning problems using neighborhood unions.
http://arxiv.org/abs/0903.4796

[5] J. Chen, F. Fomin, Y. Liu, S. Lu, and Y. Villanger. Impralélgorithms for the Feedback
Vertex Set Problems. IRroceedings of WADS'QLNCS 4619, pages 422—-433, 2007.

[6] F. Chudak, M. Goemans, D. Hochbaum, and D. Williamson. rinpl-dual interpretation
of two 2-approximation algorithms for the feedback vertek@oblem in undirected graphs.
Operations Research Lette?®:111-118, 1998.

[7] B. Courcelle, J.A. Makowsky, U. Rotics. Linear time sable optimization problems on
graphs of bounded clique widtiTheory of Computing Systen®3(2):125-150, 2000.

[8] F. Dehne, M. Fellows, M. Langston, F. Rosamond, and Kv&ie. AnO(2°%)n3) FPT
Algorithm for the Undirected Feedback Vertex Set ProblemProceedings of COCOON’Q5
LNCS 3595, pages 859-869, 2005.

[9] R.Downey and M.FellowsParameterized Complexit@gpringer-Verlag (1999)

[10] W. Espelage, F. Gurski, E. Wanke. How to Solve NP-hardpBrProblems on Clique-Width
Bounded Graphs in Polynomial Time. Proceedings WG 2001:1PB7

[11] G. Even, J. Naor, B. Schieber, and L. Zosin. Approximgtminimum subset feedback sets
in undirected graphs with applicationSIAM Journal on Discrete Mathemati@8:255-267,
2000.

[12] F. Fomin, S. Gaspers, A. Pyatkin, and |. Razgon. On theimlim Feedback Vertex Set
Problem: Exact and Enumeration Algorithmgorithmica 52:293-307, 2008.

[13] R. Ganian and P. Hlinény. On Parse Trees and Myhillelde-type Tools for handling
Graphs of Bounded Rank-width.
http://www.fi.muni.cz/"hlineny/Research/papers/MNto ols-dam3.pdf

[14] M. Goemans and D. Williamson. Primal-dual approxiroatalgorithms for feedback prob-
lems in planar graphgCombinatorical8(1):37-59, 1998.

[15] J. Guo, J. Gramm, F. Hiffner, R. Niedermeier, and S.A¢ge. Compression-based fixed-
parameter algorithms for feedback vertex set and edgetizigémon. Journal of Computer and
System Scienc@2(8):1386-1396, 2006.

[16] M. Habib, C. Paul, L. Viennot. Partition Refinement Teitjues: An Interesting Algorithmic
Tool Kit. International Journal of Foundations on Computer Sciene$ 10, 2, 147-170, 1999

[17] D.Hareland R. Tarjan. Fast algorithms for finding neasemmon ancestorSIAM Journal
on Computing13(2):338—-355, 1984.

11

[18] P. Hlinény, S. Oum. Finding branch-decompositions sank-decompositionsSIAM Jour-
nal on Computing8(3):1012-1032, 2008.

[19] R. Karp. Reducibility among combinatorial problems.Gomplexity of Computer Compu-
tations pages 85-103, 1972.

[20] J. Kleinberg and A. Kumar. Wavelength conversion iniecgdtnetworks. Journal of Algo-
rithms 38:25-50, 2001.

[21] T. Kloks, C. Lee, J. Liu. New Algorithms fok-Face Coverk-Feedback Vertex Set, and
k-Disjoint Cycles on Plane and Planar GraphsPtoceedings of WG'0RNCS 2573, pages
282-295, 2002.

[22] D. Kobler, U. Rotics. Edge dominating set and coloringsgraphs with fixed clique-width.
Discrete Applied Mathematick26(2-3): 197-221 (2003).

[23] A. Koutsonas and D. Thilikos. Planar Feedback Vertexd®e Face Cover: Combinatorial
Bounds and Subexponential Algorithms. Rroceedings of WG'Q8.NCS 5344, pages 254—
274, 2008.

[24] J.-M. Lanlignel. Autour de la décomposition en coupé. D. thesisUniversité Montpellier
I, 2001.

[25] S. Oum, P. Seymour. Approximating cliqgue-width andrimtawidth. J. Combin.Theory Ser.
B 96(4):514-528, 2006.

[26] R. Paige, R. Tarjan. Three partition refinement algons. SIAM Journal on Computing
16(6):973-989, 1987.

[27] V. Raman, S. Saurabh, and C. Subramanian. Faster fixadhpter tractable algorithms for
finding feedback vertex set&CM Transactions on Algorithm&3):403—-415, 2006.

[28] M. Rao. Clique-width of graphs defined by one-vertexeasions. Discrete Mathematics
308(24):6157-6165, 2008.

[29] N. Robertson, P. Seymour. Graph minors X: Obstructiorisee-decompositionJlournal on
Combinatorial Theory Series B2:153-190, 1991.

12

