
Fast dynamic programming for locally checkable vertex subset and

vertex partitioning problemsI

Binh-Minh Bui-Xuana, Jan Arne Telleb, Martin Vatshelleb,∗

a CNRS – Université Paris 6, France.
b Department of Informatics, University of Bergen, Norway.

Abstract

Given a graph G we provide dynamic programming algorithms for many locally checkable
vertex subset and vertex partitioning problems. Their runtime is polynomial in the number of
equivalence classes of problem-specific equivalence relations on subsets of vertices, defined on
a given decomposition tree of G . Using these algorithms all these problems become solvable
in polynomial time for many well-known graph classes like interval graphs and permutation
graphs (Belmonte and Vatshelle [1]). Given a decomposition of boolean-width k we show
that the algorithms will have runtime O(n42O(k2)), providing the first large class of problems
solvable in fixed-parameter single-exponential time in boolean-width.

1. Introduction

When solving graph problems by divide-and-conquer or by dynamic programming we
need to recursively divide the input graph G . A natural way to do this is to recursively
partition the vertices of the graph in two parts. The resulting decomposition of G can
be stored as a full binary tree whose leaves are in bijection with the n vertices of G .
In this paper we assume that we are given such a decomposition tree of G and focus on
fast dynamic programming algorithms for a large class of locally checkable vertex subset
and vertex partitioning problems. Depending on the problem being solved and the given
decomposition tree we define equivalence relations on vertex subsets and give algorithms
with runtime polynomial in n and the number of equivalence classes of these relations. In
a companion paper by Belmonte and Vatshelle [1] it is shown that for many families of
graphs, like permutation graphs, interval graphs, Dilworth k graphs, we can in polynomial
time find a decomposition tree where the number of such equivalence classes is polynomial
in n . Combined with the results in this paper we get on all those graph families polynomial-
time algorithms solving the class of locally checkable vertex subset and vertex partitioning
problems.

ISupported by the Norwegian Research Council, project PARALGO.
∗Corresponding author. Tel: (+47) 55 58 42 00. Fax: (+47) 55 58 41 99.
Email addresses: buixuan@lip6.fr (Binh-Minh Bui-Xuan), telle@ii.uib.no (Jan Arne Telle),

vatshelle@ii.uib.no (Martin Vatshelle)

Preprint submitted to Theoretical Computer Science March 30, 2012

σ ρ d Standard name VP ∃ MAX MIN

N {d,d+1,...} d d-Dominating set 3 P P NPC
{d} N d+1 Induced d-Regular Subgraph 2 ? NPC ?
{d,d+1,...} N d Subgraph of Min Degree ≥ d ? P P NPC
{0, 1,..., d} N d+1 Induced Subg. of Max Degree ≤ d ? P NPC P
{0} {0, 1} 2 Strong Stable set or 2-Packing 4 P NPC P
{0} {1} 2 Perfect Code or Efficient Dom. set 4 NPC NPC NPC
{0, 1} {0, 1} 2 Total Nearly Perfect set 3 P NPC P
{0, 1} {1} 2 Weakly Perfect Dominating set 3 NPC NPC NPC
{1} {1} 2 Total Perfect Dominating set 3 NPC NPC NPC
{1} N 2 Induced Matching 2 P NPC P
{1} N+ 2 Dominating Induced Matching 2 NPC NPC NPC
N {1} 2 Perfect Dominating set 2 P P NPC
{0} N 1 Independent set 3 P NPC P
N N+ 1 Dominating set 3 P P NPC
{0} N+ 1 Independent Dominating set 3 P NPC NPC
N+ N+ 1 Total Dominating set 2 P P NPC

Table 1: Some vertex subset properties expressible as (σ, ρ)-sets, with N = {0, 1, ...} and N+ = {1, 2, ...} .
Column d shows that we must count up to d neighbors. Column VP shows the smallest k for which
the question of partition into k such sets is NP-complete. Columns ∃ , MAX and MIN show complexity
of existence, maximization and minimization over such sets, with P, NPC and ? denoting Polytime, NP-
Complete and unknown (to us).

This class includes many well-known NP-hard problems related to domination, indepen-
dence and homomorphism, and also their vertex weighted versions. For example, vertex
subset problems like Perfect Code, Maximum Induced Matching, Minimum Perfect Domi-
nating Set and in general existence and optimization problems over any of the vertex subset
properties listed in Table 1. For fixed integer d problems like Minimum d-Dominating Set,
Induced d-Regular Subgraph, Minimum Subgraph of Degrees ≥ d , and d-Vertex Coloring.
Also, the problem of deciding if the input graph has a partitioning of its vertex set into a
fixed number q of sets each having a property listed in Table 1. For a fixed simple graph
H also problems like H -Coloring, H -Homomorphism, H -Covering, H -Partial Covering,
and H -Role Assignment, see Table 2, asking for a homomorphism, with some possible local
constraints, from the input graph G to the target graph H .

These are optimization problems over locally checkable neighborhood conditions, as de-
fined in Section 2. For example, in the Minimum d-Dominating Set problem we optimize
over vertex subsets S of the input graph G such that any vertex not in S has at least d
neighbors in S . To check this condition note that we must count S -neighbors up to d , but
no further since it does not matter if a vertex has d neighbors in S or if it has more than d
neighbors in S . In a bottom-up traversal of the decomposition tree T we solve the problem
on induced subgraphs of G of increasing size. For the subgraph induced by A ⊆ V (G) two
subsets X, Y ⊆ A will be equivalent w.r.t. the d-Dominating Set constraint if any vertex v

2

not in A either has the same number of neighbors in X and Y , or at least d in each. The
number of equivalence classes necdA of vertex subsets will in this way depend on the value
d as given by the problem, on the various vertex subsets A as given by the decomposition
tree T , and on the bipartite graphs induced by edges having exactly one endpoint in A as
given by the graph G . In Section 5 we give dynamic programming algorithms solving locally
checkable vertex subset problems in time polynomial in all the necdA , and in Section 6 we
extend this result to vertex partitioning problems.

Edges d Standard name NP-Complete

N 1 H-coloring or H-homomorphism H bipartite
N+ 1 H-role assignment or H-locally surj. hom. H on 3 vertices or more
{1} 2 H-covering or H-locally bij. hom. e.g. H k-regular for k ≥ 3. Open
{0, 1} 2 H-partial covering or H-locally inj. hom. Harder than H-covering. Open

Table 2: Various homomorphism problems for fixed simple graph H . These are expressible as locally
checkable vertex partitioning problems with the degree constraint matrix Dq being the adjacency matrix of
H with 1-entries replaced by value in column Edges, 0-entries replaced by {0} , and q = |V (H)| . Column
d shows that we must count up to d neighbors. NP-completeness known for fixed H having property listed
in the last column [2], with dichotomy known for the first two rows.

As shown in the companion paper [1], for many families of intersection graphs, like convex
graphs and trapezoid graphs, one can in polynomial time find a decomposition tree T such
that necdA is polynomial in n , for any subset A appearing as the leaves of a subtree of T ,
and any fixed value d . This implies polynomial-time algorithms for the locally checkable
vertex subset and vertex partitioning problems on these families of intersection graphs. On
the other hand, for graph families where at least one of these problems remains NP-hard
we cannot expect the existence of decomposition trees with every necdA polynomial in n .
In such cases it is common to define a width parameter of graphs and apply the theory
of fixed parameter algorithms. One can, for each value of d , define a width parameter of
graphs that captures the minimum, over all decomposition trees T of a graph G , of the
maximum necdA for any A ⊆ V (G) at the leaves of a subtree of T . For the value d = 1 the
resulting width parameter is exactly 2boolw(G) , where boolw(G) is the boolean-width of G .
Moreover, we show in Section 7 that for any d and A we have necdA ≤ (nec1A)d×log2(nec

1
A) .

This implies that given a graph G and a decomposition tree of boolean-width boolw our
dynamic programming algorithms are single-exponential fixed-parameter tractable in boolw .
For vertex subset problems the runtime becomes O(n423d×boolw2

) and for problems asking
for a partition of the vertex set into q sets the runtime becomes O(n423qd×boolw2

).
Width parameters of graphs have many applications in the field of graph algorithms and

especially in Fixed Parameter Tractable (FPT) algorithmics, see e.g. Downey and Fellows [3],
Flum and Grohe [4], and Hliněný et al. [5]. Since the locally checkable vertex subset and
vertex partitioning problems are expressible in monadic second-order logic it follows from the
well-known theorem of Courcelle and Makowsky [6] that they are fixed-parameter tractable
when parameterized by either the tree-width, branch-width, clique-width, rank-width or
boolean-width of the input graph. Although the runtime resulting from this theorem contains

3

a highly exponential factor (tower of powers), the problems behave very well for tree-width
tw and branch-width bw : Given a decomposition tree of tree-width tw , they can be solved in
O∗(2O(tw)) and O∗(2O(bw)) time [7]. This is not the same situation for clique-width cw , where

until now the best runtime contained a O∗(22poly(cw)
) double exponential factor [8]. Having

small boolean-width is witnessed by a decomposition of the graph into cuts with few different
unions of neighborhoods across the cut. This makes the decomposition natural to guide
dynamic programming algorithms to solve problems, like Maximum Independent Set, where
vertex sets having the same neighborhoods can be treated as equivalent [9]. In this paper we
extend such an observation to the much larger class of locally checkable vertex subset and
vertex partitioning problems. As mentioned above, the runtime of our algorithms expressed
by boolean-width boolw of the given decomposition tree is O∗(2O(boolw2)), which can be
interpreted as O∗(2O(cw2)) since for the clique-width cw resulting from this decomposition
tree we have cw ≥ boolw [9]. For clique-width this improves by an exponential factor the
best previous runtimes [8] and it provides for the first time a large class of problems for which
dynamic programming gives runtime single exponential in boolean-width. It implies quasi-
polynomial algorithms solving all these problems on random graphs, since it has been shown
that a random graph on n vertices where the edges are drawn with respect to a uniform
distribution almost surely has boolean-width Θ(log2 n), and it is easy to find a decomposition
tree witnessing it [10]. On an arbitrary graph G a decomposition of optimal boolean-width
can be computed in time O(2.52n) [11]. Heuristic algorithms finding decompositions for
boolean-width compare well with heuristics for tree-width, in particular for dense graphs [12],
opening for the possibility of a practical application of the algorithms given here.

The paper is organized as follows. In Section 2 we define the class of problems and the
decomposition trees used. In Section 3 we give an intuitive description of our algorithms,
using the Maximum Induced Matching problem as example. In Section 4 we give a pre-
processing step computing representatives to be used as indices of the dynamic programming.
In Section 5 we give algorithms for vertex subset problems and in Section 6 algorithms for
vertex partitioning problems. In Section 7 we define boolean-width and show its relation to
necdA that allows us to express runtime of our algorithms as a function of boolean-width. We
end in Section 8 with some conclusions and open problems.

2. Locally checkable problems and rooted decomposition trees

We deal with simple, undirected graphs. The complement of a vertex subset A of a
graph G = (V (G), E(G)) is denoted by A = V (G) \ A . The neighborhood of a vertex x is
denoted by N(x) and for a subset of vertices X we denote the union of their neighborhoods
by N(X) =

⋃
x∈X N(x). We denote by G[X] the graph induced by X ⊆ V (G). To

ensure uniqueness of certain algorithms, e.g. for computing representatives of the equivalence
relations on vertex subsets, we assume a total ordering σ on the vertex set of G which stays
the same throughout the entire paper. For easy disambiguation, we usually refer to vertices
of a graph and nodes of a tree.

We want to solve graph problems using a divide-and-conquer approach. To this aim,
we need to store the information on how to recursively divide the input graph instance. A

4

standard way to do this is to use a decomposition tree, for our purposes a rooted tree.

Definition 1. A decomposition tree of a graph G is a pair (T, δ) where T is a full binary
tree (i.e. T rooted with every non-leaf having two children) and δ a bijection between the
leaf set of T and the vertex set of G . For a node a of T let the subset of V (G) in bijection
δ with the leaves of the subtree of T rooted at a be denoted by Va .

We will be interested in the following problems as defined in [7].

Definition 2. Let σ and ρ be finite or co-finite subsets of natural numbers. A subset S of
vertices of a graph G is a sigma-rho set, or simply (σ, ρ)-set, of G if

∀v ∈ V (G) : |N(v) ∩ S| ∈
{
σ if v ∈ S,
ρ if v ∈ V (G) \ S.

Table 1 shows some classical vertex subset properties expressed as (σ, ρ)-sets. The class
of locally checkable vertex subset problems consist of finding a minimum or maximum (σ ,ρ)-
set in an input graph G , possibly on vertex-weighted graphs. This includes many NP-hard
problems as indicated in Table 1. For NP-completeness results see [13, 14, 15, 16, 17, 18].

Since σ and ρ are either finite or co-finite we can check locally if S is a (σ, ρ)-set by
counting for each vertex v the number of S -neighbors only up to d(σ, ρ), defined as follows.

Definition 3. Let d(N) = 0. For every finite or co-finite set µ ⊆ N , let d(µ) = 1 +
min(maxx∈Nx : x ∈ µ,maxx∈Nx : x /∈ µ). Let d(σ, ρ) = max(d(σ), d(ρ)).

For example, d({1}) = 2 which is one more than the largest number contained in the finite
set {1} , while d({1, 2, ...}) = 1 which is one more than the largest number not contained in
the co-finite set {1, 2, ...} , and d({1}, {1, 2, ...}) = 2 which is the maximum of d({1}) and
d({1, 2, ...}).

We can also ask for a partition of V (G) into q classes, with each class satisfying a certain
(σ, ρ)-property, as follows.

Definition 4. A degree constraint matrix Dq is a q by q matrix with entries being fi-
nite or co-finite subsets of natural numbers. A Dq -partition in a graph G is a partition
{V1, V2, ..., Vq} of V (G) such that for 1 ≤ i, j ≤ q we have ∀v ∈ Vi : |N(v) ∩ Vj| ∈ Dq[i, j] .

The locally checkable vertex partitioning problems consist of deciding if G has a Dq

partition. NP-hard problems fitting into this framework include the question of deciding if
an input graph has a partition into q (σ, ρ)-sets, which is in most cases NP-complete for
small values of q , see the column VP in Table 1. It also includes for any fixed graph H the
homomorphism problems listed in Table 2. Let us mention that extending the algorithms
we give here to handle also the case of finding an extremal value (maximum or minimum)
of the cardinality of a vertex partition class over all Dq -partitions is straightforward.

5

3. Detailed example: Maximum Induced Matching

We first describe our algorithms intuitively, taking as our main example the vertex subset
maximization problem over (σ, ρ)-sets with σ = {1} and ρ = N . We thus want to compute
the cardinality of a maximum set of vertices S such that in G[S] all vertices have degree
one, the so-called Maximum Induced Matching problem. In a bottom-up traversal of T
we will solve the problem on induced subgraphs of increasing size, at node a of T storing
information on partial solutions to the problem on G[Va] in a table Taba .

A partial solution will have two parts (Sa, Za) where

• Sa ⊆ Va such that in G[Sa] all vertices (of Sa) have degree at most one

• Za ⊆ Va such that in G[Sa ∪ Za] vertices of Sa have degree exactly one

We call (Sa, Za) a partial solution to the Max Induced Matching problem on G[Va] , in
which Za is a witness of a necessary, but not sufficient, condition for Sa to be extendible
into an induced matching of G .

The number of partial solutions could be exponential in n but many of them are super-
fluous. If two subsets Za, Ya ⊆ Va have the property that for every v ∈ Va the vertex v
has either zero neighbors in each of Za and Ya , or exactly one neighbor in each, or at least
two neighbors in each, then it is not hard to check that for the Maximum Induced Matching
problem (Sa, Za) is a partial solution if and only if (Sa, Ya) is a partial solution, and one of
the two will be superfluous. This motivates the following equivalence relation on subsets of
vertices, which applies to the general σ, ρ case using d(σ, ρ)-neighbor equivalence. For the
Maximum Induced Matching problem we have d({1},N) = 2.

Definition 5 (d-neighbor equivalence). Let d be a non-negative integer, G be a graph and
A ⊆ V (G). Two vertex subsets X ⊆ A and Y ⊆ A are d-neighbor equivalent w.r.t. A ,
denoted by X ≡dA Y , if:

∀v ∈ A : min(d, |X ∩N(v)|) = min(d, |Y ∩N(v)|).

Let nec(≡dA) be the number of equivalence classes of ≡dA .

In the example above we had Za ≡2
Va
Ya and for fixed Sa we need to store a partial

solution (Sa, Za) for at most one member of the equivalence class of Za . A similar thing
applies to Sa , if Sa ≡2

Va
S ′a and both (Sa, Za) and (S ′a, Za) are partial solutions and |Sa| ≥ |S ′a

then (S ′a, Za) is superfluous since we are solving a maximization problem. In light of this
we index the table Taba of partial solutions at node a of T by the Cartesian product of the
two sets of equivalence classes ≡2

Va
× ≡2

Va
(or rather by representatives of these classes) and

store the following information:

Taba[X][Y]
def
= maxS⊆Va{|S| : S ≡2

Va X and in G[S ∪ Y] all vertices of S have degree 1}

or minus ∞ if no such S exists. Note that (S, Y) is a partial solution for G[Va] . In this
way we contain the runtime by a function of the number of equivalence classes nec(≡2

Va
) and

nec(≡2
Va

).

6

It is instructive to consider in some detail the initialization of table entries at leaf a of
T associated to vertex δ(a) = v ∈ V (G). In that case we have Va = {v} with two classes
of ≡2

Va
(assuming v has at least one neighbor) with representatives {v} and ∅ , we have

Va = V (G) \ {v} with three classes of ≡2
Va

(assuming v has at least two neighbors) with
representatives R0, R1 and R2 . The class of Ri for i = 0, 1 consists of those subsets of
V (G) \ {v} containing i vertices of N(v), and for i = 2 those containing ≥ 2 vertices of
N(v). According to the definition of table entries we initialize as follows.

• Taba[∅][R0] = Taba[∅][R1] = Taba[∅][R2] = 0

• Taba[{v}][R0] = Taba[{v}][R2] = −∞

• Taba[{v}][R1] = 1

At the root r of T we have Vr = V (G) with a single equivalence class of ≡2
Vr

, and we

have Vr = ∅ with a single equivalence class of ≡2
Vr

. The single entry of Tabr will contain

the cardinality of the largest S ⊆ V (G) such that in G[S] all vertices have degree 1, i.e. the
solution to the Maximum Induced Matching problem.

At the combine step we have a node w of T with children a, b such that Vw = Va ∪ Vb
and we compute partial solutions to G[Va ∪Vb] based on already computed partial solutions
to G[Va] and G[Vb] . For any dynamic programming on decomposition trees it is important
to keep in mind the below observation, that follows directly from definitions.

Observation 1. If in the tree T node w has children a and b then {Va, Vb, Vw} forms a
3-partition of V (G).

Another crucial and easy observation is the coarsening of neighborhood equivalence
classes when traversing from a child node a to its parent node w .

Observation 2. Let d be a non-negative integer, G be a graph with Va ⊆ Vw ⊆ V (G) and
let X, Y ⊆ Va . If X ≡dVa Y then X ≡dVw Y .

In particular we have that if X ≡2
Va
Y or X ≡2

Vb
Y then X ≡2

Vw
Y , so that ≡2

Vw
is a

coarsening of the two relations ≡2
Va

and ≡2
Vb

. Likewise ≡2
Va

and ≡2
Vb

are coarsenings of ≡2
Vw

.

The algorithm will iterate over all triples of representatives Ra, Rb, Rw from the three most
refined equivalence relations, ≡2

Va
, ≡2

Vb
, ≡2

Vw
, compute the representatives of the resulting

coarser relations: Rw of ≡2
Vw

(from Ra and Rb), Ra of ≡2
Va

(from Rb and Rw), Rb of

≡2
Vb

(from Ra and Rw), and then update Tabw[Rw][Rw] by Tab[Ra][Ra] + Tab[Rb][Rb] . For

correctness it will be crucial that for any Sa ≡2
Va
Ra and Sb ≡2

Vb
Rb the following holds: If

in G[Sa ∪Rb ∪Rw] all vertices of Sa have degree 1 and in G[Sb ∪Ra ∪Rw] all vertices of Sb
have degree 1, then in G[Sa ∪ Sb ∪ Rw] all vertices in Sa ∪ Sb will have degree 1. We refer
to the formal description and correctness proof for details, see Figure 3.

The case of ρ 6= N is handled similarly. For example, consider Maximum Dominating
Induced Matching for which it is NP-complete simply to decide if such a set exists. In
this case we maximize over σ = {1}, ρ = N+ sets. Partial solutions (Sa, Za) must now

7

Va

Sa

Vb

Vw

Ra Rb

Rw

Rb
Ra

Rw

Va Va
Vb

Vw

Rw

Sa

Sb

Vb

Vw

Ra

Va
Vb

Vw

Rb

Sb

Figure 1: Solving Maximum Induced Matching by dynamic programming using the 2-neighbor equivalence
relation on vertex subsets. At inner node w of T with children a, b we have partition Va, Vb, Vw of V (G).
Bottom left shows three arbitrary representatives Ra, Rb, Rw of refined relations as circles, and as boxes
the computed representatives Ra, Rb, Rw of the resulting coarser relations. Top line shows partial solutions
(Sa, Ra) from Taba[Ra][Ra] and (Sb, Rb) from Tabb[Rb][Rb] . Bottom right shows resulting partial solution
(Sa ∪ Sb, Rw) from Tabw[Rw][Rw] .

8

also ensure that in G[Sa ∪ Za] vertices in Va \ Sa have degree at least one. The fact that
d(N+) = 1 < d({1}) = 2 does not matter, as the 1-neighbor equivalence relation is a
coarsening of the 2-neighbor equivalence relation.

4. Computing representatives of d-neighbor equivalence classes

Before explaining the dynamic programming we show how to compute representatives of
the ≡dVw and ≡d

Vw
relations used for indexing the table Tabw at node w of the tree T . We

denote by repdVw(X) the representative of X ⊆ Vw in the relation ≡dVw , and by repd
Vw

(Y)

the representative of Y ⊆ Vw in the relation ≡d
Vw

. For simplicity we define this using Vw
instead of a generic subset A , but note that everything we say about X ⊆ Vw , repdVw(X)

and ≡dVw will hold also for repd
Vw

(Y), Y ⊆ Vw and ≡d
Vw

.

Definition 6 (representative). We assume that a total ordering of the vertices of V (G) is
given. For every X ⊆ Vw , the representative repdVw(X) is defined as the lexicographically
smallest set R ⊆ Vw such that |R| is minimized and R ≡dVw X .

To check algorithmically if two subsets of Vw are equivalent w.r.t. Vw we use the d-
neighborhood vector w.r.t. Vw defined as follows.

Definition 7 (d-neighborhood). For X ⊆ A ⊆ V (G), the d-neighborhood of X w.r.t. A ,
denoted Nd

A(X), is a multiset of nodes from A , such that, ∀v ∈ A the number of occurrences
of v in Nd

A(X) is equal to min{|N(v) ∩X|, d} . Since we have assumed a fixed ordering of
the vertices we will store Nd

A(X) as an |A|-vector over {0, 1, ..., d} .

Note that X ≡dA X ′ if and only if Nd
A(X) = Nd

A(X ′).

Lemma 1. For any node w of T we can compute a list LRVw containing all representatives
w.r.t. ≡dVw in time O(nec(≡dVw) · log(nec(≡dVw)) · n2).

We also compute a data structure that given X ⊆ Vw , in time O(log(nec(≡dVw)) · |X| · n)
will allow us to find a pointer to repdVw(X) in LRVw .

Proof. Algorithm 1 computes the list LRVw and the list LNRVw of d-neighborhoods w.r.t.
Vw of the members of LRVw . Before adding a representative R to the list LRVw we check
if the list LNRVw contains the d-neighborhood Nd

Vw
(R). Therefore all elements of the

list LRVw have different d-neighbourhoods. All the representatives added to the list LRVw

are also expanded by any of the vertices of Vw . Assume for contradiction that X is a
minimal representative such that Nd

Vw
(X) is not in the list LNRVw . Then ∀u ∈ X we have:

∀Y ∈ LNRVw : X \ u 6≡ Y since then Nd
Vw

(X) would have been added to LNRVw . Meaning
that Nd

Vw
(X \ u) is not in LNRVw contradicting that X is minimal.

The total number of representatives to be added to LRVw and d-neighborhoods added
to LNRVw is nec(≡dVw). The total number of possible representatives R′ to be considered
is nec(≡dVw) · n . Computing the union R ∪ {v} and the d-neighbouthood Nd

Vw
(R′) can be

done in O(n) time by copying the d-neigborhood vector of R and updating the entries

9

Algorithm 1 List of representatives and their d-neighborhood

INPUT: Graph G , subset A ⊆ V (G) and integer d
Initialize LRA , LNRA , NextLevel to be empty
Initialize LastLevel = {∅}
while LastLevel != ∅ do

for R in LastLevel do
for every vertex v of A do
R′ = R ∪ {v}
compute N ′ = Nd

A(R′)
if R′ 6≡dA R and N ′ is not contained in LNRA then

add R′ to both LRA and NextLevel
add N ′ to LNRA at the proper position
add pointers between R′ and N ′

end if
end for

end for
set LastLevel = NextLevel , and NextLevel = ∅

end while
OUTPUT: LRA and LNRA

for vertices in N(v) ∩ Vw . If we realize the list LNRVw as a balanced binary search tree
checking for containment can be done in O(log(nec(≡dVw)) · n). Inserting into the list LRVw

can be done in constant time. So in total the construction of LRVw and LNRVw takes time
O(nec(≡dVw) · log(nec(≡dVw)) · n2).

Given a subset X ⊆ Vw we can generate the d-neighborhood Nd
Vw

in O(|X| · n) time.
Then we can binary search in the list LNRVw to find a pointer to the representative in time
O(log(nec(≡dVw)) · |X| · n).

5. Dynamic programming for vertex subset problems

We show in this section how to apply dynamic programming on a decomposition tree
(T, δ) of a graph G to solve a (σ, ρ) locally checkable vertex subset optimization problem.
Note that we do not assume any further information from the input of (T, δ) other than T
being a tree with internal nodes of degree three and δ a bijection between its leaves and
V (G). As is customary, we let the algorithm follow a bottom-up traversal of T .

With each node w of T we associate a table data structure Tabw that will store partial
solutions to the problem we are solving. Note that we must satisfy the constraint imposed
both by σ and by ρ and that we must account for the domination both ’from the inside’,
i.e. from Vw , and also the expectation ’from the outside’, i.e. from Vw . This motivates the
following definitions.

10

Definition 8. Let G be a graph, A ⊆ V (G), and µ ⊆ N . For X ⊆ V (G), we say that
X µ-dominates A if ∀v ∈ A : |N(v) ∩ X| ∈ µ . For X ⊆ A , Y ⊆ A , the pair (X, Y)
σ, ρ-dominates A if (X ∪ Y) σ -dominates X and (X ∪ Y) ρ-dominates A \X .

Letting d = d(σ, ρ) we note that for Y ≡d
A
Y ′ we have Nd

A
(Y) = Nd

A
(Y ′), i.e. the d-

neighborhood of Y and Y ′ w.r.t. A are equal, see Definition 7. This proves the following
lemma showing that σ, ρ-domination behaves well w.r.t. the d(σ, ρ)-neighbor equivalence
relation.

Lemma 2. Let G be a graph and A ⊆ V (G) and σ, ρ finite or co-finite subsets of non-
negative integers with d(σ, ρ) = d. Let X ⊆ A, Y, Y ′ ⊆ A, and Y ≡d

A
Y ′ . Then (X, Y)

σ, ρ-dominates A if and only if (X, Y ′) σ, ρ-dominates A.

The index set of the table Tabw at w will be LRVw × LRVw
and its contents is defined

as follows.

Definition 9. Let opt stand for either function max or function min , depending on whether
we are looking for a maximum or minimum (σ, ρ)-set, respectively. For every node w of T ,
for X ⊆ Vw and Y ⊆ Vw , let RX = repdVw(X) and RY = repd

Vw
(Y). Let d = d(σ, ρ). We

define the contents of Tabw[RX][RY] as:

Tabw[RX][RY]
def
=


optS⊆Vw{|S| : S ≡dVw RX and (S,RY) σ, ρ-dominates Vw},
−∞ if no such set S exists and opt = max,
+∞ if no such set S exists and opt = min.

Note that Tabw has nec(≡dVw) × nec(≡d
Vw

) entries, cf. Definition 5. At the root r of T

the value of Tabr[rep
d
Vr

(X)][∅] (for all X ⊆ V (G)) will be the size of a maximum, resp.
minimum, (σ, ρ)-set of G (cf. Vr = V (G) and ≡dVr has only one equivalence class).

For initialization, firstly, for every node w of T the value of every entry of Tabw will be
set to +∞ or −∞ depending on whether we are solving a minimization or maximization
problem, respectively.

Updating the leaves: For a leaf l of T , we then perform the following update: letting
δ(l) = v ∈ V (G), for every representative R w.r.t. ≡dV (G)\{v} , we set:

• If |N(v) ∩R| ∈ σ then Tabl[{v}][R] = 1.

• If |N(v) ∩R| ∈ ρ then Tabl[∅][R] = 0.

Updating the internal nodes: In a bottom-up traversal of the tree T , for an inner node
w of T with children a and b , the algorithm proceeds as follows.

• Loop over all triples Rw ∈ LRd
Vw

, Ra ∈ LRd
Va

, Rb ∈ LRd
Vb

and do:

Compute Rw = repdVw(Ra ∪Rb), Ra = repd
Va

(Rb ∪Rw) and Rb = repd
Vb

(Ra ∪Rw)

Update Tabw[Rw][Rw] = opt(Tabw[Rw][Rw],Taba[Ra][Ra] + Tabb[Rb][Rb]).

11

The following lemma will be useful in the correctness proof of this update.

Lemma 3. For a graph G, let A,B,W be a 3-partitioning of V (G), and let Sa ⊆ A, Sb ⊆ B
and Sw ⊆ W . (Sa, Sb ∪ Sw) σ, ρ-dominates A and (Sb, Sa ∪ Sw) σ, ρ-dominates B if and
only if (Sa ∪ Sb, Sw) σ, ρ-dominates A ∪B .

Proof. Let S = Sa ∪ Sb ∪ Sw . Consider x ∈ Sa, x′ ∈ A \ Sa and y ∈ SB, y′ ∈ B \ Sb . By
Definition 8 (Sa, Sb ∪ Sw) σ, ρ-dominates A iff for every such x, x′ we have |N(x) ∩ S| ∈ σ
and |N(x′) ∩ S| ∈ ρ . Also, (Sb, Sa ∪ Sw) σ, ρ-dominates B iff for every such y, y′ we have
|N(y) ∩ S| ∈ σ and |N(y′) ∩ S| ∈ ρ .

Again, by Definition 8 (Sa ∪ SB, Sw) σ, ρ-dominates A ∪ B iff for all z ∈ Sa ∪ Sb and
z′ ∈ (A∪B) \ (Sa ∪Sb) we have |N(z)∩S| ∈ σ and |N(z′)∩S| ∈ ρ , to finish the proof.

Lemma 4. The table of an inner node is updated correctly.

Proof. Let node w have children a, b and assume Taba, Tabb have been filled correctly.
We show that after executing the update at node w the table Tabw is filled according to
Definition 9. We first show show that if Tabw[Rw][Rw] = k then there exists Sw ⊆ Vw
with |Sw| = k and Sw ≡dVw Rw such that (Sw, Rw) σ, ρ-dominates Vw in G . For this
note that, based on the update step and assumed correctness of children tables, there must
exist indices Ra ∈ LRVa and Rb ∈ LRVb , with Sa ≡dVa Ra and Sb ≡dVb Rb such that
(Sa, Ra) σ, ρ-dominates Va , and (Sb, Rb) σ, ρ-dominates Vb , and |Sa ∪ Sb| = s , and with
Ra = repd

Va
(Rb∪Rw) and Rb = repd

Vb
(Ra∪Rw). We claim that Sa∪Sb is the desired Sw . Since

(Sb∪Rw) ≡d
V a
Ra and (Sa, Ra) σ, ρ-dominates Va it follows from Lemma 2 that (Sa, Sb∪Rw)

σ, ρ-dominates Va . Likewise, (Sb, Sa ∪ Rw) σ, ρ-dominates Vb . We deduce from Lemma 3
that (Sa ∪ Sb, Rw) σ, ρ-dominates Va ∪ Vb = Vw . It remains to show that Sa ∪ Sb ≡dVw Rw .
By Observation 2 we have Ra ≡dVw Sa and Rb ≡dVw Sb so that Ra ∪ Rb ≡dVw Sa ∪ Sb . Since
we assumed Ra ∪Rb ≡dVw Rw we therefore have Sa ∪ Sb ≡dVw Rw as desired.

For the other direction, we need to show for every Rw ∈ LRVw and Rw ∈ LRVw
that if

there is a set Sw ≡dVw Rw such that (Sw, Rw) σ, ρ-dominates Vw , then after the update the
value of Tabw[Rw][Rw] is ≤ |Sw| if opt = min and ≥ |Sw| if opt = max . Let Sa = Sw ∩ Va
and Sb = Sw∩Vb . The algorithm loops over all triples of representatives: at some point it will
check (Ra, Rb, Rw), where Ra = repdVa(Sa) and Rb = repdVb(Sb). We know that (Sa∪Sb, Rw)
σ, ρ-dominates Vw so it follows from Lemma 3 that (Sa, Sb ∪ Rw) σ, ρ-dominates Va . Note
that Ra as computed in the update satisfies Ra ≡dVa (Sb∪Rw) so that it follows from Lemma 2

that (Sa, Ra) σ, ρ-dominates Va . Hence, after the update the value of Taba[Ra][Ra] will be
≤ |Sa| if opt = min and ≥ |Sa| if opt = max . Arguing analogously we have that the value
of Tabb[Rb][Rb] will be ≤ |Sb| if opt = min and ≥ |Sb| if opt = max . Thus, to conclude that
the value of Tabw[Rw][Rw] will be ≤ |Sa|+ |Sb| = |Sw| if opt = min and ≥ |Sa|+ |Sb| = |Sw|
if opt = max all we need to show is that Rw ≡dVw Ra ∪ Rb . By Observation 2 we have
Ra ≡dVw Sa and Rb ≡dVw Sb so that Ra∪Rb ≡dVw Sa∪Sb . Since Sw = Sa∪Sb and we assumed
Rw ≡dVw Sw we therefore have Ra ∪Rb ≡dVw Rw as desired.

12

Theorem 1. For every n-vertex graph G given along with a decomposition tree (T, δ),
with necd(T, δ) the maximum nec(≡dVw) and nec(≡d

Vw
) over all nodes w of this tree, any

(σ, ρ)-vertex subset problem on G with d = d(σ, ρ) can be solved in time O(n4 ·necd(T, δ)3).

Proof. Correctness follows by structural induction on the tree T using Lemma 4 with the
base case being the leaf initialization, so that at the root r of T the single index of the
table Tabr will contain the size of the optimal (σ, ρ) set in G . For complexity analysis,
for every node w of T , we basically call the first computation of Lemma 1 once, then loop
through every triplet Rw , Ra , Rb of representatives, and there are at most necd(T, δ)

3 such
triplets. For each triplet we call the second computation of Lemma 1 three times, and since
|Rw|, |Ra|, |Rb| and log(necd(T, δ)) all are at most n , we can perform the table update in
O(n3) time.

If the input graph G comes with a weight function on the vertices w : V (G) → R we
may wish to find the (σ, ρ) set with largest sum of weights, or with smallest sum of weights.
This can be accomplished in the same runtime and requires only a very small change to the
algorithm. For S ⊆ V (G) let w(S) = Σv∈Sw(v). The tables must be defined to store the
optimum value over w(S) rather than over |S| and the algorithms remain the same apart
from the leaf initialization.

6. Dynamic programming for vertex partitioning problems

We show in this section how to apply dynamic programming on a decomposition tree
(T, δ) of a graph G to solve a locally checkable vertex partitioning problem defined by a
degree constraint matrix Dq of finite and co-finite entries, see Definition 4. Let d = d(Dq) =
maxi,j d(Dq[i, j]).

Definition 10. Let G be a graph and let A ⊆ V (G) be a vertex subset of G . Two q -
tuples (X1, X2, ..., Xq) and (Y1, Y2, ..., Yq) of subsets of A are d-neighbor equivalent w.r.t.

A , denoted by (X1, X2, ..., Xq) ≡q,dA (Y1, Y2, ..., Yq), if:

∀i∀v ∈ A : min(d, |N(v) ∩Xi|) = min(d, |N(v) ∩ Yi|)

Observation 3. (X1, X2, ..., Xq) ≡q,dA (Y1, Y2, ..., Yq) if and only if ∀iXi ≡dA Yi . A conse-

quence is that the number of equivalence classes of ≡q,dA is at most nec(≡dA) to the power q .

This Observation follows directly from Definitions 5 and 10. The dynamic program-
ming algorithm will again follow a bottom-up traversal of T and maintain a table at
each node of T with partial solutions. In the sequel we will define the values of Tabw
directly indexed by the equivalence classes. For this we need to first define representa-
tives. For a node w of T , and X = (X1, X2, ..., Xq) : Xi ⊆ Vw , we define repq,dVw(X) =
(repdVw(X1), rep

d
Vw

(X2), ..., rep
d
Vw

(Xq)).

Definition 11. Let G be a graph and A ⊆ V (G). Let X = (X1, X2, ..., Xq) ∈ Aq and
Y = (Y1, Y2, ..., Yq) ∈ A

q
. We say that (X ,Y) Dq -dominates A if for all i, j we have that

(Xj ∪ Yj) Dq[i, j]-dominates Xi (cf. Definition 8).

13

Definition 12. For every node w of T , for every X = (X1, X2, ..., Xq) ∈ Aq and every

Y = (Y1, Y2, ..., Yq) ∈ A
q
, let RX = repq,dVw(X) and RY = repq,dVw(Y). We define the contents

of Tabw[RX][RY] as

Tabw[RX][RY]
def
=

 TRUE
if ∃ partition S = (S1, S2, ..., Sq) of Vw such that:

S ≡q,dVw RX and (S,RY) Dq-dominates Vw
FALSE otherwise.

It follows by definition that G has a Dq -partition if and only if some entry in the table
at the root of T has value TRUE . The computation of the list of all representatives w.r.t.
≡q,dVw is basically q times the one given in the previous section. The same situation holds for
the computation of a representative from the input of a q -tuplet. Firstly, initialize all values
in all tables to FALSE .

Updating the leaves: for a leaf l of T , like before, let δ(l) = v ∈ V (G) and let A = {v} .
Firstly, there are q possible classes v could belong to in a q -partition of A (recall that
empty sets are allowed). We call their representatives respectively RX1 , RX2 , . . . , RXq .
Secondly, for vertices in B = V (G) \ {v} note that they are either neighbors of v or not.
Hence we have at most d+ 1 choices (namely 0, 1, ..., d− 1, ≥ d) for each of the q partition
classes. (A consequence is that Tabl has at most q(d+1)q entries.) For every representative
RY = (Y1, Y2, . . . , Yq) w.r.t. ≡q,dB , we have that (RXi

,RY) Dq -dominates {v} if and only if
∀j|N(l) ∩ Yj| ∈ Dq[i, j] . Accordingly, we perform the following leaf update for every i and
for every RY :

• Tabl[RXi
][RY] is set to be TRUE if and only if ∀j |N(v) ∩ Yj| ∈ Dq[i, j] .

Updating the internal nodes: in the following,
⋃
q denotes the componentwise union

of two q -tuples. For a node w with children a and b , the algorithm performs the following
steps.

• Loop over all triples of representatives Rw of ≡q,d
Vw

, Ra of ≡q,dVa , Rb of ≡q,dVb and do:

Compute Rw = repq,dVw(Ra

⋃
qRb), Ra = repq,d

Va
(Rb

⋃
qRw), Rb = repq,d

Vb
(Ra

⋃
qRw)

If Tabw[Rw][Rw] = FALSE then Tabw[Rw][Rw] = Taba[Ra][Ra] ∧ Tabb[Rb][Rb]

Theorem 2. For every n-vertex, m-edge graph G given along with a decomposition tree
(T, δ) and an integer d. Deciding if G has a Dq -partition, with d = maxi,j d(Dq[i, j]), can
be solved in time O(n4 · q · necd(T, δ)3q).

Proof. The complexity analysis is very similar to the one given in Theorem 1, except we
need to compute one reprsentative for each of the q parts, and uses the bound in Lemma 3.
The correctness proof follows the same style as the proof of Lemma 4, Some steps are not
explained here because they were explained in Lemma 4.

14

For the correctness, let a, b be the children of w in T , assume Taba and Tabb are correct.
(⇒) For this direction of the proof we have that Tabw[Rw][Rw] = TRUE . Then there must
exist some Ra,Rb such that Taba[Ra][Ra] = TRUE and Tabb[Rb][Rb] = TRUE , where
Ra = repdVa(Rb

⋃
qRw) and Rb = repdVb(Ra

⋃
qRw). Hence there exists Sa partition of

Va and Sb partition of Vb such that (Sa,Ra) Dq -dominates Va (Sb,Rb) Dq -dominates Vb .
This means that ∀i, j : (Saj ∪ Raj) Dq[i, j]-dominates Sai and ∀i, j : (Sbj ∪ Rbj

) Dq[i, j]-

dominates Sbi . It then follows that: ∀i, j : (Saj ∪ Sbj ∪ Rwj
) Dq[i, j]-dominates Sai and

∀i, j : (Saj∪Sbj∪Rwj
) Dq[i, j]-dominates Sbi . It then follows that: ∀i, j : (Swj

∪Rwj
) Dq[i, j]-

dominates Swi
. Which means (S,Rw) Dq -dominates Vw .

(⇐) For this direction of the proof we have that there exists a partition S = (S1, ...Sq)
of Vw such that: (S,Rw) Dq -dominates Vw . This means that ∀i, j : (Swj

∪ Rwj
) Dq[i, j]-

dominates Swi
. Let Sa,Sb be the componentwise intersection of Sw with Va and Vb re-

spectively. We then have: ∀i, j : (Swj
∪ Rwj

) Dq[i, j]-dominates Sai and ∀i, j : (Swj
∪

Rwj
) Dq[i, j]-dominates Sbi . Hence ∀i, j : (Saj ∪ Sbj ∪ Rwj

) Dq[i, j]-dominates Sai and
∀i, j : (Saj ∪ Sbj ∪ Rwj

) Dq[i, j]-dominates Sai . Let Ra = repd
Va

(Sb
⋃
qRw) and Rb =

repd
Vb

(Sa
⋃
qRw) then ∀i, j : (Saj ∪Raj) Dq[i, j]-dominates Sai and ∀i, j : (Sbj ∪Rbj

) Dq[i, j]-

dominates Sbi . Let Ra = candVa(Sa) and Rb = candVb(Sb) then Taba[Ra][Ra] = TRUE and
Tabb[Rb][Rb] = TRUE . Since the algorithm goes through all triples, it will at some point
go through (Ra,Rb,Rw). And it will set Tabw[Rw][Rw] to true, once it is true it will never
change.

By induction all tables will be correct.

7. Runtime expressed by boolean-width

We give an alternative definition of boolean-width, equivalent to the standard one [9].

Definition 13 (Boolean-width). Let G be a graph and A ⊆ V (G). The bool-dim : 2V (G) →
R function of a graph G is defined as

bool-dim(A) = log2(nec(≡1
A))

Let (T, δ) be a rooted decomposition tree of G . The boolean-width of (T, δ) is

boolw(T, δ) = max
a∈V (T)

{bool-dim(Va)}

The boolean-width of a graph G is the minimum boolean-width over all its rooted decom-
position trees boolw(G) = min

(T,δ)ofG
{boolw(T, δ)}

The classes of ≡1
A are in a bijection with what is called the Boolean row space of the

bipartite adjacency matrix of the graph on edges with exactly one endpoint in A , i.e. the
set of vectors that are spanned via Boolean sum (1+1=1) by the rows of this matrix, see the
monograph [19] on Boolean matrix theory. ¿From this bijection we get that the bool-dim
function is symmetric, see [19, Theorem 1.2.3]. In particular, for any node w of T we have
nec(≡1

Vw
) = nec(≡1

Vw
).

15

Lemma 5. Let G be a graph and A ⊆ V (G). Then, for every X ⊆ A, there is R ⊆ X
such that R ≡dA X and |R| ≤ d · bool-dim(A). Moreover, nec(≡dA) ≤ 2d·bool-dim(A)2 .

Proof. We prove the first statement, namely bounding |R| by induction on d . For d ≤ 1
the lemma follows from Lemma 6 in [9]. Let S ⊆ X be an inclusion minimal set such that
N(S) ∩ A = N(X) ∩ A e.g. S ≡1

A X . Hence from this Lemma with d = 1 we have that
|S| ≤ bool-dim(A). Assume the induction hypothesis true up to d− 1, then we show it true
for d . By induction hypothesis there exists R′ ⊆ (X \ S) such that R′ ≡d−1A (X \ S) and
|R′| ≤ bool-dim(A) · (d− 1). Thus it is enough to show R = R′ ∪ S ≡dA X .

We partition the nodes of A into (P,Q) such that ∀v ∈ P , we have |N(v) ∩ (X \ S)| =
|N(v) ∩ R′| and ∀v ∈ Q , we have |N(v) ∩ (X \ S)| ≥ d − 1 and |N(v) ∩ R′| ≥ d − 1. For
every vertex v ∈ P , since S ∩ R′ = ∅ and S ⊆ X , we know |N(v) ∩ X| = |N(v) ∩ (X \
S)| + |N(v) ∩ S| = |N(v) ∩ R′| + |N(v) ∩ S| = |N(v) ∩ R| . We have N(X) = N(S) and
since d > 1 we have Q ⊆ N(S). For every vertex v ∈ Q , since |N(v)∩ (X \ S)| ≥ d− 1 we
get |N(v) ∩X| ≥ d and since |N(v) ∩ R′| ≥ d − 1 we get |N(v) ∩ R| ≥ d . Since (P,Q) is
a partition we get R ≡dA X and |R| ≤ bool-dim(A) · d , thus by induction the lemma holds
for all d .

To bound the number of equivalence classes nec(≡dA) we know from the previous argu-
ments that we only need to find the equivalence classes among the subsets of A of size at most
d · bool-dim(A). Two vertices x, x′ ∈ A are twins across {A,A} if N(x) ∩ A = N(x′) ∩ A .
Let H be obtained from the bipartite subgraph of G with color classes A,A after doing twin
contraction of all twins. We know that every node of V (H)∩A has a unique neighborhood,
hence |V (H)∩A| ≤ 2bool-dim(A) . For any subset of A there is a multiset of V (H)∩A with the
same d-neighbourhood, and a trivial bound on number of multisets of size d · bool-dim(A)
of V (H) ∩ A gives us: nec(≡dA) ≤ 2d·bool-dim(A)2 .

Together with Theorem 1 we get the following.

Corollary 1. For every graph G given along with a decomposition tree (T, δ) any (σ, ρ)-
vertex subset problem on G with d = d(σ, ρ) can be solved in time O(n4 · q · 23d·boolw(T,δ)2).

Together with Theorem 2 and Observation 3 we get the following.

Corollary 2. For every graph G given along with a decomposition tree (T, δ), deciding if G
has a Dq -partition, with d = maxi,j d(Dq[i, j]), can be done in time O(n4 · 23qd·boolw(T,δ)2).

8. Conclusions and Open Problems

The runtime of the algorithms given here for (σ, ρ)-problems and Dq -problems have the
square of the boolean-width boolw as a factor in the exponent, i.e. O(boolw2) in the ex-
ponent. For problems where d = 1 we can in fact improve this to a factor linear in the
exponent [9], but that requires a special focus on these cases. We hope that also for the
other problems (with any constant value of d) we could get runtimes with a better expo-
nential factor, say O(boolw log boolw) in the exponent or maybe even linear. We must then
improve the bound in Lemma 5. For the linear bound we must show that the number of

16

d-neighborhood equivalence classes is no more than the number of 1-neighborhood equiv-
alence classes raised to some function of d . This runtime question can also be formulated
as a purely algebraic one. First generalize the concept of Boolean sums (1 + 1 = 1) to
d-Boolean sums (i + j = min(i + j, d)). For a Boolean matrix A let Rd(A) be the set of
vectors over {0, 1, ..., d} that arise from all possible d-Boolean sums of rows of A . To get
O(boolw log boolw) in the exponent it would suffice to show that there is a function f such
that |Rd(A)| ≤ |R1(A)|f(d) log log |R1(A)| .

References

[1] R. Belmonte, M. Vatshelle, Graph classes with structured neighborhoods and algorith-
mic applications, Theoretical Computer Science Submitted to this issue (?) (2012) ?

[2] J. Fiala, J. Kratochv́ıl, Locally constrained graph homomorphisms - structure, complex-
ity, and applications, Computer Science Review 2 (2008) 97–111.

[3] R. G. Downey, M. R. Fellows, Parameterized Complexity, Springer Verlag, 1999.

[4] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer Verlag, 2006.

[5] P. Hliněný, S.-i. Oum, D. Seese, G. Gottlob, Width parameters beyond tree-width and
their applications, The Computer Journal 51 (3) (2008) 326–362.

[6] B. Courcelle, J. A. Makowsky, U. Rotics, Linear time solvable optimization problems
on graphs of bounded clique width, Theory of Computing Systems 33 (1999) 125–150.

[7] J. A. Telle, A. Proskurowski, Algorithms for vertex partitioning problems on partial
k -trees, SIAM Journal on Discrete Mathematics 10 (4) (1997) 529–550.

[8] M. U. Gerber, D. Kobler, Algorithms for vertex-partitioning problems on graphs with
fixed clique-width, Theoretical Computer Science 299 (1-3) (2003) 719–734.

[9] B.-M. Bui-Xuan, J. A. Telle, M. Vatshelle, Boolean-width of graphs, Theoretical Com-
puter Science 412 (39) (2011) 5187–5204.

[10] I. Adler, B.-M. Bui-Xuan, Y. Rabinovich, G. Renault, J. A. Telle, M. Vatshelle, On the
boolean-width of a graph: Structure and applications, in: Proceedings of WG, 2010,
pp. 159–170.

[11] M. Vatshelle, New width parameters of graphs, Ph.D. thesis, University of Bergen
(2012).

[12] E. M. Hvidevold, S. Sharmin, J. A. Telle, M. Vatshelle, Finding good decompositions
for dynamic programming on dense graphs, in: Proceedings of IPEC, 2011, pp. 219–231.

[13] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W. H. Freeman and Co., 1978.

17

[14] J. Kratochv́ıl, Perfect Codes in General Graphs, Academia Praha, 1991.

[15] T. J. Schaefer, The complexity of satisfiability problems, Proceedings of STOC 10 (1978)
216–226.

[16] P. Heggernes, J. A. Telle, Partitioning graphs into generalized dominating sets, Nordic
Journal of Computing 5 (2) (1998) 128–142.

[17] J. A. Telle, Vertex partitioning problems: Characterization, complexity and algorithms
on partial k-trees, Ph.D. thesis, University of Oregon (1994).

[18] O. Amini, I. Sau, S. Saurabh, Parameterized complexity of the smallest degree-
constrained subgraph problem, in: Proceedings of IWPEC, 2008, pp. 13–29.

[19] K. H. Kim, Boolean matrix theory and applications, Marcel Dekker, 1982.

18

