
H -join decomposable graphs and algorithms with runtime
single exponential in rankwidth

Binh-Minh BUI-XUANa, † Jan Arne TELLEa, ‡ Martin VATSHELLEa, ‡

a Department of Informatics, University of Bergen, Norway.
[buixuan,telle,martinv]@ii.uib.no

Abstract

We introduce H -join decompositions of graphs, indexed by a fixed bipartite graph H .
These decompositions are based on a graph operation that we call H -join, which adds edges
between two given graphs by taking partitions of their two vertex sets, identifying the classes
of the partitions with vertices of H , and connecting classes by the pattern H . H -join de-
compositions are related to modular, split and rank decompositions.

Given an H -join decomposition of an n -vertex m -edge graph G we solve the Maximum
Independent Set and Minimum Dominating Set problems on G in time O(n(m+2O(ρ(H)2))) ,
and the q -Coloring problem in time O(n(m + 2O(qρ(H)2))) , where ρ(H) is the rank of the
adjacency matrix of H over GF(2).

Rankwidth is a graph parameter introduced by Oum and Seymour, based on ranks of
adjacency matrices over GF(2). For any positive integer k we define a bipartite graph Rk

and show that the graphs of rankwidth at most k are exactly the graphs having an Rk -join
decomposition, thereby giving an alternative graph-theoretic definition of rankwidth that does
not use linear algebra.

Combining our results we get algorithms that, for a graph G of rankwidth k given
with its width k rank-decomposition, solves the Maximum Independent Set problem in time
O(n(m+2

1
2 k2+ 9

2 k×k2)) , the Minimum Dominating Set problem in time O(n(m+2
3
4 k2+ 23

4 k×
k3)) and the q -Coloring problem in time O(n(m+2

q
2 k2+ 5q+4

2 k×k2q×q)) . These are the first
algorithms for NP-hard problems whose runtimes are single exponential in the rankwidth1.

1 Introduction

A key tool in the area of graph algorithms is the concept of decomposing a graph into a tree
structure. Many variants have been studied, like modular, split and rank decompositions. In this
paper we introduce H -join decompositions, another tree-like decomposition of graphs based on a
graph operation that we call H -join. The H -join operation is indexed by a fixed bipartite graph H
and adds edges between two given graphs by taking partitions of their two vertex sets, identifying
the classes of the partitions with vertices of H , and connecting classes by the pattern H . The
formal definitions and a discussion of relations to some other graph decompositions are given in
Section 2. For this to be a good algorithmic tool we should choose a graph H that satisfies the
following desiderata list:

†Part of this work done while the first author was a PhD student at LIRMM, Univ. Montpellier II, CNRS, and
supported by the French National Research Agency, project GRAAL.

‡Supported by the Norwegian Research Council, project PARALGO.
1For a polynomial function poly we call 2poly(k) single exponential in k .

1

• given an H -join decomposition of a graph G several important NP-hard problems should
be solvable fast on G

• there should be a relatively fast algorithm that finds an H -join decomposition of an input
graph G , if it exists

• interesting classes of graphs should have H -join decompositions, alternatively we could
use a family of graphs H1,H2,H3, ... such that every G is Hi -decomposable for some i

In Section 3 we address the first item and show that regardless of which graph H is chosen we
can solve several NP-hard optimization problems on G by dynamic programming along an H -join
decomposition of G . We will show this for the problems of computing a Maximum Independent
Set, Maximum Clique, Minimum Dominating Set and Vertex q -Coloring. The runtime of these
algorithms will depend single exponentially on ρ(H) , the rank of the adjacency matrix of H over
GF(2).

In Section 4 we define, for any positive integer k , a bipartite graph Rk having 2k vertices in
each color class, and show that the graphs of rankwidth at most k are exactly the graphs having an
Rk -join decomposition. Combining our algorithms from Section 2 with the powerful results that
hold for rankwidth [18, 5] this means that all three items on the desiderata list are satisfied for the
family R1, R2, R3,

Let us say a few words about rankwidth. Several decompositions define a graph “width”
parameter, with the most important from an algorithmic point of view being, in order of dis-
covery: treewidth, branchwidth, cliquewidth and rankwidth. The first two of these parameters
are “less powerful” than the last two, in the sense that a graph class has bounded treewidth iff
it has bounded branchwidth [27], it has bounded cliquewidth iff it has bounded rankwidth [24],
and if it has bounded treewidth then it has bounded cliquewidth but not the other way around
[4]. The rankwidth of a graph is never larger than its cliquewidth, nor its branchwidth, nor its
treewidth plus one [23]. In this sense rankwidth, which has been investigated quite heavily in
recent years [6, 7, 18, 22, 23] is the most powerful of the four parameters. Many NP-hard graph
optimization problems have fixed-parameter tractable (FPT) algorithms when parameterized by
these graph width parameters, see the recent paper by Hliněný et al [19] for an overview. As re-
flected by the two first items in our desiderata list, these FPT algorithms usually have two stages:
a first stage computing the right decomposition of the input graph and a second stage solving the
problem using the decomposition. For a long time there was no good first stage algorithm for
cliquewidth, and rankwidth was in fact introduced by Oum and Seymour [24] as a tool to help
compute a decomposition for cliquewidth.

Recently, Hliněný and Oum found an FPT algorithm that given a graph G on n vertices and
a parameter k will decide if G has rankwidth at most k and if so output a rank decomposition of
width k in time O(f(k)n3) [18]. Between rankwidth rw(G) and cliquewidth cw(G) we have
the connection rw(G) ≤ cw(G) ≤ 2rw(G)+1 [24]. Moreover, a rank decomposition of width k
of G can be turned into a (2k+1)-expression that is then used as the cliquewidth decomposition
of G . Note that in going from rankwidth to cliquewidth some exponential jump is required, as
it follows by results of Corneil and Rotics [4] that for any k there is a graph G with rankwidth
k and cliquewidth at least 2k/2−1 − 1 . Because of this exponential jump, if we want algorithms
with runtime single exponential in rankwidth, we cannot go via a cliquewidth decomposition.
Concerning FPT algorithms for problems parameterized by cliquewidth or rankwidth we have a
recent negative result by Fomin et al [12] showing that various graph problems are W[1]-hard when
parameterized by cliquewidth, thus also when parameterized by rankwidth, and hence unlikely to

2

have FPT algorithms at all. The main positive result is by Courcelle, Makowsky and Rotics [5] who
have shown that any MSO1 -logic problem is FPT when parameterized by cliquewidth. Courcelle
and Kanté [6] gave an alternative algebraic characterization of graphs of bounded rankwidth, based
on vertex colors that are manipulated by linear transformations over the GF[2] vector space, that
will allow a result like the one in [5] for graphs of bounded rankwidth without transforming into
a cliquewidth expression. Ganian and Hliněný [14] give another alternative characterization of
rankwidth by using labelling parse trees and an automata-approach in order to explicitly solve
all MSO1 problems directly on these parse trees. However, these results that hold for all MSO1

problems do not have practical runtime, as the exponential dependency on the parameter is a tower
of powers depending on the logical expression. For practical runtime a more refined analysis is
necessary. Finding FPT algorithms with low dependency on the parameter is a main goal of
research in parameterized algorithms, see e.g. Downey and Fellows [10]. Applying the algorithms
developed in Section 3 to the family R1, R2, R3, ... will give the first algorithms for NP-hard
problems that are single exponential in rankwidth.

Theorem 1.1 For a graph G of rankwidth k , given with its rank-decomposition, we can solve the
Maximum Independent Set problem in time O(n(m + 2

1
2
k2+ 9

2
k × k2)) , the Maximum Clique

problem in time O(n(m + 2
1
2
k2+ 11

2
k × k2)) , the Minimum Dominating Set problem in time

O(n(m + 2
3
4
k2+ 23

4
k × k3)) , and q -coloring in time O(n(m + 2

q
2
k2+ 5q+4

2
k × k2q × q)) .

Let us mention that using the connection between the family R1, R2, R3, ... and rankwidth
it easily follows that any MSO1 problem can be solved in FPT time for H -join decomposable
graphs when parameterized by the rank of the adjacency matrix of H over GF(2).

2 H-join decomposable graphs

In this section we introduce H -join decompositions and discuss its relations to other well-known
graph decompositions. However, the main result showing the tight connection to rank decompo-
sitions is postponed to Section 4.

Definition 2.1 Let H be a bipartite graph with color classes V1 and V2 , thus V (H) = V1 ∪ V2 .
Let G be a graph and S ⊆ V (G) a subset of its vertices. We say that G is an H -join across the
ordered cut (S, V (G) \ S) if there exists a partition of S with set of classes P and a partition of
V (G) \S with set of classes Q , and injective functions f1 : P → V1 and f2 : Q → V2 , such that
for any x ∈ S and y ∈ V (G)\S we have x adjacent to y in G if and only if x belongs to a class
Pi of P and y to a class Qj of Q with f1(Pi) adjacent to f2(Qj) in H . We say that G is an
H -join across the non-ordered cut {S, V (G) \S} if G is an H -join across either (S, V (G) \S)
or (V (G) \ S, S) .

Twins in a bipartite graph are vertices in the same color class having exactly the same neigh-
bourhood. A twin contraction is the deletion of a vertex when it has a twin. Notice that H -joins
are insensitive to twin contractions: if H ′ is obtained from H by a twin contraction then G is an
H -join across some cut if and only if G is an H ′ -join across the same cut. In the remainder of
the paper we therefore assume that, unless otherwise explicited, H is a graph with no twins in the
same color class. However, note that we do allow one isolated vertex in each color class. We will
decompose graphs by H -joins in a way analogous to branch decompositions. With some abuse in
terminology, a subcubic tree is an unrooted tree where all internal nodes have degree three.

3

Definition 2.2 Let T be a subcubic tree and δ a bijection between the leaf set of T and the vertex
set of a graph G . We say that (T, δ) is an H -join decomposition of G if for any edge uv of T we
have G being an H -join across the cut {Su, Sv} we get from the 2-partition of V (G) induced
by the leaf sets of the two subtrees we get by removing uv from T . A graph having an H -join
decomposition will be called an H -join decomposable graph.

One feature of studying such a tree-like decomposition is that we can think of the decomposi-
tion as the collection of cuts of the initial graph given by the collection of edges of the subcubic
tree. Under this standpoint, H -join decomposition is related to modular decomposition [13]. In-
deed, saying M ⊆ V (G) is a module of G is exactly equivalent to saying that G is a P+

2 -join
across the ordered cut (M,V (G) \M) , where P+

2 is obtained by adding an isolated vertex to the
second colour class of the bipartite graph P2 . Therefore we have for instance that a cograph – a
graph where every induced subgraph of at least four vertices has a non-trivial module – is always
P+

2 -join decomposable, and that a P+
2 -join decomposition of the cograph can be obtained from

its modular decomposition tree by unrooting the tree and subdividing arbitrarily all internal nodes
of degree more than three. The link between modular decomposition and H -join decomposition
will also be reflected in the upcoming section via the notion of an external module partition, our
main tool for the study of the partitions used for an H -join across a cut (cf. Definition 3.1 and
Proposition 3.3).

As for split decomposition, saying that a cut {S, V (G) \ S} is a split is exactly equivalent
to saying that G is a P++

2 -join across {S, V (G) \ S} , where P++
2 is obtained by adding one

isolated vertex to each colour class of the bipartite graph P2 . Here, we have a stronger fact than
that with modular decomposition: a graph is distance hereditary – meaning a graph where every
induced subgraph of at least five vertices has a non-trivial split – if and only if it is P++

2 -join
decomposable. Moreover, there is a straightforward manner to obtain a P++

2 -join decomposition
from the split decomposition tree of the distance hereditary graph, and conversely.

Other particular cases of H -join decompositions include the so-called 2-join [8], and also the
so-called generalized join, itself a particular case of so-called 1-separations [20]. More precisely,
2-joins are related to H -joins when H is equal to 2P++

2 , the graph we obtain by adding one
isolated vertex to each colour class of the bipartite graph made by a disjoint union of two P2 .
At the same time, Hsu’s generalized joins are related to H -joins as soon as H admits orderings
of colour classes V1 = (v1

1, v
2
1, . . . , v

k+1
1) and V2 = (v1

2, v
2
2, . . . , v

k+1
2) such that NH(v1

i) =
{v1

2, v
2
2, . . . , v

k+1−i
2 } . Both 2-join and Hsu’s generalized join decompositions are important for

decomposing perfect graphs, with the former decomposition playing a central role in the recent
proof of the strong perfect graph theorem by Chudnovsky et al [3]. This result has been known as
one of the major challenges in graph theory, and was conjectured by C. Berge half a century ago.

Finally, note that in the above list of connections between H -joining (for some H) and par-
ticular vertex partitions, namely modules, splits, 2-join and Hsu’s generalized join, the two first
cases, namely when H = P+

2 and H = P++
2 , are known to own polynomially computable de-

composition trees. Then, it is clear that one can exploit this fact to compute the corresponding
H -join decomposition of a given H -join decomposable graph G .

3 Dynamic programming on H -join decomposable graphs

Our goal is to give dynamic programming algorithms to solve various problems on an H -join
decomposable graph G , given with its H -join decomposition (T, δ) . A potential drawback of
defining H -join decompositions simply as the pair (T, δ) is that for an edge uv of T we a priori

4

do not know the partition classes P of Su and Q of Sv mentioned in Definition 2.1, to confirm
that G is an H -join across the cut {Su, Sv} . We now show how to compute this information. The
main idea is to use a technique called vertex splitting, introduced by Paige and Tarjan as the act of
splitting parts according to the neighborhood of a vertex [25].

Definition 3.1 Let G be a graph and let S ⊆ V (G) be a vertex subset. An external module
partition of S is a partition P of S such that, for every z ∈ V (G) \ S and pair of vertices x, y
belonging to the same class in P , we have x adjacent to z if and only if y adjacent to z .

Given as input a graph G and a vertex subset S ⊆ V (G) , by using partition refinement
techniques we can compute a maximum external module partition of S , which is well-defined by
Lemma 3.2 (below). Indeed, just initialize a partition as P = {S} ; then, for every exterior vertex
z ∈ V (G) \ S , refine P using the neighbourhood of z as pivot. These operations can be done in
O(m) time, with m = |E(G)| , since each refinement operation can be done in time proportional
to the size of the pivot set (refer to [17] for more details in efficient implementations of partition
refinement). The correctness of the computation is stated in the following lemma.

Lemma 3.2 Let G be a graph and S be a vertex subset of V (G) . The maximum (coarse-wise)
external module partition of S is well-defined and can be computed in O(|E(G)|) time.

Proof Let P be a maximal external module partition of S . Suppose it is not maximum, and let
Q be an external module partition of S that is not comparable (coarse-wise) to P . If no parts
among P and Q overlap (where X and Y overlap if they have a non-empty intersection and two
non-empty differences), Then, replacing the parts of P that are included in some part Y of Q by
Y will lead to an external module partition of S which is coarser than P . Contradiction. Hence,
we deduce that there are some parts X ∈ P and Y ∈ Q such that X and Y overlap. Then,
replace all Xi in P which overlap (or included in) Y by

⋃
i Xi ∪ Y , and obtain P ′ . Using the

transitivity of the relation on x, y for a given z : ”x and y are linked to z the same way”, we can
prove that P ′ is an external module partition that is coarser than P . Contradiction.

To achieve the proof, it suffices to prove that the above description computes correctly a max-
imum external module partition. That the computation results in an external module partition is
straightforward from an argument by contradiction. Finally, the fact the computed partition is
maximum can be proved by a straightforward argument by contradiction. 2

Maximum external module partitions have the following property, essential for computational
purposes on H -join decompositions:

Proposition 3.3 Let (T, δ) be an H -join decomposition of G . Let Pu, Pv be the maximum ex-
ternal module partitions of respectively Su and Sv , where {Su, Sv} is the 2-partition of V (G)
we get by deleting an edge uv in T . Let Ru and Rv be two sets containing exactly one vertex
per part in respectively Pu and Pv and let H ′ be the bipartite graph defined by the bipartite ad-
jacency in G between Ru and Rv . Then H ′ is an induced subgraph of H , and G is an H -join
across the cut {Su, Sv} using partitions Pu and Pv .

Proof Straight from Definition 2.1 we have that G is an H ′ -join across {Su, Sv} using Pu and
Pv . Besides, since (T, δ) is an H -join decomposition of G , G is also an H -join across {Su, Sv} .
This latter H -join uses some partitions of Su and Sv , say Qu and Qv . Let F be the subgraph
of H which is induced by the image of Qu and Qv by the injections f1 and f2 as defined in
Definition 2.1. Note that F is not necessarily twin-free. Clearly G is an F -join across {Su, Sv}

5

using partitions Qu and Qv . It is straightforward to check that Qu and Qv are external module
partitions. From Lemma 3.2, Pu (resp. Pv) is coarser than Qu (resp. Qv). We deduce that
H ′ is an induced subgraph of F which is obtained by some successive twin contractions of F .
Therefore, H ′ is an induced subgraph of H . Finally, from the fact that G is an H ′ -join across
{Su, Sv} using Pu and Pv , for an induced subgraph H ′ of H , it follows by Definition 2.1 that
G is an H -join across {Su, Sv} using Pu and Pv . 2

3.1 Equivalence classes used for independent set, dominating set and q -coloring

For the dynamic programming, we subdivide an arbitrary edge of T to get a new root node r ,
and denote by Tr the resulting rooted tree. The algorithms will follow a bottom-up traversal of
Tr . With each node a of Tr we associate a data structure table, that will store optimal solutions
to subproblems restricted to the graph G[Va] , where Va are the vertices of G mapped to leaves
of the subtree of Tr rooted at a . Each index of the table will be associated with an equivalence
class of subproblems. For the problems studied in this paper, Maximum Independent Set, Mini-
mum Dominating Set and Vertex q-Coloring, these classes of subproblems will be related to the
following equivalence classes of vertex subsets.

Definition 3.4 For a fixed graph G and vertex subset A ⊆ V (G) , consider two vertex subsets
X ⊆ A and Y ⊆ A and define X ≡A Y if and only if N(X) \A = N(Y) \A .

Note that ≡A is an equivalence relation on subsets of A , with two equivalent sets having the
same neighbors outside A . For the node a of Tr we will be interested in the equivalence relation
≡Va on the above defined subset Va . Note that we have explained how to compute Pa and Qa

such that the graph G is an H -join across the cut {Va, V (G) \ Va} using partitions Pa of Va

and Qa of V (G) \ Va , with Pa and Qa being maximum external module partitions. Consider an
arbitrary ordering Pa(1), Pa(2), ..., Pa(h1) of the classes of Pa . For all 1 ≤ i ≤ h1 , let vi be an
arbitrary element of Pa(i) .

Definition 3.5 (Representative) Given an arbitrary ordering Pa(1), Pa(2), ..., Pa(h1) of the classes
of Pa , and an arbitrary element vi of Pa(i) , for 1 ≤ i ≤ h1 , we define the canonical represen-
tative canVa(X) of a vertex set X ⊆ Va ⊆ V (G) as the lexicographically smallest subset taken
over every R ⊆ {v1, v2, . . . , vh1} satisfying:

• R ≡Va X

• For any vi ∈ R we have N(vi) \
(⋃

j<i, vj∈R N(vj) ∪ Va

)
6= ∅ .

The definition is well-defined, in the sense that R0 = {vi, X ∩ Pa(i) 6= ∅} is a subset which
satisfy the first item in the definition. Then, a subset satisfying both items can be defined from
R0 by a greedy scan on the vi ’s (this is basically the computation that will be formally proved
in Lemma 3.7). Besides, the above definition also leads to a canonical representative for every
equivalence class of ≡Va , namely we have that

X ≡Va X ′ ⇒ canVa(X) = canVa(X
′).

Finally, the following bounds are crucial for an efficient complexity analysis of all algorithms
presented in this paper:

6

Proposition 3.6 For any vertex subset X ⊆ Va ⊆ V (G) , we have that |canVa(X)| ≤ ρ(H) , the
rank of the bipartite adjacency matrix of H . Moreover, for the number neq of equivalence classes
of ≡Va we have neq ≤ 2

1
4
ρ(H)2+ 5

4
ρ(H)ρ(H) .

Proof Let M(Va) be the bipartite adjacency matrix associated to the cut {Va, V (G) \ Va} of G .
For convenience, let R = canVa(X) .

For the first claim of the proposition, we only need to prove that the rows in M(Va) which
correspond to the vertices of R are GF (2)-independent (hence form a subbasis of M(Va)). This
can be proven by induction on |R| . Indeed, if |R| = 1 then it is clear how to conclude. Suppose
that the property is true for every canonical representative with cardinality upto p − 1 ≥ 1 , and
let us consider a canonical representative R with cardinality p . Let x ∈ R be the highest element
belonging to R (w.r.t. the order v1, v2, . . . , vh1). Notice from the definition of R that R \ {x} is
not in the same equivalence class as the one R and X belong to. Moreover, it also follows directly
from definition that R \ {x} is a canonical representative (of some other set than X): otherwise
R would not be a canonical representative of X . Applying the inductive hypothesis, we obtain
that the rows corresponding to R \ {x} in M(Va) are GF (2)-independent. Finally, from the
maximality of x and the definition of R we have that N(x) \

(⋃
v∈R\{x} N(v) ∪ Va

)
6= ∅ .

Combining the previous facts, we obtain the desired property on R .
Now, what we just proved also implies that every equivalence class of ≡Va can be associated

with (at least) one space that is GF (2)-spanned by some rows of M(Va) . In other words, the
number of spaces spanned by a subset of rows of M(Va) is larger than the value of neq . This will
be used to prove the following bound on neq :

neq ≤
ρ(H)∑
i=1

(
ρ(H)

i

)
2

, where
(

n

m

)
q

=
m∏

i=1

1− qn−i+1

1− qi
.

Indeed, this bound is just a combination of the previous fact and the folklore fact that
(

n
m

)
q

,
which is known under the name of the q -binomial coefficient of n and m , is exactly the number
of different subspaces of dimension m of a given space of dimension n over a finite field of q

elements (roughly, 1−qn−i+1

1−qi is the number of choices of an ith vector that is linearly independent
from the previously chosen ones).

Let neq = a(ρ(H)) . In order to conclude we can use the q−analog of Pascal triangles:(
n
m

)
q

= 2m
(
n−1
m

)
q

+
(

n−1
m−1

)
q
, for all m ≤ n, with the convention that

(
n
m

)
q

= 0 if m < 0 or

m > n . ¿From this we firstly have that the highest number among
(

n
m

)
q

, for all 0 ≤ m ≤ n ,
is when m = dn

2 e . Therefore, a(n) ≤ n × b(n) with b(n) =
(

n
dn

2
e
)
q

. Finally, still using the

q -analog of Pascal triangles, one can check that b(n) ≤
(
2d

n
2
e + 1

)
× b(n− 1) ≤ 2

1
4
n2+ 5

4
n . 2

We now show a straightforward computation of the canonical representative canVa(X) of
a subset X ⊆ Va . Recall that vi was an arbitrary element of Pa(i) , for 1 ≤ i ≤ h1 . Let
Qa(1), Qa(2), . . . , Qa(h2) be an arbitrary ordering of the classes of Qa , and let ui be an arbitrary
element of Qa(i) , for 1 ≤ i ≤ h2 . Let H ′ be the bipartite graph induced by edges (of G) between
the two vertex sets {v1, v2, ..., vh1} and {u1, u2, ..., uh2} . Note from Proposition 3.3 that we have
H ′ isomorphic to an induced subgraph of H , and in particular |E(H ′)| ≤ |E(H)| and ρ(H ′) ≤
ρ(H) . For more clarity, we denote the neighbors of vi in H ′ by NH′(vi) , while we denote the
neighbors of vi in G simply by N(vi) . Besides, we will also denote the neighborhood of a vertex

7

subset by N(X) =
⋃

x∈X N(x) \ X . The algorithm to compute the canonical representative of
X can be:

compute the set XH′ = {vi : X ∩ Pa(i) 6= ∅} .
initialize canVa(X) and W to the emptyset.
for i = 1 to h1

if NH′(vi) ⊆ NH′(XH′) and NH′(vi) \W 6= ∅
then add vi to canVa(X) and add the vertices in NH′(vi) \W to W .

Note that in the above we could have broken out of the for loop as soon as W = NH′(XH′) .

Lemma 3.7 For X ⊆ Va ⊆ V (G) the above algorithm computes correctly the canonical repre-
sentative canVa(X) of X and runs in O(|X|+ |E(H)|) time.

Proof Let R be the output of the algorithm. If R ≡Va X then it is straightforward to check that
R fulfills the other requirements in Definition 3.5. Therefore, we only give the proof of R ≡Va X .
Firstly, it is clear that X ≡Va XH′ . Now, the only trick in the algorithm is to restrict the visitted
edges to those of H ′ . It means in particular that NH′(XH′) = NH′(R) at the end of the algorithm
(and apriori we cannot guarantee anything about the neighborhood of R in G). However, Qa is
an external module partition of V (G) \ Va . This can then be exploited and leads to XH′ ≡Va R .
Hence, R ≡Va X .

For complexity issues note that the first action of the algorithm takes time O(|X|) , and in
the for loop we check every edge of the graph H ′ at most once. Note that we here require the
adjacency list of H ′ . This task can be included in the pre-computation explained in Lemma 3.2
by some straightforward modifications. Finally, |E(H ′)| ≤ |E(H)| from Proposition 3.3. 2

We present a last tool that will be used afterwards. Basically, we do not want in our algorithms
to parse the subsets of Va in order to look for some equivalence class of ≡Va . Fortunately, the
previous definition of canonical representatives comes in handy since there is a fast and simple
manner to output the list Ca containing all canonical representatives:

initialize the list Ca to contain {∅}
for i = 1 to h1

for all R ∈ Ca

if (R ∪ vi == canVa(R ∪ vi))
add the set R ∪ vi to Ca

Theorem 3.8 R belongs to Ca if and only if R is a canonical representative of ≡Va . Moreover,
Ca can be output in O(h1 ∗ neq ∗ |E(H)|) time.

Proof (⇒) Since R is in Ca some R′ ∪ vi = R must have passed the check “if (R′ ∪ vi =
canVa(R ∪ vi))” hence, R is a canonical representative.
(⇐) Assume R is a canonical representative and vi is the element in R with highest index
i . If R = {vi} , then R ∈ Ca . Assume inductively that this is true for all representatives of
size less than |R| , then R would be added to Ca iff R \ vi is in Ca and hence is a canonical
representative. By definition of canonical representatives NH′(R \ vi) 6= NH′(R) , the only
vertex that sees any nodes of X = NH′(R) \ NH′(R \ vi) is vi . The algorithm computing
canVa(R \ vi) goes through the nodes v1, v2, ...vi−1 in the same way as for canVa(R) , they both

8

only pick vertices in canVa(R \ vi) since no node before vi sees any node in X . This means
canVa(R \ vi) = canVa(R) \ vi = R \ vi hence R ∈ Ca . By induction the result follows.

The runtime follows from Lemma 3.7 since the calls to canVa(X) always satisfy |X| =
O(|E(H)|) . 2

3.2 Maximum Independent Set and Maximum Clique

We consider the problem of computing the size of a maximum independent set.
The table data structure Taba associated with node a of Tr will then have an index set that

contains all indices {canVa(X) : X ⊆ Va} , i.e. the elements of the list Ca . Recall from Propo-
sition 3.6 that no canonical representative has more than ρ(H) elements from v1, v2, ..., vh1 . The
table Taba associated with node a of Tr will actually have index set consisting of all subsets of at
most ρ(H) elements from 1, 2, ..., h1 , and an index corresponding to a canonical representative
R will have a pointer to R in the list Ca . This way we achieve O(1) accesses to the table and
also we can loop through all canonical representatives in |Ca| time.

For R = canVa(X) the contents of Taba[R] after processing a should be the size of the
largest independent set contained in the equivalence class of R , in other words

Taba[R] def= max
S⊆Va

{|S| : S ≡Va R ∧ ∀x, y ∈ S ⇒ xy 6∈ E(G)}

At a leaf w of Tr associated to a node x of G we have a partition of Vw = {x} into two
equivalence classes and set Tabw[∅] = 0 and Tabw[{x}] = 1 . For an internal node w of Tr with
children a and b whose tables have already been processed, we process the table of w as follows:

initialize all values of Tabw to 0
for all indices Ra in Taba and Rb in Tabb

if (Ra ∪Rb is an independent set) then
Rw := canVw(Ra ∪Rb)
Tabw[Rw] := max{Tabw[Rw],Taba[Ra] + Tabb[Rb]}

Lemma 3.9 The table of an internal node w having children a, b is updated correctly.

Proof Let Rw be a canonical representative of ≡Vw . Assume I ⊆ Vw is an independent set such
that I ≡Vw Rw , we first show that Tabw[Rw] ≥ |I| . Let Ia = I ∩ Va and Ib = I ∩ Vb . Clearly,
Ia and Ib are independent sets, and therefore by an inductive argument on the correctness of the
tables of a and b we have that Taba[canVa(Ia)] ≥ |Ia| and Tabb[canVb

(Ib)] ≥ |Ib| . The update
procedure at node w will thus set Tabw[canVw(canVa(Ia) ∪ canVb

(Ib))] ≥ |Ia| + |Ib| = |I| .
To conclude, we simply need to prove the claim that Rw = canVw(canVa(Ia) ∪ canVb

(Ib)) . By
expressing canVa(Ia) ≡Va Ia and canVb

(Ib) ≡Vb
Ib , we have N(canVa(Ia)∪ canVb

(Ib))\Vw =
N(Ia ∪ Ib) \ Vw = N(I) \ Vw = N(Rw) \ Vw , In other words, Rw ≡Vw canVa(Ia)∪ canVb

(Ib) ,
and this proves the claim since Rw is a canonical representative.

To conclude the lemma, we need to prove that if Tabw[Rw] = k then there exists an indepen-
dent set I ⊆ Vw with |I| = k and I ≡Vw Rw . For this, note that the algorithm increases the value
of Tabw[Rw] only if there exist indices Ra in Taba and Rb in Tabb such that Ra ∪ Rb is an
independent set. Moreover, if Ia ≡Va Ra and Ib ≡Vb

Rb , then the fact Ra∪Rb is an independent
set can be used to prove that Ia ∪ Ib is also an independent set. 2

9

At the root r of Tr we have Vr = V (G) and thus no outside neighbors to distinguish vertices
into distinct equivalence classes, so that the single entry of its table will store the size of the
maximum independent set of G .

For the runtime note that we first computed, for each of the O(n) nodes of Tr , the maximum
external module partitions in O(m) time, the canonical representatives in time O(h1 × neq ×
|E(H)|) and filled the table at this node in time O(neq2|E(H)|) . This gives a total runtime of
O(n(m + neq2|E(H)|)) . Using the bound on neq from Proposition 3.6 we thus get:

Theorem 3.10 Given a graph G on n nodes and m edges, and an H -join decomposition (T, δ)
of G , we can in O(n(m + 2

1
2
ρ(H)2+ 5

2
ρ(H)ρ(H)2|E(H)|)) time solve the Maximum Independent

Set problem on G , where ρ(H) is the rank of the adjacency matrix of H .

Notice that the problem of finding a maximum clique of a given graph G can be solved by
finding a maximum independent set in G , the complement of G . Moreover, any H -join de-
composition of G can be used as an H -join decomposition of G . Therefore, the Maximum
Clique problem can be solved using the “Independent Set” algorithm with a runtime bounded by
O(n(m + 2

1
2
ρ(H)2+ 7

2
ρ(H)ρ(H)2|E(H)|)) , since ρ(H) ≤ ρ(H) + 1 .

3.3 Vertex q-Coloring

For q -Coloring a straightforward generalization of the ideas used for Maximum Independent Set
works. We now ask if there exists a partition of the vertex set into q color classes each forming
an independent set. The table at a node w will be indexed by q representatives, one for each
color class, and the contents of Tabw[R1][R2]...[Rq] should be True if there exists a partition
(S1, ..., Sq) of Vw with each Si inducing an indpendent set and Si ≡Vw Ri . There will thus be
neqq indices in each table. For the combining of two tables we loop over all pairs of indices having
the value True, check for each of the q color classes whether the union of the two representatives
are an independent set, and if so update the table at the parent, in time O(|E(H)| × q) . Applying
Proposition 3.6 we get

Theorem 3.11 Given an H -join decomposition of an n-vertex m-edge graph G we can solve
the q -Coloring problem in O(n(m + 2

q
2
ρ(H)2+ 5q

2
ρ(H)ρ(H)2qq|E(H)|)) time.

3.4 Minimum Dominating Set

We consider the problem of computing the size of a minimum dominating set. Naively general-
izing from the independent set algorithm we may think that the table at a node w of Tr should
store the size of a smallest dominating set D for G[Vw] . However, unlike the case of independent
sets we note that a dominating set D will need to include vertices of V (G) \ Vw that dominate
vertices of Vw ’from the outside’. This complicates the situation. Denote V (G) \ Vw by Vw .
The main idea for dealing with this complication is to index the table at w by two sets, one that
represents the equivalence class under ≡Vw of D ∩ Vw that dominate ’from the inside’, and one
that represents the equivalence class under ≡Vw

of D ∩ Vw that help dominate the rest of Vw

’from the outside’. The representatives of these equivalence classes are computed as described
in subsection 3.1, for both ≡Vw and for ≡Vw

. In the table update procedure when we join two
subgraphs to form a bigger subgraph we use the union of ’the inside’ dominators as the ’inside’
dominator, and loop over all possibilities of sets that can dominate ’from the outside’.

10

Definition 3.12 Let G = (V,E) be a graph, for Vw, X ⊆ V we say that X dominates Vw if Vw

is a subset of X ∪N(X) .

Note that if X dominates Vw then X ∩ Vw are the ’inside’ dominators and X \ Vw are
the ’outside’ dominators. For this algorithm, the table Tabw associated with a node w of Tr

will have index set {canVw(X) × canVw
(Y) : X ⊆ Vw, Y ⊆ Vw} . We define the contents of

Tabw[RX][RY] where RX = canVw(X) and RY = canVw
(Y) as:

Tabw[RX][RY] def= minS⊆Vw{|S| : S ≡Vw RX ∧ S ∪RY dominates Vw}.

Since we are dealing with a minimization problem we first set all entries of all tables to ∞ .
At a leaf w of Tr corresponding to a vertex x of G , there are at most four entries in Tabw . Let
R = canVw

(Vw) . We then set Tabw[{x}][R] = 1 , we set Tabw[{x}][∅] = 1 , and if x ∈ N(R)
then we set Tabw[∅][R] = 0 . The rest of the entries stay equal to ∞ .

At an internal node w we only proceed when both children already have been processed. Let
a and b be two nodes of Tr with w their common parent. As described by Theorem 3.8 we have
computed all lists of representatives, and in particular we have Ca = {canVa(X) : X ⊆ Va} ,
Cb = {canVb

(X) : X ⊆ Vb} , and Cw = {canVw
(X) : X ⊆ Vw} . Given the two tables

Taba,Tabb we compute Tabw as follows:

initialize all values of Tabw to ∞
for all indices Ra ∈ Ca, Rb ∈ Cb and Rw ∈ Cw do:

Rw := canVw(Ra ∪Rb)
Ra := canVa

(Rb ∪Rw)
Rb := canVb

(Ra ∪Rw)
Tabw[Rw][Rw] := min(Tabw[Rw][Rw], Taba[Ra][Ra] + Tabb[Rb][Rb])

Theorem 3.13 The table at node w is updated correctly, namely

Tabw[Rw][Rw] ≤ s ⇔ ∃Sw : |Sw| ≤ s ∧Rw ≡Vw Sw and Sw ∪Rw dominates Vw

Proof We prove this inductively bottom-up in the tree of the H -join decomposition, namely we
assume that Taba and Tabb are correct.

(⇒) We have that Tabw[Rw][Rw] ≤ s . This means that an update happened in the algorithm,
hence there must exist Ra and Rb such that: canVw(Ra ∪ Rb) = Rw , Ra := canVa(Rb ∪ Rw) ,
Rb := canVb

(Ra ∪ Rw) and Taba[Ra][Ra] + Tabb[Rb][Rb] ≤ s . Then by induction there exist
Sa ≡Va Ra and Sb ≡Vb

Rb and Sa ∪ Sb = Sw ≡Vw Rw , and also |Sw| = |Sa| + |Sb| ≤ s . It
remains to show that Sw ∪ Rw dominates Vw or equivalently that Sa ∪ Sb ∪ Rw dominates Vw .
We do this in two steps, first we show that Va is dominated, then we show that Vb is dominated.
We know that Sa ∪ Ra dominates Va , now since Ra ≡Va

Sb ∪ Rw we have that Sa ∪ Sb ∪ Rw

dominates Va . Similary we know that Sb ∪ Rb dominates Vb , now since Rb ≡Vb
Sa ∪ Rw we

have that Sb ∪ Sa ∪Rw dominates Vb and we are done with this direction of the proof.
(⇐) In this case we know ∃Sw : |Sw| ≤ s ∧ Rw ≡Vw Sw and Sw ∪ Rw dominates Vw .

Let Sa = Sw \ Vb , Sb = Sw \ Va , Ra = canVa(Sa) and Rb = canVb
(Sb) . Since the algorithm

goes through all triples it will go through Ra, Rb, Rw . Let Ra = canVa(Rw ∪ Rb) and Rb =
canVb

(Rw ∪ Ra) . Since Sw = Sa ∪ Sb we get Sa ∪ Ra dominates Va and Sb ∪ Rb dominates
Vb . By induction Taba[Ra][Ra] ≤ |Sa| and Tabb[Rb][Rb] ≤ |Sb| . Hence Tabw[Rw][Rw] ≤
|Sa|+ |Sb| = |Sw| . 2

11

At the end we have a table Tabr at the root of Tr where Vr = V . We thus find the size of
the minimum dominating set of G stored in Tabr[∅][∅] . For accessing the tables we use the same
technique as for Max Independent Set. By applying Proposition 3.6 we get the following runtime:

Theorem 3.14 Given an H -join decomposition of an n-vertex m-edge graph G we can solve
the Minimum Dominating set problem in O(n(m + 2

3
4
ρ(H)2+ 15

4
ρ(H)ρ(H)3|E(H)|)) time.

Proof First, the computation of the maximum external module partitions associated with every
node of Tr takes O(nm) time. Also, the tables of all leaves are initialized in O(n) time. Now, in
the bottom-up process for each of the O(n) other tables, we compute the list of canonical repre-
sentatives for each of the three subsets in time O(|V (H)|2

1
4
ρ(H)2+ 5

4
ρ(H)ρ(H)|E(H)|) . Then, we

go through all triples of representatives, namely O(2
3
4
ρ(H)2+ 15

4
ρ(H)ρ(H)3) triples, and for each of

them, we find Rw , Ra , and Nb in O(|E(H)|) time. The subsequent update takes constant time.
In summary, the bottom-up process takes O(n(m + 2

3
4
ρ(H)2+ 15

4
ρ(H)ρ(H)3|E(H)|)) time. 2

4 Rankwidth

We now turn to the strong connections between H -join decompositions and rank decompositions.
We first recall the definition of rankwidth. For any graph G , the cut-rank function ρG is defined
over every vertex subset X ⊆ V (G) as the rank of the X×V (G)\X submatrix of the adjacency
matrix of G . For any pair (T, δ) with T a subcubic tree and δ a bijection between vertices of G
and leaves of T , (T, δ) is defined as a width r rank decomposition of G if for all edge uv in T ,
the cut-rank of Su is at most r , where {Su, Sv} is the 2-partition of V (G) induced by the leaf
sets of the two subtrees we get by removing uv from T . The rankwidth of G is the minimum r
such that there exists a width r rank decomposition of G .

Definition 4.1 For a positive integer k we define a bipartite graph Rk having for each subset S
of {1, 2, ..., k} a vertex aS ∈ A and a vertex bS ∈ B , with V (Rk) = A ∪ B . This gives 2k

vertices in each of the color classes. Two vertices aS and bS′ are adjacent iff |S ∩ S′| is odd.

Lemma 4.2 The function σG : 2V (G) → N defined by

σG(X) = min{k : G is an Rk -join of G across the cut {X, V (G) \X}}
is equal to the cut-rank function ρG .

Proof Let k = ρG(X) . There are several ways to view the graph Rk . Before proving the
lemma, note the following, where we slightly abuse the notation of Definition 4.1 by denoting
the vertices arising from a one-element subset S = {i} simply as ai and bi . We denote by Mk

the bipartite adjacency matrix of the bipartite graph Rk , meaning that its rows correspond to the
vertices of one color class and the columns to those of the other color class. Suppose that the
vertices a1, a2, . . . , ak are mapped to rows in Mk : again by abuse of notation, we can view vertex
of Rk as the row/column it is mapped to in Mk . Clearly, aS with S = ∅ is a linear combination of
a1, a2, . . . , ak : choose scalar 0 for every vector. Let aS be a vertex of Rk with S = i1, i2, . . . , ip .
We can prove that in Mk , the row aS is the GF2-sum of the rows ai1 , ai2 , . . . , aip : for every
column bS′ of Mk , |S ∩S′| is odd iff there is an odd number of the iq (1 ≤ q ≤ p) which belong
to S′ , that is Mk has a 1 in the row aip and column bS′ . The same holds for b1, b2, . . . , bk . Note

12

also that an arbitrary bipartite adjacency matrix is not necessarily symmetric but it is clear here
that

Claim: There is a way to swap the columns and rows of Mk to result in a symmetric matrix.
Also, Mk is of rank k and has the maximum size among the GF2-matrices of rank k .
Moreover, let us w.l.o.g. define Mk in such a way that {a1, a2, . . . , ak} are mapped (in this order)
to the first k rows of Mk while {b1, b2, . . . , bk} are mapped to the k first columns. This way, the
first k × k block of Mk is equal to the identity matrix of size k . We define Lk as the block of
Mk made of the first k rows. Clearly, Lk has 2k columns and has one column with only 0’s.

We now come to the actual proof of the lemma. We first prove that σG(X) ≤ k . Let M be
the bipartite adjacency matrix induced by X and V (G)\X in G . A valid elimination in a matrix
is a deletion of a column (resp. a row) when the matrix has another column (resp. row) identical to
the one we delete. This corresponds to twin contractions in the graph defined by the matrix. Let us
obtain N from M through a maximal sequence of valid eliminations. This operation corresponds
to the contraction with respect to some external module partition. Then, in order to prove that G is
an Rk -join across {X, V (G) \X} , it suffices to prove that the bipartite graph GN with bipartite
adjacency matrix N is an induced subgraph of Rk . This will be proved in two steps.

There can not be less than k rows in N . If the number of rows in N is exactly k , then we
look at N as a collection of columns. By maximality of the sequence of valid eliminations, all
the latter columns are pairwise distinct. Besides, if we look at Lk as a collection of columns, then
by definition Lk contains all possible k -bit vectors. Therefore, N (as a collection of columns)
is a subset of Lk . Hence, GN is an induced subgraph of the bipartite graph defined by Lk , and
consequently it is an induced subgraph of Rk . If the number of columns in N is exactly k , then
by transposition we can conduct a similar argument to conclude.

Otherwise we take k rows of N which induce a k -basis of the matrix N . Putting those k rows
together results in a matrix Z of k rows. Besides, the other rows of N are linear combinations
of those k rows. Therefore, the columns of Z are pairwise distinct otherwise there would be
identical columns in N , which contradicts the maximality of the sequence of valid eliminations.
Then, the previous argument applies, and every column of Z is a column of Lk : w.l.o.g. suppose
Z is a block of Lk (otherwise swap columns). Let T be a set of rows which contains all linear
combinations of rows of Z . Now, the set of rows of Mk contains every linear combination of rows
of Lk , and Z is a block of Lk . Consequently, we can suppose w.l.o.g. that T is a block of Mk

(otherwise just swap rows). Then, the bipartite graph GT defined by T is an induced subgraph of
Rk . Besides, it is clear that every row of N belongs to T and GN is an induced subgraph of GT .
Hence, GN is an induced subgraph of Rk .

We now prove that ρG(X) ≤ σG(X) . Let l = σG(X) . We know there exists external module
partitions P and Q of X and V (G) \X such that G is an Rl -join across {X, V (G) \X} . Let
Y and Z contain one representative vertex per part in respectively P and Q . Then, the cut-rank
value ρG(X) is equal to the rank of the bipartite adjacency matrix M between Y and Z . Clearly,
the graph defined by M is an induced subgraph of Rl from Proposition 3.3. Hence, the cut-rank
value ρG(X) can not exceed that of Rl , which is equal to l . 2

Theorem 4.3 (T, δ) is a width k rank decomposition of G if and only if (T, δ) is an Rk -join
decomposition of G . Thus G is a graph of rankwidth at most k if and only if G is an Rk -join
decomposable graph.

Theorem 4.3 follows directly from Lemma 4.2. The following straightforward observation
shows how, on the other hand, H -join decompositions can be embedded in a rank decomposition

13

of reasonable width.

Theorem 4.4 To any bipartite graph H we can apply twin contractions to get an induced sub-
graph of Rρ(H) , where ρ(H) is the rank of the bipartite adjacency matrix of H . A consequence
is that if G is an H -join decomposable graph then G is also an Rρ(H) -decomposable graph. In
other words, the rankwidth of an H -join decomposable graph is at most ρ(H) .

Note that Theorem 1.1 follows from Theorems 4.4, 3.10, 3.11 and 3.14 since |E(Rk)| ≤ 22k .
The above observation, though simple, implies that H -join decompositions inherit algorithmic
results of rank decompositions. For instance, we immediately get the following.

Theorem 4.5 Any problem expressible in monadic second-order logic with quantifications over
vertex sets (MSO1 -logic) can be solved in FPT time for H -join decomposable graphs when pa-
rameterized by ρ(H) .

This follows since it is true when parameterized by cliquewidth [5], hence when parameterized by
rankwidth because of the bound between cliquewidth and rankwidth, hence when parameterized
by ρ(H) by Theorem 4.4. More generally, any FPT algorithm on an H -join decomposable graph
that is parameterized by the rankwidth of the graph is also an FPT algorithm when parameterized
by ρ(H) . Examples of problems outside of MSO1 -logic include those addressed in [11, 15, 21,
26], however, note that some of the solutions given therein do not have FPT runtime.

Applying the algorithm of [18] to an H -join decomposable graph G will in time O(f(k)n3)
give an Rρ(H) -join decomposition of G with the property that every H ′ -join across the cut defined
by any edge of the subcubic tree satisfies ρ(H ′) ≤ ρ(H) .

5 Conclusion

The alternative definition of rankwidth given in this paper, using Rk -join decompositions, should
prove useful both for visualizing graphs of rankwidth k and for developing fast dynamic pro-
gramming algorithms that could be practical for low values of k . Let us remark that the graph Rk

has many interesting properties, and that graphs with a similar definition based on a parity check
appear in the book of Alon and Spencer [1] and recently also in a paper by Charbit, Thomassé and
Yeo [2].

We are working on algorithms for a general class of vertex subset and vertex partitioning
problems for H -join decomposable graphs, see [28], that will also have runtime single exponential
in ρ(H) . We believe that the very general notion of H -join decompositions deserves further study
of its own. A major result would be to find another graph class H1,H2,H3, ... , different from
R1, R2, R3, ... , satisfying the three properties on the desiderata list of the introduction.

References

[1] N. Alon and J. Spencer. The probabilistic method. Second edition. Wiley-Interscience Series
in Discrete Mathematics and Optimization. New York (2000).

[2] P. Charbit, S.Thomassé, A. Yeo. The minimum feedback arc set problem is NP-hard for
tournaments. Combinatorics, Probability and Computing, 16 (2007), 1–4.

14

[3] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theorem.
Ann. Math., 164: 51-229 (2006).

[4] D. Corneil, U. Rotics. On the relationship between cliquewidth and treewidth. SIAM Journal
of Computing 34(4): 825-847 (2005)

[5] B. Courcelle, J.A. Makowsky, U. Rotics. Linear time solvable optimization problems on
graphs of bounded clique width. Theory of Computing Systems, 33(2):125150, 2000

[6] B. Courcelle, M.Kanté. Graph Operations Characterizing Rank-Width and Balanced Graph
Expressions. Proceedings WG 2007: 66-75

[7] B. Courcelle, S.Oum. Vertex-minors, monadic second-order logic, and a conjecture by Seese.
J. Combinatorial Theory, Ser. B 97(1): 91-126 (2007)

[8] G. Cornuéjols and W. Cunningham. Compositions for perfect graphs. Discrete Mathematics
55: 245-254 (1985)

[9] W. Cunningham and J. Edmonds. A combinatorial decomposition theory. Canadian Journal
of Mathematics 32: 734-765 (1980)

[10] R.Downey and M.Fellows. Parameterized Complexity, Springer-Verlag (1999)

[11] W. Espelage, F. Gurski, E. Wanke. How to Solve NP-hard Graph Problems on Clique-Width
Bounded Graphs in Polynomial Time. Proceedings WG 2001: 117-128

[12] F.Fomin, P. Golovach, D.Lokshtanov and S.Saurabh Clique-width: on the price of generality.
To appear SODA’09

[13] T. Gallai. Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hun-
garicae 18: 25-66 (1967)

[14] R.Ganian, P. Hliněný Automata approach to graphs of bounded rank-width. Proceedings
IWOCA 2008, LNCS

[15] M. Gerber, D. Kobler. Algorithms for vertex-partitioning problems on graphs with fixed
clique-width. Theoretical Computer Science 299 (2003) 719734

[16] M. Grohe. Logic, Graphs, and Algorithms. In J.Flum, E.Grdel, T.Wilke (Eds), Logic and
Automata-History and Perspectives Amsterdam University Press, 2007.

[17] M. Habib, C. Paul, L. Viennot. Partition Refinement Techniques: An Interesting Algorithmic
Tool Kit. International Journal of Foundations on Computer Science, vol 10, 2, 147–170, 1999

[18] P. Hliněný, S. Oum. Finding Branch-Decompositions and Rank-Decompositions. Proceed-
ings ESA 2007: 163-174

[19] P. Hliněný, S. Oum, D. Seese, G. Gottlob. Width Parameters Beyond Tree-width and Their
Applications. Computer Journal, to appear 2008.

[20] W.-L. Hsu. Decomposition of Perfect Graphs. J. Combinatorial Theory, Ser. B 43: 70-94
(1987)

[21] D. Kobler, U. Rotics. Edge dominating set and colorings on graphs with fixed clique-width.
Discrete Applied Mathematics 126(2-3): 197-221 (2003)

15

[22] S. Oum. Graphs of bounded rank-width. PhD thesis, Princeton University, 2005

[23] S. Oum. Rank-width is less than or equal to branch-width. J. Graph Theory 57(2008)(3), pp.
239-244.

[24] S. Oum, P. Seymour. Approximating clique-width and branch-width. J. Combin.Theory Ser.
B 96(4):514528, 2006.

[25] R. Paige, R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing
16(6):973989, 1987.

[26] M. Rao. MSOL partitioning problems on graphs of bounded treewidth and clique-width.
Theoretical Computer Science, 377(1-3):260-267, 2007.

[27] N. Robertson, P. Seymour. Graph minors X: Obstructions to tree-decomposition. Journal on
Combinatorial Theory Series B, 52:153 190, 1991.

[28] J.A.Telle, A.Proskurowski. Algorithms for vertex partitionign problems on partial k-trees,
SIAM Journal Discrete Math. 10: 529-550, 1997.

16

