
The Perfect Matching Cut Problem Revisited

Van Bang Le1 and Jan Arne Telle2

1 Institut für Informatik, Universität Rostock, Rostock, Germany
van-bang.le@uni-rostock.de

2 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
Jan.Arne.Telle@uib.no

Abstract. In a graph, a perfect matching cut is an edge cut that is a perfect
matching. perfect matching cut is the problem of deciding whether a given
graph has a perfect matching cut, and is known to be NP-complete. We revisit
the problem and show that perfect matching cut remains NP-complete when
restricted to bipartite graphs of maximum degree 3 and arbitrarily large girth.
Complementing this hardness result, we give two graph classes in which perfect
matching cut is polynomial time solvable. The first one includes claw-free graphs
and graphs without an induced path on five vertices, the second one properly con-
tains all chordal graphs. Assuming the Exponential Time Hypothesis, we show
there is no O∗(2o(n))-time algorithm for perfect matching cut even when re-
stricted to n-vertex bipartite graphs, and also show that perfect matching cut
can be solved in O∗(1.2721n) time by means of an exact branching algorithm.

Keywords: Matching cut · Perfect matching cut · Computational complexity ·

Exact branching algorithm · Graph algorithm.

1 Introduction

In a graph G = (V,E), a cut is a partition V = X∪Y of the vertex set into disjoint, non-
empty sets X and Y . The set of all edges in G having an endvertex in X and the other
endvertex in Y , written E(X,Y), is called the edge cut of the cut (X,Y). A matching
cut is an edge cut that is a (possibly empty) matching. Another way to define matching
cuts is as follows; see [8,12]: a cut (X,Y) is a matching cut if and only if each vertex
in X has at most one neighbor in Y and each vertex in Y has at most one neighbor in X.
matching cut is the problem of deciding if a given graph admits a matching cut and
this problem has received much attention lately; see [7,10] for recent results.

An interesting special case, where the edge cut E(X,Y) is a perfect matching, was consid-
ered in [13]. The authors proved that perfect matching cut, the problem of deciding
if a given graph admits an edge cut that is a perfect matching, is NP-complete. A perfect
matching cut (X,Y) can be described as a (σ, ρ) 2-partitioning problem [21], as every
vertex in X must have exactly one neighbor in Y and every vertex in Y must have
exactly one neighbor in X. By results of [6,21,22] it can therefore be solved in FPT
time when parameterized by treewidth or cliquewidth (to mention only the two most fa-
mous width parameters) and in XP time when parameterized by mim-width (maximum
induced matching-width) of a given decomposition of the graph. For several classes of
graphs, like interval and permutation, a decomposition of bounded mim-width can be
computed in polynomial-time [3], thus the problem is polynomial on such classes.

1

In this paper, we revisit the perfect matching cut problem. Our results are:

– While matching cut is polynomial time solvable when restricted to graphs of max-
imum degree 3 and its computational complexity is still open for graphs with large
girth, we prove that perfect matching cut is NP-complete in the class of bipartite
graphs having maximum degree 3 and arbitrary large girth. Further, we show that
perfect matching cut cannot be solved in O∗(2o(n)) time for n-vertex bipartite
graphs and cannot be solved in O∗(2o(

√
n)) time for bipartite graphs having maximum

degree 3 and arbitrary girth.

– We provide the first exact algorithm to solve perfect matching cut on n-vertex
graphs, of runtime O∗(1.2721n). Note that the fastest algorithm for matching cut
has runtime O∗(1.3280n) and is based on the current-fastest algorithm for 3-sat [17].

– We give two graph classes of unbounded mim-width in which perfect matching
cut is solvable in polynomial time. The first class contains all claw-free graphs and
graphs without an induced path on 5 vertices, the second class contains all chordal
graphs.

Related work. The computational complexity of matching cut was first considered by
Chvátal in [8], who proved that matching cut is NP-complete for graphs with maximum
degree 4 and polynomial time solvable for graphs with maximum degree at most 3. Hard-
ness results were obtained for further restricted graph classes such as bipartite graphs,
planar graphs and graphs of bounded diameter (see [4,19,20]). Further graph classes
in which matching cut is polynomial time solvable were identified, such as graphs of
bounded tree-width, claw-free, hole-free and Ore-graphs (see [4,7,20]). FPT algorithms
and kernelization for matching cut with respect to various parameters has been dis-
cussed in [1,2,10,11,17,18]. The current-best exact algorithm solving matching cut has a
running time of O∗(1.3280n) where n is the vertex number of the input graph [17]. Faster
exact algorithms can be obtained for the case when the minimum degree is large [7]. The
recent paper [10] addresses enumeration aspects of matching cuts.

Very recently, a related notion has been discussed in [5]. In this paper, the authors
consider perfect matchings M ⊆ E of a graph G = (V,E) such that G \M = (V,E \M)
is disconnected, which they call perfect matching-cuts. To avoid confusion, we call such a
perfect matching a disconnected perfect matching. Note that, by definition, every perfect
matching cut is a disconnected perfect matching but a disconnected perfect matching
need not be a perfect matching cut. Indeed, all perfect matchings of the cycle on 4k + 2
vertices are disconnected perfect matchings and none of them is a perfect matching cut.
In [5], the authors showed, among others, that recognizing graphs having a disconnected
perfect matching is NP-complete even when restricted to graphs with maximum 4, and
left open the case of maximum degree 3. It is not clear whether our hardness result
on degree-3 graphs can be modified to obtain a hardness result of recognizing degree-3
graphs having a disconnected perfect matching.

Notation and terminology. Let G = (V,E) be a graph with vertex set V (G) = V and
edge set E(G) = E. The neighborhood of a vertex v in G, denoted by NG(v), is the
set of all vertices in G adjacent to v; if the context is clear, we simply write N(v). Let
deg(v) := |N(v)| be the degree of the vertex v, and N [v] := N(v) ∪ {v} be the closed
neighborhood of v. For a subset F ⊆ V , G[F] is the subgraph of G induced by F , and

2

G − F stands for G[V \ F]. We write NF (v) and NF [v] for N(v) ∩ F and N [v] ∩ F ,
respectively, and call the vertices in N(v)∩F the F -neighbors of v. The girth of G is the
length of a shortest cycle in G, assuming G contains a cycle. The path on n vertices is
denoted by Pn, the complete bipartite graph with one color class of size p and the other
of size q is denoted by Kp,q; K1,3 is also called a claw.

When an algorithm branches on the current instance of size n into r subproblems of sizes
at most n− t1, n− t2, . . . , n− tr, then (t1, t2, . . . , tr) is called the branching vector of this
branching, and the unique positive root of xn−xn−t1−xn−t2−· · ·−xn−tr = 0, denoted by
τ(t1, t2, . . . , tr), is called its branching factor. The running time of a branching algorithm
is O∗(αn), where α = maxi αi and αi is the branching factor of branching rule i, and
the maximum is taken over all branching rules. Throughout the paper we use the O∗

notation which suppresses polynomial factors. We refer to [9] for more details on exact
branching algorithms.

Algorithmic lower bounds in this paper are conditional, based on the Exponential Time
Hypothesis (ETH) [14]. The ETH states that there is no O∗(2o(n))-time algorithm for
3-sat where n is the variable number of the input 3-cnf formula. It is known that the
hard case for 3-sat already consists of formulas with O(n) clauses [15]. Thus, assuming
ETH, there is no O∗(2o(m))-time algorithm for 3-sat where m is the clause number of
the input formula.

Observe that a graph has a perfect matching cut if and only if each of its connected
components has a perfect matching cut. Thus, we may assume that all graphs in this
paper are connected.

2 Hardness results

In this section, we give two polynomial time reductions from positive nae 3-sat to
perfect matching cut. Recall that an instance for positive nae 3-sat is a 3-cnf
formula F = C1 ∧ C2 ∧ · · · ∧ Cm over n variables x1, x2, . . . , xn, in which each clause Cj

consists of three distinct variables. The problem asks whether there is a truth assignment
of the variables such that every clause in F has one true and one false variable. Such an
assignment is called nae assignment.

It is well-known that there is a polynomial reduction from 3-sat to positive nae 3-sat
where the variable number of the reduced formula is linear in the clause number of the
original formula. Hence, the ETH implies that there is no subexponential time algorithm
for positive nae 3-sat in the number of variables.

Theorem 1. Assuming ETH, perfect matching cut cannot be solved in subexponen-
tial time in the vertex number, even when restricted to bipartite graphs.

Proof. We give a polynomial reduction from positive nae 3-sat to perfect matching
cut restricted to bipartite graphs.

3

Given a 3-cnf formula F , construct a graph G as
follows. For each clause Cj = {cj1, cj2, cj3}, let G(Cj)
be the cube with clause vertices labeled cj1, cj2, cj3,
respectively, as depicted in Fig. 1. For each variable
xi, we introduce a variable vertex xi and a dummy
vertex x′i adjacent only to xi. Finally, we connect a
variable vertex xi to a clause vertex in G(Cj) if and
only if Cj contains the variable xi, i.e., xi = cjk for
some k ∈ {1, 2, 3}.

cj1

cj2

cj3

Fig. 1. The graph G(Cj).

Observe that G is bipartite and has the following property: no perfect matching M of G
(in particular, no perfect matching cut) contains an edge between a clause vertex and a
variable vertex. Thus, for every perfect matching cut M = E(X,Y) of G, the restriction
Mj = E(Xj , Yj) on G(Cj) is a perfect matching cut of G(Cj). Moreover, G(Cj) has
the following property: it has exactly three perfect matching cuts, and in any perfect
matching cut of G(Cj) not all clause vertices belong to the same part. Conversely, any
bipartition of Cj can be extended (in a unique way) to a perfect matching cut Mj of
G(Cj). See also Fig. 2.

cj1

cj2

cj3

cj1

cj2

cj3

cj1

cj2

cj3

Fig. 2. The three perfect matching cuts of G(Cj); black vertices in X, gray vertices in Y .

We are now ready to see that F has a nae assignment if and only if G has a perfect
matching cut: First, if there is a nae assignment for F then put all true variable vertices
into X, all false variable vertices into Y , and extend X and Y (in a unique way) to a
perfect matching cut of G; note that x′i and xi have to belong to different parts. Second,
if (X,Y) is a perfect matching cut of G then defining xi be true if xi ∈ X and false if
xi ∈ Y we obtain a nae assignment for F .

Observe that G has N = O(n+m) vertices. Hence the reduction implies that, assuming
ETH, perfect matching cut has no subexponential time algorithm in vertex num-
ber N , even when restricted to bipartite graphs. ut

We now describe how to avoid vertices of degree 4 and larger (the clause and variable
vertices) in the previous reduction to obtain a bipartite graph with maximum degree 3
and large girth.

Theorem 2. Let g > 0 be a given integer. perfect matching cut remains NP-
complete when restricted to bipartite graphs of maximum degree three and girth at least g.

4

Proof. We modify the gadgets used in the proof of Theorem 1. Let h ≥ 0 be a fixed
integer, which will be more concrete later.

Clause gadget: we subdivide every edge of the cube with 4h+4 new vertices, fix a vertex cj
of degree 3 and label the three neighbors of cj with cj1, cj2 and cj3, respectively. We
denote the obtained graph again by G(Cj) and call the labeled vertices the clause vertices.
The case h = 0 is shown in Fig. 3. Observe, G(Cj) has the same properties of the cube
used in the previous reduction: it has exactly three perfect matching cuts, and in any
perfect matching cut of G(Cj) not all clause vertices belong to the same part. Moreover,
any bipartition of Cj can be extended (in a unique way) to a perfect matching cut Mj

of G(Cj). See also Fig. 4.

Variable gadget: for each variable xi we introduce m variable vertices xji one for each
clause Cj , 1 ≤ j ≤ m, as follows. (We assume that the formula F consists of m ≥ 3
clauses.) First, take a cycle with m vertices x1i , x2i , . . . , xmi and edges x1ix

2
i , x2ix

3
i , . . . ,

xm−1i xmi and x1ix
m
i . Then subdivide every edge with 4h + 3 new vertices to obtain the

graph G(xi). Thus, G(xi) is a cycle on 4m(h + 1) vertices. The case m = 3, h = 0 is
shown in Fig. 3. The following property of G(xi) can be verified immediately: in any
perfect matching cut of G(xi), all variable vertices xji , 1 ≤ j ≤ m, belong to the same
part.

cj1
cj2

cj3
v1i

v2i

v3i

Fig. 3. The clause gadget G(Cj) (left) and the variable gadget G(xi) (right) in case m = 3 and
h = 0.

Finally, the graph G is obtained by connecting the variable vertex xji in G(xi) to a clause
vertex in G(Cj) by an edge whenever xi appears in clause Cj , i.e., xi = cjk for some
k ∈ {1, 2, 3}.
It follows from construction, that

– G has maximum degree 3;

– G is bipartite. This can be seen as follows. The bipartite subgraph formed by allG(Cj)
has a bipartition into independent sets A and B such that all clause vertices cjk are
in A. The bipartite subgraph formed by all G(xi) has a bipartition into independent

5

sets C and D such that all variable vertices xji are in C. Since the edges in G between
these two subgraphs connect clause vertices and variable vertices, therefore the vertex
set of G can be partitioned into independent sets A ∪D and B ∪ C;

– G has girth at least min{4m(h + 1), 8(h + 2)}. This can be seen as follows. There
are 3 types of cycles in G. Any of the cycles G(xi) has length 4m(h+ 1). A shortest
cycle in any G(Cj) is a subdivision of a 4-cycle and has length 4(4h+ 5). The cycles
of the last type go through some G(xi)s and some G(Cj)s; the length of a shortest
one among them is at least 4 + (4h+ 4) + 4 + (4h+ 4) = 8(h+ 2).

Moreover, as in the previous construction,G has the following property: no perfect match-
ing M of G (in particular, no perfect matching cut) contains an edge between a clause
vertex and a variable vertex. Thus, for every perfect matching cut M = E(X,Y) of G,
the restrictions of M on G(Cj) and on G(xi) are perfect matching cuts of G(Cj) and of
G(xi), respectively.

Now, as in the proof of Theorem 1, we can argue that F has a nae assignment if and
only if G has a perfect matching cut. First, if there is a nae assignment for F then put
all true variable vertices and clause vertices into X, all false variable vertices and clause
vertices into Y , and extend X and Y (in a unique way) to a perfect matching cut of G.
See Fig.4 for an extension in G(Cj). Second, if (X,Y) is a perfect matching cut of G then
defining xi be true if xi ∈ X and false if xi ∈ Y we obtain a nae assignment for F .

cj1
cj2

cj3

cj1
cj2

cj3

Fig. 4. How to extend X (black) and Y (gray) on the left-hand site to a perfect matching cut
in G(Cj) on the right-hand side.

Finally, given g > 0, let h ≥ 0 be an integer at least max{ g
4m − 1, g8 − 2}. Then G has

girth at least min{4m(h+ 1), 8(h+ 2)} ≥ g. This completes the proof. ut

Note that the graph G in the proof of Theorem 2 has N = O(m+nm) vertices, where n
and m are the variable number and clause number, respectively, of the formula F . Since
we may assume that F has m = O(n) clauses, G has N = O(n2) vertices. Hence we
obtain the following.

6

Theorem 3. Assuming ETH, there is no O∗(2o(
√
n))-time algorithm for perfect match-

ing cut even when restricted to n-vertex bipartite graphs with maximum degree 3 and
arbitrary large girth.

Observe that perfect matching cut is trivial for graphs with maximum degree 2: a
(connected) graph with maximum degree 2 has a perfect matching cut if and only if it
is a path with even number of vertices or a cycle with 4k vertices. Thus, the maximum
degree constraint in Theorems 2 and 3 is optimal.

3 An exact exponential algorithm

Recall that, assuming ETH, there is no O∗(2o(n))-time algorithm for perfect matching
cut on n-vertex (bipartite) graphs. The main result in this section is an algorithm solving
perfect matching cut in O∗(1.2721n) time.

Recall that all graphs considered are connected. Our algorithm follows the idea of known
branching algorithms for matching cut [7,17,18]. We adapt basic reduction rules for
matching cuts to perfect matching cuts, and add new reduction and branching rules for
perfect matching cuts.

If the input graph G = (V,E) has a perfect matching cut (X,Y), then some edge has
an endvertex a in X and the other endvertex b in Y . The branching algorithm will be
executed for all possible edges ab ∈ E, hence O(m) times. To do this set A := {a}, B :=
{b}, and F := V \{a, b} and call the branching algorithm. At each stage of the algorithm,
A and B will be extended or it will be determined that there is no perfect matching cut
separating A and B, that is a perfect matching cut (X,Y) with A ⊆ X and B ⊆ Y . We
describe our algorithm by a list of reduction and branching rules given in preference order,
i.e., in an execution of the algorithm on any instance of a subproblem one always applies
the first rule applicable to the instance, which could be a reduction or a branching rule.
A reduction rule produces one subproblem while a branching rule results in at least two
subproblems, with different extensions of A and B. Note that G has a perfect matching
cut that separates A from B if and only if in at least one recursive branch, extensions A′

of A and B′ of B are obtained such that G has a perfect matching cut that separates A′

from B′. Typically a rule assigns one or more free vertices, vertices of F , either to A or
to B and removes them from F , that is, we always have F = V \ (A ∪B).

Reduction Rules 1 (except the last three items), 2 (except the last two items), 3 and 4
below are given in [18] for matching cuts. As perfect matching cuts are matching cuts,
they remain correct for perfect matching cuts.

Reduction Rule 1

– If a vertex in A has two B-neighbors, or a vertex in B has two A-neighbors then
STOP: “G has no matching cut separating A, B”.

– If v ∈ F , |N(v) ∩ A| ≥ 2 and |N(v) ∩ B| ≥ 2 then STOP: “G has no matching cut
separating A, B”.

– If there is an edge xy in G such that x ∈ A and y ∈ B and N(x) ∩ N(y) ∩ F 6= ∅
then STOP: “G has no matching cut separating A, B”.

– If a vertex in A and a vertex in B have three or more common neighbors in F then
STOP: “G has no matching cut separating A, B”.

7

– If a vertex in A (respectively in B) has no neighbor in B ∪ F (respectively in A∪ F)
then STOP: “G has no perfect matching cut separating A, B”.

– If there are x ∈ A and y ∈ B such that N(x)∩F = N(y)∩F = {v} then STOP: “G
has no perfect matching cut separating A, B”.

Reduction Rule 2

– If v ∈ F and |N(v) ∩ A| ≥ 2 (respectively |N(v) ∩ B| ≥ 2) then A := A ∪ {v}
(respectively B := B ∪ {v}).

– If v ∈ F and |N(v) ∩ N(x) ∩ F | ≥ 3 for some x ∈ A (respectively y ∈ B) then
A := A ∪ {v} ∪ (N(v) ∩N(x) ∩ F) (respectively B := B ∪ {v} ∪ (N(v) ∩N(y) ∩ F)).

Reduction Rule 3 If x ∈ A (respectively y ∈ B) has two adjacent F -neighbors u, v
then A := A ∪ {u, v} (respectively B := B ∪ {u, v}).
Reduction Rule 4 If there is an edge xy in G such that x ∈ A and y ∈ B then add
N(x) ∩ F to A, and add N(y) ∩ F to B.

If none of these reduction rules can be applied then the following facts hold:

– The edge cut E(A,B) is a (not necessary perfect) matching cut of G[A∪B] = G−F
due to Reduction Rule 1. Moreover, any vertex in A and any vertex in B have at
most two common neighbors in F .

– Every vertex in F is adjacent to at most one vertex in A and at most one vertex in
B due to Reduction Rule 2.

– The neighbors in F of any vertex in A and the neighbors in F of any vertex in B
form an independent set due to Reduction Rule 3, and

– Every vertex in A adjacent to a vertex in B has no neighbor in F and every vertex
in B adjacent to a vertex in A has no neighbor in F due to Reduction Rule 4.

Reduction Rule 5 below is given in [17] and remains correct for perfect matching cuts.

Reduction Rule 5 If there are vertices u, v ∈ F such that N(u) = N(v) = {x, y} with
x ∈ A, y ∈ B, then A := A ∪ {u}, B := B ∪ {v}.
The remaining reduction rules work for perfect matching cuts but not for matching cuts
in general.

Reduction Rule 6 If x ∈ A (respectively y ∈ B) has exactly one neighbor v ∈ F then
B := B ∪ {v} (respectively A := A ∪ {v}).

Proof (of safeness). Let x ∈ A with N(x)∩F = {v}. By Reduction Rule 4, N(x)∩B = ∅.
If (X,Y) is a perfect matching separating A and B, then N(x) \ {v} ⊆ X, hence the
neighbor v of x must belong to Y . The case y ∈ B is symmetric. ut

Reduction Rule 7 Let z ∈ A (respectively z ∈ B) and let v ∈ N(z) ∩ F .
– If deg(v) = 1 then B := B ∪ {v} (respectively A := A ∪ {v}).
– If deg(v) = 2 and w ∈ F is other neighbor of v then B := B ∪ {w} (respectively
A := A ∪ {w}).

Proof (of safeness). Let z ∈ A and v ∈ N(z)∩F . Let (X,Y) be a perfect matching of G
separating A and B. If z is the only neighbor of v, then, as z ∈ X, v must belong to Y .
If N(v) = {z, w} with w ∈ F , then w must belong to Y , otherwise both neighbors of v
were in X. The case z ∈ B is symmetric. ut

8

Reduction Rule 8 Let x ∈ A and y ∈ B with |N(x)∩N(y)∩F | = 2. If |N(x)∩F | ≥ 3
or |N(y) ∩ F | ≥ 3 then A := A ∪N(x) \N(y), B := B ∪N(y) \N(x).

Proof (of safeness). Assume that (X,Y) is a perfect matching cut of G separating A
and B. Then N(x)∩N(y)∩F must contain one vertex in X and one vertex in Y . Hence
N(x) \N(y) ⊆ X and N(y) \N(x) ⊆ Y . ut

We now describe the branching rules. All branching rules are based on the fact that, in
any perfect matching cut (X,Y) separating A and B, every vertex in X has exactly one
neighbor in Y and every vertex in Y has exactly one neighbor in X. Thus, if some vertex
in A has no neighbor in B, it must have a neighbor in F that must go to Y , and if some
vertex in B has no neighbor in A, it must have a neighbor in F that must go to X. Note
that by Reduction Rule 6, every vertex in A∪B has none or at least two neighbors in F .
By Reduction Rule 1, any x ∈ A and y ∈ B have at most two common neighbors in F .

To determine the branching vectors which correspond to our branching rules, we set the
size of an instance (G,A,B) as its number of free vertices, i.e., |V (G)| − |A| − |B|. There
are seven branching rules. Vertices in A ∪ B having exactly two neighbors in F will be
covered by the first four branching rules.

A
x

B
y

F

Branching Rule 1

u v

A
x

B
y1 y2

F

Branching Rule 2

u v
N1 N2

A
x

B
y

F

Branching Rule 3

u v
N

Fig. 5. When Branching Rules 1, 2 and 3 are applicable.

Branching Rule 1 Let x ∈ A and y ∈ B with N(x)∩N(y)∩F = {u, v}. By Reduction
Rule 8, N(x) ∩ F = N(y) ∩ F = {u, v}. We branch into two subproblems.

– First, add N [u] ∩ F to A. Then N [v] ∩ F has to be added to B.

– Second, add N [u] ∩ F to B. Then N [v] ∩ F has to be added to A.

The branching vector of Branching Rule 1 is(
|(N [u] ∪N [v]) ∩ F |, |(N [u] ∪N [v]) ∩ F |

)
.

By Reduction Rule 5, |(N [u] ∪N [v]) ∩ F | ≥ 3, hence the branching factor of Branching
Rule 1 is at most τ(3, 3) < 1.2560.

Branching Rule 2 Let x ∈ A with N(x)∩F = {u, v} and N(u)∩B = {y1}, N(v)∩B =
{y2}. We branch into 2 subproblems.

– First, add u to B. Then v has to be added to A and N2 := N(y2)∩F \ {v} has to be
added to B.

9

– Second, add v to B. Then u has to be added to A and N1 := N(y1) ∩ F \ {u} has to
be added to B.

Symmetrically for y ∈ B with N(y)∩F = {u, v} and N(u)∩A = {x1}, N(v)∩A = {x2}.
By Branching Rule 1, v 6∈ N1, u 6∈ N2. Hence, the branching vector of Branching Rule 2
is (

2 + |N1|, 2 + |N2|
)
.

By Reduction Rule 6, |N1| ≥ 1, |N2| ≥ 1. Hence the branching factor is at most τ(3, 3) =
3
√

2 < 1.2600.

Branching Rule 3 Let x ∈ A with N(x) ∩ F = {u, v} and N(u) ∩B = ∅, N(v) ∩B =
{y}. We branch into two subproblems.

– First, add u to B. Then v has to be added to A and N := N(u) ∩ F has to be added
to B.

– Second, add v to B. Then u has to be added to A.

Symmetrically for y ∈ B with N(y)∩F = {u, v} and N(u)∩A = ∅, and N(v)∩A = {x}.
The branching vector of Branching Rule 3 is(

2 + |N |, 2
)
.

By Reduction Rule 7, |N | ≥ 2, hence the branching factor of Branching Rule 3 is at most
τ(4, 2) < 1.2721.

Branching Rule 4 Let x ∈ A with N(x) ∩ F = {u1, u2, . . . , ur}, r ≥ 2, and N(ui) ∩B
= ∅, 1 ≤ i ≤ r. We branch into r subproblems. For each 1 ≤ i ≤ r, the instance of the
i-th subproblem is obtained by adding ui to B. Then N(x)∩F \{ui} has to be added to A
and Ni := N(ui) ∩ F has to be added to B.
Symmetrically for y ∈ B with N(y) ∩ F = {v1, v2, . . . , vr} and vi has no neighbor in A,
1 ≤ i ≤ r.
The branching vector of Branching Rule 4 is(

r + |N1|, r + |N2|, . . . , r + |Nr|
)
.

By Reduction Rule 7, |Ni| ≥ 2, hence the branching factor of Branching Rule 4 is at
most τ(r + 2, r + 2, . . . , r + 2) = r+2

√
r < 1.2600.

A
x

B

F

Branching Rule 4

u1 ui

ur

Ni

A
x

B
y1 yj yq

F

Branching Rule 5

u1 ui up v1 vj vq Nj

Fig. 6. When Branching Rules 4 and 5 are applicable.

10

Branching Rules 1 and 4 together with the remaining branching rules cover vertices in
A ∪B having at least three neighbors in F . Branching Rule 5 deals with the case z ∈ A
(respectively z ∈ B) in which at least two vertices in N(z) ∩ F have neighbors in B
(respectively in A).

Branching Rule 5 Let x ∈ A with N(x)∩F = {u1, . . . , up, v1, v2, . . . , vq}, p ≥ 0, q ≥ 2,
such that N(ui) ∩ B = ∅, 1 ≤ i ≤ p and N(vj) ∩ B = {yj}, 1 ≤ j ≤ q. We branch into
r = p+ q subproblems.

– For each 1 ≤ i ≤ p, the instance of the i-th subproblem is obtained by adding ui to B.
Then N(x)∩F \{ui} has to be added to A and all Nj := N(yj)∩F \{vj}, 1 ≤ j ≤ q,
have to be added to B.

– For each 1 ≤ j ≤ q, the instance of the p+ j-th subproblem is obtained by adding vj
to B. Then N(x) ∩ F \ {vj} has to be added to A and all Nk := N(yj) ∩ F \ {vj},
1 ≤ k ≤ q, k 6= j, have to be added to B.

Symmetrically for y ∈ B with N(y) ∩ F = {u1, . . . , up, v1, v2, . . . , vq}, p ≥ 0, q ≥ 2 such
that N(ui) ∩A = ∅, 1 ≤ i ≤ p and N(vj) ∩A = {xj}, 1 ≤ j ≤ q.
By Branching Rule 1 and Reduction Rule 2, Nj are pairwise disjoint and Nj∩{v1, . . . , vq}
= ∅. Hence, the branching vector of Branching Rule 5 is(

r +
∑
j

|Nj |, . . . , r +
∑
j

|Nj |, r +
∑
k 6=1

|Nk|, . . . , r +
∑
k 6=q

|Nk|
)
.

Due to Branching Rules 1–4, each yj has at least three neighbors in F . Hence |Nj | ≥ 2,
1 ≤ j ≤ q. Thus, the branching factor is at most τ(r+ 2q, . . . , r+ 2q, r+ 2(q− 1), . . . , r+
2(q − 1)) ≤ τ(r + 2, . . . , r + 2) = r+2

√
r < 1.2600.

The last two branching rules deal with the case z ∈ A (respectively z ∈ B) in which
exactly one vertex in N(z) ∩ F has a unique neighbor in B (respectively in A).

A
x

B
y

F

Branching Rule 6

u1 ui
v

vs

A
x

B
y

F

Branching Rule 7

u1 ui

v

vs

Fig. 7. When Branching Rules 6 and 7 are applicable.

Branching Rule 6 Let x ∈ A with N(x) ∩ F = {u1, u2, . . . , ur, v}, r ≥ 2, such that
N(ui)∩B = ∅, 1 ≤ i ≤ r, and N(v)∩B = {y}. Write N(y)∩F \{v} = {v1, . . . , vs}, s ≥ 2.
Assume that some ui has two neighbors in {v1, . . . , vs}. We branch into 2 subproblems.

11

– First, add v to A. Then {v1, . . . , vs} and ui have to be added to B, and {u1, . . . , ur}\
{ui} has to be added to A.

– Second, add v to B. Then {u1, . . . , ur} has to be added to A.

Symmetrically for y ∈ B with N(y) ∩ F = {u1, u2, . . . , ur, v} such that N(ui) ∩ A = ∅,
1 ≤ i ≤ r, and N(v) ∩A = {x} and some ui has two neighbors in N(x) ∩ F \ {v}.
The branching vector of Branching Rule 6 is

(r + s+ 1, r + 1).

Since r ≥ 2 and s ≥ 2, we have τ(r + s+ 1, r) ≤ τ(5, 3) < 1.1939.

Branching Rule 7 Let x ∈ A with N(x) ∩ F = {u1, u2, . . . , ur, v}, r ≥ 2, such that
N(ui) ∩ B = ∅, 1 ≤ i ≤ r, and N(v) ∩ B = {y}. Write N(y) ∩ F \ {v} = {v1, . . . , vs},
s ≥ 2. We branch into r + s subproblems.

– For each 1 ≤ i ≤ r, the instance of the i-th subproblem is obtained by adding ui
to B. Then {u1, . . . , ur} \ {ui} and v have to be added to A, Ni := N(ui) ∩ F and
{v1, . . . , vs} have to be added to B.

– For each 1 ≤ j ≤ s, the instance of the r + j-th subproblem is obtained by adding vj
to A. Then {v1, . . . , vs} \ {vj} and v have to be added to B, Mj := N(vj) ∩ F and
{u1, . . . , ur} have to be added to A.

Symmetrically for y ∈ B with N(y) ∩ F = {u1, u2, . . . , ur, v} such that N(ui) ∩ A = ∅,
1 ≤ i ≤ r, and N(v) ∩A = {x}.
Write αi = |Ni ∩ {v1, . . . , vs}|, 1 ≤ i ≤ r, and βj = |Mj ∩ {u1, . . . , ur}|, 1 ≤ j ≤ s. The
branching vector of Branching Rule 7 is

(
r+s+1+|N1|−α1, . . . , r+s+1+|Nr|−αr, r+s+1+|M1|−β1, . . . , r+s+1+|Ms|−βs

)
.

By Reduction Rule 7, |Ni| ≥ 2. By Branching Rule 5, vj has no neighbor in A, hence, by
Reduction Rule 7, |Mj | ≥ 2. By Branching Rule 6, αi ≤ 1, βj ≤ 1. Hence the branching
factor is at most τ(r + s+ 2, . . . , r + s+ 2) = r+s+2

√
r + s < 1.2600.

The description of all seven branching rules is completed. Among all branching rules,
Branching Rule 3 has the largest branching factor of 1.2721. Consequently, the running
time of our algorithm is O∗(1.2721n).

It remains to show that if none of the reduction rules and none of the branching rules is
applicable to an instance (G,A,B) then the graph G has a perfect matching cut (X,Y)
such that A ⊆ X and B ⊆ Y if and only if (A,B) is a perfect matching cut of G. In
fact, if all reduction and branching rules are not longer applicable, then no vertex in
A ∪ B has a neighbor in F . Hence, by connectedness of G, F = ∅. Therefore, G has a
perfect matching cut separating A and B if and only if (A,B) is a perfect matching cut.
In summary, we obtain:

Theorem 4. There is an algorithm for perfect matching cut running in O∗(1.2721n)
time.

12

4 Two polynomial solvable cases

In this section, we provide two graph classes in which perfect matching cut is solvable
in polynomial time. Both classes are well motivated by the hardness results.

4.1 Excluding a (small) tree of maximum degree three

Let H be a fixed graph. A graph G is H-free if G contains no induced subgraph isomorphic
to H. Since by Theorem 2 perfect matching cut remains NP-complete on the class of
graphs having maximum degree three and arbitrarily high girth, it is also NP-complete on
H-free graphs whenever H is outside this class, e.g. if H has a vertex of degree larger than
three or has a (fixed-size) cycle. This suggests studying the computational complexity of
perfect matching cut restricted to H-free graphs for a fixed forest H with maximum
degree at most three.

As the first step in this direction, we show that per-
fect matching cut is solvable in polynomial time
for H-free graphs, where H is the tree T with 6 ver-
tices obtained from the claw K1,3 by subdividing two
edges each with one new vertex; see Fig. 8. In par-
ticular, perfect matching cut is polynomial time
solvable for K1,3-free graphs but hard for K1,4-free
graphs (by Theorem 2).

Fig. 8. The tree T .

Given a connected T -free graph G = (V,E), our algorithm works as follows. Fix an edge
ab ∈ E and decide if G has a perfect matching cut M = E(X,Y) separating A = {a}
and B = {b}. We use the notations and reduction rules from Section 3. In addition, we
need one new reduction rule; recall that F = V \ (A∪B). This additional reduction rule
is correct for matching cuts in general and is already used in [7]. For completeness, we
give a correctness proof for perfect matching cuts.

Reduction Rule 9

– If there are vertices u, v ∈ F with a common neighbor in A and |N(u)∩N(v)∩F | ≥ 2,
then A := A ∪ {u, v}.

– If there are vertices u, v ∈ F with a common neighbor in B and |N(u)∩N(v)∩F | ≥ 2,
then B := B ∪ {u, v}.

Proof (of safeness). Let u, v ∈ F with N(u)∩N(v)∩A = {x} and |N(u)∩N(v)∩F | ≥ 2.
We show that G has a perfect matching cut separating A, B if and only if G has a perfect
matching cut separating A∪ {u, v} and B. First, let (X,Y) be a perfect matching cut of
G with A ⊆ X and B ⊆ Y . If u ∈ Y then, as x ∈ A, N(u) ∩ F must belong to Y and
v must belong to X. But then, as |N(v) ∩ N(u) ∩ F | ≥ 2, v has two neighbors in Y , a
contradiction. Thus, u ∈ X, and similarly, v ∈ X. That is (X,Y) separates A ∪ {u, v}
and B. The other direction is obvious: any perfect matching cut separating A ∪ {u, v}
and B separates A and B.

The second case is symmetric. ut

Now, we apply the Reduction Rules 1–9 exhaustively. Note that this part takes polyno-
mial time. If F = V \ (A∪B) is empty, then G has a perfect matching cut separating A

13

and B if and only if (A,B) is a perfect matching cut of G. Verifying whether (A,B) is a
perfect matching cut also takes polynomial time.

So, let us assume that F 6= ∅. Then due to the reduction rules (recall that G is connected),

– any vertex in A (in B) having no neighbor in B (in A) has at least two neighbors in
F , and

– any vertex in A (in B) having a neighbor in F has no neighbor in B (in A).

At this point, we will explicitly give an induced subgraph in G isomorphic to the tree T
or correctly decide that G has no perfect matching cut separating A and B. Write

A∗ = {x ∈ A | N(x) ∩B 6= ∅}, B∗ = {y ∈ B | N(y) ∩A 6= ∅}.

Recall that A∗ 6= ∅ and B∗ 6= ∅, and there are no edges between A∗∪B∗ and F , no edges
between A \A∗ and B \B∗.
Thus, as G is connected and F 6= ∅, there is a vertex in A \ A∗ adjacent to a vertex in
A∗, or there is a vertex in B \B∗ adjacent to a vertex in B∗. By symmetry, let us assume
that there is a vertex x ∈ A\A∗ adjacent to a vertex x∗ ∈ A∗. Let y∗ ∈ B∗ be the unique
neighbor of x in B∗. Recall that, every vertex in (A \ A∗) ∪ (B \ B∗) has at least two
neighbors in F .

First, suppose that there is a vertex y ∈ B with |N(x) ∩ N(y) ∩ F | ≥ 2. Let u, v ∈
N(x) ∩ N(y) ∩ F . If (X,Y) is a perfect matching cut with A ⊆ X and B ⊆ Y , then u
and v must belong to different parts, say u ∈ X, v ∈ Y . Now, if there were some vertex
w ∈ N(u)∩N(v)∩F , then u would have two neighbors in Y (if w ∈ Y) or v would have
two neighbors in X (if w ∈ X). So, let us assume that N(u)∩N(v)∩F = ∅. Then due to
Reduction Rule 5, there exists a vertex w ∈ N(u) ∩ F \N(v). Due to Reduction Rule 3,
N(x)∩F is an independent set, hence w, u, x, x∗, y∗ and v induce the tree T in G. Thus,
we may assume that

for any vertex y ∈ B, |N(x) ∩N(y)| ≤ 1. (1)

Next, observe that

every vertex in B \B∗ adjacent to a vertex in N(x) is adjacent to y∗. (2)

This can be seen as follows: Let z ∈ B \B∗ be adjacent to some u ∈ N(x). Then u ∈ F .
By (1), z is non-adjacent to all vertices in N(x) ∩ F \ {u}. Recall that some vertex
v ∈ N(x) ∩ F \ {u} exists. So, if z is not adjacent to y∗, then z, u, x, x∗, y∗ and v induce
the tree T in G.

Now, fix two vertices u, v ∈ N(x)∩F . Suppose that N(u)∩B = ∅. Then, due to Reduction
Rules 7 and 9, there exists a vertex w ∈ N(u)∩F \N(v), and as above, w, u, v, x, x∗ and
y∗ induce the tree T in G. Thus, we may assume that N(u) ∩B 6= ∅ and, by symmetry,
N(v) ∩B 6= ∅.
Let y1, y2 ∈ B \ B∗ be the unique neighbors of u and v in B, respectively. By (1), y1 is
non-adjacent to v, and y2 is non-adjacent to u. By (2), y1 and y2 are adjacent to y∗. If y1
and y2 are non-adjacent, then u, y1, y

∗, y2, v and x∗ induce the tree T . So, let us assume
that y1 and y2 are adjacent.

Let u′ 6= u be a second neighbor of y1 in F , and v′ 6= v be a second neighbor of y2 in F .
By (1), x is non-adjacent to u′ and v′. Now, consider two cases:

14

– assume that u and v′ are adjacent. Then v′, u, x, x∗, y∗ and v induce the tree T in G,
and

– assume that u and v′ are non-adjacent. Then v′, y2, y1, u, x and u′ (if u′ and v′ are
non-adjacent), or else u′, v′, y2, y

∗, x∗ and v (if u′ and v′ are adjacent) induce the
tree T in G.

In each case, we reach a contradiction.

Thus, we have seen that, in case F 6= ∅, G has no perfect matching cut separating A
and B, orG contains the tree T as an induced subgraph. So, after at most |E| rounds, each
for a candidate ab ∈ E and in polynomial time, our algorithm will find out whether G
has a perfect matching cut at all. In summary, we obtain:

Theorem 5. perfect matching cut is solvable in polynomial time for T -free graphs.

4.2 Interval, chordal and pseudo-chordal graphs

Recall that a graph has girth at least g if and only if it has no induced cycles of length less
than g. Thus, Theorem 2 implies that perfect matching cut remains hard when re-
stricted to graphs without short induced cycles. This suggests studying perfect match-
ing cut restricted to graphs without long induced cycles, i.e., k-chordal graphs. Here,
given an integer k ≥ 3, a graph is k-chordal if it has no induced cycles of length larger
than k; the 3-chordal graphs are known as chordal graphs.

In this subsection we show that perfect matching cut can be solved in polynomial
time when restricted to what we call pseudo-chordal graphs, that contain the class of
3-chordal graphs and thus known to have unbounded mim-width [16].

We begin with a concise characterization of interval graphs having perfect matching cuts,
to yield a polynomial-time algorithm deciding if an interval graph has a perfect matching
cut which is much simpler than what we get by the mim-width approach [6].

Fact 1 Let G have a vertex set U ⊆ V (G) such that G[U] is connected with every edge
of G[U] belonging to a triangle. Then if (X,Y) is a perfect matching cut of G we must
have U ⊆ X or U ⊆ Y .

This since otherwise we must have a triangle K and two vertices u, v with u ∈ K ∩ X
and v ∈ K ∩ Y having a common neighbor in K so this cannot be a perfect matching
cut.

If an interval graph G has a cycle then it has a 3-clique. By Fact 1 these 3 vertices would
have to belong to the same side of the cut, and each would need to have a unique neighbor
on the other side of the cut. But then those 3 neighbors would form an asteroidal triple,
contradicting that G was an interval graph. Thus an interval graph which is not a tree
does not have a perfect matching cut. A tree T is an interval graph if and only if it does
not have the subdivided claw as a subgraph. Thus, T is a caterpillar with basic path
x1, . . . , xk, where x1 and xk does not have a leaf attached, while the other xi may have
any number of leaves attached. If some xi has at least two leaves attached then T does
not have a perfect matching cut (X,Y), as xi ∈ X would imply that at least one of those
leaves is in X and this leaf would not have a neighbor in Y . Since a leaf vertex and its
neighbor must belong to opposite sides of the cut, it is not hard to verify the following.

15

(A caterpillar is a tree with a (basic) path such that all vertices outside the path has a
neighbor on the path.)

Fact 2 An interval graph has a perfect matching cut if and only if it is a caterpillar with
basic path x1, . . . , xk such that any xi for 1 < i < k has either zero or one leaf, and any
maximal sub-path of x1, . . . , xk with zero leaves contains an even number of vertices.

In particular, caterpillars having a perfect matching cut can be recognized in polynomial
time. For an arbitrary tree T we can decide whether T has a perfect matching as follows:
Root T at a vertex r and let r1, . . . , rk be the children of r. Then T has a perfect matching
cut if and only if there exists some 1 ≤ i ≤ k such that each subtree Tj rooted at rj ,
j 6= i, has a perfect matching cut, and Ti − ri has a perfect matching cut such that all
children of ri are in the same side. This fact implies a bottom-up dynamic programming
to decide if T has a perfect matching cut.

A similar idea works for a large graph class that properly contains all chordal graphs.
We will show a polynomial-time algorithm for what we call pseudo-chordal graphs. The
maximal 2-connected subgraphs of a graph are called its blocks, and a block is non-trivial
if it contains at least 3 vertices.

Definition 1. A graph is pseudo-chordal if, for every non-trivial block B, every edge of
B belongs to a triangle.

Note that chordal graphs are pseudo-chordal, but pseudo-chordal graphs may contain
induced cycles of any length, e.g. take a cycle and for any two neighbors add a new
vertex adjacent to both of them.

Theorem 6. There is a polynomial-time algorithm deciding if a pseudo-chordal graph
G has a perfect matching cut.

Proof. We first compute the blocks of G and let D be the subgraph of G formed by the
edges of non-trivial blocks of G. Let D1, D2, . . . , Dk be the connected components of D.
Note that by collapsing each Di into a supernode we can treat the graph G as having a
tree structure T (related to the block structure) with one node for each v ∈ V (G)\V (D),
and a supernode for each Di. See Fig. 9.

D1
D2

D3

D4

Fig. 9. A pseudo-chordal graph and perfect matching cut given by (X,Y) with X being black
vertices. Note the tree structure composed of (i) those vertices that do not belong to a clique of
size 3 and (ii) the four supernodes D1, D2, D3, D4.

16

Note that since G is pseudo-chordal then by Fact 1 all the vertices in a fixed supernode
Di must be on the same side in any perfect matching cut of G.

Our algorithm will pick a root R of T and proceed by bottom-up dynamic programming
on the rooted tree T . Each node S of T will be viewed as the set of vertices it represents
in G. If S is not the root of T then we denote by r(S) the unique vertex of S that has a
parent in T . For each node S of T we will compute two boolean values that concern the
subgraph GS of G induced by vertices of G contained in the subtree of T rooted at S.
These boolean values are defined as follows:

– pmc(S) = true if and only if GS has a perfect matching cut

– m(S) = true if and only if GS \ r(S) has a perfect matching cut where all vertices
of S \ r(S) are on the same side.

We first initialize pmc(S) and m(S) to false for all nodes S of T . For a leaf S of T we
set m(S) = true if |S| = 1, i.e. if S is not a supernode.

Consider an inner node S of T , with S = {v1, . . . , vq} ⊆ V (G). In the rooted tree T , let
the children of S that contain a neighbor of vi be C(vi) (note that each child of S in
T has a unique vertex that has a unique neighbor vi ∈ S). Assuming the values pmc(·)
and m(·) have been computed for all children of S, we do the following:

– set pmc(S) = true if for each vi ∈ S we have C(vi) = {S1, . . . , Sk} with k ≥ 1 and
we can find a child with m(Si) = true such that pmc(Sj) = true for the other k− 1
children j 6= i.

– set m(S) = true if (i) for each vi ∈ S \r(S) we have C(vi) = {S1, . . . , Sk} with k ≥ 1
and we can find a child with m(Si) = true such that pmc(Sj) = true for the other
k − 1 children j 6= i, and (ii) for every child S′ ∈ C(r(S)) we have pmc(S′) = true.

For the root R of T we update pmc(R) but not m(R) since r(R) is not defined. When we
are done with the bottom-up dynamic programming, then for the root R of T we note
that G = GR so that by the definition of the values G has a perfect matching cut if and
only if pmc(R) = true.

The correctness follows by structural induction on the tree T . By definition, pmc(S) =
true (respectively m(S) = true) if and only if there is a cut of GS so that every node
(respectively every node except r(S)) has a single neighbor, its ‘mate’, on the other side
of the cut. The values at leaves are initialized correctly according to this definition. At
an inner node S we inductively assume the values at children are correct and end up
setting pmc(S) to true if and only if GS has a perfect matching cut, since for each node
in S we require a single child neighbor that needs a mate, while all other child neighbors
are required to already have a mate. Similarly for m(S) but now all children of r(S) are
required to already have a mate. Since each node v of S is a cut vertex of G separating
GS so that each child of S defines its own unique component, we can merge all the cuts
in all children while keeping all the nodes of S on the same side of the cut, to satisfy
Fact 1 that requires all the nodes in S to be on the same side of the cut. The runtime is
clearly polynomial. ut

17

5 Conclusion

We have shown that, assuming ETH, there is no O∗(2o(n))-time algorithm for perfect
matching cut even when restricted to n-vertex bipartite graphs, and that perfect
matching cut remains NP-complete when restricted to bipartite graphs of maximum
degree 3 and arbitrary large girth. This implies that perfect matching cut remains
NP-complete when restricted to H-free graphs where H is any fixed graph having a vertex
of degree at least 4 or a cycle. This suggests the following problem for further research:

Let F be a fixed forest with maximum degree at most 3. What is the computa-
tional complexity of perfect matching cut restricted to F -free graphs?

We have proved a first polynomial case for this problem where F is a certain 6-vertex
tree, including claw-free graphs and graphs without an induced 5-path.

Our hardness result also suggests studying perfect matching cut restricted to graphs
without long induced cycles:

What is the computational complexity of perfect matching cut on k-chordal
graphs?

It follows from our results that perfect matching cut is polynomially solvable for
3-chordal graphs.

We have also given an exact branching algorithm for perfect matching cut running
in O∗(1.2721n) time. It is natural to ask whether the running time of the branching
algorithm can be improved. Finally, as for matching cuts, also for perfect matching cuts it
would be interesting to study counting and enumeration as well as FPT and kernelization
algorithms.

References

1. N. R. Aravind, Subrahmanyam Kalyanasundaram, and Anjeneya Swami Kare. On structural
parameterizations of the matching cut problem. In Combinatorial Optimization and Appli-
cations - 11th International Conference, COCOA 2017, Shanghai, China, December 16-18,
2017, Proceedings, Part II, pages 475–482, 2017. doi:10.1007/978-3-319-71147-8_34.

2. N. R. Aravind and Roopam Saxena. An FPT algorithm for matching cut. CoRR,
abs/2101.06998, 2021. URL: https://arxiv.org/abs/2101.06998, arXiv:2101.06998.

3. Rémy Belmonte and Martin Vatshelle. Graph classes with structured neighborhoods and
algorithmic applications. Theor. Comput. Sci., 511:54–65, 2013. doi:10.1016/j.tcs.2013.
01.011.

4. Paul S. Bonsma. The complexity of the matching-cut problem for planar graphs and other
graph classes. Journal of Graph Theory, 62(2):109–126, 2009. URL: http://dx.doi.org/
10.1002/jgt.20390, doi:10.1002/jgt.20390.

5. Valentin Bouquet and Christophe Picouleau. The complexity of the perfect matching-
cut problem. CoRR, abs/2011.03318, 2020. URL: https://arxiv.org/abs/2011.03318,
arXiv:2011.03318.

6. Binh-Minh Bui-Xuan, Jan Arne Telle, and Martin Vatshelle. Fast dynamic programming
for locally checkable vertex subset and vertex partitioning problems. Theor. Comput. Sci.,
511:66–76, 2013. doi:10.1016/j.tcs.2013.01.009.

7. Chi-Yeh Chen, Sun-Yuan Hsieh, Hoàng-Oanh Le, Van Bang Le, and Sheng-Lung Peng.
Matching cut in graphs with large minimum degree. Algorithmica, 83(5):1238–1255, 2021.
doi:10.1007/s00453-020-00782-8.

18

https://doi.org/10.1007/978-3-319-71147-8_34
https://arxiv.org/abs/2101.06998
http://arxiv.org/abs/2101.06998
https://doi.org/10.1016/j.tcs.2013.01.011
https://doi.org/10.1016/j.tcs.2013.01.011
http://dx.doi.org/10.1002/jgt.20390
http://dx.doi.org/10.1002/jgt.20390
https://doi.org/10.1002/jgt.20390
https://arxiv.org/abs/2011.03318
http://arxiv.org/abs/2011.03318
https://doi.org/10.1016/j.tcs.2013.01.009
https://doi.org/10.1007/s00453-020-00782-8

8. Vasek Chvátal. Recognizing decomposable graphs. Journal of Graph Theory, 8(1):51–53,
1984. URL: http://dx.doi.org/10.1002/jgt.3190080106, doi:10.1002/jgt.3190080106.

9. Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Springer, 2010.
10. Petr A. Golovach, Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Refined

notions of parameterized enumeration kernels with applications to matching cut enumera-
tion. In Markus Bläser and Benjamin Monmege, editors, 38th International Symposium on
Theoretical Aspects of Computer Science, STACS 2021, March 16-19, 2021, Saarbrücken,
Germany (Virtual Conference), volume 187 of LIPIcs, pages 37:1–37:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.STACS.2021.37.

11. Guilherme C. M. Gomes and Ignasi Sau. Finding cuts of bounded degree: Complexity, FPT
and exact algorithms, and kernelization. In 14th International Symposium on Parameterized
and Exact Computation, IPEC 2019, September 11-13, 2019, Munich, Germany, pages 19:1–
19:15, 2019. doi:10.4230/LIPIcs.IPEC.2019.19.

12. Ron L. Graham. On primitive graphs and optimal vertex assignments. Ann. N. Y. Acad.
Sci., 175(1):170–186, 1970.

13. Pinar Heggernes and Jan Arne Telle. Partitioning graphs into generalized dominating sets.
Nord. J. Comput., 5(2):128–142, 1998.

14. Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

15. Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.

2001.1774.
16. Dong Yeap Kang, O-joung Kwon, Torstein J. F. Strømme, and Jan Arne Telle. A width

parameter useful for chordal and co-comparability graphs. Theor. Comput. Sci., 704:1–17,
2017. doi:10.1016/j.tcs.2017.09.006.

17. Christian Komusiewicz, Dieter Kratsch, and Van Bang Le. Matching cut: Kernelization,
single-exponential time fpt, and exact exponential algorithms. Discret. Appl. Math., 283:44–
58, 2020. doi:10.1016/j.dam.2019.12.010.

18. Dieter Kratsch and Van Bang Le. Algorithms solving the matching cut problem. Theor.
Comput. Sci., 609:328–335, 2016. URL: http://dx.doi.org/10.1016/j.tcs.2015.10.016,
doi:10.1016/j.tcs.2015.10.016.

19. Hoàng-Oanh Le and Van Bang Le. A complexity dichotomy for matching cut in (bipartite)
graphs of fixed diameter. Theor. Comput. Sci., 770:69–78, 2019. doi:10.1016/j.tcs.2018.
10.029.

20. Augustine M. Moshi. Matching cutsets in graphs. Journal of Graph Theory, 13(5):527–536,
1989. URL: http://dx.doi.org/10.1002/jgt.3190130502, doi:10.1002/jgt.3190130502.

21. Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning prob-
lems on partial k -trees. SIAM J. Discret. Math., 10(4):529–550, 1997. doi:10.1137/

S0895480194275825.
22. Martin Vatshelle. New width parameters of graphs. PhD thesis, University of Bergen,

Norway, 2012. URL: https://bora.uib.no/bora-xmlui/handle/1956/6166.

19

http://dx.doi.org/10.1002/jgt.3190080106
https://doi.org/10.1002/jgt.3190080106
https://doi.org/10.4230/LIPIcs.STACS.2021.37
https://doi.org/10.4230/LIPIcs.IPEC.2019.19
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1016/j.tcs.2017.09.006
https://doi.org/10.1016/j.dam.2019.12.010
http://dx.doi.org/10.1016/j.tcs.2015.10.016
https://doi.org/10.1016/j.tcs.2015.10.016
https://doi.org/10.1016/j.tcs.2018.10.029
https://doi.org/10.1016/j.tcs.2018.10.029
http://dx.doi.org/10.1002/jgt.3190130502
https://doi.org/10.1002/jgt.3190130502
https://doi.org/10.1137/S0895480194275825
https://doi.org/10.1137/S0895480194275825
https://bora.uib.no/bora-xmlui/handle/1956/6166

	 The Perfect Matching Cut Problem Revisited

