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Abstract10

The two weighted graph problems Node Multiway Cut (NMC) and Subset11

Feedback Vertex Set (SFVS) both ask for a vertex set of minimum total weight,12

that for NMC disconnects a given set of terminals, and for SFVS intersects all cycles13

containing a vertex of a given set. We design a meta-algorithm that allows to solve14

both problems in time 2O(rw3) ·n4, 2O(q2 log(q)) ·n4, and nO(k2) where rw is the rank-15

width, q the Q-rank-width, and k the mim-width of a given decomposition. This16

answers in the affirmative an open question raised by Jaffke et al. (Algorithmica,17

2019) concerning an XP algorithm for SFVS parameterized by mim-width.18

By a unified algorithm, this solves both problems in polynomial-time on the19

following graph classes: Interval, Permutation, and Bi-Interval graphs, Cir-20

cular Arc and Circular Permutation graphs, Convex graphs, k-Polygon,21

Dilworth-k and Co-k-Degenerate graphs for fixed k; and also on Leaf Power22

graphs if a leaf root is given as input, onH-Graphs for fixedH if anH-representation23

is given as input, and on arbitrary powers of graphs in all the above classes. Prior24

to our results, only SFVS was known to be tractable restricted only on Interval25

and Permutation graphs, whereas all other results are new.26

Keywords: Subset feedback vertex set, node multiway cut, neighbor equivalence, rank-width,27

mim-width.28

1 Introduction29

Given a vertex-weighted graphG and a set S of its vertices, the Subset Feedback Vertex Set30

(SFVS) problem asks for a vertex set of minimum weight that intersects all cycles containing31

a vertex of S. SFVS was introduced by Even et al. [17] who proposed an 8-approximation32

algorithm. Cygan et al. [15] and Kawarabayashi and Kobayashi [30] independently showed that33

SFVS is fixed-parameter tractable (FPT) parameterized by the solution size, while Hols and34
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Kratsch [25] provide a randomized polynomial kernel for the problem. As a generalization of35

the classical NP-complete Feedback Vertex Set (FVS) problem, for which S = V (G), there36

has been a considerable amount of work to obtain faster algorithms for SFVS, both for general37

graphs [10, 18] where the current best is an O∗(1.864n) algorithm due to Fomin et al. [20], and38

restricted to special graph classes [2, 23, 38, 37]. Naturally, FVS and SFVS differ in complexity,39

as exemplified by split graphs where FVS is polynomial-time solvable [11] whereas SFVS remains40

NP-hard [20]. Moreover, note that the vertex-weighted variation of SFVS behaves differently41

than the unweighted one, as exposed on graphs with bounded independent set sizes: weighted42

SFVS is NP-complete on graphs with independent set size at most four, whereas unweighted43

SFVS is in XP parameterized by the independent set size [38].44

Closely related to SFVS is the NP-hard Node Multiway Cut (NMC) problem in which45

we are given a vertex-weighted graph G and a set T of (terminal) vertices, and asked to find a46

vertex set of minimum weight that disconnects all the terminals [8, 21]. NMC is a well-studied47

problem in terms of approximation [21], as well as parameterized algorithms [8, 9, 10, 14, 16, 20].48

It is not difficult to see that SFVS for S = {v} coincides with NMC in which T = N(v). In49

fact, NMC reduces to SFVS by adding a single vertex v with a large weight that is adjacent to50

all terminals and setting S = {v} [20]. Thus, in order to solve NMC on a given graph one may51

apply a known algorithm for SFVS on a vertex-extended graph. Observe, however, that through52

such an approach one needs to clarify that the vertex-extended graph still obeys the necessary53

properties of the known algorithm for SFVS. This explains why most of the positive results on54

SFVS on graph families [23, 37, 38] can not be translated to NMC.55

In this paper, we investigate the complexity of SFVS and NMC when parameterized by56

structural graph width parameters. Well-known graph width parameters include tree-width [4],57

clique-width [13], rank-width [33], and maximum induced matching width (a.k.a. mim-width)58

[41]. These are of varying strength, with tree-width of modeling power strictly weaker than59

clique-width, as it is bounded on a proper subset of the graph classes having bounded clique-60

width, with rank-width and clique-width of the same modeling power, and with mim-width61

much stronger than clique-width. Belmonte and Vatshelle [1] showed that several graph classes,62

like interval graphs and permutation graphs, have bounded mim-width and a decomposition63

witnessing this can be found in polynomial time, whereas it is known that the clique-width of64

such graphs can be proportional to the square root of the number of vertices [24]. In this way,65

an XP algorithm parameterized by mim-width has the feature of unifying several algorithms on66

well-known graph classes.67

We obtain most of these parameters through the well-known notion of branch-decomposition68

introduced in [39]. This is a natural hierarchical clustering of G, represented as a subcubic tree69

T with the vertices of G at its leaves. Any edge of the tree defines a cut of G given by the70

leaves of the two subtrees that result from removing the edge from T . Judiciously choosing71

a cut-function to measure the complexity of such cuts, or rather of the bipartite subgraphs of72

G given by the edges crossing the cuts, this framework then defines a graph width parameter73

by a minmax relation, minimum over all trees and maximum over all its cuts. Several graph74

width parameters have been defined this way, like carving-width, maximum matching-width,75

boolean-width etc. We will in this paper focus on: (i) rank-width [33] whose cut function is76

the GF [2]-rank of the adjacency matrix, (ii) Q-rank-width [35] a variant of rank-width with77

interesting algorithmic properties which instead uses the rank over the rational field, and (iii)78

mim-width [41] whose cut function is the size of a maximum induced matching of the graph79

crossing the cut. Concerning their computations, for rank-width and Q-rank-width, there are80

23k ·n4 time algorithms that, given a graph G as input and k ∈ N, either output a decomposition81

for G of width at most 3k+1 or confirms that the width of G is more than k [35, 36]. However,82

it is not known whether the mim-width of a graph can be approximated within a constant factor83
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in time nf(k) for some function f .84

Let us mention what is known regarding the complexity of NMC and SFVS parameterized85

by these width measures. Since these problems can be expressed in MSO1-logic it follows that86

they are FPT parameterized by tree-width, clique-width, rank-width or Q-rank-width [12, 34],87

however the runtime will contain a tower of 2’s with more than 4 levels. Recently, Bergougnoux88

et al. [2] proposed kO(k) ·n3 time algorithms for these two problems parameterized by treewidth89

and proved that they cannot be solved in time ko(k) · nO(1) unless ETH fails. For mim-width,90

we know that FVS and thus SFVS are both W[1]-hard when parameterized by the mim-width91

of a given decomposition [29].92

Attacking SFVS seems to be a hard task that requires more tools than for FVS. Even for93

very small values of mim-width that capture several graph classes, the tractability of SFVS,94

prior to our result, was left open besides interval and permutation graphs [37]. Although FVS95

was known to be tractable on such graphs for more than a decade [32], the complexity status of96

SFVS still remained unknown.97

Our results. We design a meta-algorithm that, given a graph and a branch-decomposition,98

solves SFVS (or NMC via its reduction to SFVS). The runtime of this algorithm is upper bounded99

by 2O(rw3) ·n4, 2O(q2 log(q)) ·n4 and nO(k2) where rw, q and k are the rank-width, the Q-rank-width100

and the mim-width of the given branch-decomposition. For clique-width, our meta-algorithm101

implies that we can solve SFVS and NMC in time 2O(k2) · nO(1) where k is the clique-width of a102

given clique-width expression. However, we do not prove this as it is not asymptotically optimal,103

indeed Jacob et al. [26] show recently that SFVS and NMC is solvable in time 2O(k log k) ·n given104

a clique-width expression.105

We resolve in the affirmative the question raised by Jaffke et al. [29], also mentioned in [37]106

and [38], asking whether there is an XP-time algorithm for SFVS parameterized by the mim-107

width of a given decomposition. For rank-width and Q-rank-width we provide the first explicit108

FPT-algorithms with low exponential dependency that avoid the MSO1 formulation. Our main109

results are summarized in the following theorem:110

Theorem 1. Let G be a graph on n vertices. We can solve Subset Feedback Vertex Set111

and Node Multiway Cut in time 2O(rw3) · n4 and 2O(q2 log(q)) · n4, where rw and q are the112

rank-width and the Q-rank-width of G, respectively. Moreover, if a branch-decomposition of113

mim-width k for G is given as input, we can solve Subset Feedback Vertex Set and Node114

Multiway Cut in time nO(k2).115

Note it is not known whether the mim-width of a graph can be approximated within a116

constant factor in time nf(k) for some function f . However, by the previously mentioned results117

of Belmonte and Vatshelle [1] on computing decompositions of bounded mim-width, combined118

with a result of [27] showing that for any positive integer r a decomposition of mim-width k of a119

graph G is also a decomposition of mim-width at most 2k of its power Gr, we get the following120

corollary.121

Corollary 2. We can solve Subset Feedback Vertex Set and Node Multiway Cut122

in polynomial time on Interval, Permutation, and Bi-Interval graphs, Circular Arc123

and Circular Permutation graphs, Convex graphs, k-Polygon, Dilworth-k and Co-k-124

Degenerate graphs for fixed k, and on arbitrary powers of graphs in any of these classes.125

Previously, such polynomial-time tractability was known only for SFVS and only on Inter-126

val and Permutation graphs [37]. It is worth noticing that Theorem 1 implies also that we127
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can solve Subset Feedback Vertex Set and Node Multiway Cut in polynomial time on128

Leaf Power if an intersection model is given as input (from which we can compute a decom-129

position of mim-width 1) [1, 27] and on H-Graphs for a fixed H if an H-representation is given130

as input (from which we can compute a decomposition of mim-width 2|E(H)|) [19].131

Our approach. We give some intuition to our meta-algorithm, that will focus on Subset132

Feedback Vertex Set. Since NMC can be solved by adding a vertex v of large weight133

adjacent to all terminals and solving SFVS with S = {v}, all within the same runtime as134

extending the given branch-decomposition to this new graph increases the width at most by one135

for all considered width measures.136

Towards achieving our goal, we use the d-neighbor equivalence, with d = 1 and d = 2, a137

notion introduced by Bui-Xuan et al. [7]. Two subsets X and Y of A ⊆ V (G) are d-neighbor138

equivalent w.r.t. A, if min(d, |X ∩ N(u)|) = min(d, |Y ∩ N(u)|) for all u ∈ V (G) \ A. For a139

cut (A,A) this equivalence relation on subsets of vertices was used by Bui-Xuan et al. [7] to140

design a meta-algorithm, also giving XP algorithms by mim-width, for so-called (σ, ρ) generalized141

domination problems. Recently, Bergougnoux and Kanté [3] extended the uses of this notion142

to acyclic and connected variants of (σ, ρ) generalized domination and similar problems like143

FVS. An earlier XP algorithm for FVS parameterized by mim-width had been given by Jaffke144

et al. [29] but instead of the d-neighbor equivalences this algorithm was based on the notions of145

reduced forests and minimal vertex covers.146

Our meta-algorithm does a bottom-up traversal of a given branch-decomposition of the in-147

put graph G, computing a vertex subset X of maximum weight that induces an S-forest (i.e.,148

a graph where no cycle contains a vertex of S) and outputs V (G) \ X which is necessarily a149

solution of SFVS. As usual, our dynamic programming algorithm relies on a notion of represen-150

tativity between sets of partial solutions. For each cut (A,A) induced by the decomposition,151

our algorithm computes a set of partial solutions A ⊆ 2A of small size that represents 2A. We152

say that a set of partial solutions A ⊆ 2A represents a set of partial solutions B ⊆ 2A, if, for153

each Y ⊆ A, we have best(A, Y ) = best(B, Y ) where best(C, Y ) is the maximum weight of a set154

X ∈ C such that X ∪ Y induces an S-forest. Since the root of the decomposition is associated155

with the cut (V (G),∅), the set of partial solutions computed for this cut represents 2V (G) and156

thus contains an S-forest of maximum weight. Our main tool is a subroutine that, given a set157

of partial solutions B ⊆ 2A, outputs a subset A ⊆ B of small size that represents B.158

To design this subroutine, we cannot use directly the approaches solving FVS of any earlier159

approaches, like [3] or [29]. This is due to the fact that S-forests behave quite differently than160

forests; for example, given an S-forest F , the graph induced by the edges between A∩V (F ) and161

A ∩ V (F ) could be a biclique. Instead, we introduce a notion of vertex contractions and prove162

that, for every X ⊆ A and Y ⊆ A, the graph induced by X ∪Y is an S-forest if and only if there163

exists a partition of X \ S and of Y \ S, satisfying certain properties, such that contracting the164

blocks of these partitions into single vertices transforms the S-forest into a forest.165

This equivalence between S-forests in the original graph and forests in the contracted graphs166

allows us to adapt some ideas from [3] and [29]. Most of all, we use the property that, if the167

mim-width of the given decomposition is mim, then the contracted graph obtained from the168

bipartite graph induced by X and Y admits a vertex cover VC of size at most 4mim. Note169

however, that in our case the elements of VC are contracted subsets of vertices. Such a vertex170

cover allows us to control the cycles which are crossing the cut.171

We associate each possible vertex cover VC with an index i which contains basically a rep-172

resentative for the 2-neighbor equivalence for each subset of vertices in VC. Moreover, for each173

index i, we introduce the notions of partial solutions and complements solutions associated with174

i which correspond, respectively, to subsets of X ⊆ A and subsets Y ⊆ A such that, for some175
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contractions of X and Y, the contracted graph obtained from the bipartite graph induced by X176

and Y admits a vertex cover VC associated with i. We define an equivalence relation ∼i between177

the partial solutions associated with i such that X ∼i W , if X and W connect in the same way178

the representatives of the vertex sets which belongs to the vertex covers described by i. Given179

a set of partial solutions B ⊆ 2A, our subroutine outputs a set A that contains, for each index i180

and each equivalence class C of ∼i over B, a partial solution in C of maximum weight. In order181

to prove that A represents B, we show that:182

• for every S-forest F , there exists an index i such that V (F ) ∩ A is a partial solution183

associated with i and V (F ) ∩A is a complement solutions associated with i.184

• if X ∼i W , then, for every complement solution Y associated with i, the graph induced185

by X ∪ Y is an S-forest if and only if W ∪ Y induces an S-forest.186

The number of indices i is upper bounded by 2O(q2 log(q)), 2O(rw3) and nO(mim2). This follows187

from the known upper-bounds on the number of 2-neighbor equivalence classes and the fact that188

the vertex covers we consider have size at most 4mim. Since there are at most (4mim)4mim189

ways of connecting 4mim vertices and rw, q ≥ mim, we deduce that the size of A is upper190

bounded by 2O(q2 log(q)), 2O(rw3) and nO(mim2).191

To the best of our knowledge, this is the first time a dynamic programming algorithm192

parameterized by graph width measures uses this notion of vertex contractions. Note that193

in contrast to the meta-algorithms in [3, 7], the number of representatives (for the d-neighbor194

equivalence) contained in the indices of our meta-algorithm are not upper bounded by a constant195

but by 4mim. This explains the differences between the runtimes in Theorem 1 and those196

obtained in [3, 7], i.e. nO(mim2) versus nO(mim). However, for the case S = V (G), thus solving197

FVS, our meta-algorithm will have runtime nO(mim), as the algorithms for FVS of [3, 29]. We198

do not expect that SFVS can be solved as fast as FVS when parameterized by graph width199

measures. In fact, we know that it is not the case for tree-width as FVS can be solved in200

2O(k) · n [5] but SFVS cannot be solved in ko(k) · nO(1) unless ETH fails [2].201

2 Preliminaries202

The size of a set V is denoted by |V | and its power set is denoted by 2V . We write A \ B for203

the set difference of A from B. We let min(∅) = +∞ and max(∅) = −∞.204

Graphs The vertex set of a graph G is denoted by V (G) and its edge set by E(G). An edge205

between two vertices x and y is denoted by xy (or yx). Given S ⊆ 2V (G), we denote by V (S) the206

set
⋃
S∈S S. For a vertex set U ⊆ V (G), we denote by U the set V (G)\U . The set of vertices that207

are adjacent to x is denoted by NG(x), and for U ⊆ V (G), we let NG(U) = (∪v∈UNG(v)) \ U .208

The subgraph of G induced by a subset X of its vertex set is denoted by G[X]. For two209

disjoint subsets X and Y of V (G), we denote by G[X,Y ] the bipartite graph with vertex set210

X ∪ Y and edge set {xy ∈ E(G) | x ∈ X and y ∈ Y }. We denote by MX,Y the adjacency211

matrix between X and Y , i.e., the (X,Y )-matrix such that MX,Y [x, y] = 1 if y ∈ N(x) and212

0 otherwise. A vertex cover of a graph G is a set of vertices VC ⊆ V (G) such that, for every213

edge uv ∈ E(G), we have u ∈ VC or v ∈ VC. A matching is a set of edges having no common214

endpoint and an induced matching is a matching M of edges such that G[V (M)] has no other215

edges besides M . The size of an induced matching M refers to the number of edges in M .216

For a graph G, we denote by ccG(X) the partition {C ⊆ V (G) | G[C] is a connected com-217

ponent of G[X]}. We will omit the subscript G of the neighborhood and components notations218

whenever there is no ambiguity.219
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For two graphs G1 and G2, we denote by G1 −G2 the graph (V (G1), E(G1) \ E(G2)).220

Given a graph G and S ⊆ V (G), we say that a cycle of G is an S-cycle if it contains a221

vertex in S. Moreover, we say that a subgraph F of G is an S-forest if F does not contain222

an S-cycle. Typically, the Subset Feedback Vertex Set problem asks for a vertex set223

of minimum (weight) size such that its removal results in an S-forest. Here we focus on the224

following equivalent formulation:225

Subset Feedback Vertex Set (SFVS)

Input: A graph G, S ⊆ V (G) and a weight function w : V (G)→ Q.
Output: The maximum among the weights of the S-forests of G.

226

Rooted Layout For the notion of branch-decomposition, we consider its rooted variant227

called rooted layout. A rooted binary tree is a binary tree with a distinguished vertex called the228

root. Since we manipulate at the same time graphs and trees representing them, the vertices of229

trees will be called nodes.230

A rooted layout of G is a pair (T, δ) of a rooted binary tree T and a bijective function δ231

between V (G) and the leaves of T . For each node x of T , let Lx be the set of all the leaves l of232

T such that the path from the root of T to l contains x. We denote by Vx the set of vertices233

that are in bijection with Lx, i.e., Vx := {v ∈ V (G) | δ(v) ∈ Lx}.234

All the width measures dealt with in this paper are special cases of the following one, where235

the difference in each case is the used set function. Given a set function f : 2V (G) → N and a236

rooted layout L = (T, δ), the f-width of a node x of T is f(Vx) and the f-width of (T, δ), denoted237

by f(T, δ) (or f(L)), is max{f(Vx) | x ∈ V (T )}. Finally, the f-width of G is the minimum f-width238

over all rooted layouts of G.239

(Q)-Rank-width The rank-width and Q-rank-width are, respectively, the rw-width and rwQ-240

width where rw(A) (resp. rwQ(A)) is the rank over GF (2) (resp. Q) of the matrix MA,A for all241

A ⊆ V (G).242

Mim-width The mim-width of a graph G is the mim-width of G where mim(A) is the size243

of a maximum induced matching of the graph G[A,A] for all A ⊆ V (G).244

Observe that all three parameters rw-, rwQ-, and mim-width are symmetric, i.e., for the245

associated set function f and for any A ⊆ V (G), we have f(A) = f(A). The following lemma246

provides upper bounds between mim-width and the other two parameters.247

Lemma 3 ([41]). Let G be a graph. For every A ⊆ V (G), we have mim(A) 6 rw(A) and248

mim(A) 6 rwQ(A).249

Proof. Let A ⊆ V (G). Let S be the vertex set of a maximum induced matching of the graph250

G[A,A]. By definition, we have mim(A) = |S ∩A| = |S ∩A|. Observe that the restriction of the251

matrix MA,A to rows in S ∩ A and columns in S ∩ A is a permutation matrix: a binary square252

matrix with exactly one entry of 1 in each row and each column. The rank of this permutation253

matrix over GF [2] or Q is |S ∩ A| = mim(A). Hence, mim(A) is upper bounded both by rw(A)254

and rwQ(A).255
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d-neighbor-equivalence. The following concepts were introduced in [7]. Let G be a graph.256

Let A ⊆ V (G) and d ∈ N+. Two subsets X and Y of A are d-neighbor equivalent w.r.t. A,257

denoted by X ≡Ad Y , if min(d, |X ∩N(u)|) = min(d, |Y ∩N(u)|) for all u ∈ A. It is not hard to258

check that ≡Ad is an equivalence relation. See Figure 1 for an example of 2-neighbor equivalent259

sets.260

A A

X

Y

Figure 1: We have X ≡A2 Y , but it is not the case that X ≡A3 Y .

For all d ∈ N+, we let necd : 2V (G) → N where for all A ⊆ V (G), necd(A) is the number of261

equivalence classes of ≡Ad . Notice that nec1 is a symmetric function [31, Theorem 1.2.3] but necd262

is not necessarily symmetric for d ≥ 2. To simplify the running times, we will use the shorthand263

s-nec2(A) to denote max(nec2(A), nec2(A)) (where s stands for symmetric). The following lemma264

shows how necd(A) is upper bounded by the other parameters.265

Lemma 4 ([1, 35, 41]). Let G be a graph. For every A ⊆ V (G) and d ∈ N+, we have the266

following upper bounds on necd(A):267

(a) 2drw(A)
2,268 (b) 2rwQ(A) log(drwQ(A)+1),269 (c) |A|dmim(A).270

In order to manipulate the equivalence classes of ≡Ad , one needs to compute a representative271

for each equivalence class in polynomial time. This is achieved with the following notion of a272

representative. Let G be a graph with an arbitrary ordering of V (G) and let A ⊆ V (G). For273

each X ⊆ A, let us denote by repAd (X) the lexicographically smallest set R ⊆ A such that |R| is274

minimized and R ≡Ad X. Moreover, we denote by RAd the set {repAd (X) | X ⊆ A}. It is worth275

noticing that the empty set always belongs to RAd , for all A ⊆ V (G) and d ∈ N+. Moreover, we276

have RV (G)
d = R∅

d = {∅} for all d ∈ N+. In order to compute these representatives, we use the277

following lemma.278

Lemma 5 ([7]). Let G be an n-vertex graph. For every A ⊆ V (G) and d ∈ N+, one can compute279

in time O(necd(A) ·n2 · log(necd(A))), the sets RAd and a data structure that, given a set X ⊆ A,280

computes repAd (X) in time O(|A| · n · log(necd(A))).281

Vertex Contractions In order to deal with SFVS, we will use the ideas of the algorithms282

for Feedback Vertex Set from [3, 28]. To this end, we will contract subsets of S in order to283

transform S-forests into forests.284

In order to compare two partial solutions associated with A ⊆ V (G), we define an auxiliary285

graph in which we replace contracted vertices by their representative sets in RA2 . Since the sets286

in RA2 are not necessarily pairwise disjoint, we will use the following notions of graphs “induced”287

by collections of subsets of vertices. We will also use these notions to define the contractions we288

make on partial solutions.289

Let G be a graph. Given A ⊆ 2V (G), we define G[A] as the graph with vertex set A where290

A,B ∈ A are adjacent if and only if N(A) ∩ B 6= ∅. Observe that if the sets in A are pairwise291
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disjoint, then G[A] is obtained from an induced subgraph of G by vertex contractions (i.e., by292

replacing two vertices u and v with a new vertex with neighborhood N({u, v})) and, for this293

reason, we refer to G[A] as a contracted graph. Notice that we will never use the neighborhood294

notation and connected component notations on contracted graphs. Given A,B ⊆ 2V (G), we295

denote by G[A,B] the bipartite graph with vertex set A∪B and where A,B ∈ A∪B are adjacent296

if and only if A ∈ A, B ∈ B, and N(A) ∩ B 6= ∅. Moreover, we denote by G[A | B] the graph297

with vertex set A ∪ B and with edge set E(G[A]) ∪ E(G[A,B]). Observe that both graphs298

G[A,B] and G[A | B] are subgraphs of the contracted graph G[A∪B]. To avoid confusion with299

the original graph, we refer to the vertices of the contracted graphs as blocks. It is worth noticing300

that in the contracted graphs used in this paper, whenever two blocks are adjacent, they are301

disjoint.302

The following observation states that we can contract from a partition without increasing303

the size of a maximum induced matching of a graph. It follows directly from the definition of304

contractions.305

Observation 6. Let H be a graph. For any partition P of a subset of V (H), the size of a306

maximum induced matching of H[P] is at most the size of a maximum induced matching of H.307

Let (G,S) be an instance of SFVS. The vertex contractions that we use on a partial solution308

X are defined from a given partition of X \ S. A partition of the vertices of X \ S is called an309

S-contraction of X. We will use the following notations to handle these contractions.310

Given Y ⊆ V (G), we denote by
(
Y
1

)
the partition of Y which contains only singletons, i.e.,311 (

Y
1

)
= {{v} | v ∈ Y }. Moreover, for an S-contraction P of X, we denote by X↓P the partition312

of X where X↓P = P ∪
(
X∩S
1

)
. Given a subgraph H of G and an S-contraction P of V (H), we313

denote by H↓P the graph H[V (H)↓P ]. For example, given two S-contractions PX ,PY of two314

disjoint subsets X,Y of V (G), we denote the graph G[X↓PX
, Y↓PY

] by G[X,Y ]↓PX∪PY
and the315

graph G[X↓PX
|Y↓PY

] by G[X|Y ]↓PX∪PY
. It is worth noticing that in our contracted graphs, all316

the blocks of S-vertices are singletons and we denote them by {v}.317

Given a set X ⊆ V (G), we will intensively use the graph G[X]↓cc(X\S) which corresponds318

to the graph obtained from G[X] by contracting the connected components of G[X \ S], see319

Figure 2.320

Figure 2: An S-forest induced by a set X ⊆ V (G), the vertices of S are white. The
gray circles represent the blocks of X↓cc(X\S). The graph G[X]↓cc(X\S) is obtained by
contracting each gray circle.

Observe that, for every subset X ⊆ V (G), if G[X] is an S-forest, then G[X]↓cc(X\S) is a321

forest. The converse is not true as we may delete S-cycles with contractions: take a triangle322

with one vertex v in S and contract the neighbors of v. However, we can prove the following323

equivalence.324

Fact 7. Let G be a graph and S ⊆ V (G). For every X ⊆ V (G), G[X] is an S-forest if and only325

if there exists an S-contraction P of X satisfying the following two properties:326
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• G[X]↓P is a forest, and327

• for every B ∈ P and v ∈ X ∩ S, we have |N(v) ∩B| 6 1.328

Moreover, if G[X] is an S-forest, then the S-contraction cc(X \S) satisfies these two properties.329

Proof. (⇒) Suppose first thatG[X] is an S-forest. We claim that the S-contraction cc(X\S) sat-330

isfies the two properties. Assume towards a contradiction that there is a cycle C in G[X]↓cc(X\S).331

By definition of G[X]↓cc(X\S), the blocks of this graph are the connected components cc(X \ S)332

and the singletons in
(
X∩S
1

)
. The blocks in cc(X \S) are pairwise non-adjacent, thus C contains333

a block {s} with s ∈ X ∩S. Observe that for every pair of consecutive blocks B1, B2 of C, there334

exists a vertex v1 ∈ B1 and v2 ∈ B2 such that v1v2 ∈ E(G[X]). As every block of G[X]↓cc(X\S)335

induces a connected component in G, we can construct an S-cycle in G[X] by replacing every336

block of C by a path in G[X], yielding a contradiction. Hence, G[X]↓cc(X\S) is a forest, i.e. the337

first property is satisfied. Observe that if there exists C ∈ cc(X \ S) and v ∈ X ∩ S such that v338

has two neighbors in C, then there exists an S-cycle in G[X] since C is a connected component.339

Hence, cc(X \ S) satisfies the second property.340

(⇐) Let P be a S contraction of a subsetX ⊆ V (G) that satisfies the two properties. Assume341

for contradiction that there is an S-cycle C in G[X]. Let v be a vertex of C that belongs to S342

and let u and w be the neighbors of v in C.343

Let Bu and Bw be the blocks in (X∪Y )↓P that contain u and w respectively. As v is in S, it344

belongs to the block {v} of G[X ∪ Y ]↓P and thus it is not contained in Bu nor Bw. The second345

property implies that |N(v)∩B| 6 1 for each B ∈ P. Thus, Bu and Bw are two distinct blocks346

both connected to the block {v}. Since there exists a path between u and w in C that does not347

go through v, we deduce that there is a path between Bu and Bw in G[X]↓P that does not go348

through {v}. Indeed, this follows from the fact that if there is an edge between two vertices a349

and b in G[X], then either a and b belong to the same block of G[X]↓P or there exists an edge350

between the blocks in G[X]↓P which contain a and b. We conclude that there exists a cycle in351

G[X]↓P , a contradiction with the first property.352

3 A Meta-Algorithm for Subset Feedback Vertex Set353

In the following, we present a meta-algorithm that, given a rooted layout (T, δ) of G, solves354

SFVS. We will show that this meta-algorithm will imply that SFVS can be solved in time355

2O(rwQ(G)2 log(rwQ(G))) · n4, 2O(rw(G)3) · n4 and nO(mim(T,δ)2). The main idea of this algorithm356

is to use S-contractions in order to employ similar properties of the algorithm for Maximum357

Induced Tree of [3] and the nO(mim(T,δ)) time algorithm for Feedback Vertex Set of [28].358

In particular, we use the following lemma which is proved implicitly in [3]. To simplify the359

following statements, we fix a graph G, a rooted layout (T, δ) of G and a node x ∈ V (T ).360

Lemma 8. Let X and Y be two disjoint subsets of V (G). If G[X ∪ Y ] is a forest, then the361

number of vertices of X that have at least two neighbors in Y is bounded by 2w where w is the362

size of a maximum induced matching in the bipartite graph G[X,Y ].363

Proof. Let X2+ be the set of vertices in X having at least 2 neighbors in Y . In the following, we364

prove that F = G[X2+, Y ] admits a good bipartition, that is a bipartition {X0, X1} of X2+ such365

that, for each i ∈ {0, 1} and, for each v ∈ Xi, there exists yv ∈ Y such that NF (yv) ∩Xi = {v}.366

Observe that this is enough to prove the lemma since if F admits a good bipartition {X0, X1},367

then |X0| 6 w and |X1| 6 w. Indeed, if F admits a good bipartition {X0, X1}, then, for each368

i ∈ {0, 1}, the set of edges Mi = {vyv | v ∈ Xi} is an induced matching of G[X,Y ]. In order to369
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prove that F admits a good bipartition it is sufficient to prove that each connected component370

of F admits a good bipartition.371

Let C be a connected component of F and x0 ∈ C∩X2+. As G[X∪Y ] is a forest, we deduce372

that F [C] is a tree. Observe that the distance in F [C] between each vertex v ∈ C ∩X2+ and x0373

is even because F [C] is bipartite w.r.t. (C ∩X2+, C ∩ Y ). Let X0 (resp. X1) be the set of all374

vertices v ∈ C ∩X2+ at distance 2` from x0 with ` even (resp. odd). We claim that {X0, X1}375

is a good bipartition of F [C].376

Let i ∈ {0, 1}, v ∈ Xi and ` ∈ N such that the distance between v and x0 in F [C] is 2`.377

Let P be the set of vertices in C \ {v} that share a common neighbor with v in F [C]. We want378

to prove that v has a neighbor y in F that is not adjacent to P ∩Xi. Observe that, for every379

v′ ∈ P , the distance between v′ and x0 in F [C] is either 2` − 2, 2` or 2` + 2 because F [C] is380

a tree and the distance between v and x0 is 2`. By construction of {X0, X1}, every vertex at381

distance 2`− 2 or 2`+ 2 from x0 belongs to X1−i. Thus, every vertex in P ∩Xi is at distance382

2` from x0. If ` = 0, then we are done because v = x0 and P ∩ Xi = ∅. Assume that ` 6= 0.383

As F [C] is a tree, v has only one neighbor w at distance 2`− 1 from x0 in F [C]. Because F [C]384

is a tree, w is the only vertex adjacent to v and the vertices in P ∩Xi. By definition of X2+,385

v has at least two neighbors in Y , so v admits a neighbor that is not w and this neighbor is386

not adjacent to the vertices in P ∩Xi. Hence, we deduce that {X0, X1} is a good bipartition of387

F [C].388

We deduce that every connected component of F admits a good bipartition and, thus, F389

admits a good bipartition. This proves that |X2+| 6 2w.390

The following lemma generalizes Fact 7 and presents the equivalence between S-forests and391

forests that we will use in our algorithm.392

Lemma 9. Let X ⊆ Vx and Y ⊆ Vx. If the graph G[X ∪ Y ] is an S-forest, then there exists an393

S-contraction PY of Y that satisfies the following conditions:394

(1) G[X ∪ Y ]↓cc(X\S)∪PY
is a forest,395

(2) for all block P ∈ cc(X \ S) ∪ PY and v ∈ (X ∪ Y ) ∩ S, we have |N(v) ∩ P | 6 1,396

(3) the graph G[X,Y ]↓cc(X\S)∪PY
admits a vertex cover VC of size at most 4mim(Vx) such that397

the neighborhoods of the blocks in VC are pairwise distinct in G[X,Y ]↓cc(X\S)∪PY
.398

Proof. Assume that G[X ∪ Y ] is an S-forest. Let us explain how we construct PY that satisfies399

Conditions (1)-(3). First, we initialize PY = cc(Y \ S). Observe that there is no cycle in G[X ∪400

Y ]↓cc(X\S)∪PY
that contains a block in

(
S
1

)
because G[X ∪Y ] is an S-forest. Moreover, cc(X \S)401

and PY form two independent sets in G[X ∪ Y ]↓cc(X\S)∪PY
. Consequently, for all the cycles C402

in G[X ∪ Y ]↓cc(X\S)∪PY
we have C = (X1, Y1, X2, Y2, . . . , Xt, Yt) where X1, . . . , Xt ∈ cc(X \ S)403

and Y1, . . . , Yt ∈ PY . We do the following operation, until the graph G[X ∪ Y ]↓cc(X\S)∪PY
is404

a forest: take a cycle C = (X1, Y1, X2, Y2, . . . , Xt, Yt) in G[X ∪ Y ]↓cc(X\S)∪PY
and replace the405

blocks Y1, . . . , Yt in PY by the block Y1 ∪ · · · ∪ Yt. See Figures 5 and 6 in Appendix A for an406

example of S-contraction PY .407

For each B ∈ cc(X \ S) ∪ cc(Y \ S), the vertices of B are pairwise connected in G[(X ∪408

Y ) \ S]. We deduce by induction that whenever we apply the operation on a cycle C =409

(X1, Y1, X2, Y2, . . . , Xt, Yt), it holds that the vertices of the new block Y1 ∪ · · · ∪ Yt are pair-410

wise connected in G[(X ∪ Y ) \ S]. Thus, for every block B of cc(X \ S) ∪ PY , the vertices of411

B are pairwise connected in G[(X ∪ Y ) \ S]. It follows that for every v ∈ (X ∪ Y ) ∩ S and412

B ∈ cc(X \ S) ∪ PY , since G[X ∪ Y ] is an S-forest, we have |N(v) ∩ B| 6 1. Thus, Condition413

(2) is satisfied.414
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It remains to prove Condition (3). Let VC be the set of blocks of G[X,Y ]↓cc(X\S)∪PY
con-415

taining:416

• the blocks that have at least 2 neighbors in G[X,Y ]↓cc(X\S)∪PY
, and417

• one block in every isolated edge of G[X,Y ]↓cc(X\S)∪PY
.418

By construction, it is clear that VC is indeed a vertex cover of G[X,Y ]↓cc(X\S)∪PY
as every edge419

is either isolated or incident to a block of degree at least 2. We claim that |VC| 6 4mim(Vx). By420

Observation 6, we know that the size of a maximum induced matching in G[X,Y ]↓cc(X\S)∪PY
is421

at most mim(Vx). Let t be the number of isolated edges in G[X,Y ]↓cc(X\S)∪PY
. Observe that422

the size of a maximum induced matching in the graph obtained from G[X,Y ]↓cc(X\S)∪PY
by423

removing isolated edges is at most mim(Vx)− t. By Lemma 8, we know that there are at most424

4(mim(Vx) − t) blocks that have at least 2 neighbors in G[X,Y ]↓cc(X\S)∪PY
. We conclude that425

|VC| 6 4mim(Vx).426

Since G[X,Y ]↓cc(X\S)∪PY
is a forest, the neighborhoods of the blocks that have at least427

2 neighbors must be pairwise distinct. We conclude from the construction of VC that the428

neighborhoods of the blocks of VC in G[X,Y ]↓cc(X\S)∪PY
are pairwise distinct. Hence, Condition429

(3) is satisfied.430

In the following, we will use Lemma 9 to design some sort of equivalence relation between431

partial solutions. To this purpose, we use the following set of tuples. We call each such tuple432

an index because it corresponds to an index into a table in a DP (dynamic programming)433

approach. We do this even though the presentation of our algorithm is not given by a standard434

DP description.435

Definition 10 (Ix). We define the set Ix of indices as the set of tuples436

(XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ 2R

Vx
2 × 2R

Vx
1 ×RVx1 × 2R

Vx
2 × 2R

Vx
1

such that |XS
vc|+ |XS

vc|+ |Y S
vc|+ |Y S

vc| 6 4mim(Vx).437

These sets of indices play a major role in our meta-algorithm, in particular, the sizes of these438

sets of indices appear in the runtime of our meta-algorithm. In fact, to prove the algorithmic439

consequences of our meta-algorithm for rank-width, Q-rank-width and mim-width, we show440

(Lemma 23) that the size of Ix is upper bounded by 2O(rw(Vx)3), 2O(rwQ(Vx)
2 log(rwQ(Vx))) and441

nO(mim(Vx)2).442

In the following, we will define partial solutions associated with an index i ∈ Ix (a partial443

solution may be associated with many indices). In order to prove the correctness of our algorithm444

(the algorithm itself will not use this concept), we will also define complement solutions (the445

sets Y ⊆ Vx and their S-contractions PY ) associated with an index i. We will prove that,446

for every partial solution X and complement solution (Y,PY ) associated with i, if the graph447

G[X ∪ Y ]↓cc(X\S)∪PY
is a forest, then G[X ∪ Y ] is an S-forest.448

Let us give some intuition on these indices by explaining how one index is associated with449

a solution, figures explaining this association and the purposes of the sets XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc450

can be found in Appendix A. Let X ⊆ Vx and Y ⊆ Vx such that G[X ∪ Y ] is an S-forest. Let451

PY be the S-contraction of Y and VC be a vertex cover of G[X,Y ]↓cc(X\S)∪PY
given by Lemma452

9. Then, X and Y are associated with i = (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ Ix such that:453

• XS
vc (resp. Y S

vc) contains the representatives of the blocks {v} in VC such that v ∈ X ∩ S454

(resp. v ∈ Y ∩S) w.r.t. the 1-neighbor equivalence over Vx (resp. Vx). We will only use the455
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indices where XS
vc contains representatives of singletons, in other words, XS

vc is included in456

{repVx1 ({v}) | v ∈ Vx} which can be much smaller than RVx1 . The same observation holds457

for Y S
vc. In Definition 10, we state that XS

vc and Y S
vc are, respectively, subsets of 2R

Vx
1 and458

2R
Vx
1 , for the sake of simplicity.459

• XS
vc (resp. Y S

vc) contains the representatives of the blocks in cc(X \S)∩VC (resp. PY ∩VC)460

w.r.t. the 2-neighbor equivalence relation over Vx (resp. Vx).461

• Xvc is the representative of X \ V (VC) (the set of vertices which do not belong to the462

vertex cover) w.r.t. the 1-neighbor equivalence over Vx.463

Because the neighborhoods of the blocks in VC are pairwise distinct in G[X,Y ]↓cc(X\S)∪PY
464

(Property (3) of Lemma 9), there is a one to one correspondence between the representatives in465

XS
vc ∪XS

vc ∪ Y S
vc ∪ Y S

vc and the blocks in VC.466

While XS
vc, X

S
vc, Y

S
vc, Y

S
vc describe VC, the representative set Xvc describes the neighborhood467

of the blocks of X↓cc(X\S) which are not in VC. The purpose of Xvc is to make sure that, for every468

partial solution X and complement solution (Y,PY ) associated with i, the set VC described by469

XS
vc, X

S
vc, Y

S
vc, Y

S
vc is a vertex cover of G[X,Y ]↓cc(X\S)∪PY

. For doing so, it is sufficient to require470

that Y \V (VC) has no neighbor in Xvc for every complement solution (Y,PY ) associated with i.471

Observe that the sets XS
vc and Y S

vc contain representatives for the 2-neighbor equivalence.472

We need the 2-neighbor equivalence to control the S-cycles which might disappear after vertex473

contractions. To prevent this situation, we require, for example, that every vertex in X ∩ S has474

at most one neighbor in R for each R ∈ Y S
vc. Thanks to the 2-neighbor equivalence, a vertex v475

in X ∩ S has at most one neighbor in R ∈ Y S
vc if and only if v has at most one neighbor in the476

block of PY associated with R. This property of the 2-neighbor equivalence is captured by the477

following fact.478

Fact 11. For every A ⊆ V (G) and B,P ⊆ A, if B ≡A2 P , then, for all v ∈ A, we have479

|N(v) ∩B| 6 1 if and only if |N(v) ∩ P | 6 1.480

In order to define partial solutions associated with i, we need the following notion of auxiliary481

graph. Given X ⊆ Vx and i = (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ Ix, we write aux(X, i) to denote the482

graph483

G[X↓cc(X\S) | Y S
vc ∪ Y S

vc].

Observe that aux(X, i) is obtained from the graph induced by X↓cc(X\S) ∪Y S
vc ∪Y S

vc by removing484

the edges between the blocks from Y S
vc ∪ Y S

vc. Figure 3 illustrates an example of the graph485

aux(X, i) and the related notions. The figures in Appendix A explain the relations between an486

S-forest and these auxiliary graphs.487

We will ensure that, given a complement solution (Y,PY ) associated with i, the graph488

aux(X, i) is isomorphic to G[X↓cc(X\S) | Y↓PY
∩ VC]. We are now ready to define the notion of489

partial solution associated with an index i.490

Definition 12 (Partial solutions). Let i = (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ Ix. We say that X ⊆ Vx491

is a partial solution associated with i if the following conditions are satisfied:492

(a) for every R ∈ XS
vc, there exists a unique v ∈ X ∩ S such that R ≡Vx1 {v},493

(b) for every R ∈ XS
vc, there exists a unique C ∈ cc(X \ S) such that R ≡Vx2 C,494

(c) aux(X, i) is a forest,495
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Y S
vc ∪ Y S

vc

X↓cc(X\S)

U1

U2

X2

U3 U4

{v1}

Figure 3: An example of a set X ⊆ Vx and its auxiliary graph associated with the
index i = (XS

vc, X
S
vc, Xvc, Y

S
vc , Y

S
vc). Here, XS

vc = {R2} with R2 = repVx2 (X2), XS
vc = {R1}

with R1 = repVx1 ({v1}), Xvc is the representative of the union of the circular blocks,
Y S
vc = {U1, U2}, and Y S

vc = {U3, U4}. The singletons in X ∩ S and Y S
vc are white filled,

whereas the square blocks are {v1}, X2 and the blocks in Y S
vc ∪ Y S

vc .

(d) for every C ∈ cc(X \ S) and {v} ∈ Y S
vc, we have |N(v) ∩ C| 6 1,496

(e) for every v ∈ X ∩ S and U ∈ Y S
vc ∪ cc(X \ S), we have |N(v) ∩ U | 6 1,497

(f) Xvc ≡Vx1 X \ V (VCX) , where VCX contains the blocks {v} ∈
(
X∩S
1

)
such that repVx1 ({v}) ∈498

XS
vc and the components C of G[X \ S] such that repVx2 (C) ∈ XS

vc.499

Similarly to Definition 12, we define the notion of complement solutions associated with an500

index i ∈ Ix. We use this concept only to prove the correctness of our algorithm.501

Definition 13 (Complement solutions). Let i = (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ Ix. We call comple-502

ment solutions associated with i all the pairs (Y,PY ) such that Y ⊆ Vx, PY is an S-contraction503

of Y and the following conditions are satisfied:504

(a) for every U ∈ Y S
vc, there exists a unique v ∈ Y ∩ S such that U ≡Vx1 {v},505

(b) for every U ∈ Y S
vc, there exists a unique P ∈ PY such that U ≡Vx2 P ,506

(c) G[Y ]↓PY
is a forest,507

(d) for every P ∈ PY and {v} ∈ XS
vc, we have |N(v) ∩ P | 6 1,508

(e) for every y ∈ Y ∩ S and R ∈ XS
vc ∪ PY , we have |N(y) ∩R| 6 1,509

(f) N(Xvc)∩V (Yvc) = ∅, where Yvc contains the blocks {v} ∈
(
Y ∩S
1

)
such that repVx1 ({v}) /∈ Y S

vc510

and the blocks P ∈ PY such that repVx2 (P ) /∈ Y S
vc.511

Let us give some explanations on the conditions of Definitions 12 and 13. Let X be a partial512

solution associated with an index i ∈ Ix and (Y,PY ) be a complement solution associated513

with i. Conditions (a) and (b) of both definitions guarantee that there exists a subset VC of514

X↓cc(X\S) ∪ Y↓PY
such that there is a one-to-one correspondence between the blocks of VC and515

the representatives in XS
vc ∪XS

vc ∪ Y S
vc ∪ Y S

vc.516
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Condition (c) of Definition 12 guarantees that the connections between X↓cc(X\S) and VC517

are acyclic. As explained earlier, Conditions (d) and (e) of both definitions are here to control518

the S-cycles which might disappear with the vertex contractions. In particular, by Fact 7,519

Conditions (c), (d) and (e) together imply that G[X] and G[Y ] are S-forests.520

Finally, as explained earlier, the last conditions of both definitions ensure that VC the set521

described by XS
vc, X

S
vc, Y

S
vc and Y S

vc is a vertex cover of G[X,Y ]↓cc(X\S)∪PY
. Notice that X \522

V (VCX) and V (Yvc) correspond the set of vertices in X and Y , respectively, that do not belong523

to a block in the vertex cover VC. Such observations are used to prove the following two results.524

Lemma 14. Let X ⊆ Vx and Y ⊆ Vx such that G[X ∪ Y ] is an S-forest. There exist i ∈ Ix525

and an S-contraction PY of Y such that (1) G[X ∪ Y ]↓cc(X\S)∪PY
is a forest, (2) X is a partial526

solution associated with i and (3) (Y,PY ) is a complement solution associated with i.527

Proof. By Lemma 9, there exists an S-contraction PY of Y such that the following properties528

are satisfied:529

(A) G[X ∪ Y ]↓cc(X\S)∪PY
is a forest,530

(B) for all P ∈ cc(X \ S) ∪ PY and all v ∈ (X ∪ Y ) ∩ S, we have |N(v) ∩ P | 6 1,531

(C) the graph G[X,Y ]↓cc(X\S)∪PY
admits a vertex cover VC of size at most 4mim(Vx) such that532

the neighborhoods of the blocks in VC are pairwise distinct in G[X,Y ]↓cc(X\S)∪PY
.533

We construct i = (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ Ix from VC as follows:534

• XS
vc = {repVx1 ({v}) | {v} ∈

(
X∩S
1

)
∩ VC},535

• XS
vc = {rep

Vx
2 (P ) | P ∈ cc(X \ S) ∩ VC},536

• Xvc = repVx1 (X \ V (VC)),537

• Y S
vc = {rep

Vx
2 (P ) | P ∈ PY ∩ VC},538

• Y S
vc = {rep

Vx
1 ({v}) | {v} ∈

(
Y ∩S
1

)
∩ VC}.539

Since |VC| 6 4mim(Vx), we have |XS
vc|+ |XS

vc|+ |Y S
vc|+ |Y S

vc| 6 4mim(Vx) and thus we have i ∈ Ix.540

541

We claim that X is a partial solution associated with i . By construction of i, Conditions (a),542

(b) and (f) of Definition 12 are satisfied. In particular, Condition (a) and (b) follow from Prop-543

erty (C), i.e. the neighborhoods of the blocks in VC are pairwise distinct in G[X,Y ]↓cc(X\S)∪PY
.544

So, the blocks in X↓cc(X\S) ∩VC are pairwise non-equivalent for the d-neighbor equivalence over545

Vx for any d ∈ N+ including 1 and 2. Consequently, there is a one to one correspondence between546

the blocks of X↓cc(X\S) ∩ VC and the representatives in XS
vc ∪XS

vc.547

It remains to prove Conditions (c), (d) and (e). We claim that Condition (c) is satis-548

fied: aux(X, i) is a forest. Observe that, by construction, aux(X, i) is isomorphic to the graph549

G[X↓cc(X\S) | Y↓PY
∩VC]. Indeed, for every P ∈ Y↓PY

∩VC, by construction, there exists a unique550

U ∈ Y S
vc ∪ Y S

vc such that U ≡Vx1 P or U ≡Vx2 P . In both case, we have N(U) ∩ Vx = N(P ) ∩ Vx551

and thus, the neighborhood of P in G[X↓cc(X\S) | Y↓PY
∩ VC] is the same as the neighborhood552

of U in aux(X, i). Since G[X↓cc(X\S) | Y↓PY
∩VC] is a subgraph of G[X ∪Y ]↓cc(X\S)∪PY

and this553

latter graph is a forest, we deduce that aux(X, i) is also a forest.554

We deduce that Conditions (d) and (e) are satisfied from property (B) and Fact 11. Conse-555

quently, X is a partial solution associated with i.556
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Let us now prove that (Y,PY ) is a complement solution associated with i. From the con-557

struction of i and with the same argument used earlier, we deduce that that Conditions (a)558

and (b) of Definition 13 are satisfied. By Property (A) G[X ∪ Y ]↓cc(X\S)∪PY
is a forest, as a559

subgraph, G[Y ]↓PY
is also a forest and thus Condition (c) is satisfied. Conditions (d) and (e)560

are satisfied from Property (B) and Fact 11.561

It remains to prove Condition (f): N(Xvc) ∩ Yvc = ∅ where Yvc contains the blocks {v} ∈562 (
Y ∩S
1

)
such that repVx1 ({v}) /∈ Y S

vc and the blocks P ∈ PY such that repVx2 (P ) /∈ Y S
vc. By563

construction, Yvc = Y \ V (VC). Since, VC is a vertex cover of the graph G[X,Y ]↓cc(X\S)∪PY
,564

there are no edges between X↓cc(X\S) \ VC and Y↓PY
\ VC in G[X,Y ]↓cc(X\S)∪PY

. We deduce565

that N(X \ V (VC)) ∩ Yvc = ∅. Since X \ V (VC) ≡Vx1 Xvc, we conclude that N(Xvc) ∩ Yvc = ∅.566

This proves that (Y,PY ) is a complement solution associated with i.567

Lemma 15. Let i = (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ Ix, X be a partial solution associated with i and568

(Y,PY ) be a complement solution associated with i. If the graph G[X∪Y ]↓cc(X\S)∪PY
is a forest,569

then G[X ∪ Y ] is an S-forest.570

Proof. Assume that G[X ∪Y ]↓cc(X\S)∪PY
is a forest. By Fact 7, in order to prove that G[X ∪Y ]571

is an S-forest, it is enough to prove that for all v ∈ (X ∪ Y )∩ S and all P ∈ cc(X \ S)∪PY , we572

have |N(v)∩P | 6 1. Let us prove this statement for a vertex v ∈ X ∩ S the proof is symmetric573

for v ∈ Y ∩ S. Let P ∈ (X ∪ Y )↓cc(X\S)∪PY
. If P /∈ (cc(X \ S) ∪ PY ), then P is a singleton in574 (

X∪Y
1

)
and we are done. If P ∈ cc(X \ S), then Condition (e) of Definition 12 guarantees that575

we have |N(v) ∩ P | 6 1.576

Assume now that P ∈ PY . Suppose first that repVx2 (P ) /∈ Y S
vc. From Condition (f) of577

Definition 13, we have N(P ) ∩ Xvc = ∅. Let r = repVx1 ({v}). From the definition of Xvc in578

Definition 12, we deduce that if r /∈ XS
vc, then N(v) ∩ Vx ⊆ N(Xvc) and thus N(v) ∩ P = ∅.579

On the other hand, if r ∈ XS
vc, then Condition (d) of Definition 13 ensures that |N(r) ∩ P | 6 1580

and thus |N(v) ∩ P | 6 1. Now, suppose that repVx2 (P ) ∈ Y S
vc. By Condition (e) of Definition581

12, we know that |N(v) ∩ repVx2 (P )| 6 1. From Fact 11, we conclude that |N(v) ∩ P | 6 1. This582

concludes the proof of Lemma 15.583

For each index i ∈ Ix, we will design an equivalence relation ∼i between the partial solutions584

associated with i. We will prove that, for any partial solutions X and W associated with i, if585

X ∼i W , then, for any complement solution Y ⊆ Vx associated with i, the graph G[X ∪ Y ]586

is an S-forest if and only if G[W ∪ Y ] is an S-forest. Then, given a set of partial solutions A587

whose size needs to be reduced, it is sufficient to keep, for each i ∈ Ix and each equivalence588

class C of ∼i, one partial solution in C of maximal weight. The resulting set of partial solutions589

has size bounded by |Ix| · (4mim(Vx))
4mim(Vx) because ∼i generates at most (4mim(Vx))

4mim(Vx)590

equivalence classes.591

Intuitively, given two partial solutions X andW associated with i = (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc),592

we have X ∼i W if the blocks of VC (i.e., the vertex cover described by i) are equivalently593

connected in G[X↓cc(X\S) | Y S
vc ∪ Y S

vc] and G[W↓cc(W\S) | Y S
vc ∪ Y S

vc]. In order to compare these594

connections, we use the following notion.595

Definition 16 (cc(X, i)). Let i = (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ Ix and X ⊆ Vx be a partial solution596

associated with i. For each connected component C of aux(X, i), we define the set Cvc as follows:597

• for every U ∈ C such that U ∈ Y S
vc ∪ Y S

vc, we have U ∈ Cvc,598

• for every {v} ∈
(
X∩S
1

)
∩ C such that {v} ≡Vx1 R for some R ∈ XS

vc, we have R ∈ Cvc,599
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• for every U ∈ cc(X \ S) such that U ≡Vx2 R for some R ∈ XS
vc, we have R ∈ Cvc.600

We define cc(X, i) as the collection {Cvc | C is a connected component of aux(X, i)}.601

For a connected component C of aux(X, i), the set Cvc contains C ∩ (Y S
vc ∪ Y S

vc) and the602

representatives of the blocks in C ∩ X↓cc(X\S) ∩ VC with VC the vertex cover described by i.603

Consequently, for every X ⊆ Vx and i ∈ Ix, the collection cc(X, i) is partition of XS
vc ∪ XS

vc ∪604

Y S
vc ∪Y S

vc. For the example given in Figure 3, observe that cc(X, i) is the partition that contains605

{R1, U1, U2}, {R2, U3} and {U4} (see also Figure 13)606

Now we are ready to give the notion of equivalence between partial solutions. We say607

that two partial solutions X,W associated with i are i-equivalent, denoted by X ∼i W , if608

cc(X, i) = cc(W, i). Our next result is the most crucial step. As already explained, our task is609

to show equivalence between partial solutions under any complement solution with respect to610

S-forests. Figure 14 gives an example of two i-equivalent partial solutions.611

Lemma 17. Let i = (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ Ix. For every partial solutions X,W associated612

with i such that X ∼i W and for every complement solution (Y,PY ) associated with i, the graph613

G[X ∪ Y ]↓cc(X\S)∪PY
is a forest if and only if the graph G[W ∪ Y ]↓cc(W\S)∪PY

is a forest.614

Proof. Let X,W be two partial solutions associated with i such that X ∼i W and let (Y,PY )615

be a complement solution associated with i. To prove this lemma, we show that if G[W ∪616

Y ]↓cc(W\S)∪PY
contains a cycle, then G[X ∪ Y ]↓cc(X\S)∪PY

contains a cycle too. See Figure 16617

for some intuitions on this proof. We will use the following notation in this proof.618

For Z ∈ {X,W}, we denote by VCZ the set that contains:619

• all {v} ∈
(
Z∩S
1

)
such that repVx1 ({v}) ∈ XS

vc,620

• all P ∈ cc(Z \ S) such that repVx2 (P ) ∈ XS
vc.621

We define also VCY as the set that contains:622

• all {v} ∈
(
Y ∩S
1

)
such that repVx1 ({v}) ∈ Y S

vc,623

• all P ∈ PY such that repVx2 (P ) ∈ Y S
vc.624

The sets VCX ,VCW and VCY contain the blocks in X↓cc(X\S),W↓cc(W\S) and Y↓PY
, respectively,625

which belong to the vertex cover described by i. Finally, for each Z ∈ {X,W}, we define the626

following two edge-disjoint subgraphs of G[Z ∪ Y ]↓cc(Z\S)∪PY
:627

• GZ = G[Z↓cc(Z\S) | VCY ],628

• GZ = G[Z ∪ Y ]↓cc(Z\S)∪PY
−GZ .629

As explained in the proof of Lemma 14, for any Z ∈ {X,W}, the graph aux(Z, i) is isomorphic630

to the graph GZ . Informally, GZ contains the edges of G[Z ∪ Y ]↓cc(Z\S)∪PY
which are induced631

by Z↓cc(Z\S) and those between Z↓cc(Z\S) and VCY . The following fact implies that GZ contains632

the edges of G[Z ∪ Y ]↓cc(Z\S)∪PY
that are induced by Y↓PY

and those between Y↓PY
\ VCY and633

VCZ .634

Fact 18. For any Z ∈ {X,W}, the set VCZ ∪ VCY is a vertex cover of G[Z, Y ]↓cc(Z\S)∪PY
.635
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Proof. First observe that N(Y \ V (VCY )) ∩ Xvc = ∅ thanks to Condition (f) of Definition636

13. Moreover, we have Xvc ≡Vx1 Z \ V (VCZ) by Condition (f) of Definition 12. We conclude637

that there are no edges between Y↓PY
\ VCY and Z↓cc(Z\S) \ VCZ in G[Z, Y ]↓cc(Z\S)∪PY

. Hence,638

VCZ ∪ VCY is a vertex cover of G[Z, Y ]↓cc(Z\S)∪PY
.639

Assume that G[W ∪ Y ]↓cc(W\S)∪PY
contains a cycle C. Our task is to show that G[X ∪640

Y ]↓cc(X\S)∪PY
contains a cycle as well. We first explore properties of C with respect to GW and641

GW . Since the graph aux(W, i) is a forest and it is isomorphic to GW , we know that C must642

contain at least one edge from GW . Moreover, C must go though a block of W↓cc(W\S) because643

G[Y ]↓PY
is a forest. Consequently, (and because from Fact 18 VCW ∪ VCY is a vertex cover of644

G[W ∪ Y ]↓cc(W\S)∪PY
), we deduce that C is the concatenation of edge-disjoint paths P1 . . . Pt645

such that for each ` ∈ [t] we have:646

• P` is a non-empty path with endpoints in VCW∪VCY and internal blocks not in VCW∪VCY647

and P` is either a path of GW or GW .648

At least one of these paths is in GW and, potentially, C may be entirely contained in GW .649

Figure 4 presents two possible interactions between C and the graphs GW and GW .650

Y↓PY

W↓CC(W\S)

VCY

VCW

Figure 4: How cycles in G[W ∪Y ]↓cc(W\S)∪PY
may interact with the graphs GW and GW .

The solid edges belong to GW and the dashed edges belong to GW .

Given an endpoint U ∈ VCW ∪ VCY of one of the paths P1, . . . , P`, we define UX and Ui as651

the analogs of U in VCX ∪ VCY and XS
vc ∪XS

vc ∪ Y S
vc ∪ Y S

vc, respectively, as follows:652

• if U ∈ cc(W \S), then UX and Ui are the unique elements of cc(X\S) andXS
vc, respectively,653

such that U ≡Vx2 UX ≡Vx2 Ui,654

• if U = {v} ∈
(
W∩S

1

)
, then UX and Ui are the unique elements in

(
X∩S
1

)
and XS

vc, respec-655

tively, such that U ≡Vx1 UX ≡Vx1 Ui,656

• if U ∈ PY , then UX = U and Ui is the unique element of Y S
vc such that U ≡Vx2 Ui;657

• otherwise, if U = {v} ∈
(
Y ∩S
1

)
, then UX = U and Ui is the unique element of Y S

vc such658

that U ≡Vx1 Ui.659

Observe that UX and Ui exist by Conditions (a) and (b) of Definition 12 and Definition 13.660

For each ` ∈ [t], we construct a non-empty path P ′` whose endpoints are the analogs in661

VCX ∪ VCY of the endpoints of P` and such that if P` is a path in GW (resp. GW ), then P ′` is662

a path in GX (resp. GX). This is sufficient to prove the claim because thanks to this, we can663
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construct a closed walk in G[X ∪ Y ]↓cc(X\S)∪PY
by concatenating the paths P ′1, . . . , P ′t . Since664

GX and GX are edge-disjoint and the paths P ′1, . . . , P ′t are non-empty paths, this closed walk665

must contain a cycle.666

Let ` ∈ [t] and U, T be the endpoints of P`. We denote by UX , TX , Ui and Ti the analogs of667

U and T in VCX ∪ VCY and XS
vc ∪XS

vc ∪ Y S
vc ∪ Y S

vc, respectively.668

First, assume that P` is path of GW . Observe that Ui and Ti belong to the same partition669

class of cc(W, i). This follows from the definitions of Ui, Ti and the fact that GW is isomorphic to670

aux(W, i). As W ∼i X, we deduce that Ui and Ti belong to the same partition class of cc(X, i).671

By construction, Ui and Ti are the analogs of UX and TX in XS
vc ∪XS

vc ∪ Y S
vc ∪ Y S

vc. We conclude672

that UX and TX are connected in GX via a path P ′`. We claim that P ′` is not empty because we673

have UX 6= TX . As P` is a non empty path of GW and because GW is acyclic, we know that U674

and T are distinct. Hence, by the construction of UX and TX , we deduce that UX 6= TX .675

Now, assume that P` is a non-empty path of GW . Since VCW ∪ VCY is a vertex cover of676

G[W,Y ]↓cc(W\S)∪PY
, the blocks inW↓cc(W\S) that do not belong to V CW are isolated in GW . As677

P` is not empty, the blocks of P` which belong to W↓cc(W\S) are in VCW . Because the internal678

blocks of the paths P1, . . . , Pt are not in VCW ∪ VCY , we deduce that the internal blocks of P`679

belong to Y↓PY
. We distinguish the following cases:680

• If both endpoints of P` belong to VCY , then UX = U , TX = T and all the blocks of681

P` belong to Y↓PY
. It follows that P` is a non-empty path of GX because G[Y ]↓PY

is a682

subgraph of GX . In this case, we take P ′` = P`.683

• Assume now that one or two endpoints of P` belong to VCW . Suppose w.l.o.g. that U684

belongs to VCW . Since P` is non-empty and the internal blocks of P` are in Y↓PY
, U has a685

neighbor Q ∈ Y↓PY
in P`. We claim that Q is adjacent to UX in GX . By definition of UX ,686

we have U ≡Vxd UX for some d ∈ {1, 2} and in particular N(U)∩ Vx = N(UX)∩ Vx. As U687

and Q are adjacent in GW , we deduce that N(U)∩Q 6= ∅. It follows that N(UX)∩Q 6= ∅688

and thus Q and UX are adjacent in GX . Symmetrically, we can prove that if T ∈ VCW ,689

then the neighbor of T in P` is adjacent to TX in GX .690

Hence, the neighbors of U and T in P` are adjacent to UX and TX respectively in GX .691

We obtain P ′` from P` by replacing U and T by UX and TX . Since the internal blocks of692

P` belong to Y↓PY
and G[Y ]↓PY

is a subgraph of GX , we deduce that P ′` is a path of GX .693

The path P ′` is not-empty because it contains UX and Q which are distinct blocks of GX694

as UX ∈ VCX (since U ∈ VCW by assumption) and Q ∈ Y↓PY
.695

696

The following theorem proves that, for every set of partial solutions A ⊆ 2Vx , we can compute697

a small subset B ⊆ A such that B represents A, i.e., for every Y ⊆ Vx, the best solutions we698

obtain from the union of Y with a set in A are as good as the ones we obtain from B. Firstly,699

we formalize this notion of representativity.700

Definition 19 (Representativity). For every A ⊆ 2Vx and Y ⊆ Vx, we define701

best(A, Y ) = max{w(X) | X ∈ A and G[X ∪ Y ] is an S-forest}.

Given A,B ⊆ 2Vx , we say that B represents A if, for every Y ⊆ Vx, we have best(A, Y ) =702

best(B, Y ).703

We recall that s-nec2(A) = max(nec2(A), nec2(A)).704
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Lemma 20. There exists an algorithm reduce that, given a set A ⊆ 2Vx , outputs in time705

O(|A| · |Ix| · (4mim(Vx))
4mim(Vx) · log(s-nec2(Vx)) · n3) a subset B ⊆ A such that B represents706

A and |B| 6 |Ix| · (4mim(Vx))
4mim(Vx).707

Proof. Given A ⊆ 2Vx and i ∈ Ix, we define reduce(A, i) as the operation which returns a set708

containing one partial solution X ∈ A associated with i of each equivalence class of ∼i such that709

w(X) is maximum. Moreover, we define reduce(A) =
⋃
i∈Ix reduce(A, i).710

We prove first that reduce(A) represents A, that is best(A, Y ) = best(reduce(A), Y ) for711

all Y ⊆ Vx. Let Y ⊆ Vx. Since reduce(A) ⊆ A, we already have best(reduce(A), Y ) 6712

best(A, Y ). Consequently, if there is no X ∈ A such that G[X ∪ Y ] is an S-forest, we have713

best(reduce(A), Y ) = best(A, Y ) = max(∅) = −∞.714

Assume that there exists X ∈ A such that G[X ∪ Y ] is an S-forest. Let X ∈ A such that715

G[X ∪ Y ] is an S-forest and w(X) = best(A, Y ). By Lemma 14, there exists i ∈ Ix and an716

S-contraction PY of Y such that (1) G[X ∪ Y ]↓cc(X\S)∪PY
is a forest, (2) X is a partial solution717

associated with i and (3) (Y,PY ) is a complement solution associated with i.718

From the construction of reduce(A, i), there exists W ∈ reduce(A) such that W is a partial719

solution associated with i, X ∼i W , and w(W ) ≥ w(X). By Lemma 17 and since G[X ∪720

Y ]↓cc(X\S)∪PY
is a forest, we deduce that G[W ∪ Y ]↓cc(W\S)∪PY

is a forest too. Thanks to721

Lemma 15, we deduce that G[W ∪ Y ] is an S-forest. As w(W ) ≥ w(X) = best(A, Y ), we722

conclude that best(A, Y ) = best(reduce(A), Y ). Hence, reduce(A) represents A.723

We claim that |reduce(A)| 6 |Ix|·(4mim(Vx))
4mim(Vx). For every i = (XS

vc, X
S
vc, Xvc, Y

S
vc, Y

S
vc) ∈724

Ix and partial solution X associated with i, cc(X, i) is a partition of XS
vc ∪XS

vc ∪Xvc ∪Y S
vc ∪Y S

vc.725

Since |XS
vc| + |XS

vc| + |Y S
vc| + |Y S

vc| 6 4mim(Vx), there are at most (4mim(Vx))
4mim(Vx) possi-726

ble values for cc(X, i). We deduce that, for every i ∈ Ix, the relation ∼i generates at most727

(4mim(Vx))
4mim(Vx) equivalence classes, so |reduce(A, i)| 6 (4mim(Vx))

4mim(Vx) for every i ∈ Ix.728

By construction, we conclude that |reduce(A)| 6 |Ix| · (4mim(Vx))
4mim(Vx).729

It remains to prove the runtime. As nec1(Vx) 6 nec2(Vx), by Lemma 5 we can compute730

in time O(s-nec2(Vx) · log(s-nec2(Vx)) · n2) the sets RVx1 ,RVx2 , RVx2 and data structures which731

compute repVx1 , repVx2 and repVx2 in time O(log(s-nec2(Vx)) · n2). Given RVx1 ,RVx2 , RVx2 , we can732

compute Ix in time O(|Ix| ·n2). Since, s-nec2(Vx) 6 |Ix|, the time required to compute these sets733

and data structures is less than O(|A| · |Ix| · (4mim(Vx))
4mim(Vx) · log(s-nec2(Vx)) · n3).734

For each i ∈ Ix and X ∈ A, we can decide whether X is a partial solution associated735

with i and compute aux(X, i), cc(X, i) in time O(log(s-nec2(Vx)) · n3). For doing so, we simply736

start by computing repVx2 (C) and repVx1 ({v}) for each C ∈ cc(X \ S) and {v} ∈
(
X∩S
1

)
, this is737

doable in O(log(s-nec2(Vx)) ·n3) since |cc(X \S)|+ |X∩S| 6 n. Then with standard algorithmic738

techniques, we check whetherX satisfies all the conditions of Definition 12 and compute aux(X, i)739

and cc(X, i).740

Given two partial solutions X,W associated with i, cc(X, i) and cc(W, i), we can decide741

whether X ∼i W in time O(mim(Vx)) 6 O(n). We deduce that, for each i ∈ Ix, we can compute742

reduce(A, i) in time O(|A| · (4mim(Vx))
4mim(Vx) · log(s-nec2(Vx)) · n3). We deduce the running743

time to compute reduce(A) by multiplying the running time needed for reduce(A, i) by |Ix|.744

We are now ready to prove the main theorem of this paper. For two subsets A and B of 2V (G),745

we define the merging of A and B, denoted by A⊗B, as A⊗B := {X ∪Y | X ∈ A and Y ∈ B}.746

Observe that A⊗ B = ∅ whenever A = ∅ or B = ∅.747
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Theorem 21. There exists an algorithm that, given an n-vertex graph G and a rooted layout748

(T, δ) of G, solves Subset Feedback Vertex Set in time749

O

 ∑
x∈V (T )

|Ix|3 · (4mim(Vx))
12mim(Vx) · log(s-nec2(Vx)) · n3

 .

Proof. The algorithm is a usual bottom-up dynamic programming algorithm. For every node750

x of T , the algorithm computes a set of partial solutions Ax ⊆ 2Vx such that Ax represents751

2Vx and |Ax| 6 |Ix| · (4mim(Vx))
4mim(Vx). For the leaves x of T such that Vx = {v}, we simply752

take Ax = 2Vx = {∅, {v}}. In order to compute Ax for x an internal node of T with a and b753

as children, our algorithm will simply compute Ax = reduce(Aa ⊗ Ab). Once the the set Ar is754

computed with r the root of T , our algorithm outputs a set X ∈ Ar of maximum weight.755

By Lemma 20, we have |Ax| 6 |Ix| ·(4mim(Vx))
4mim(Vx), for every node x of T . The following756

claim helps us to prove that Ax represents 2Vx for the internal nodes x of T .757

Claim 22. Let x be an internal of T with a and b as children. If Aa and Ab represent, respec-758

tively, 2Va and 2Vb, then reduce(Aa ⊗Ab) represents 2Vx .759

Proof. Assume that Aa and Ab represent, respectively, 2Va and 2Vb . First, we prove that Aa ⊗
Ab represents 2Vx . We have to prove that, for every Y ⊆ Vx, we have best(Aa ⊗ Ab, Y ) =
best(2Vx , Y ). Let Y ⊆ Vx. By definition of best, we have the following

best(Aa ⊗Ab, Y ) = max{w(X) + w(W ) | X ∈ Aa ∧W ∈ Ab ∧G[X ∪W ∪ Y ] is an S-forest}
= max{best(Aa,W ∪ Y ) + w(W ) |W ∈ Ab}.

As Aa represents 2Va , we have best(Aa,W ∪Y ) = best(2Va ,W ∪Y ) and we deduce that best(Aa⊗760

Ab, Y ) = best(2Va⊗Ab, Y ). Symmetrically, asAb represents 2Vb , we infer that best(2Va⊗Ab, Y ) =761

best(2Va⊗2Vb , Y ). Since 2Va⊗2Vb = 2Vx , we conclude that best(Aa⊗Ab, Y ) equals best(2Vx , Y ).762

As this holds for every Y , it proves that Aa ⊗Ab represents 2Vx . By Lemma 20, we know that763

reduce(Aa⊗Ab) represents Aa⊗Ab. As the relation “represents” is transitive, we conclude that764

reduce(Aa ⊗Ab) represents 2Vx .765

For the leaves x of T , we obviously have that Ax represents 2Vx , since Ax = 2Vx . From766

Claim 22 and by induction, we deduce that Ax represents 2Vx for every node x of T . In767

particular, Ar represents 2V (G) with r the root of T . By Definition 19, Ar contains a set X of768

maximum size such that G[X] is an S-forest. This proves the correctness of our algorithm.769

It remains to prove the running time. Observe that, for every internal node x of T with a and770

b as children, the size of Aa ⊗ Ab is at most |Ix|2 · (4mim(Vx))
8mim(Vx) and it can be computed771

in time O(|Ix|2 · (4mim(Vx))
8mim(Vx) · n2). By Lemma 20, the set Ax = reduce(Aa ⊗ Ab) is772

computable in time O(|Ix|3 · (4mim(Vx))
12mim(Vx) · log(s-nec2(Vx)) · n3). This proves the running773

time.774

3.1 Algorithmic consequences775

In order to obtain the algorithmic consequences of our meta-algorithm given in Theorem 21,776

we need the following lemma which bounds the size of each set of indices with respect to the777

considered parameters.778

Lemma 23. For every x ∈ V (T ), the size of Ix is upper bounded by:779
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• 2O(rw(Vx)3),780 • 2O(rwQ(Vx)
2 log(rwQ(Vx))),781 • nO(mim(Vx)2).782

Proof. For A ⊆ V (G), let mw(A) be the number of different rows in the matrix MA,A. Observe783

that, for every A ⊆ V (G), we have mw(A) = {repA1 ({v}) | v ∈ A}. Remember that the XS
vc’s and784

Y S
vc’s are subsets of {rep

Vx
1 ({v}) | v ∈ Vx} and {repVx1 ({v}) | v ∈ Vx} respectively. From Definition785

10, we have |XS
vc|+|XS

vc|+|Y S
vc|+|Y S

vc| 6 4mim(Vx), for every (XS
vc, X

S
vc, Xvc, Y

S
vc, Y

S
vc) ∈ Ix. Thus,786

the size of Ix is at most787

nec1(Vx) ·
(
nec2(Vx) +mw(Vx) + nec2(Vx) +mw(Vx)

)4mim(Vx).

Rank-width. By Lemma 4, we have nec1(Vx) 6 2rw(Vx)
2 and nec2(Vx), nec2(Vx) 6 22rw(Vx)

2 .788

Moreover, there is at most 2rw(Vx) different rows in the matrices MVx,Vx
and MVx,Vx

, so mw(Vx)789

and mw(Vx) are upper bounded by 2rw(Vx). By Lemma 3, we have 4mim(Vx) 6 4rw(Vx). We790

deduce from these inequalities that |Ix| 6 2rw(Vx)
2 · (22rw(Vx)2+1 + 2rw(Vx)+1)4rw(Vx) ∈ 2O(rw(Vx)3).791

Q-rank-width. By Lemma 4, we have nec1(Vx), nec2(Vx), nec2(Vx) ∈ 2O(rwQ(Vx) log(rwQ(Vx))).792

Moreover, there is at most 2rwQ(Vx) different rows in the matrices MVx,Vx
and MVx,Vx

, so mw(Vx)793

and mw(Vx) are upper bounded by 2rwQ(Vx). By Lemma 3, we have 4mim(Vx) 6 4rwQ(Vx). We794

deduce from these inequalities that795

|Ix| 6 2O(rwQ(Vx) log(rwQ(Vx))) ·
(
2O(rwQ(Vx) log(rwQ(Vx))) + 2rwQ(Vx)+1

)4rwQ(Vx)
.

We conclude that |Ix| ∈ 2O(rwQ(Vx)
2 log(rwQ(Vx))).796

Mim-width. By Lemma 4, we know that nec1(Vx) 6 |Vx|mim(Vx), nec2(Vx) 6 |Vx|2mim(Vx),797

and nec2(Vx) 6 |Vx|2mim(Vx). We can assume that n > 2 (otherwise the problem is trivial), so798

nec2(Vx) + nec2(Vx) 6 |Vx|2mim(Vx) + |Vx|2mim(Vx) 6 n2mim(Vx). Moreover, notice that, for every799

A ⊆ V (G), we have {repA1 ({v}) | v ∈ A} 6 |A|.800

We deduce that |Ix| 6 nmim(Vx) · (n+ n2mim(Vx))4mim(Vx). As we assume that n > 2, we have801

|Ix| 6 n8mim(Vx)2+5mim(Vx) ∈ nO(mim(Vx)2).802

803

Now we are ready to state our algorithms with respect to the parameters rank-width rw(G)804

and Q-rank-width rwQ(G). In particular, with our next result we show that Subset Feedback805

Vertex Set is in FPT parameterized by rwQ(G) or rw(G).806

Theorem 24. There exist algorithms that solve Subset Feedback Vertex Set in time807

2O(rw(G)3) · n4 and 2O(rwQ(G)2 log(rwQ(G)))) · n4.808

Proof. We first compute a rooted layout L = (T, δ) of G such that rw(L) ∈ O(rw(G)) or809

rwQ(L) ∈ O(rwQ(G)). This is achieved through a (3k + 1)-approximation algorithm that runs810

in FPT time O(8k · n4) parameterized by k ∈ {rw(G), rwQ(G)} [34]. Then, we apply the al-811

gorithm given in Theorem 21. Observe that for every node x ∈ V (T ), by Lemma 23, |Ix|3812

lies in 2O(rw(Vx)3) and 2O(rwQ(Vx)
2 log(rwQ(Vx))) and by Lemma 4, s-nec2(Vx) lies in 2O(rw(Vx)2) and813

2O(rwQ(Vx) log(rwQ(Vx))). Moreover, Lemma 3 implies that mim(Vx)
mim(Vx) is upper bounded by814

2rw(G) log(rw(G)) and 2rwQ(G) log(rwQ(G)). Therefore, we get the claimed runtimes for SFVS since T815

contains 2n− 1 nodes.816
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Regarding mim-width, our algorithm given below shows that Subset Feedback Vertex817

Set is in XP parameterized by the mim-width of a given rooted layout. Note that we cannot solve818

SFVS in FPT time parameterized by the mim-width of a given rooted layout unless FPT = W[1],819

since Subset Feedback Vertex Set is known to be W[1]-hard for this parameter even for the820

special case of S = V (G) [29]. Moreover, contrary to the algorithms given in Theorem 24, here821

we need to assume that the input graph is given with a rooted layout. However, our next result822

actually provides a unified polynomial-time algorithm for Subset Feedback Vertex Set on823

well-known graph classes having bounded mim-width and for which a layout of bounded mim-824

width can be computed in polynomial time [1] (e.g., Interval graphs, Permutation graphs,825

Circular Arc graphs, Convex graphs, k-Polygon, Dilworth-k and Co-k-Degenerate826

graphs for fixed k).827

Theorem 25. There exists an algorithm that, given an n-vertex graph G and a rooted layout L828

of G, solves Subset Feedback Vertex Set in time nO(mim(L)2).829

Proof. We apply the algorithm given in Theorem 21. By Lemma 4, we have s-nec2(Vx) 6 nO(mim)
830

and from Lemma 23 we have |Ix|3 ∈ nO(mim(Vx)2). The claimed runtime for SFVS follows by the831

fact that the rooted tree T of L contains 2n− 1 nodes.832

Let us relate our results for Subset Feedback Vertex Set to the Node Multiway833

Cut. It is known that Node Multiway Cut reduces to Subset Feedback Vertex Set834

[20]. In fact, we can solve Node Multiway Cut by adding a new vertex v with a large weight835

that is adjacent to all terminals and, then, run our algorithms for Subset Feedback Vertex836

Set with S = {v} on the resulting graph. Now observe that any extension of a rooted layout837

L of the original graph to the resulting graph has mim-width mim(L) + 1. Therefore, all of our838

algorithms given in Theorems 24 and 25 have the same running times for the Node Multiway839

Cut problem.840

4 Conclusion841

This paper highlights the importance of the d-neighbor-equivalence relation to obtain meta-842

algorithm for several width measures at once. We extend the range of applications of this843

relation [3, 7, 22, 35] by proving that it is useful for the atypical acyclicity constraint of the844

Subset Feedback Vertex Set problem. It would be interesting to see whether this relation845

can be helpful with other kinds of constraints such as 2-connectivity and other generalizations846

of Feedback Vertex Set such as the ones studied in [6]. In particular, one could consider847

the following generalization of Odd Cycle Transversal:848

Subset Odd Cycle Transveral (SOCT)

Input: A graph G and S ⊆ V (G).
Output: A set X ⊆ V (G) of minimum weight such that G[X] does not contain an odd cycle
that intersects S.

849

Similar to SFVS, we can solve SOCT in time kO(k) ·nO(1) parameterized by treewidth and this is850

optimal under ETH [2]. We do not know whether SOCT is in XP parameterized by mim-width,851

though it is in FPT parameterized by clique-width or rank-width, since we can express it in852

MSO1 (with the characterization used in [2]).853

For many well-known graph classes a decomposition of bounded mim-width can be found in854

polynomial time. However, for general graphs it is known that computing mim-width is W[1]-855

hard and not in APX unless NP = ZPP [40], while Yamazaki [42] shows that under the small856
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set expansion hypothesis it is not in APX unless P = NP. For dynamic programming algorithms857

as in this paper, to circumvent the assumption that we are given a decomposition, we want858

functions f, g and an algorithm that given a graph of mim-width OPT computes an f(OPT )-859

approximation to mim-width in time ng(OPT ), i.e. XP by the natural parameter. This is the860

main open problem in the field. The first task could be to decide if there is a constant c and861

a polynomial-time algorithm that given a graph G either decides that its mim-width is larger862

than 1 or else returns a decomposition of mim-width c.863
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A Explanations with several figures960

The following figures explain the relation between solutions (S-forests) and an index i.961

Y1

Y

X

Figure 5: Illustration of the S-contraction PY constructed in Lemma 9. The graph
represented is an S-forest induced by the union of a set X ⊆ Vx and a set Y ⊆ Vx. The
white filled disks represent the vertices in S. We transform this S-forest into a forest (see
the next figure) by contracting the circled subsets of vertices. The S-contraction used
on X is cc(X \ S). Observe that Y1 is the only block of PY which is not a connected
component of G[Y \ S]. We need Y1 to kill the orange cycle which is not an S-cycle.

Y↓PY

X↓cc(X\S)

Figure 6: The contracted graph G[X ∪ Y ]↓cc(X\S)∪PY
. The vertices of this graph are the

blocks of cc(X \ S)∪PY and the singletons {x} for every vertex x in (X ∪ Y )∩ S, these
singletons are represented by the white filled disks.
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Y↓PY

X↓cc(X\S)

Figure 7: The bipartite graph G[X, Y ]↓cc(X\S)∪PY
. The colored squares represent the

blocks in a vertex cover VC of G[X, Y ]↓cc(X\S)∪PY
that satisfies the properties of Lemma 9.

X2

Y↓PY

X↓cc(X\S)

Figure 8: The graph G[X ∪ Y ]↓cc(X\S)∪PY
. As done in Lemma 14, we construct from

the vertex cover VC an index i = (XS
vc, X

S
vc, Xvc, Y

S
vc , Y

S
vc) ∈ Ix such that X is a partial

solution associated with i and (Y,PY ) is a complement solution associated with i.
The set XS

vc contains the representatives of the blocks in cc(X \S) that are in the vertex
cover VC. In this example, we have XS

vc = {R2} where R2 = repVx2 (X2).
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Y↓PY

X↓cc(X\S)

{x1}

Figure 9: The set XS
vc contains the representatives of the singletons {x} ∈ VC with x ∈ S.

In this example, we have XS
vc = {R1} where R1 = repVx1 ({x1}).

X↓cc(X\S) \ VC

Y↓PY

X↓cc(X\S)

Figure 10: The set Xvc = repVx1 (X \ V (VC)). It is the representative set of the set of
vertices in X that are not in a block of VC.
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Y1

Y2
Y↓PY

X↓cc(X\S)

Figure 11: The set Y S
vc contains the representatives of the blocks in PY ∩ VC. In this

example, we have Y S
vc = {R1, R2} where R` = repVx2 (Y`) for ` = 1, 2.

Y↓PY

X↓cc(X\S)

{y3} {y4}

Figure 12: The set Y S
vc contains the representatives of the singletons {y} ∈ VC with y ∈ S.

In this example, we have Y S
vc = {R3, R4} where R` = repVx1 ({y`}) for ` = 3, 4.
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X2

Y S
vc ∪ Y S

vc

X↓cc(X\S)

{x1}

R1
R2 R3 R4

Figure 13: The auxiliary graph auxx(X, i). It can be obtained from G[X ∪ Y ]↓cc(X\S)∪PY

by (1) removing the edges between blocks of Y↓PY
, (2) removing the blocks of Y↓PY

that do
not belong to VC and (3) replacing each remaining blocks of Y↓PY

by its representatives.
The blocks of the partition cc(X, i) are {R1, R1, R2}, {R2, R3} and {R4} where R1 and
R2 are the representatives of {x1} and X2 respectively.
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X2

Y S
vc ∪ Y S

vc

X↓cc(X\S)

{x1}

R1
R2 R3 R4

Y S
vc ∪ Y S

vc

W2

W↓cc(W\S)
{w1}

R1
R2 R3 R4

Figure 14: The auxiliary graphs auxx(X, i) and auxx(W, i) with W a partial solution asso-
ciated with i. We have R1 = repVx1 ({w1}) = repVx1 ({x1}) and R2 = repVx2 (W2) = repVx2 (X2).
Observe that cc(X, i) = cc(W, i) = {{R1, R1, R2}, {R2, R3}, {R4}}. Consequently, X and
W are i-equivalent.

31



Y↓PY

X↓cc(X\S)

W↓cc(W\S)

Y↓PY

Figure 15: The graphs G[X ∪ Y ]↓cc(X\S)∪PY
and G[W ∪ Y ]↓cc(W\S)∪PY

. As X and W are
i-equivalent and G[X ∪ Y ]↓cc(X\S)∪PY

is a forest, by Lemma 17, G[W ∪ Y ]↓cc(W\S)∪PY
is

also a forest. Thus, by Lemma 15, G[W ∪ Y ] is an S-forest. In fact, these two lemmas
implies that for every complement solution (Y ′,P ′Y ) associated with i, G[X ∪ Y ′] is an
S-forest if and only if G[W ∪ Y ′] is an S-forest.
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Y↓PY

X↓cc(X\S)

X2

W↓cc(W\S)

Y↓PY

W2

Figure 16: New examples for the graphs G[X ∪ Y ]↓cc(X\S)∪PY
and G[W ∪ Y ]↓cc(W\S)∪PY

.
To prove Lemma 17, we prove that if G[W ∪ Y ]↓cc(W\S)∪PY

contains a cycle, then G[X ∪
Y ]↓cc(X\S)∪PY

contains a cycle. We use the following arguments.
The orange paths exist in both graphs because these paths only use blocks in Y↓PY

. Since
cc(X, i) = cc(W, i), the purple path in G[W ∪ Y ]↓cc(W\S)∪PY

implies the existence of the
purple path in G[X ∪ Y ]↓cc(X\S)∪PY

. Finally, as X2 ≡Vx2 W2, the blocks in Y↓PY
adjacent

to W2 are also adjacent to X2. Thus, the green path in in G[W ∪ Y ]↓cc(W\S)∪PY
implies

the existence of the green path in G[X ∪ Y ]↓cc(X\S)∪PY
.

33


	Introduction 
	Preliminaries 
	A Meta-Algorithm for Subset Feedback Vertex Set
	Algorithmic consequences

	Conclusion 
	Explanations with several figures

