
Definability Equals Recognizability for
k-Outerplanar Graphs and l-Chordal Partial

k-Trees∗

Hans L. Bodlaender†1, Pinar Heggernes2, Lars Jaffke‡3, and
Jan Arne Telle2

1Utrecht University, The Netherlands
Eindhoven University of Technology, The Netherlands

2University of Bergen, Norway
3CWI Amsterdam, The Netherlands

Abstract

One of the most famous algorithmic meta-theorems states that
every graph property which can be defined in counting monadic sec-
ond order logic (CMSOL) can be checked in linear time on graphs
of bounded treewidth, which is known as Courcelle’s Theorem [12].
These algorithms are constructed as finite state tree automata and
hence every CMSOL-definable graph property is recognizable. Cour-
celle also conjectured that the converse holds, i.e. every recognizable
graph property is definable in CMSOL for graphs of bounded tree-
width. In this paper we prove two special cases of this conjecture,
first for the class of k-outerplanar graphs, which are known to have
treewidth at most 3k − 1 [6], and for graphs of bounded treewidth
without chordless cycles of length at least some constant `.

We furthermore show that for a proof of Courcelle’s Conjecture it
is sufficient to show that all members of a graph class admit constant
width tree decompositions whose bags and edges can be identified

∗This paper is based on extended abstracts appearing in the proceedings of IPEC 2015
[23] and EUROCOMB 2015 [7].
†The research of this author was partially funded by the Networks programme, funded

by the Dutch Ministry of Education, Culture and Science through the Netherlands Or-
ganisation for Scientific Research.
‡The research was done while this author was a student at Utrecht University.

1

with MSOL-predicates. For graph classes that admit MSOL-definable
constant width tree decompositions that have bounded degree or allow
for a linear ordering of all nodes with the same parent we even give a
stronger result: In that case, the counting predicates of CMSOL are
not needed.

1 Introduction

A seminal result from 1990 by Courcelle states that for every graph
property P that can be formulated in a language called counting
monadic second order logic (CMSOL), and each fixed k, there is a
linear time algorithm that decides P for a graph given a tree decom-
position of width at most k [12] (while similar results were discovered
by Arnborg et al. [2] and Borie et al. [10]). Counting monadic sec-
ond order logic generalizes monadic second order logic (MSOL) with
a collection of predicates testing the size of sets modulo constants.
Courcelle showed that this makes the logic strictly more powerful [12],
which can be seen in the following example.

Example 1.1 ([12]). Let Peven denote the property that a graph has a
vertex set of even size. Then, Peven is trivially definable in CMSOL,
but it is not in MSOL.

The algorithms constructed in Courcelle’s proof have the shape
of a finite state tree automaton and hence we can say that CMSOL-
definable graph properties are recognizable (or, equivalently, regular or
finite-state). Courcelle’s Theorem generalizes one direction of a classic
result in automata theory by Büchi, which states that a language
is recognizable, if and only if it is MSOL-definable [11]. Courcelle
conjectured in 1990 that the other direction of Büchi’s result can also
be generalized for graphs of bounded treewidth in CMSOL, i.e. that
each recognizable graph property is CMSOL-definable.

This conjecture is still regarded to be open. Its claimed resolution
by Lapoire [27] is not considered to be valid by several experts. In
the course of time proofs were given for the classes of trees and forests
[12], partial 2-trees [13], partial 3-trees and k-connected partial k-trees
[25]. A sketch of a proof for graphs of pathwidth at most k appeared
at ICALP 1997 [24].

We add to this list the class of k-outerplanar graphs and graphs of
bounded treewidth without chordless cycles of length at least `.

In our proofs, we use another classic result rooted in automata the-
ory, the Myhill-Nerode Theory, which was discovered independently
by Myhill [28] in 1957 and Nerode [29] in 1958. It states that a lan-
guage L of words over an alphabet is recognizable if and only if there

2

exists an equivalence relation ∼L, characterizing L, with a finite num-
ber of equivalence classes (i.e. ∼L has finite index). Abrahamson and
Fellows [1] noted that the Myhill-Nerode Theorem can be general-
ized to graphs of bounded treewidth (see also [21, Theorem 12.7.2]):
Each graph property P is recognizable if and only if there exists an
equivalence relation ∼P of finite index, characterizing1 P , defined over
bounded treewidth terminal graphs with a bounded number of termi-
nal vertices. This result was recently generalized to hypergraphs [4].

The rest of the paper is organized as follows. In Section 2, we give
the basic notions used at various places throughout the text and in
Section 3 we present our Myhill-Nerode type proof framework of Cour-
celle’s Conjecture. What is then left to show is how to construct tree
decompositions, which can be encoded by MSOL-predicates for a par-
ticular graph class. We describe these constructions for k-outerplanar
graphs in Section 4 and for `-chordal partial k-trees in Section 5. We
give concluding remarks in Section 6.

2 Preliminaries

In this section we define the basic concepts used throughout this paper.
We begin by giving some notational conventions.

Throughout the text, k ∈ N denotes a constant. Let a, b ∈ N with
a < b. Then, N|a,b denotes the set {a, a+ 1, . . . , b} and for a ∈ N, we
let N|a = N|1,a.

Let X be a set. Then P(X) denotes the powerset of X, Pc(X) the
set of all subsets of X of size c (and P≤c(X) the set of all subsets up
to size c) and by PMc (X) we denote the set of all multisets over X up
to size c (and define PM≤c(X) accordingly).

2.1 Graphs and Tree Decompositions

The reader is assumed to be familiar with the basic notions of graph
theory, and is referred to [20] for an overview of the necessary back-
ground.

A graph G = (V,E) with vertex set V and edge set E is always
assumed to be undirected, connected and simple (unless stated oth-
erwise). Let H be a graph. We denote the subgraph relation by
G v H, and the proper subgraph relation by G @ H. For a set
W ⊆ V , G[W] denotes the induced subgraph over W ⊆ V in G, i.e.

1See Section 3 for a formal definition of what the term ’characterize’ means in this
context.

3

G[W] = (W,E ∩ (W ×W)). As a notational convention, we denote
the edge set of an induced subgraph G[W] by EG[W].

We call a set C ⊂ V a cut of G, if G[V \ C] is disconnected. An
`-cut of G is a cut of size `. A set S ⊆ V is said to be incident to
an `-cut C, if C ⊂ S. We call a graph `-connected, if it does not
contain a cut of size at most `− 1. We now turn to the notion of tree
decompositions and some related concepts.

Definition 2.1 (Tree Decomposition, Treewidth, Partial k-Tree). A
tree decomposition of a graph G = (V,E) is a pair (T,X) of a tree
T = (N,F) and an indexed family of vertex sets (Xt)t∈N (called bags),
such that the following properties hold.

(i) Each vertex v ∈ V is contained in at least one bag.

(ii) For each edge e ∈ E there exists a bag containing both endpoints.

(iii) For each vertex v ∈ V , the bags in the tree decomposition that
contain v form a subtree of T .

The width of a tree decomposition is the size of the largest bag minus
1 and the treewidth of a graph (sometimes denoted by tw(G)) is the
minimum width of all its tree decompositions. We sometimes refer to
a graph of treewidth at most k as a partial k-tree.2

To avoid confusion, in the following we will refer to elements of
N as nodes and elements of V as vertices. Sometimes, to shorten the
notation, we might not differ between the terms node and bag in a
tree decomposition.

Definition 2.2 (Node Types). We distinguish three types of nodes
in a tree decomposition (T,X), listed below.

(i) The nodes corresponding to leaves in T are called leaf nodes.

(ii) If a node has exactly one child it is called an intermediate node.

(iii) If a node has more than one child it is called a branch node.

As we will typically speak of some direction between nodes in tree
decompositions, such as a parent-child relation, we define the follow-
ing.

Definition 2.3 (Rooted and Ordered Tree Decomposition). Let (T =
(N,F), X) be a tree decomposition. We call (T,X) rooted, if there is
one distinguished node r ∈ N , called the root of T , inducing a parent-
child relation on all edges in F . If there exists a fixed ordering on all
nodes sharing the same parent node, then (T,X) is called ordered.

2For a discussion of different characterizations related to the treewidth of a graph, see
[6, Section 2].

4

We sometimes refer to an edge between two nodes t, t′ ∈ N in a
rooted tree decomposition as (t, t′) ∈ F (instead of {t, t′} ∈ F) to
emphasize that t is the parent node of t′.

We use the following notation. If P denotes a graph property (e.g.
a graph contains a Hamiltonian cycle), then by ’P (G)’ we express that
a graph G has property P .

2.2 Tree Automata for Graphs of Treewidth k

We briefly review the concept of tree automata and recognizability of
graph properties for graphs of bounded treewidth. For an introduction
to the topic we refer to [21, Chapter 12]. For the formal details of the
following notions, the reader is referred to [25].

A tree automaton A is a finite state machine accepting as an input
a rooted tree structure over an alphabet Σ as opposed to words in
classical word automata. Formally, A is a triple (Q,QAcc, f) of a
set of states Q, a set of accepting states QAcc ⊆ Q and a transition
function f , deriving the state of a node in the input tree T from the
states of its children and its own symbol s ∈ Σ. T is accepted by A,
if the state of the root node of T is an element of the accepting states
QAcc after a run of A with T as an input.

To recognize a graph property on graphs of treewidth at most k,
one encodes a rooted width-k tree decompositions as a labeled tree
over a special type of alphabet, in the following denoted by Σk (see
Definition 3.5, Proposition 3.6 in [25]). We say that a tree automaton
over such an alphabet processes width-k tree decompositions.

Definition 2.4 (Recognizable Graph Properties). Let P denote a
graph property. We call P recognizable (for graphs of treewidth k), if
there exists a tree automaton AP processing width-k tree decomposi-
tions, such that the following are equivalent.

(i) (T,X) is a width-k tree decomposition of a graph G with P (G).

(ii) AP accepts (the rooted labeled tree over Σk corresponding to)
(T,X).

2.3 Monadic Second Order Logic of Graphs

We now define counting monadic second order logic of graphs G =
(V,E), using terminology from [10] and [25]. Variables in this predi-
cate logic are either single vertices/edges or vertex/edge sets. We form
predicates by joining atomic predicates (vertex equality v = w, vertex
membership v ∈ V , edge membership e ∈ E and vertex-edge incidence
Inc(v, e)) via negation ¬, conjunction ∧, disjunction ∨, implication→

5

and equivalence ↔ together with existential quantification ∃ and uni-
versal quantification ∀ over variables in our domain V ∪E. To extend
this monadic second order logic (MSOL) to counting monadic second
order logic (CMSOL), one additionally allows the use of predicates
modp,q(S) for sets S, which are true, if and only if |S| mod q = p, for
constants p and q (with p < q).

Let φ denote a predicate without unquantified (so-called free) vari-
ables constructed as explained above and G be a graph. We call φ a
sentence and denote by G |= φ that φ yields a truth assignment when
evaluated with the graph G.

Definition 2.5 (Definable Graph Properties). Let P denote a graph
property. We say that P is (C)MSOL-definable, if there exists a
(C)MSOL-sentence φP such that P (G) if and only if G |= φP .

A predicate φ can have two types of free variables. The first one
is a number of arguments x1, . . . , xa and we denote our predicate by
φ(x1, . . . , xa). Predicates with arguments are used to define relations
in (C)MSOL and typically appear as sub-predicates in more complex
statements defining a graph property. Secondly, a predicate can have
a number of parameters, which can be seen as auxiliary variables to
define a graph property in (C)MSOL and do not appear in the notation
of a predicate.

Example 2.6. Let P denote the property that a graph has a k-coloring
and φcol(v, w) a predicate, which is true, if and only if a vertex v has
a lower numbered color than w in a given coloring. Then φcol has two
arguments, vertices v and w, and k parameters, the k color classes.
Clearly, the choice of the parameters influences the evaluation of φcol,
but in most applications of parameters for predicates, it is sufficient
to show that one can guess some variables of the evaluation graph to
define a property (or a relation).

We introduce another term of definability based on predicates that
have arguments and/or parameters.

Definition 2.7 (Existential Definability). Let R(x1, . . . , xr) denote
a relation with arguments x1, . . . , xr. We say that R is (C)MSOL-
definable, if there exists a parameter-free predicate φR(x1, . . . , xr), en-
coding the relation R. Furthermore we call R existentially (C)MSOL-
definable, if there exists a predicate φR(x1, . . . , xr) with parameters
x1, . . . , xp, which, after substituting the parameters by fixed values of
an evaluation graph, encodes the relation R. For a graph property
P and an argument-free predicate φP with parameters x1, . . . , xp, we
define the term existential (C)MSOL-definability analogously.3

3In the more informal parts of this paper, we might not always differ between the terms

6

A central concept used in this paper is an implicit representation
of tree decompositions in monadic second order logic, as we cannot
refer to its bags and edges as variables in MSOL directly. We have to
define predicates, which encode the construction of a tree decompo-
sition of each member of a given graph class. We require two types
of predicates. The Bag-predicates will allow us to verify whether a
vertex is contained in some bag and whether any vertex set in the
graph constitutes a bag in its tree decomposition. Each bag will be
associated with either a vertex or an edge in the underlying graph
(its witness) together with some type, whose definition depends on
the graph class under consideration. The Parent-predicate allows for
identifying edges in the tree decomposition, i.e. for any two vertex
sets Sp and Sc, this predicate will be true if and only if both Sp and
Sc are bags in the tree decomposition and Sp is the bag corresponding
to the parent node of Sc.

Definition 2.8 (MSOL-definable tree decomposition). A tree de-
composition (T = (N,F), X) of a graph G = (V,E) is called ex-
istentially MSOL-definable, if the following are existentially MSOL-
definable with O(1) parameters.

(i) Each bag Xp, p ∈ N in the tree decomposition is associated with
either a vertex v ∈ V or an edge e ∈ E (called its witness) and
can be identified by one of the following predicates (where S ⊆ V
and s and t are constants).

(a) Bagτ1(v, S), . . . ,Bagτt(v, S): The vertex set S forms a bag
in the tree decomposition of G, i.e. S = Xp for some p ∈ N ,
it is of type τi (1 ≤ i ≤ t) and its witness is v.

(b) Bagσ1(e, S), . . . ,Bagσs(e, S): The vertex set S forms a bag
in the tree decomposition of G, i.e. S = Xp for some p ∈ N ,
it is of type σi (1 ≤ i ≤ s) and its witness is e.

(ii) Each edge in F can be identified with a predicate Parent(Sp, Sc),
where Sp, Sc ⊆ V : The vertex sets Sp and Sc form bags in (T,X),
i.e. Sp = Xp and Sc = Xc for some p, c ∈ N , and p is the parent
node of c in T .

Let (T,X) be ordered. (T,X) is called ordered existentially MSOL-
definable, if (i), (ii) and the following predicate are existentially MSOL-
definable with O(1) parameters.

(iii) nb<(Sl, Sr): There are nodes t, tl, tr ∈ N with (t, tl) ∈ F , (t, tr) ∈
F , Sl = Xtl and Sr = Xtr , such that tl is a left sibling of tr.

’definability’ and ’existential definability’.

7

We can now show that if we have an existentially MSOL-definable
tree decomposition of width k for a graph class C, one can write a
parameter-free predicate in monadic second order logic, which encodes
a width-k tree decomposition of an evaluation graph G ∈ C, after
replacing the parameters with fixed values of G.

Lemma 2.9. Let (T,X) be an existentially MSOL-definable tree de-
composition with parameters x1, . . . , xp. There exists a predicate φ
with zero parameters and p arguments, which is true if and only if the
predicates Bagτ1 , . . . ,Bagτt, Bagσ1 , . . . ,Bagσs and Parent describe
a width-k rooted tree decomposition of an evaluation graph G.

Proof. The proof can be done analogously to the proof of Lemma 4.7
in [25].

A fundamental result about definable graph properties, which we
use extensively throughout our proofs, states that one can define any
edge orientation of partial k-trees in MSOL. For an in-depth study of
MSOL-definable edge orientations on graphs, see [15].

Lemma 2.10 (cf. page 120 in [15], Lemma 4.8 in [25]). Any direction
over a subset of the edges of an undirected graph of treewidth at most
k is existentially MSOL-definable with k + 2 parameters.

The idea of the proof of Lemma 2.10 is to guess a (k+ 1)-coloring
γ : V → Nk+1, represented in MSOL by k + 1 vertex sets, and a
subset F of the edges of the graph with the following interpretation.
Let e = {v, w} ∈ E. Then, e is oriented from v to w if

(i) γ(v) < γ(w) and e ∈ F or

(ii) γ(v) > γ(w) and e /∈ F
and from w to v otherwise. Hence, given a (k + 1)-coloring of G, any
orientation which uses predicates to indicate whether a vertex is the
head or tail vertex of an incident edge (in the following denoted by
head(e, v) and tail(e, v), respectively), can be encoded by guessing the
corresponding edge set F .

2.4 Courcelle’s Conjecture

We are now ready to state Courcelle’s Conjecture formally.4

4Throughout this text, we will abbreviate Conjecture 2.11 to: ’Recognizability implies
definability for. . . ’

8

Conjecture 2.11 (Courcelle, 1990). Let P denote a graph property.
For any fixed k ∈ N, the following holds. If P is recognized by a finite
state tree automaton A for graphs of treewidth k, then there exists
a (C)MSOL-sentence Φ, such that G |= Φ if and only if A accepts
(T,X), a width-k tree decomposition of G.

The first step in proving the above mentioned special cases of this
conjecture is to show that it holds for each graph class that admits ex-
istentially MSOL-definable width-k tree decompositions, i.e. we prove
the following lemma. Note that by Lemma 2.9 existential definability
is sufficient to ensure that there are parameter-free predicates encod-
ing the corresponding tree decomposition.

Lemma 2.12. Let C denote a graph class which admits existentially
MSOL-definable width-k tree decompositions. Let ζ denote the set of
all such tree decompositions. Recognizability implies

(i) MSOL-definability for C, if all (T,X) ∈ ζ have bounded degree.

(ii) MSOL-definability for C, if all (T,X) ∈ ζ are ordered.

(iii) CMSOL-definability for C.

Note that if we can find ordered or bounded degree existentially
MSOL-definable width-k tree decompositions for a graph class, we
obtain an even stronger result, as we do not require the counting
predicates of CMSOL.

In the following section, we will give a proof of Lemma 2.12 using
the generalized Myhill-Nerode Theory for graphs of bounded tree-
width.

We would like to note that one can prove Lemma 2.12 in the tree
automata perspective as well, see e.g. Lemma 5.4 in [25], and one can
obtain the same separation between MSOL- and CMSOL-definability,
cf. the discussion on page 575 in [19].

3 A Myhill-Nerode Type Argument for

Courcelle’s Conjecture

In this section, we present the proof of Lemma 2.12, i.e. we show that
if a graph class C admits existentially MSOL-definable tree decompo-
sitions for all its members, then each recognizable graph property is
definable in CMSOL for C.

To do so, we use another classic result from automata theory which
has been generalized to graphs of bounded treewidth. This result
states that each recognizable graph property has an equivalence rela-
tion of finite index, which we will now define formally.

9

Definition 3.1 (Terminal Graph). A terminal graph G = (V,E,X)
is a graph with vertex set V , edge set E and an ordered terminal set
X ⊆ V . If |X| = t, we call G a t-terminal graph.

Definition 3.2 (Gluing via ⊕). Let G = (VG, EG, XG) and H =
(VH , EH , XH) be two terminal graphs with |XG| = |XH |. The graph
G ⊕ H is obtained by taking the disjoint union of G and H and for
each i, 1 ≤ i ≤ |XG|, identifying the i-th vertex in XG with the i-th
vertex in XH .

We drop parallel edges, if they occur.

Throughout this paper, we will only consider equivalence relations
over terminal graphs, whose terminal set has bounded size and whose
underlying graph has bounded treewidth. We would like to note that
there are alternative definitions, for which some of the results men-
tioned in this section do not hold, see [1].

Definition 3.3 (Equivalence Relation over Terminal Graphs). Let
P denote a graph property and let all (terminal) graphs below be of
treewidth k. We denote by∼Pt the equivalence relation over t-terminal
graphs of treewidth k, where 1 ≤ t ≤ k+ 1, defined as follows. Let G,
H and K be t-terminal graphs. Then we have:

G ∼Pt H ⇔
(
∀K : P (G⊕K)⇔ P (H ⊕K)

)
For terminal graphs of treewidth k with at most k + 1 terminals, we
furthermore define the equivalence relation ∼P≤k . Let 1 ≤ t ≤ k + 1.

G ∼P≤k H ⇔ |XG| = |XH | = t ∧G ∼Pt H

This yields notions of equivalence classes and finite index (for both
∼Pt and ∼P≤k) in the ordinary way. We might drop the index of ∼P≤k
and refer to it as ∼P or simply ∼, if it is clear from the context.

We illustrate Definition 3.3 with an example.

Example 3.4. Let P denote the property that a graph has a Hamil-
tonian cycle. Let G and H be two terminal graphs (of bounded tree-
width) with terminal sets XG and XH , respectively (where |XG| =
|XH | = t). We say that G and H are equivalent w.r.t. ∼Pt , if for
all terminal graphs K (with terminal set XK , |XK | = t), the graph
G ⊕K contains a Hamiltonian cycle if and only if H ⊕K contains a
Hamiltonian cycle. A simple case when this hols is when both G and
H contain a Hamiltonian path such that their terminal sets consist of
the two endpoints of the path. For an illustration see Figure 1.

We now relate the concept of a terminal graph to bags in tree
decompositions.

10

1

2

(a) Graph G

1

2

(b) Graph H

1

2

(c) Graph K

1

2

(d) Graph K ′

Figure 1: Two 2-terminal graphs of treewidth 2, G and H, with G ∼P H, where
P denotes the property ’contains a Hamiltonian cycle’. Note that since G, H and
K (indicated by the dotted line) contain a Hamiltonian path between their two
terminal vertices, and K ′ does not, we have that G⊕K and H⊕K are Hamiltonian,
while G⊕K ′ and H ⊕K ′ are not.

Definition 3.5 (Terminal Subgraph). Let (T = (N,F), X) be a
rooted tree decomposition of a graph G = (V,E) and Xt, t ∈ N a
bag. The terminal subgraph Gt of t is the terminal graph constructed
in the following way. Let N+

t ⊆ N denote the set of nodes, which are
descendants of t in T (including t itself) and Vt = ∪t′∈N+

t
Xt′ . Then,

Gt = (Vt, EG[Vt], Xt),

with Xt in an arbitrary but fixed ordering.

Note that in the proofs of the following results, an ordering on the
terminal sets of terminal subgraphs of bags in tree decompositions has
to be fixed. Since we do not require this ordering to have any specific
properties, one can use an ordering based on finding a (k + 1)-vertex
coloring of the graph.

Definition 3.6 (k-Coloring Order). Let G = (V,E) be a graph and
(T,X) a tree decomposition of G of width (k − 1). Suppose we have
a k-coloring γ : V → {1, . . . , k} of G such that in each bag Xt, t ∈ N ,
each vertex has a different color. Then, the order of the vertices in
Xt for each t ∈ N , induced by the coloring γ, is called the k-coloring
order of G for (T,X).

One can easily prove the following.

Proposition 3.7. Let G = (V,E) be a graph and (T,X) a width-k
tree decomposition of G. Then, there exists a (k+ 1)-coloring order of
G for (T,X).

Remark 3.8. If a graph class admits existentially definable tree de-
compositions of width at most k, then clearly the ordering stated in
Proposition 3.7 is as well existentially MSOL-definable with at most
k + 1 additional parameters, the vertex sets representing the color
classes.

11

To decide whether the underlying graphs of terminal graphs in a
certain equivalence class have property P , we introduce the notion
of P -equivalence classes. Intuitively speaking this is the analogous
concept to accepting states in the automata theory perspective.

Definition 3.9 (P -Equivalence Class). Let P denote a graph property
and C an equivalence class of ∼P≤k . We call C a P -equivalence class,
if the following holds.

∀G ∈ C : P (G⊕ (XG, ∅, XG))

We are now ready to state the Myhill-Nerode analog for graphs of
bounded treewidth formally.

Theorem 3.10 (Myhill-Nerode Analog for Graphs of Treewidth at
most k (cf. Theorem 12.7.2 in [21])). Let P denote a graph property.
Then the following are equivalent for any fixed k.

(i) P is recognizable for graphs of treewidth at most k.

(ii) ∼P≤k has finite index.

Remark 3.11. According to the proof of Theorem 3.10, see [21, Section
12.7], we know that the indices of the P -equivalence classes of ∼P are
known, as they correspond to the accepting states in the automaton.

By Theorem 3.10, we can reformulate Conjecture 2.11 in the fol-
lowing way.5

Conjecture 3.12. Let P denote a graph property. For any fixed k ∈ N,
the following holds. If ∼P≤k has finite index, then there is a (C)MSOL-
sentence Φ, such that G |= Φ, if and only if the terminal subgraph of
the root of a width-k tree decomposition (T,X) of G is contained in
a P -equivalence class of ∼P≤k .

In the remainder of this section we will show that we can encode the
equivalence class membership of terminal subgraphs in existentially
definable bounded width tree decompositions by a constant-length
predicate in (C)MSOL, hence proving Lemma 2.12.

The rest of this section is organized as follows. In Section 3.1 we
give algebraic proof regarding the existence of functions which describe
the relations between equivalence classes of terminal subgraphs in tree
decompositions. These functions we will then use in the proofs of
Sections 3.2 and 3.3, where we prove Lemma 2.12(i) and 2.12(ii), and
Lemma 2.12(iii), respectively (in the light of Theorem 3.10).

5Throughout this text, we will abbreviate Conjecture 3.12 to ’Finite index implies
definability for. . . ’.

12

K
XK

H
X XH

Figure 2: Terminal graphs H and K, and a terminal set X. The dashed lines
indicate, which vertices are being identified in the corresponding ⊕-operation.

3.1 Algebraic Preliminaries

In this section we show that we can derive the equivalence class mem-
bership of terminal subgraphs from the equivalence classes their chil-
dren/siblings are contained in. In particular, we prove a functional
relation between them which in turn will us allow to define the equiv-
alence class membership of terminal subgraphs in existentially MSOL-
definable tree decompositions of bounded width.

Throughout the rest of this section, we use the following notation.
We denote by C1, . . . , Cr the equivalence classes of any equivalence
relation ∼P≤k+1

of finite index, defined for at most (k + 1)-terminal
graphs (and subsequently for terminal subgraphs of tree decomposi-
tions of width at most k). We refer to the indices of the equivalence
classes of ∼P by N|r = {1, . . . , r}.

3.1.1 Intermediate Nodes

We now show how to derive equivalence class membership of a terminal
subgraph of an intermediate node from its child node.

Definition 3.13 (Gluing via ⊕T). Let G = (V,E, ·) be a (terminal)
graph and X an ordered set of vertices. The operation ⊕T is defined
as follows.

G⊕T X = (V ∪X,E,X)

Note that ⊕T can either be used to make a graph a terminal graph,
or to equip a terminal graph with a new terminal set.

Lemma 3.14. Let H = (VH , EH , XH) and H ′ = (VH′ , EH′ , XH) be
terminal graphs and X an ordered set of vertices. If H ∼ H ′, then
H ⊕T X ∼ H ′ ⊕T X.

Proof. (For an illustration of the proof, see Figure 2.) Let K =
(VK , EK , XK) be any terminal graph with |XK | = |X|. Further-
more we denote by KX the graph obtained by gluing X to K, i.e.

13

KX = K ⊕ (X, ∅, X). Then,

K ⊕ (H ⊕T X) = H ⊕ (KX ⊕T XH).

In the left-hand side, we first extend the terminal graph H to have
terminal set X and then glue the resulting graph to K. Thus the i-th
vertex in XK is identified with the i-th vertex in X, i = 1, . . . , |XK |.
The same vertices are being identified in the first step in computing
the right-hand side, which is constructing the graph KX (see above).
We then extend this graph to have terminal set XH and glue it to
the graph H. Since in both of the constructions the same vertices get
identified and both graphs have equal vertex and edge sets, we see
that our claim holds. We use this argument to conclude our proof as
follows.

∀K : P (K ⊕ (H ⊕T X))⇔ P (H ⊕ (KX ⊕T XH))

⇔P (H ′ ⊕ (KX ⊕T XH))⇔ P (K ⊕ (H ′ ⊕T X))

Corollary 3.15. There is a function fI : P≤k+1(V)×N|r → N|r, such
that for any intermediate node t ∈ N with child t′ ∈ N the following
holds. If Gt′ ∈ Ci, then Gt ∈ CfI(i,Xt).

Proof. Apply Lemma 3.14 with H = Gt.

3.1.2 Ordered Branch Nodes

Next, we consider branch nodes of rooted and ordered tree decompo-
sitions.

Definition 3.16 (Partial Terminal Subgraph). Let (T = (N,F), X)
be a rooted and ordered tree decomposition of a graph G = (V,E)
and Xt, t ∈ N a branch bag with child bag Xt′ , t

′ ∈ N . The partial
terminal subgraph Gt|t′ of t w.r.t. t′ is the terminal graph constructed

as follows. Let N `
t′ ⊂ N denote the left siblings of t′ with terminal

graphs Gt` = (Vt` , Et` , Xt`) for t` ∈ N `
t′ and let Vt|t′ = Xt∪

⋃
t`∈N`

t′
Vt` .

Then,
Gt|t′ = (Vt|t′ , EG[Vt|t′], Xt)

with Xt in an arbitrary but fixed ordering.

Definition 3.17 (Gluing via ⊕B). Let G = (VG, EG, XG) and H =
(VH , EH , XH) be terminal graphs with VG ∩ VH = XG ∩ XH . The
operation ⊕B is defined as:

G⊕B H = (VG ∪ VH , EG ∪ EH , XG)

We drop parallel edges, if they occur.

14

G
H

K
XK

XG = XH

Figure 3: Terminal graphs G, H and K as in the proof of Proposition 3.20.
The dashed lines indicate, which vertices are being identified in the corresponding
⊕-operation.

Lemma 3.18. Let G = (VG, EG, XG) and H = (VH , EH , XH) be
terminal graphs with VG ∩ VH = XG ∩ XH . Furthermore, let G′ =
(VG′ , EG′ , XG) and H = (VH′ , EH′ , XH) be terminal graphs with VG′ ∩
VH′ = XG∩XH , G ∼ G′ and H ∼ H ′. Then, (G⊕BH) ∼ (G′⊕BH

′).

Proof. First, we rewrite the operator ⊕B in terms of ⊕ and ⊕T .

Proposition 3.19. Let G = (VG, EG, XG) and H = (VH , EH , XH) be
two terminal graphs with VG ∩ VH = XG ∩XH . Then,

G⊕B H =

(a)︷ ︸︸ ︷
(G⊕ (H ⊕T XG)︸ ︷︷ ︸

(b)

)⊕T XG . (1)

We prove the lemma in two steps. First, we observe that its state-
ment for part (b) of Equation 1 holds by Lemma 3.14, i.e. using the
notation of Proposition 3.19 we know that (H ⊕T XG) ∼ (H ′⊕T XG).
Then, what remains to show is the following.

Proposition 3.20. Let G = (VG, EG, XG) and H = (VH , EH , XH)
be two terminal graphs with XG = XH . Let G′ = (VG′ , EG′ , XG′)
and H ′ = (VH′ , EH′ , XH′) be two terminal graphs with XG′ = XG,
XH′ = XH , G ∼ G′ and H = H ′. Then,6

(G⊕H)⊕T XG ∼ (G′ ⊕H ′)⊕T XG′ .

Proof. Let K = (VK , EK , XK) be any terminal graph with |XK | =
|XG|. By Figure 3 we can observe the following.

K ⊕ ((G⊕H)⊕T XG) = G⊕ ((K ⊕H)⊕T XG)

6Note that the purpose of the operation ’⊕TXG’ is simply to make the resulting graph
a terminal graph, since (non-terminal) graphs are not members of an equivalence relation.

15

Regardless of the order in which we apply the operators, both graphs
will have the same vertex and edge sets. As for the identifying step
(using the ⊕-operator), one can see that for all i = 1, . . . , |XK | we
have that the i-th vertex in XK is identified with the i-th vertex in
XG in the left-hand side of the equation and with the i-th vertex in
XH in the right-hand side. The equality still holds, since XG = XH .
We use this argument (and the fact that XG′ = XG = XH = XH′) to
show the following.

∀K : P (K ⊕ ((G⊕H)⊕T XG))⇔ P (G⊕ ((K ⊕H)⊕T XG))

⇔P (G′ ⊕ ((K ⊕H)⊕T XG′))⇔ P (H ⊕ ((K ⊕G′)⊕T XH))

⇔P (H ′ ⊕ ((K ⊕G′)⊕T XH′))⇔ P (K ⊕ ((G′ ⊕H ′)⊕T XG′))

Hence, our claim follows.

This concludes the proof of Lemma 3.18.

Corollary 3.21. There is a function f<B : N|r × N|r → N|r, such that
for any branch node t ∈ N with child t′ ∈ N the following holds.
Suppose Gt|t′ ∈ Ci and Gt′ ∈ Cj.

(i) If t′ is the rightmost child of t, then Gt ∈ Cf<B (i,j).

(ii) Otherwise, Gt|r(t′) ∈ Cf<B (i,j), where r(t′) denotes the leftmost

right sibling of t′.

Proof. Apply Lemma 3.18 with G = Gt|t′ and H = Gt.

3.1.3 Bounded Degree Branch Nodes

We now show that we can apply the results given in the previous
sections to deal with the case of bounded degree branch nodes as well.

Lemma 3.22. Let t ∈ N be a branch bag with child nodes t1, . . . , tc
(for some constant c). For 1 ≤ i ≤ c, let Gti = (Vti , Eti , Xti) be the
terminal subgraphs of t1, . . . , tc and Hi = (VHi , EHi , Xti) be terminal
graphs.

If Gt1 ∼ H1, . . . , Gtc ∼ Hc, then

(Gt1⊕T Xt)⊕B · · ·⊕B (Gtc⊕T Xt) ∼ (H1⊕T Xt)⊕B · · ·⊕B (Hc⊕T Xt).

Proof. Let GXtt1 and GXtt−t1 be two terminal graphs as indicated below.

(Gt1 ⊕T Xt)︸ ︷︷ ︸
G
Xt
t1

⊕B (Gt2 ⊕T Xt)⊕B · · · ⊕B (Gtc ⊕T Xt)︸ ︷︷ ︸
G
Xt
t−t1

16

Since Gt1 ∼ H1, we know by Lemma 3.14 that (Gt1 ⊕T Xt) ∼ (H1 ⊕T
Xt). Let HXt

1 = (H1 ⊕T Xt), then we have that GXtt1 ∼ HXt
1 . Now,

by Lemma 3.18, we know that (GXtt1 ⊕BG
Xt
t−t1) ∼ (HXt

1 ⊕BG
Xt
t−t1) and

hence:
GXtt1 ⊕B G

Xt
t−t1 ∼ (H1 ⊕T Xt)⊕B G

Xt
t−t1

We can apply this argument repeatedly and our claim follows. Note
that the child nodes t1, . . . , tc do not need a specific ordering, as in
this context the operation ⊕B is commutative (all graphs, which it is
applied to, have terminal set Xt).

Corollary 3.23. For any pair of constants c and k there exists a
function fdeg cB : P≤k+1(V) × PMc (N|r) → N|r, such that the following
holds. Let t ∈ N be a branch node with c child nodes t1, . . . , tc ∈ N .
If Gt1 ∈ Ci1 , . . . , Gtc ∈ Cic, then Gt ∈ Cfdeg cB (Xt,i1,...,ic)

.

3.2 Results Regarding MSOL-Definability

In this section we show that finite index implies definability in monadic
second order logic (i.e. we do not require counting predicates) for
all graph classes that admit either ordered or bounded degree exis-
tentially MSOL-definable width-k tree decompositions (i.e. we prove
Lemma 2.12(i) and 2.12(ii)). We use the observations and correspond-
ing functions presented in the previous section.

Lemma 3.24 (cf. Lemma 2.12(i)). Let C be a graph class which ad-
mits MSOL-definable width-k tree decompositions of maximum degree
c, for constants c and k. Then, finite index implies MSOL-definability
of all members in C.

Proof. In the following, let G = (V,E) ∈ C and (T = (N,F), X)
an MSOL-definable width-k tree decomposition of G. Furthermore
we denote by C1, . . . , Cr the equivalence classes of ∼P≤k+1

for any P ,
such that ∼P≤k has finite index. We mimic the proof of Büchi’s fa-
mous result in terms of word automata [11], as shown in [32, Theorem
3.1]. That is, we define witness sets for each equivalence class in the
following way. For each pair of an equivalence class Ci, 1 ≤ i ≤ r and
a vertex (edge) bag type τ ∈ {τ1, . . . , τt} (σ ∈ {σ1, . . . , σs}), we define
sets W V

i,τ (WE
i,σ) with the following interpretation. For v ∈ V (e ∈ E)

let τ(v) ∈ N (σ(e) ∈ T) denote the bag of type τ (σ), whose witness
is v (e). Then,

v ∈W V
i,τ ⇔ Gτ(v) ∈ Ci and

e ∈WE
i,σ ⇔ Gσ(e) ∈ Ci.

17

Before we go into the details of the proof, we give a high level outline
of the predicates we construct. The main predicate ΦEQC consists
of three parts. The first part, φLeaf fills the witness sets of the leaf
nodes in T . In the second part, φTSG we derive the equivalence class
membership of non-leaf nodes via a case analysis on which equivalence
classes their children are contained in. For this step we use the func-
tions fI and fdeg cB defined in Corollaries 3.15 (for intermediate nodes)
and 3.23 (for bounded degree branch nodes), respectively. Eventually,
to verify whether G has property P we check whether any witness set
corresponding to a P -equivalence class contains the vertex or edge,
which is the witness of the root bag. We denote this part of the
predicate by φRoot. To summarize, we have

ΦEQC = (Q) φLeaf ∧ φTSG ∧ φRoot, (2)

where the term (Q) denotes the quantifications over the required set
variables. One easily sees that by this construction we have that
G |= ΦEQC if and only if P (G). We now turn to defining the details
of the above mentioned predicates.

The first part is to guess the sets W ··,·, i.e.:

ΦEQC =
(

(∃W V
i,τ ⊆ V)(∃WE

i,σ ⊂ E)
)

i=1,...,r
τ∈{τ1,...,τt}
σ∈{σ1,...,σs}

φRoot ∧ φTSG ∧ φLeaf

Remark 3.25. In the following, we assume for simplicity that all bags
in (T,X) have vertex witnesses. Note that our predicates can easily be
modified for tree decomposition with both vertex and edge witnesses
by the obvious additions/replacements.

We now give the details for φLeaf . We modify the tree decompo-
sition (T,X) to ensure that all leaf bags have size one, such that it is
still existentially MSOL-definable. Suppose t ∈ N is a leaf node with
|Xt| > 1 of type τ∗ for a vertex v. We introduce another vertex bag
type τLeaf , such that for each bag Xt as described above, it contains
the vertex w ∈ Xt with lowest numbered color according to a (k+ 1)-
coloring order of (T,X) (see Definition 3.6, Proposition 3.7). Let t′ be
this newly introduced node in N . We make v the witness of Xt′ and
add the edge (t, t′) to F . We introduce another edge bag type σLeaf
with the same interpretation. It is easy to see that there are MSOL-
predicates encoding the newly introduced bags and edges in (T,X).
Since now, all leaf bags have size one, we know that there is a unique
equivalence class, say CL, which contains the terminal subgraphs of
all leaf bags of (T,X). We encode φLeaf as follows.

φLeaf = ∀v∀S
(

Leaf(S)→
(∧

τ

BagVτ (v, S)→ v ∈W V
L,τ

))

18

Note that a predicate Leaf(S), which is true if and only if a vertex set
S ⊆ V is a leaf bag of an MSOL-definable tree decomposition can be
easily encoded using the Parent-relation.

For the predicate φRoot, we observe the following. Let CP1 , . . . , CPa
denote the P -equivalence classes of ∼P≤k+1

(and recall that by Remark
3.11, their indices are known). One simply checks, whether the witness
vr (er) of the root bag, say of type τ∗ (σ∗), is contained in a set W V

Pi,τ∗

(WE
Pi,σ∗

) for 1 ≤ i ≤ a.

φRoot = ∀v∀S
(

Root(S)→
(∧

τ

BagVτ (v, S)→
∨
Pi

v ∈W V
Pi,τ

))
On a high level, encoding the predicate φTSG requires the following.
Let t ∈ N be a node of (T,X).

(i) Check whether t is a branch or an intermediate node.

(ii) If t is an intermediate node, identify its child node t′, the type and
witness of Xt′ . Derive the equivalence class of Gt′ by checking
membership of the witness of Xt′ in one of the sets W ··,·, say
Gt′ ∈ Ci∗ . Then encode the fact that Gt ∈ CfI(Xt,i∗).

(iii) If t is a branch node, identify its children t1, . . . , td (where d ≤ c)
and identify the equivalence classes of Gti , where 1 ≤ i ≤ d in the
same way as in (ii). Suppose Gt1 ∈ Cj1 , . . . , Gtd ∈ Cjd . Encode
the fact that Gt ∈ Cfdeg dB (j1,...,jd,Xt)

.

We first encode (i), i.e. we check whether a bag is an intermediate or a
branch node. Note that the predicates Int(S) and Branchd(S), which
are true if and only if the set S is an intermediate or degree d branch
bag, respectively, can again be encoded easily.

φTSG ⇔ ∀S
(

Int(S)→
∧
τ,τ ′

φτ,τ
′

Int (S)

∧
∧

d=1,...,c

Branchd(S)→
∧
τ

τ1,...,τd

φτ,τ1,...,τdBranchd
(S)
)

Note that the predicates φτ,τ
′

Int and φτ,τ1,...,τdBranchd
are encoded for any com-

bination of bag types. As mentioned above (see Remark 3.25), we
restrict ourselves to vertex bag types but we would like to note that
including edge bag types can be done in a straightforward way. We
now encode (ii).

φτ,τ
′

Int (S)⇔ ∀v∀v′∀S′
(

(Bagτ (v, S) ∧Bagτ ′(v
′, S′) ∧Parent(S, S′))

→
∧

i=1,...,r

v′ ∈W V
i,τ → v ∈W V

fI(S,i)

)

19

For (iii), we define the following.

φτ,τ1,...,τdBranchd
(S)⇔ ∀v∀v1 · · · ∀vd∀S1 · · · ∀Sd

(
(Bagτ (v, S) ∧Bagτ1(v1, S1)

∧ · · · ∧ Bagτd(vd, Sd) ∧Parent(S, S1) ∧ · · · ∧Parent(S, Sd))

→
∧

i1,...,id

(
(v1 ∈W V

i1,τ1 ∧ · · · ∧ vd ∈W V
id,τd

)→ v ∈W V
fdeg dB (i1,...,id,S),τ

))
This completes the proof of Lemma 3.24.

We now turn to the case of ordered MSOL-definable tree decompo-
sitions, i.e. we additionally have a predicate nb<(S, S′), which is true
if and only if S = Xt and S′ = Xt′ for some t, t′ ∈ N and t′ is a right
sibling of t in T .

Lemma 3.26 (cf. Lemma 2.12(ii)). Let C denote a graph class, whose
members admit existentially MSOL-definable width-k ordered tree de-
compositions. Then, finite index implies MSOL-definability for all
members in C.

Proof. By the proof of Lemma 3.24, what remains to show is how to
define the equivalence class membership of partial terminal subgraphs
w.r.t. branch bags in a tree decomposition. We use the same notation
as in its proof and when showing details of the predicates assume again
in the following that all witnesses of the bags in (T,X) are vertices
(see Remark 3.25). Let t, t′ ∈ N be two nodes in (T,X), such that
t is a branch node and the parent of t′, i.e. (t, t′) ∈ F . Let Xt be of
type τ with witness v ∈ V and Xt′ of type τ ′ with witness v′ ∈ V

(for τ, τ ′ ∈ {τ1, . . . , τt}). We guess two sets W
V |P
i,τ and W

V |C
i,τ ′ (the

parent and child set) and let v ∈ W
V |P
i,τ and v′ ∈ V

V |C
i,τ ′ if and only

if Gt|t′ ∈ Ci. We guess edge set equivalents with the same meaning.
Hence, the quantification part (Q) of ΦEQC as in Equation 2 becomes
the following.

(Q) =
(
∃W V

i,τ∃WE
i,σ∃W V |P

i,τ ∃W
V |C
i,τ ∃W

E|P
i,σ W

E|C
i,σ

)
i=1,...,r

τ∈{τ1,...,τt}
σ∈{σ1,...,σs}

Let t ∈ N be a branch node with child node t′ ∈ N . Since we deter-
mine the equivalence class membership of Gt by the equivalence classes
of the partial terminal subgraphs w.r.t. the child nodes of t from left
to right (according to the order nb<), we have to distinguish three
cases and use the functions fI and f<B , whose existence we proved in
Corollaries 3.15 and 3.21, respectively.7

7Let t, t′ ∈ N with (t, t′) ∈ F . We denote by r(t) the leftmost right sibling of t′.

20

(i) If t′ is the leftmost child of t and Gt′ ∈ Ci, we determine the
equivalence class of Gt|r(t′) by fI(Xt, i).

8

(ii) If t′ is neither the leftmost nor the rightmost child node of t,
Gt|t′ ∈ Ci and Gt′ ∈ Cj , then we determine the equivalence class
of Gt|r(t′) by f<B (i, j).

(iii) If t′ is the rightmost child of t, and Gt|t′ ∈ Ci and Gt′ ∈ Cj , then
we determine the equivalence class of Gt by f<B (i, j).

The details of the predicate φBranch are as follows. First, we distin-
guish the three different cases.9

φBranch(S)⇔ ∀v∀v′∀v′′∀S′∀S′′
∧

τ,τ ′,τ ′′

((
Parent(S, S′) ∧ rS′(S′′)

∧ Bagτ (v, S) ∧Bagτ ′(v
′, S′) ∧Bagτ ′′(v

′′, S′′)
)

→
(

Left(S′)→ φ
L|τ,τ ′,τ ′′
Branch (v, v′, v′′)

∧ Middle(S′)→ φ
M |τ,τ ′,τ ′′
Branch (v, v′, v′′)

∧ Right(S′′)→ φ
R|τ,τ ′,τ ′′
Branch (v, v′, v′′)

))
Note that the predicates Left(S), Middle(S) and Right(S) can easily
be encoded using the ordering nb<.

We now encode Case (i).

φ
L|τ,τ ′,τ ′′
Branch (v, v′, v′′)⇔

∧
i=1,...,r

(
v′ ∈W V

i,τ ′ →
(
v ∈W V |P

fI(S,i),τ

∧ v′′ ∈W V |C
fI(S,i),τ ′′

))
We now turn to Case (ii), i.e. the child node of t is neither the leftmost
nor the rightmost one, and encode the corresponding predicate as
follows.

φ
M |τ,τ ′,τ ′′
Branch (v, v′, v′′)⇔

∧
i,j

((
v ∈W V |P

i,τ ∧ v′ ∈W
V |C
i,τ ′ ∧ v′ ∈W V

j,τ

)
→
(
v ∈W V |P

f<B (i,j),τ
∧ v′′ ∈W V |C

f<B (i,j),τ ′′

))
Lastly, we show how to derive the equivalence class of Gt using infor-
mation about the equivalence class of the partial terminal subgraph

8It is easy to see that Gt|r(t′) would be equal to the terminal subgraph of t, if t′ was
the only child node of t.

9Note that here, rS(S′) is a predicate which is true if and only if S′ is the leftmost
right sibling of S, which can be encoded using Parent and nb< in a straightforward way.

21

of the rightmost child of t, which is described in Case (iii).

φ
R|τ,τ ′,τ ′′
Branch (v, v′, v′′)⇔

∧
i,j

((
v ∈W V |P

i,τ ∧ v′′ ∈W
V |C
i,τ ′′ ∧ v′′ ∈W V

j,τ ′′

)
→ v ∈W V

f<B (i,j),τ

)
This completes the proof of Lemma 3.26.

3.3 Results Regarding CMSOL-Definability

In the previous section we saw that finite index implies definability in
MSOL for graph classes that admit bounded degree or ordered exis-
tentially MSOL-definable width-k tree decompositions. In our proofs,
we did not have to make use of the counting predicate of CMSOL.
We will now prove that finite index implies CMSOL-definability for
graph classes that admit (unordered and unbounded degree) existen-
tially MSOL-definable width-k tree decomposition. We do so by show-
ing how to use the counting trick to encode a constant-length predi-
cate which defines the equivalence class membership of an unordered
branch node of unbounded degree.

Before we give the details of the proof, we give a high-level overview
of its idea. Let t ∈ N be a branch node in a tree decomposition
(T = (N,F), X) of a graph G = (V,E). We group all child nodes of t
according to which equivalence class their terminal subgraphs are con-
tained in. We then show that it is sufficient to count the size of each
such group modulo r! to determine the equivalence class of the ter-
minal graph formed by taking the union of all terminal graphs in one
group with terminal set Xt (the partial terminal group subgraph, see
below). Once we know the equivalence classes these terminal graphs
are contained in, we again can use a function with r arguments (one
for each group) to determine the equivalence class of Gt. Hence, the
number of variables and subsequently the length of our predicates
stays constant.

We begin by defining terminology related to groups of a branch
node.

Definition 3.27 (Group of an Equivalence Class, Partial Terminal
Group Subgraph). Let Xt, t ∈ N be a branch bag with an unbounded
number of children.

(i) A set of nodes Nt|Gi ⊂ N is called the group i w.r.t. t, if it con-
tains all child nodes of t, whose terminal subgraph is contained
in equivalence class i, i.e.

t′ ∈ Nt|Gi ⇔ (t, t′) ∈ F ∧Gt′ ∈ Ci.

22

(ii) The partial terminal group subgraph of t w.r.t. Ci, denoted by
Gt|Gi is the terminal graph constructed as follows. Let Nt|Gi ⊂
N denote the group i w.r.t. t and for t′ ∈ Nt|Gi , denote by
Gt′ = (Vt′ , Et′ , Xt′) the terminal subgraph of t′. Furthermore,
let Vt|Gi = Xt ∪

⋃
t′∈Nt|Gi

Vt′ . Then,

Gt|Gi = (Vt|Gi , EG[Vt|Gi], Xt)

with Xt in an arbitrary but fixed ordering.

Proposition 3.28. There is a recursive function f cG : P≤k+1(V)×N→
{ε} ∪ N of depth c ≤ r!,10 such that for any t ∈ N and group i:
Gt|Gi ∈ CfG(Xt,i).

Proof. Let t1, t2, . . . , tm ∈ Nt|Gi denote the nodes contained in group
i w.r.t. t. Let i ∈ Nm. By Corollary 3.23, we know that there is a
function g : P≤k+1(V)× N|r × N|r → N|r, such that for any i, j ∈ Nm
we have that ((Gti ⊕T Xt)⊕B (Gtj ⊕T Xt)) ∈ Cg(Xt,i,j). Furthermore,
by Corollary 3.15 we know that there is a function to compute j, such
that (Gti ⊕T Xt) ∈ Cj . We define a recursive function fnG as follows:

f0G(Xt, j) = ε,

f1G(Xt, j) = g(Xt, j, j) and

fnG (Xt, j) = g(Xt, f
n−1
G (Xt, j), j) ∀n ∈ N, n > 1.

It is easy to see that the function fnG becomes periodic. There are only
r elements in the image of g and the second argument, g is invoked
with, is always j. The length of this period depends on ∼P and the
equivalence class i but we can always bound it by r! (as the product
of all period lengths over r elements). Hence, we know that for all
n ∈ N we have

fnG (Xt, j) = fn mod r!
G (Xt, j).

We let f cG(Xt, i) = f
|Nt|Gi | mod r!

G (Xt, j) and our claim follows from the
observation that Gt|Gi ∈ fmG (Xt, j).

Corollary 3.29. There is a function fB : P≤k+1(V)× ({ε}∪N|r)r →
N, such that for any branch node t ∈ N , Gt ∈ fB(Xt, i1, . . . , ir), if for
all a = 1, . . . , r, either ia = ε or we know that Gt|Gia ∈ Cia.

Proof. We view each partial terminal group subgraph Gt|Gia as a ter-
minal subgraph of a single child node tia of t with Xtia = Xt and
apply the same argument as in Corollary 3.23.

10Note that the ε in the image of f cG is meant to represent the case when a group i is
empty, see the proof of Lemma 3.30.

23

By Proposition 3.28 and Corollary 3.29 we know that we can de-
rive the equivalence class membership of the terminal subgraph of an
unordered branch node of unbounded degree by functions which use
the counting predicate. The main step in the proof of the following
lemma is to define the use of this function in CMSOL.

Lemma 3.30 (cf. Lemma 2.12(iii)). Let C denote a graph class
which admits existentially MSOL-definable width-k tree decomposi-
tions. Then, finite index implies CMSOL-definability for all members
in C.

Proof. By the proofs of Lemmas 3.24 and 3.26, the only thing which is
left to show is how to define the equivalence class membership of a ter-
minal subgraph w.r.t. and unordered branch node t ∈ N of unbounded
degree in CMSOL.

To represent the equivalence class membership of a partial terminal
group subgraph Gt|Gi we guess sets for each type τ ∈ {τ1, . . . , τt}
(σ ∈ {σ1, . . . , σs}) and a pair of indices i = 1, . . . , r and j = ε, 1, . . . , r
(where ε represents the case that group i is empty) in the following

way. We let v ∈ W V |Gi
j,τ (e ∈ WE|Gi

j,σ) if and only if Gt|Gi ∈ Cj , where
v (e) is the witness of the bag Xt of type τ (σ). Hence, we add the
following sets to the quantification part (Q) of ΦEQC as in Equation
2, where i, j, τ and σ take the previously discussed values.(

∃W V |Gi
j,τ ∃W

E|Gi
j,σ

)
i,j,τ,σ

We now define a predicate which checks whether a group i w.r.t. t
has size c mod r!. Since we do not know whether the witnesses of the
child bags are vertices or edges in G and since t might have more than
one child, whose witness is a vertex v (but the bag is of a different
type), it is not sufficient to count the number of witnesses. Instead,
we define r(t+ s) sets which contain the witnesses of a group i and a
type τ (σ).

V ′ = Y V
i,τ (S)⇔ v ∈ V ′ ↔ ∃S′(Parent(S, S′) ∧Bagτ (v, S′)

∧ v ∈W V
i,τ)

E′ = Y E
i,σ(S)⇔ e ∈ E′ ↔ ∃S′(Parent(S, S′) ∧Bagσ(e, S′)

∧ e ∈WE
i,σ)

Our predicate ’|Nt|Gi | mod r! = c’ verifies whether the sum of the sizes
of all these sets modulo r! is equal to c. Let S = Xt for some branch

24

node t ∈ N and in the following we denote Y ··,·(S) by Y ··,·.

|Nt|Gi | mod r! = c⇔
(
∃Y V

i,τ∃Y E
i,σ

)
τ∈{τ1,...,τt}
σ∈{σ1,...,σs}∨

(
∑
τ cτ+

∑
σ cσ) mod r!=c∑

τ cτ+
∑
σ cσ≤r!(r+s)

(
|Y V
i,τ1 | mod r! = cτ1 ∧ · · · ∧ |Y V

i,τt | mod r! = cτt

∧ |Y E
i,σ1 | mod r! = cσ1 ∧ · · · ∧ |Y E

i,σs | mod r! = cσs

)
We now turn to defining the equivalence class membership of partial
terminal group subgraphs using the function f cG (see Proposition 3.28).
Again, we assume that the witness of our branch node Xt = S is a
vertex v (and the bag is of type τ) and note that the edge witness
cases can be defined accordingly (cf. Remark 3.25).∧

c=0,...,r!−1
|Nt|Gi | mod r! = c→ v ∈W V |Gi

fcG(S,fI(S,i)),τ

To derive the equivalence class of Gt, we use the function fB, defined
in Corollary 3.29. The rest is a straightforward case analysis.∧

i1=ε,1,...,r···
ir=ε,1,...,r

((
v ∈W V |G1

i1,τ
∧ · · · ∧ v ∈W V |Gr

ir,τ

)
→ v ∈W V

fB(S,i1,...,ir),τ

)

This completes the proof of Lemma 3.30.

By the results presented in this section we have now proved Lemma
2.12.

4 k-outerplanar Graphs

Definition 4.1 ((Planar) Embedding). A drawing of a graph in the
plane is called an embedding. If no pair of edges in this drawing crosses,
then it is called planar.

Definition 4.2 (k-outerplanar Graph). Let G = (V,E) be a graph.
G is called a planar graph, if there exists a planar embedding of G.
An embedding of a graph G is 1-outerplanar, if it is planar, and all
vertices lie on the exterior face. For k ≥ 2, an embedding of a graph
G is k-outerplanar, if it is planar, and when all vertices on the outer
face are deleted, then one obtains a (k− 1)-outerplanar embedding of
the resulting graph. If G admits a k-outerplanar embedding, then it
is called a k-outerplanar graph.

25

In this section we give the proof of our first main result, which
states that every recognizable graph property for k-outerplanar graphs
is definable in counting monadic second order logic. By Lemma 2.12
(page 9), what is left to show is how to construct an existentially
MSOL-definable bounded width tree decomposition for each k-outer-
planar graph. Hence, we prove the following.

Lemma 4.3. (i) Each 3-connected k-outerplanar graph admits an
existentially MSOL-definable width-3k tree decomposition of de-
gree at most 3 with O(1) parameters.

(ii) Each k-outerplanar graph admits an existentially MSOL-definable
tree decomposition of width at most 3k+3 with O(1) parameters.

Note that by Lemma 4.3(i) we have an even stronger result for
3-connected k-outerplanar graphs, since by Lemma 2.12(i), we do not
require the counting predicates for this graph class.

We now give basic definitions and review the well-known upper
bound on the treewidth of k-outerplanar graphs being 3k−1 [6], which
we will use in the proofs throughout this section.

Definition 4.4 (Fundamental Cycle). Let G = (V,E) be a graph
with maximal spanning forest T = (V, F). Given an edge e = {v, w},
e ∈ E \ F , its fundamental cycle is the cycle which is formed by the
unique path from v to w in F together with the edge e.

Proposition 4.5. There are predicates to verify whether the funda-
mental cycle of an edge e ∈ E \ F contains a vertex v ∈ V , denoted
by FundCyc(e, v), or an edge f ∈ F , denoted by FundCyc(e, f), with
one parameter, the edge set F .

Proof. This can easily be done using the Cycle(V,E)-predicate as
shown in [10, Theorem 4].

Definition 4.6 (Vertex and Edge Remember Number). Let G =
(V,E) be a graph with maximal spanning forest T = (V, F). The ver-
tex remember number of G (with respect to T), denoted by vr(G,T),
is the maximum number over all vertices v ∈ V of fundamental cycles
(in G given T) that use v. Analogously, we define the edge remember
number, denoted by er(G,T).

Bodlaender showed that one can construct a bounded width tree
decomposition of a graph based on a maximal spanning forest with
bounded vertex and edge remember number.

Theorem 4.7 (Theorem 71 in [6]). Let G be a graph and TG all its
maximal spanning forests. Then,

tw(G) ≤ min
T∈TG

max{vr(G,T), er(G,T) + 1}.

26

· · ·

v

w1

w2

w3

w4wd−2

wd−1

wd

f1
f2

f3fd−2

fd−1

fd

(a) before expansion

v1 v2 vd−2vd−1

f1

f2

f3
fd

fd−1fd−2

· · ·
vd−2

w1w2

w3 w4 wd−2 wd−1 wd

(b) after expansion

Figure 4: Expanding a vertex v, where f1 is a layer with lowest layer number.

The idea of the proof of Theorem 4.7 is to create a bag for each
vertex and edge in the spanning tree, containing the vertex itself (or
the two endpoints of the edge, respectively) and one endpoint of each
edge, whose fundamental cycle uses the corresponding vertex/edge.
The tree structure of the decomposition is inherited by the structure
of the spanning tree.

In a k-outerplanar graph G one can split the vertices of degree
d > 3 into a path of d− 2 vertices of degree three without increasing
the outerplanarity index of G (the so-called vertex expansion step, see
Figure 4). In this expanded graph G′ there exists a spanning tree of
vertex remember number at most 3k − 1 and edge remember number
at most 2k [6, Lemmas 81 and 82]. Applying Theorem 4.7, this yields
a tree decomposition of width at most 3k − 1 for G′ and by simple
replacements one finds a tree decomposition for G of the same width.
A constructive version of finding such a spanning tree was given by
Katsikarelis [26]. The expansion step is the major challenge in defining
a tree decomposition of a k-outerplanar graph in monadic second order
logic, since we cannot use these newly created vertices as variables.
We find an implicit representation of this step in Section 4.1. We show
how to construct an existentially MSOL-definable tree decomposition
of a 3-connected k-outerplanar graph in Section 4.2 and for the general
case of k-outerplanar graphs in Section 4.3.

4.1 An Implicit Representation of the Vertex
Expansion Step

As outlined before, the central step in constructing a width-(3k − 1)
tree decomposition of a k-outerplanar graph G is splitting the vertices
of degree d > 3 into a path of d − 2 vertices of degree 3 without
increasing the outerplanarity index of the graph G (see above). Since
we cannot mimic this expansion step in MSOL directly, we have to
find another characterization of this method, the first step of which
is to partition the vertices of a k-outerplanar graph into its stripping

27

layers.

Definition 4.8 (Stripping Layer of a k-outerplanar Graph). Let G be
a k-outerplanar graph. Removing the vertices on the outer face of an
embedding of G is called a stripping step. When applied repeatedly,
the set of vertices being removed in the i-th stripping step is called
the i-th stripping layer of G, where 1 ≤ i ≤ k.

Lemma 4.9. Let G = (V,E) be a k-outerplanar graph. The partition
of V into the stripping layers of G is existentially MSOL-definable
with k parameters.

Proof. We first introduce another characterization of stripping layers
of k-outerplanar graphs, which we can use later to define our predi-
cates.

Proposition 4.10. Let G = (V,E) be a k-outerplanar graph. A par-
tition V1, . . . , Vk of V represents its stripping layers, if and only if:

(i) G[Vi] is an outerplanar graph for all i = 1, . . . , k.

(ii) For each vertex v ∈ Vi, all its adjacent vertices are contained in
either Vi−1, Vi or Vi+1.

Proof. (⇒) Since in each step we remove the vertices on the outer
face of the graph, it is easy to see that (i) holds. For (ii), suppose
not. Wlog. assume that v ∈ Vi has a neighbor w in Vi+2. Before
stripping step i, v lies on the outer face. Now, for w to not lie on the
outer face after stripping step i, there needs to be a cycle crossing the
edge {v, w}, hence the embedding of G is not planar and we have a
contradiction.

(⇐) We use induction on k. The case k = 1 is trivial. Now assume
that G = (V,E) is an `-outerplanar graph with a partition of V into
V1, . . . , V` such that our claim holds. Let V`+1 be a set of vertices
with neighbors only in V`+1 and V`. We denote the corresponding
edge set by E`+1. Clearly, placing the vertices in V` on the outer
face results in an (` + 1)-outerplanar embedding of the graph G′ =
(V ∪ V`+1, E ∪ E`+1). However, some vertices in V` might still lie on
the outer face. Denote this vertex set by V O

` . We let V ′`+1 = V`+1∪V O
`

and V ′` = V` \ V O
` . Then, the partition V1, . . . , V`−1, V ′` , V

′
`+1 satisfies

our claim and the result follows (reversing the indices of the sets in
the partition).

It is well known that a graph is outerplanar if it does not contain
K4, the clique of four vertices, and K2,3, the complete bipartite graph
on two and three vertices, as a minor (cf. [20, p. 112], [31]). Borie

28

et al. showed that the fixed minor relation is MSOL-definable [10,
Theorem 4], so in our definition we use the predicates MinorK4 and
MinorK2,3 for stating the respective minor containment, i.e.:

Outerpl(V ′, E′)⇔ ¬(MinorK4(V ′, E′) ∨MinorK2,3(V ′, E′))

We can now encode the partition of V according to Proposition 4.10.11

∃V1 · · ·Vk
(

PartV (V, V1, . . . , Vk) ∧Outerpl(V1, IncE(V1))

∧ · · · ∧Outerpl(Vk, IncE(Vk))

∧ ∀v
(∧
i=1,...,k

v ∈ Vi → ∀e∀w(Edge(e, v, w)

→ (w ∈ Vi−1 ∨ w ∈ Vi ∨ w ∈ Vi+1))
))

This completes the proof of Lemma 4.9.

Definition 4.11 (Layer Number). Let G = (V,E) be a planar graph.
The layer number of a face is defined in the following way. The outer
face gets layer number 0. Then, for each other face, we let the layer
number be one higher than the minimum layer number of all its ad-
jacent faces.12

The expansion step does not preserve facial adjacency, so in order
to not increase the outerplanarity index of the graph, one makes sure
that all faces are adjacent to a face with lowest layer number. (We
illustrate the expansion step of a vertex in Figure 4.) Following the
ideas of the proofs given in [6, Section 13], we define another type
of remember number to implicitly represent the expansion step for
creating a tree decomposition of a k-outerplanar graph.

Definition 4.12 (Face Remember Number). Let G = (V,E) be a
planar graph with a given embedding E and T = (V, F) a maximal
spanning forest of G. The face remember number of G w.r.t. T , de-
noted by fr(G,T) is the maximum number of fundamental cycles C
of G given T , such that bdE(f)∩E(C) 6= ∅, where bdE(f) denotes the
boundary edges of a face f , over all faces f in E , excluding the outer
face.

For an illustration of face remember numbers, see Figure 5. Now,
consider the vertex v1 in Figure 4b and let e be an edge whose funda-
mental cycle Ce uses v1 in some spanning tree of G′. We observe that

11For an encoding of PartV (V, V1, . . . , Vk), which is true if and only if V1, . . . , Vk is a
partition of the vertex set V , see e.g. [10, Theorem 4].

12Unless stated otherwise, we call to faces adjacent, if they share an incident vertex.

29

v

f

e1

e2

e3
w

x

Figure 5: A spanning tree of a planar graph with some additional edges (dashed
lines). The remember number of the face f , bounded by bd(f) = {v, w, x}, is 3 in
this graph, since the fundamental cycles of the edges e1, e2 and e3 intersect with
bdE(f).

Ce intersects with one of the face boundaries of f1, f2 or f3. Since v1
is a vertex in the expanded graph, we know that in each tree decom-
position based on a spanning tree of G′ there will be a bag containing
one endpoint of each edge, whose fundamental cycle intersects with
the face boundary of f1, f2 or f3. Using this observation, we can
also show that one can find a tree decomposition of a planar graph,
whose width is bounded by the face remember number of a maximal
spanning forest, without explicitly expanding vertices.

Lemma 4.13. Let G = (V,E) be a planar graph with maximal span-
ning forest T = (V, F). The treewidth of G is at most max{er(G,T)+
1, 3 · fr(G,T)}.

Proof. Recall the vertex expansion step and see Figure 4 for an il-
lustration. In the following, we will construct a tree decomposition
(T,X) of the unexpanded graph G, imitating the ideas of the expan-
sion step. That is, for each vertex v ∈ V we create a path in (T,X) in
the following way. First, we add v to each of these bags. Let f1 denote
a face with lowest layer number of all faces incident to v and let all
face indices be as depicted in Figure 4a.13 Let C(fi) denote the set,
containing one endpoint of each edge e ∈ E \ F , whose fundamental
cycle Ce intersects with the edge set of the boundary of the face fi, i.e.
bdE(fi) ∩ E(Ce) 6= ∅. Let deg(v) = d. We create bags containing the
vertices in C(f1)∪C(fi)∪C(fi+1), where i = 2, . . . , d−1. (For an edge
ei incident to v, fi and fi+1 are its incident faces.) We make two bags
adjacent, if they share two sets C(fi) and C(fj) and belong to the
same vertex. Note that this way we precisely imitate the construction
of bags for the artificially created vertices during the expansion step.

13Note that by by Proposition 4.22, this number will be either i or i− 1, if v ∈ Vi.

30

· · ·{v} ∪ C(f1) ∪ C(f2) ∪ C(f3) {v} ∪ C(f1) ∪ C(f3) ∪ C(f4) {v} ∪ C(f1) ∪ C(fd−1) ∪ C(fd)

{v, w2} ∪ C(f1) ∪ C(f2)

{v, w2}

{v, w3} ∪ C(f2) ∪ C(f3)

{v, w3}

{v, wd} ∪ C(fd−1) ∪ C(fd)

{v, wd}

{v, w1} ∪ C(f1) ∪ C(fd)

{v, w1}

{v, w4} ∪ C(f3) ∪ C(f4)

{v, w4}

Figure 6: A part of a tree decomposition corresponding to a vertex, as used in
the proof of Lemma 4.13 (assuming, for explanatory purposes, that all incident
edges of v are contained in the maximal spanning forest of the graph).

Furthermore, for each edge ei ∈ F , we create a bag containing
both its endpoints and one endpoint of each edge efc ∈ E \ F , whose
fundamental cycle uses e. We observe that the set C(fi) ∪ C(fj)
contains precisely one vertex for each such edge efc, where fi and fj
are the two faces incident to ei. We then make this bag adjacent to
each bag created in the step before, which corresponds to both C(fi)
and C(fj) and one more set C(f ′). For each incident vertex there will
always be precisely one such bag and hence, each edge bag will have
two neighbors in the tree decomposition (one for each endpoint). For
an illustration of the constructed part of the tree decomposition, see
Figure 6.

One can verify that this construction yields a tree decomposition
of G, and since we know that by definition |C(f)| ≤ fr(G,T) for all
faces f (except the outer face) we know that its width is bounded by
max{er(G,T) + 1, 3 · fr(G,T)}.

To apply this result to a k-outerplanar graph G, we show that we
can find a maximal spanning forest of G of bounded edge and face
remember number.

Lemma 4.14. Let G = (V,E) be a k-outerplanar graph. There exists
a maximal spanning forest T = (V, F) of G with er(G,T) ≤ 2k and
fr(G,T) ≤ k.

Proof. The proof can be done analogously to the proof of Lemma 81
in [6].

4.2 3-Connected k-outerplanar Graphs

We now show that the construction of the tree decomposition given in
the proofs of Lemmas 4.13 and 4.14 is existentially MSOL-definable

31

for 3-connected k-outerplanar graphs. In Particular we will make use
of the fact that the face boundaries of a 3-connected planar graph can
be defined by a predicate in monadic second order logic. We will then
define an ordering of all incident edges of a vertex to create a path in
the tree decomposition as described in the proof of Lemma 4.13.

A classic result by Whitney states that every 3-connected planar
graph has a unique embedding [36] (up to the choice of the outer face).
Reconstructing this proof, Diestel has shown that the face boundaries
of this embedding can be characterized in strictly combinatorial terms.

Proposition 4.15 (Proposition 4.2.7 in [20]). The face boundaries
in a 3-connected planar graph are precisely its non-separating induced
cycles.

We immediately have the following.

Proposition 4.16. The face boundaries of a 3-connected planar graph
are MSOL-definable.

Proof. We use Proposition 4.15 and define a predicate, which is true
if and only if a vertex set V ′ is the face boundary of a 3-connected
planar graph in the following straightforward way.14

FaceBd3(V
′)⇔ Cycle(V ′, IncE(V ′)) ∧ Conn(V \ V ′, E \ IncE(V ′))

We can use this predicate to define this notion in terms of edge sets
as well.

FaceBd3(E
′)⇔ FaceBd3(IncV(E′))

Using these observations, we can define predicates encoding an
ordering on the incident edges of each vertex, which we will later use
to induce orientations on the edges of the resulting MSOL-definable
tree decomposition. We first need another definition.

Definition 4.17 (Face-Adjacency of Edges). Let G = (V,E) be a
planar graph and v ∈ V . We call two incident edges e, f ∈ E of v
face-adjacent, if there is a face-boundary containing both e and f .

Lemma 4.18. Let G = (V,E) be a 3-connected k-outerplanar graph,
v ∈ V with deg(v) > 3 and eA an incident edge of v, called its an-
chor. There exists an ordering nb<(e, f), which mimics a clockwise
(or counter-clockwise) traversal (in the unique embedding of G) on
all incident edges of v, starting at eA, which is existentially MSOL-
definable with two parameters eA and e′A.

32

eAe′A

(a) A vertex v with
the anchor edge eA
and edge e′A.

eAe′A

ei

ej

(b) The path from
eA to ei, according to
face adjacency.

eAe′A

ei

ej

(c) The path from
eA to ej , according to
face adjacency.

Figure 7: A vertex v with two edges ei and ej , such that nb<(ei, ej) as described
in the proof of Lemma 4.18, defining a clockwise ordering on the incident edges
of v. Note that paths in the other direction starting at eA do not exists, since e′A
cannot be included in such a path.

Proof. We first observe an important property of 2-connected planar
graphs, which we will use to define the ordering later in the proof.

Proposition 4.19. Let G = (V,E) be a 2-connected planar graph and
v ∈ V . Then, all faces incident to v are pairwise different.

Proof. Suppose not. Then {v} is a separator of G.

Let e′A be another incident edge of v, which is also face-adjacent
to eA. (Note that there are exactly two such edges in G, the choice of
which decides whether the ordering is clockwise or counter-clockwise.)
For any pair of incident edges of v, ei and ej , we let nb<(ei, ej), if
and only if we can find sets of edges Ei and Ej with the following
properties. Let Inc(v) denote the set of incident edges of v.

(i) For ` = i, j, the set E` consists of the edge e`, eA and a subset
of Inc(v) \ {e′A} and contains precisely all pairs of face-adjacent
edges that, according to face-adjacency, form a path from eA to
e`.

(ii) Ei ⊂ Ej .
For an illustration of the meaning of these edge sets see Figure 7. We
now turn to defining this ordering in MSOL. By Proposition 4.19, we
know that all faces adjacent to v are pairwise different and hence, we
can use Proposition 4.16 to define paths in terms of face-adjacency
in the unique embedding of G between two incident edges of v. We

14Note that the predicate Conn(V ′, E′) which is true if and only if G′ = (V ′, E′) is
connected can easily be encoded, see e.g. [10, Theorem 4].

33

encode our predicates as follows. For face-adjacency of two edges, we
use Proposition 4.16.

AdjF (e, f)⇔ ∃v(Inc(v, e) ∧ Inc(v, f))

∧ (∃E′ ⊆ E)(FaceBd3(E
′) ∧ e ∈ E′ ∧ f ∈ E′)

Next, we define a predicate to check whether a given edge set E′ is a
face-adjacency path between to incident edges of a vertex. Intuitively
speaking, it encodes the following.

(i) e ∈ E′ and f ∈ E′.
(ii) E′ is a subset of the incident edges of v and e′A /∈ E′ (see above).

(iii) For each e′ ∈ E′, one of the following holds.

(a) e′ = e or e′ = f and e′ has precisely one neighbor in E′.
(b) Otherwise, e′ has precisely two neighbors in E′.

PathF (E′, e, f)⇔ (∃E′′ ⊆ (IncE(v) \ e′A))(E′ = E′′ ∪ {e, f})
∧ e1 ∈ E′ ↔

((
(e1 = e ∨ e1 = f) ∧ (∃e2 ∈ E′)(AdjF (e1, e2)

∧ (∀e3 ∈ E′)((¬e2 = e3)→ ¬AdjF (e1, e3)))
)

∨
(
¬ (e1 = e ∨ e1 = f) ∧ (∃e2 ∈ E′)(∃e3 ∈ E′)(

AdjF (e1, e2) ∧AdjF (e1, e3) ∧ (∀e4 ∈ E′)

((¬(e4 = e2 ∨ e4 = e3))→ ¬AdjF (e1, e4))
)))

We are now ready to define the ordering nb<(e, f).

nb<(e, f)⇔ ∃Ee∃Ef (PathF (Ee, eA, e) ∧ PathF (Ef , eA, f) ∧ Ee ⊂ Ef)

This completes the proof of Lemma 4.18.

Note that one can lead an alternative proof of Lemma 4.18, using
the notion of rotation systems, introduced in [18]. Furthermore one
can see that the relation nb<(e, f) is existentially MSOL-definable for
a graph G (as opposed to a single vertex, as stated in the Lemma) by
replacing the parameters in the formulation of Lemma 4.18 with the
corresponding edge set equivalents.

Defining the Tree Decomposition

Lemma 4.20 (cf. Lemma 4.3(i)). Let G = (V,E) be a 3-connected
k-outerplanar graph. G admits an existentially MSOL-definable tree
decomposition of width at most 3k and maximum degree 3 with 4k+ 5
parameters.

34

Proof. We mimic the construction given in the proof of Lemma 4.13
and use the same notation. We first prove the definability of the
spanning tree, upon which the construction of our tree decomposition
is based.

Proposition 4.21. Let G = (V,E) be a 3-connected k-outerplanar
graph. There exists a spanning tree T = (V, F) of G with er ≤ 2k
and fr(G,T) ≤ k, which is existentially MSOL-definable with one
parameter, the edge set F of T .

Proof. By Lemma 4.14 we know that such a spanning tree T exists.
We encode two predicates, which given the edge set F check whether
er(G,T) ≤ µ and fr(G,T) ≤ λ for any pair of constants µ, λ.15

er(V,E, F) ≤ µ⇔ (∀f ∈ F)(∀e1 ∈ E \ F) · · · (∀eµ+1 ∈ E \ F)((∧
i=1,...,µ+1

FundCyc(ei, f)
)
→

∨
1≤i,j≤µ+1

ei = ej

)
Similarly, we define fr(G,T) ≤ λ. This predicate checks for each
combination of a vertex and an incident face boundary FB, whether
the number of fundamental cycles that intersect FB is bounded by λ.

fr(V,E, F) ≤ λ⇔ ∀v(∀EFB ⊆ E)
(

(FaceBd3(EFB)→ (∀e1 ∈ E \ F)

· · · (∀eλ+1 ∈ E \ F))
((∧

1≤i≤λ+1

(∃EC ⊆ E)(FundCyc(ei, EC)

∧ Inc(v,EC) ∧ ¬(EC ∩ EFB = ∅))
)
→

∨
1≤i<j≤λ+1

ei = ej

))
Let µ = 2k and λ = k and our claim follows.

We direct the spanning tree T of Proposition 4.21 as shown in
Lemma 2.10 (see the discussion after its statement) to be a rooted
tree, using a 3k-coloring ΓG of G. Note that two colors would already
suffice, but we will later use these color sets to impose an (arbitrary)
orientation on the edges in E \ F as well.

We now choose the set of anchor and co-anchor edges EA and E′A,
respectively, to fix an ordering on the incident edges of a vertex as
shown in Lemma 4.18. For a vertex v, let e`1 and e`2 denote the edges
bounding a face f` with lowest layer number. (If there is more than
one face with lowest layer number, we choose the one whose boundary
has a shortest face-adjacency path from the unique incoming edge in

15Note that the we assume the existence of the predicate FundCyc(e, f), which is true
if and only if the fundamental cycle of e ∈ E \F uses the edge f ∈ F , see Proposition 4.5.

35

the spanning tree T .) We then add e`1 to EA and e`2 to E′A. Hence,
we have that nb<(e`1 , e), for all incident edges e of v. We now prove
some auxiliary results to show that the above observations are MSOL-
definable.

Proposition 4.22. Let G = (V,E) be a k-outerplanar graph with
stripping layers V1, . . . , Vk.

(i) Let f denote a face with layer number i. Then, the face boundary
of f contains a vertex v with v ∈ Vi.

(ii) Let v ∈ Vi. Each face f incident to v has either layer number i
or i− 1. Furthermore, f has layer number i− 1, if the boundary
of f contains a vertex w with w ∈ Vi−1.

(iii) The layer numbers of the faces of a 3-connected k-outerplanar
graph are MSOL-definable.

(iv) Let v ∈ Vi and G 3-connected. There is an MSOL-predicate
identifying a unique face incident to v with lowest layer number.

Proof. (i) and (ii). We observe that removing all vertices on the outer
face makes a face of layer number i become a face of layer number
i− 1 and both claims follow.

(iii). We use (i) and encode a predicate Layeri(E
′), which is true

if and only if the edge set E′ is the edge set of a face boundary with
layer number i.

Layeri(E
′)⇔ FaceBd3(E

′) ∧ ∃v(Inc(v,E′) ∧ v ∈ Vi)
(iv). According to the discussion given before the statement of the
proposition and (ii), we have to analyze two cases: In the first case,
there exists an incident face with layer number i−1 and in the second
case there is no such face. In either of the two, we have to make sure
that the face being identified has minimum distance from the unique
incoming edge (to v) in the spanning tree according to face adjacency
paths (see the proof of Lemma 4.18).16 Let e∗ denote this edge.

E′ = Ef`(v) ⇔ (∃e′ ∈ E′)
(

Inc(v, e′) ∧
∧

i=1,...,k

v ∈ Vi

→
((

Layeri−1(E
′) ∧ ¬(∃e′′∃E′′(Inc(v, e′′) ∧ e′′ ∈ E′′ (3)

∧ PathF (e∗, e′′) ⊂ PathF (e∗, e′)))
)

(4)

∨
(

Layeri(E
′) ∧ ¬(∃E′′(Inc(v,E′′) ∧ Layeri−1(E

′′) ∧ (∗)))
)))

(5)

16Note that the predicate PathF (e, e′), which identifies the set of a face adjacency path
between two incident edges of v can be encoded in the same way as in the proof of Lemma
4.18. We pick one face-adjacent edge e′ of e∗ and remove it from the set of possible paths
to fix a direction on all paths starting at e∗.

36

f`e`1
e`2

e1

e2

e3
e4

e5

nb<

(a) A vertex with incident (di-
rected) edges. Bold edges are
in the spanning tree.

σH(e1) σT (e2) σT (e3) σH(e4) σH(e5)

σ(e1) σ(e3) σ(e4)

σ(e`2)

(b) The corresponding part of the tree decom-
position, where the edge-orientation describes the
Parent-relation.

Figure 8: A component of a definable tree decomposition as described in the
proof of Lemma 4.20, corresponding to a vertex v with a clockwise ordering on its
edges, anchored at e`1 , where f` is a face with lowest layer number of all incident
faces of v.

We replace (∗) in line 5 by a repetition of lines 3 and 4, where instead
of ’Layeri−1’ in line 3, we write ’Layeri’.

Proposition 4.22 enables us to encode the anchor and co-anchor
set EA and E′A, respectively, to define nb<(e, e′) as discussed above.

We define three types of bag predicates, all associated with edges.
The first type, σ, contains the endpoints of an edge e ∈ F in the
spanning tree of G and one endpoint of each edge, whose fundamental
cycle uses e. A predicate Bagσ(e, S) can easily be encoded using the
methods given in the proof of Proposition 4.21.

We fix an arbitrary orientation on all edges in E \ F using the
coloring ΓG together with the empty edge set (see Lemma 2.10). Then
we define two more types of bags, σH and σT for each edge ei ∈
Inc(v) \ {e`1 , e`2} for all v ∈ V . Let ei = {v, w} with orientation from
v to w, where fi and fi−1 denote the incident faces of ei. Then, we
create a bag of type σH , containing v and one endpoint of each edge in
C(v, f`)∪C(v, fi−1)∪C(v, fi),

17 meaning that σH is a type associated
with the head vertex of an edge. We similarly define a type associated
with the tail vertex of an edge, σT , which is created in the same way as
σH , except that it contains the tail vertex instead of the head vertex
of ei (in this case: w). We observe that we can encode predicates
identifying sets C(head(e), fi) (C(tail(v), fi)), for some incident face
fi of head(e) (tail(e)) applying Proposition 4.22 and hence we can
encode the predicates BagσH (e, S) and BagσT (e, S) accordingly.

We now turn to defining the Parent(Sp, Sc)-predicate. For an

17As opposed to the notation in the proof of Lemma 4.13, we use the vertex v as an
argument for sets C as well to clarify that the faces we are considering in this step are
incident faces of v.

37

illustration of any of the below mentioned cases, we refer the reader
to Figure 8, which gives an example of a part of a tree decomposition
constructed for a vertex.

First we consider bags of type σ. Let e = {v, w} ∈ F such that v
is its tail vertex and denote the corresponding σ-bag by X. Then, we
make X the parent of the bag Y of type σT for the edge e. If v is the
head vertex of e, then we make the bag Y of type σH for the edge e
the parent of the bag X. As mentioned above, we do not create bags
of type σH and σT for the two edges bounding the fixed face with
lowest layer number f` (for details see the proof of Lemma 4.13). Let
e` ∈ {e`1 , e`2}. Then, we make the bag X of type σ corresponding to
e` the parent of a bag Y of type σT corresponding to an edge e, if e
and e` bound a face together, which is adjacent (in this case, sharing
an edge) to the face f`. Analogously, we make Y the parent of X, if
X is of type σH for such an edge e`.

Furthermore, we need to add edges between bags of types σT and
σH as well. Note that by now, the only bag, which already has a
parent is the bag of type σT for the unique incoming edge e∗ ∈ F in
the spanning tree of G. We use the ordering nb<(e, f) of the incident
edges of a vertex v to make sure that the resulting tree decomposition
is rooted. Let nb≺(e, f) express that two incident edges e, f of v are
direct neighbors in the ordering nb<(e, f). Suppose that X∗ is the
σT -bag for the edge e∗ and Y is either a σH - or σT -bag for an edge f
with either nb≺(e∗, f) or nb≺(f, e∗). In all of these cases, we make X∗

the parent of Y , since X∗ already has a parent bag. We observe that
we have to direct the remaining edges in such a way that they point
away from the bag X∗. Let e, f ∈ Inc(v)\{e∗, e`1 , e`2} with nb≺(e, f),
X the σH/σT -bag of e and Y the σH/σT -bag of f . We have to analyze
two cases. Note that always precisely one of the two holds.

(i) If nb<(e∗, e), then make X the parent of Y .

(ii) If nb<(f, e∗), then make Y the parent of X.

This completes existentially defining the tree decomposition as con-
structed in the proof of Lemma 4.13 in monadic second order logic for
a 3-connected k-outerplanar graph.

We now count the parameters used in this proof. To find a face
with lowest layer number for each vertex, we need the partition into
its stripping layers as shown in Lemma 4.9. For this step we need k
parameters. Furthermore we use an edge set for finding a face with
lowest layer number and smallest distance from the unique incoming
edge in the spanning tree for each vertex, see the proof of Proposition
4.22(iv). For directing the edges of G we use 3k color sets (G has
treewidth at most 3k− 1 [6]) and one edge set (see Lemma 2.10). We

38

fix edge sets for the spanning tree and the anchors EA and co-anchors
E′A of the edge ordering nb<(e, f). Hence, total number of parameters
is 4k + 5.

Before we continue generalizing these results to arbitrary con-
nected k-outerplanar graphs, we would like to note that by Lemma
2.12(i) (page 9) we have an even stronger result for 3-connected k-
outerplanar graphs, i.e. we do not require the counting predicates of
CMSOL for this graph class.

Theorem 4.23. Recognizability implies MSOL-definability for 3-con-
nected k-outerplanar graphs.

Proof. Combine Lemmas 2.12(i) and 4.20.

4.3 Hierarchical Graph Decompositions

A block decomposition of a connected graphG is a tree decompositions,
whose bags contain either the endpoints of a single edge or maximal
2-connected subgraphs18 of G (called the blocks of G) or a cut-vertex
of G (called the cuts) by making a block-bag adjacent to a cut-bag
{v} if the block bag contains v (see e.g. Section 2.1 in [20]).

Analogously, Tutte showed that given a 2-connected graph (or
a block of a connected graph) one can find a 3-block decomposition
into its 2-cuts and 3-blocks, the latter of which are either 3-connected
graphs or cycles (but not necessarily subgraphs of G, see below), which
can be joined in a tree structure in the same way [33, Chapter 11] [34,
Section IV.3]. Courcelle showed that both of these decompositions of
a graph are MSOL-definable [17] and also proved that one can find
an MSOL-definable tree decomposition of width 2, if all 3-blocks of a
graph are cycles [17, Corollary 4.11]. In this section, we will use these
methods to prove Courcelle’s Conjecture for k-outerplanar graphs by
showing that the results of the previous section can be applied to de-
fine tree decompositions of 3-connected 3-blocks of a k-outerplanar
graph.

As many of our proofs make explicit use of the structure of Tutte’s
decomposition of a 2-connected graph into its 3-connected compo-
nents, we will now review this concept more closely.

Definition 4.24 (3-Block). Let G = (V,E) be a 2-connected graph,
S a set of 2-cuts of G and W ⊆ V . A graph H = (W,F) is called a
3-block, if it can be obtained by taking the induced subgraph of W in

18Let G = (V,E) be a graph and W ⊆ V . H = G[W] is called a maximal 2-connected
subgraph of G, if G[W] is 2-connected and for all W ′ ⊃W , G[W ′] is not 2-connected.

39

G and for each incident 2-cut S = {x, y} ∈ S, adding the edge {x, y}
to F (if not already present), plus one of the following holds.

(i) H is a cycle of at least three vertices (referred to as a cycle
3-block).

(ii) H is a 3-connected graph (referred to as a 3-connected 3-block).

Definition 4.25 (Tutte Decomposition). Let G = (V,E) be a 2-
connected graph. A tree decomposition (T = (N,F), X) is called a
Tutte decomposition of G, if the following hold. Let S denote a set of
2-cuts of G.

(i) For each t ∈ N , Xt is either a 2-cut S ∈ S (called the cut bags)
or the vertex set of a 3-block (called the block bags).

(ii) Each edge f ∈ F is incident to precisely one cut bag.

(iii) Each cut bag is adjacent to precisely two block bags.

(iv) Let t ∈ T denote a cut node with vertex set Xt. Then, t is
adjacent to each block node t′ with Xt ⊂ Xt′ .

Tutte has shown that additional restrictions can be formulated on
the choice of the set of 2-cuts, such that the resulting decomposition is
unique for each graph (for details see the above mentioned literature).
In the following, when we refer to the Tutte decomposition of a graph,
we always mean the one that is unique in this sense, which is also the
one that Courcelle defined in his work [17]. Similarly, by a 3-connected
3-block (cycle 3-block, 2-cut etc.) of a graph G we mean a 3-connected
3-block in the Tutte decomposition of a block of G.

We will now state a property of Tutte decompositions, which will
be useful in later proofs.

Definition 4.26 (Adhesion). Let (T = (N,F), X) be a tree decom-
position. The adhesion of (T,X) is the maximum over all pairs of
adjacent nodes t, t′ ∈ N of |Xt ∩Xt′ |.

Proposition 4.27. Each Tutte decomposition has adhesion 2.

Proof. The claim follows directly from Definition 4.25 (ii) and (iv).

For the proof of the next lemma, we need the notion of W -paths.

Definition 4.28 (W -Path). Let G = (V,E) be a graph, W ⊆ V and
x, y ∈ V . Then, a path Pxy = (VP , EP) between x and y is called a
W -path, if x, y ∈ W and VP ∩W = {x, y}, i.e. Pxy avoids all vertices
in W except its endpoints.

40

Lemma 4.29. Let G = (V,E) be a 2-connected graph with Tutte
decomposition (T = (N,F), X). If G is k-outerplanar, then all 3-
connected 3-blocks C = (W,F) of (T,X) are at most k-outerplanar.

Proof. We know that W = Xt for some t ∈ N . Let S = {x, y} denote
a 2-cut of G, which is incident to W . If {x, y} ∈ E, we do not have to
consider S any further, so in the following, if we refer to a 2-cut S, we
always assume that {x, y} /∈ E. Since each such pair {x, y} appears
in precisely two 3-blocks (Definition 4.25 (iii)), we know that there is
always at least one W -path between x and y in G.

Proposition 4.30 ([9]). Let (T = (N,F), X) be a tree decomposition
of adhesion 2 and t ∈ T . Let P1 and P2 denote two Xt-paths. If
P1 and P2 share an internal vertex, then P1 and P2 have the same
endpoints.

Proof. Let t ∈ N . Then, all internal vertices of an Xt-path P are
contained in a set of bags of a unique component Tt of T [N \ {t}].
Let t′ ∈ Tt be a neighbor of t. Then, the endpoints of P1 and P2 are
contained in Xt ∩Xt′ . Since (T,X) has adhesion 2, both paths have
to have the same endpoints.

Let G′ = G[W] denote the induced subgraph of G over the vertex
set W . For each 2-cut S incident to W we add one W -path from
G to G’, connecting the two vertices in S. Since G is planar and
G′ is a subgraph of G, we know that G′ is planar. Since (T,X) has
adhesion 2 (Proposition 4.27), we know by Proposition 4.30 that there
is no pair of W -paths corresponding to two different incident 2-cuts,
sharing an internal vertex. Hence, we can contract each of these paths
to a single edge such that the embedding of G′ stays planar. Clearly,
G′ is isomorphic to C after contraction and the outerplanarity index
of G′ is less than or equal to k.

For an illustration of the proof of Lemma 4.29, see Figure 9. The
ideas in this proof can be applied to more general graph classes as well
and we have the following consequence. For the proof of statement
(ii), we need the following definition.

Definition 4.31 (Safe Separator [8]). Let G = (V,E) be a connected
graph with separator S ⊂ V . S is called a safe separator, if the tree-
width of G is at most the maximum of the treewidth of all connected
components W of G[V \ S], by making S a clique in G[W].

Corollary 4.32. Let G be a 2-connected graph with Tutte decompo-
sition (T,X).

41

G G[W]a

b

x
y

Figure 9: A 2-connected graph G with induced subgraph G[W] over the vertex
set of a 3-connected 3-block of G with incident 2-cuts {a, b} and {x, y}. The dashed
lines indicate that there might be several edges between a vertex and the depicted
set and dotted lines represent (W -)paths in G.

(i) If G is planar, then the 3-connected 3-blocks of (T,X) are planar.

(ii) If G is a partial k-tree, then the 3-connected 3-blocks of (T,X)
are partial k-trees (for k ≥ 2).

(iii) If G is H-minor free, then the 3-connected 3-blocks of (T,X) are
H-minor free, where H is a set of fixed graphs.

Proof. (i) and (iii) follow from the same argumentation (and, clearly,
(i) is a consequence of (iii) by Wagner’s Theorem [35]). For (ii), we
observe the following. By [17, Corollary 4.12] we know that each cut
bag S = {x, y} is a safe separator of G and hence, there is a width-k
tree decomposition of G which has a bag Xxy containing both x and y.
Subsequently, adding the edge between x and y does not increase the
treewidth of a 3-connected 3-block B3. (One simply performs a short
case analysis of whether Xxy is contained in the tree decomposition of
B3 or not.)

Replacing Edge Quantification by Vertex Quantification

As discussed above, a 3-block is in general not a subgraph of a graph
G, as we add edges between the 2-cuts of the Tutte decomposition
to turn the 3-blocks into cycles or 3-connected graphs. Since these
absent edges cannot be used as variables in MSOL-predicates (which
would make our logic non-monadic), we need to find another way to
quantify over them.

In [14], Courcelle discusses several structures over which one can
define monadic second order logic of graphs, which we will now review.

42

Definition 4.33 (cf. Definition 1.7 in [14]). Let G = (V,E) be a
graph. We associate with G two relational structures, denoted by
|G|1 = 〈V, edg〉 and |G|2 = 〈V ∪ E, edg′〉.

(i) All (C)MSOL-sentences and -predicates over |G|1 only use ver-
tices or vertex sets as variables and we have that edg(x, y) is
true for x, y ∈ V , if and only if there is some edge {x, y} ∈ E.
(C)MSOL-sentences and -predicates over |G|2 use both vertices
and edges and vertex and edge sets as variables. Furthermore,
edg′(e, x, y) is true if and only if e = {x, y} and e ∈ E.

(ii) If we can express a graph property in the structure |G|1, we
call it 1-definable and if we can express a graph property in the
structure |G|2, we call it 2-definable.

Clearly, the monadic second order logic we are using throughout
this paper is the one represented by the structure |G|2. We use both
vertex and edge quantification and one simply rewrites ’Inc(v, e)’ to
’∃w edg′(e, v, w)’. Since every 1-definable property is trivially also 2-
definable, we can conclude that both 1-definability and 2-definability
imply (C)MSOL-definability in our sense. Some of the main results of
[14] can be summarized as follows.

Theorem 4.34 ([14]). 1-Definability equals 2-definability for

(i) planar graphs.

(ii) partial k-trees.

(iii) H-minor free graphs, where H is a set of fixed graphs.

Hence, by Theorem 4.34 we know that we can rewrite each formula
using vertex and edge quantification to one only using vertex quan-
tification, if a graph is a member of one of these classes. We will now
show that this result can be used to implicitly quantify over virtual
edges of a graph, if these virtual edges can be expressed by an (exis-
tentially) MSOL-definable relation. (For a similar application of this
result, see [17, Problem 4.10].)

Lemma 4.35. Let G = (V,E) be a graph which is a member of a graph
class C as stated in Theorem 4.34 and let P denote a graph property,
which is 2-definable by a predicate φP . Let E′ ⊆ V × V denote a set
of virtual edges, such that there is a predicate edgV irt(v, w), which is
true if and only if {v, w} ∈ E′. Then, P is 1-definable for the graph
G′ = (V,E ∪ E′), if G′ is a member of C.

Proof. By Theorem 4.34, P is 1-definable for the graph G. Let φP |1
denote the predicate expressing P in |G|1. We replace each occur-
rence of ’edg(x, y)’ in φP |1 by ’edg(x, y) ∨ edgV irt(x, y)’ and denote

43

the resulting predicate by φ′P |1, which expresses the property P for

the graph G′ in |G′|1. Since G′ ∈ C, one can replace quantification
over sets of virtual edges (or mixed sets of edges and virtual edges) by
vertex set quantification in the same way as for G.

For the specific case of k-outerplanar graphs, we can now derive
the following.

Corollary 4.36. Let G = (V,E) be a (not necessarily 3-connected) k-
outerplanar graph and P a graph property which is (C)MSOL-definable
for 3-connected k-outerplanar graphs. Let B3 denote a 3-block of G,
including the virtual edges between all incident 2-cuts of B3. Then, P
is (C)MSOL-definable for B3.

Proof. By [17, Section 3] we know that there is a predicate φC2(x, y),
which is true, if and only if {x, y} is a 2-cut in the Tutte decomposition
of (a block of) G. We know that B3 (including the virtual edges) is
still k-outerplanar (Lemma 4.29). Hence let edgV irt(x, y) = φC2(x, y)
and apply Lemma 4.35.

Note that the statements of Lemma 4.35 and Corollary 4.36 also
hold for existential definability.

Defining the Tree Decomposition

By Corollary 4.36 we now know that every graph property, which
can be defined for a 3-connected k-outerplanar graph, can also be de-
fined for a 3-block of any k-outerplanar graph G (including its virtual
edges).

To apply these results to any k-outerplanar graph G, we first show
how to construct an existentially definable tree decomposition of G,
assuming that there exist predicates existentially defining bounded
width tree decompositions for the 3-connected 3-blocks of (the Tutte
decompositions of the 2-blocks of) G. For an illustration of the proof
idea of the following Lemma, see Figure 10, which illustrates how to
fix a parent-child ordering of the hierarchical graph decomposition
of G. After replacing the 3-blocks of G by their corresponding tree
decompositions (taking into account the direction of the edges in the
hierarchical decomposition), one can see that we have a bounded width
tree decomposition of the graph G.

Remark 4.37. Note that in the proofs of the following results, one
fixes a root vertex r ∈ V of a k-outerplanar graph G = (V,E), which
will be used to induce a parent-relation on the bags of the hierarchical
decomposition of G (see Figure 10). In a later proof, one guesses a

44

G

B2

C1

B3

C2

C2

C2

C2

B3

B3

B3

⇒
⇒

B2

B2 B3

Figure 10: An example hierarchical decomposition of a graph G. A bag labeled
C1 contains a cut-vertex of G, C2 a 2-cut of G. Bags labeled B2 contain a 2-
block (a single edge or a maximal 2-connected component). If a 2-block contains
a maximal 2-connected component of G, it is decomposed further into its 2-cuts
and 3-blocks, labeled by B3, which contain either a cycle or a 3-connected 3-block.

rooted spanning tree of G, from which one derives a set of edges that
contains a spanning tree of each 3-connected 3-block of G (see Lemma
4.43). The root of this spanning tree will be precisely this vertex r,
hence ensuring that we have a conflict-free parent-child relation in the
resulting tree decomposition of G.

Lemma 4.38. Let G = (V,E) be a k-outerplanar graph with Tutte de-
compositions (T,X) of its 2-connected blocks. Then, G admits an ex-
istentially MSOL-definable tree decomposition of width at most 3k+ 3
with a constant number of parameters, if there exist predicates ex-
istentially defining width-3k tree decompositions for the 3-connected
3-blocks of G with O(1) parameters.

Proof. Recall the decomposition of a graph into its 3-connected com-
ponents described in the beginning of Section 4.3 and see Figure 10 for
an illustration. We will first show how to construct a rooted tree de-
composition (T = (N ,F),X) of G width at most 3k+3 and then prove
that (T ,X) is indeed MSOL-definable. Naturally, the description of
the tree decomposition is already aimed at providing straightforward
methods to define its predicates in MSOL.

I. Constructing the tree decomposition. We use the following
notation. C1 denotes the set of singletons containing a cut-vertex of
G and C2 denotes the set of 2-cuts in all Tutte decompositions of the
2-connected blocks of G. Furthermore, B2 denotes the set of blocks of
G, BE2 the set of blocks that are single edges and B3 denotes the set
of 3-blocks of (T,X). Let ΘB3 = {Θ1, . . . ,Θr} denote the set of tree
decompositions of all elements in B3. Then, we create a bag in (T ,X)
for all elements in C1, C2, BE2 and all bags of each Θi in ΘB3 , where
1 ≤ i ≤ r. Note that if a 3-block B3 ∈ B3 is a cycle, one can find

45

a tree decomposition of B3 of width 2 directly. We will later study
how to find an MSOL-definable tree decomposition of such a cycle in
a more detailed way.

(In the following, keep Remark 4.37 in mind.) We add an edge to
F between all pairs of adjacent bags originating from a tree decom-
position Θi with the same orientation. To make T a directed tree, we
add edges to F between the above mentioned components in the fol-
lowing way. First, we fix an arbitrary root r ∈ V of the graph, which
is not a member of a cut or a 2-cut of G. For each vertex x ∈ V , we let
Px denote the paths from r to x in S (and sometimes, slightly abusing
notation, we might denote it as if it was one path, if the meaning of
the corresponding statement is clear from the context).

Let B2 ∈ B2 \ BE2 with Tutte decomposition (T = (N,F), X). We
know that the bags of (T,X) either contain a 2-cut C2 ∈ C2 or a
3-block B3 ∈ B3 with tree decomposition Θi ∈ ΘB3 for some i with
1 ≤ i ≤ r. We now show which edges we need to add to F and how to
direct them to obtain a rooted tree decomposition of B2 of width at
most 3k + 2. We know that each edge in F is incident to one cut bag
and one block bag (Definition 4.25(ii), cf. Figure 10). Let C2, B3 and
Θi be as above and additionally C2 ⊂ B3. By Definition 4.25(iv) we
know that there has to be an edge in F between C2 and one bag in Θi,
as there is an edge in F between C2 and B3 in the Tutte decomposition
(T,X). We use the following (MSOL-definable) properties to create a
rooted tree decomposition of a 2-block of G.

Proposition 4.39. Let C2 = {x, y} ∈ C2 and denote by B3(C2) its
(two) neighbors in the corresponding Tutte decomposition and r ∈ V
an arbitrarily chosen but fixed root vertex, which is not a member
of a 2-cut. Then, for each of the following two statements, there is
precisely one 3-block B3 which satisfies it.

(i) For all v ∈ B3: Px @ Pv or Py @ Pv.

(ii) There exists at least one v ∈ B3, such that Pv @ Px or Pv @ Py.

Proof. Observe that C2 separates G into two components, say G+

and G−, where r ∈ V (G+). Then it immediately follows that (i)
holds for the component B−3 ∈ B3(C2) with B−3 ⊆ V (G−). Now, let
B+

3 ∈ B3(C2) \ {B−3 }. Clearly, B+
3 ⊆ V (G+). Denote by C2(B+

3) the
neighbors of B+

3 . Then, there is a 2-cut C ′2 ∈ C2(B+
3), such that (i)

holds for C ′2 w.r.t. B+
3 . By definition, we know that there is a vertex

z ∈ C2OC ′2 (where ’O’ denotes the symmetric difference) and z is also
contained in B+

3 (again, by definition). Hence, B+
3 satisfies (ii) (with

v = z).

46

In case (i), we let C2 = {x, y} be the parent bag of B3. Recall that
Θi denotes a tree decomposition of B3. We add both x and y to all
bags in Θi and make C2 the parent bag of the root of Θi.

In case (ii), we let B3 be the parent of C2. Note that while a cut
bag is always the parent of precisely one block bag, a block bag can be
the parent of any number of cut bags (cf. Figure 10). Hence, adding
all vertices of these 2-cuts to the tree decomposition Θi could increase
the width of Θi to a non-constant number. Instead, we observe the
following. Since there is a (virtual or non-virtual) edge between x and
y in B3, we know that there is at least one bag containing both x
and y. Denote the set of such bags by Xxy. Since we have to choose
precisely one bag in this set to make it a parent of C2, we observe the
following. Either, there is a bag X ∗t ∈ Xxy for some t ∈ N , whose
parent does not contain both x and y or both x and y are contained
in the root bag of Θi. In the latter case, we let X ∗t be the root of Θi.
We then make X ∗t the parent of C2.

One can verify that this yields a rooted tree decomposition of width
at most 3k + 2 for any B2 ∈ B2 \ BE2 .

To finish the construction of the rooted tree decomposition (T ,X),
we need to show, which edges to add to F between bags in C1 and (tree
decompositions of elements in) B2. We use the same idea as before,
based on a fixed root vertex r in G. In the following let C1 = {x} ∈ C1
and B2 ∈ B2 with C1 ⊂ B2. Since C1 is a separator of G, one of the
following holds for all v ∈ B2, v 6= x.

(i) Px @ Pv.

(ii) Pv @ Px.

Again, in case (i), we make C1 the parent bag of B2. We add x to
all bags in the tree decomposition of B2 and make Xt the parent of
a bag Xt′ , where Xt′ is a bag with Xt′ = B2 in case B2 ∈ BE2 and if
B2 ∈ B2 \ BE2 , Xt′ is the root bag of the tree decomposition of B2,
constructed as described above. In case (ii) we make B2 the parent
bag of C1. If B2 ∈ BE2 , we simply let the bag Xt with Xt = B2 be
the parent of the bag Xt′ with Xt′ = C1. If B2 ∈ B2 \ BE2 , we observe
the following. Since x is a cut vertex of G, no 2-cut of a block of G
can contain x. Hence we know that there exists one unique 3-block
B∗3 ∈ B3 with x ∈ B∗3 . We denote its tree decomposition by Θ∗i . Again,
we find a bag Xt in Θ∗i , such that its parent does not contain x. If no
such bag exists, we let Xt be the root of Θ∗i . We again let Xt′ be the
bag with Xt′ = C1 and make Xt the parent of Xt′ .

One can verify that now (T ,X) is a rooted tree decomposition and
since in the last stage we introduced at most one vertex to each bag of
a tree decomposition of an element in B2, its width is at most 3k+ 3.

47

II. Definability. For defining all necessary predicates for the tree
decomposition (T ,X), we will refer to G as the graph after adding
all virtual edges of its Tutte decomposition. We might write down
predicates quantifying over virtual edges or having virtual edges as
free variables, and by Corollary 4.36 we know that all these predicates
can be defined only using vertex quantification as well.

By some trivial definitions, the statement of the lemma, and the
results of [17] we know that the predicates listed below exist.

Proposition 4.40 (cf. [17]). Let G = (V,E) be a k-outerplanar
graph, for whose 2-blocks all Tutte decompositions are known. Let
G′ = (V,E ∪ E′) denote the graph obtained by adding all correspond-
ing virtual edges E′ to G and γ : V → N|3k+1 a coloring of V in G′.
The following predicates are MSOL-definable.

(I) BagC1(v, S): S ∈ C1 and S = {v}.
(II) BagBE2 (e, S): S ∈ BE2 and S = {v, w}, where e = {v, w}.

(III) 2-ConnB2\BE2 (S): S is the vertex set of a 2-connected 2-block of
G.

(IV) BagC2(v, S): S ∈ C2, v ∈ S and for w ∈ S, v 6= w, we have
γ(v) < γ(w).

(V) 3-ConnB3(S): S is the vertex set of a 3-connected 3-block of G.

(VI) CycleB3(S): S is a set of vertices forming a cycle block in a
2-block of G.

(VII) BagB3τ1 (v, S), . . . ,BagB3τt (v, S) and BagB3σ1 (e, S), . . . ,BagB3σs (e, S):
The Bag-predicates of the tree decompositions of the 3-connected
3-blocks of G.

(VIII) ParentB3(Sp, Sc): The Parent-predicate of the tree decomposi-
tions of the 3-connected 3-blocks of G.

Proof. (I) and (II) follow from [17, Lemma 2.1], (III) from [17, Section
2] and (IV) from [17, Section 3] and Corollary 4.36. (V) is shown in [17,
Corollary 4.8] and a proof of (VI) can done with the same argument.
Finally, (VII) and (VIII) are part of the statement of the lemma.

By the previous proposition, we know that there is a predicate
Block(S), which is true if and only if S is the a (3-)block of the
hierarchical decomposition of G. We use the ideas explained above
(cf. Proposition 4.39) to define a predicate ParentBlock(Sp, Sc), which
checks whether a vertex set Sp is the parent bag of a vertex set Sc in

48

the hierarchical decomposition of G.19

ParentBlock(Sp, Sc)⇔ Block(Sp) ∧Block(Sc) ∧ ¬(Sp = Sc)

∧ (Sp ∩ Sc = Sp ∨ Sp ∩ Sc = Sc)

∧ Sp ⊆ Sc → (∀v ∈ Sc)(∃x ∈ Sp)(Path→(r, x) ⊂ Path→(r, v))

∧ Sc ⊆ Sp → (∃v ∈ Sp)(∃x ∈ Sc)(Path→(r, v) ⊂ Path→(r, x))

We now turn to defining tree decompositions for the cycle 3-blocks
of a graph, after which we only need to show that gluing together all
components of our construction explained above is MSOL-definable.

Proposition 4.41. Let G = (V,E) be a graph and C = (W,F) a
cycle 3-block of G (including virtual edges). There is an existentially
definable predicate BagCyc(e, S), which is true if and only if S is a bag
of a tree decomposition of C associated with a (possibly virtual) edge
e and an existentially definable predicate ParentCyc(Sp, Sc) encoding
a parent-relation of a tree decomposition of C.

Proof. Recall that for orienting the edges of our tree decomposition,
we first fix a root vertex r in the graph G and note that by Proposition
4.40(V), W is MSOL-definable. To create a definable tree decomposi-
tion of C, we now find a root rC ∈ W of C. If r ∈ W , we let rC = r,
otherwise we know that there is one incident parent cut CP ∈ C1 ∪ C2
of C in G. CP can be identified by checking for all 1- and 2-cuts
CC , which are incident to W , if all paths in S from r to the vertices
w ∈W pass through (at least one of the vertices in) CC . This can be
defined in a straightforward way and one can see that there is always
precisely one such cut. If CP = {x} ∈ C1, then we let rC = x and if
CP = {x, y} ∈ C2, then we let rC = x, if γ(x) < γ(y) in a fixed color-
ing γ of C. We create a bag X for each edge f = {v, w} ∈ F , which
is not incident to rC and let X = {rC , v, w}. Hence, the predicate
BagCyc(e, S) is also definable in a straightforward way.

We then orient the edges in F in such a way that C is a directed
cycle. Note that one can find a conflict-free ordering for all cycle
blocks in the graph G. (Otherwise, we might violate the cardinality
constraint of MSOL.) The predicate ParentCyc(Sp, Sc) is true, if and
only if the following hold.

(i) There are two edges e, f ∈ F , such that BagCyc(e, Sp) and
BagCyc(f, Sc) (and e and f are contained in the same cycle).

(ii) The directed path from rC to tail(e) in C is a strict subpath of
the path from rC to tail(f).

19We denote by Path→(v, w) the edge set of the unique directed path from v to w in
the spanning tree of G. This path always exists in the cases where we use this notation.

49

(iii) |Sp ∩ Sc| = 2.

Note that we only need one additional parameter, the edge set defining
the edge orientation of F , since we already have a coloring for the
graph G (see Proposition 4.40).

We now show how to encode the predicates. We first give a pred-
icate to identify the root vertex of a cycle.

v = rC ⇔ (r ∈W ∧ v = r) ∨
(

(∃CP ⊂ V)(ParentBlock(CP , C)

∧ (BagC1(v, CP) ∨ (BagC2(v, CP)

∧ (∀w ∈ CP)(¬(v = w)→ col<(v, w)))))
)

The predicates BagCyc(e, S) and Parent(Sp, Sc) can be defined in a
straightforward way according to the above discussion.

BagCyc(e, S)⇔ ¬Inc(e, rC) ∧ (v ∈ X ↔ (Inc(v, e) ∨ v = rC))

ParentCyc(Sp, Sc)⇔ ∃e∃f
(
BagCyc(e, Sp) ∧BagCyc(f, Sc)

∧ |SP ∩ Sc| = 2 ∧ (∃C ⊆ V)
(

CycleB3(C) ∧ Inc(e, C)

∧ Inc(f, C) ∧ (∃Pe ⊆ IncE(C))(∃Pf ⊆ IncE(C))

(Path→(rC , tail(e), Pe) ∧ Path→(rC , f, Pf) ∧ Pe ⊂ Pf)
))

To unify the parent-relations for all tree decompositions of 3-blocks,
we can write

Parent′B3(Sp, Sc)⇔ ParentB3(Sp, Sc) ∨ParentCyc(Sp, Sc).

As described above, to create the according parent-relation between
blocks of the hierarchical decomposition ofG, we need to add a number
of vertices to some of the bags of the tree decomposition (T ,X). Let
Bag∗(·, S) denote any bag type of the MSOL-definable tree decompo-
sitions for 3-connected k-outerplanar graphs. We define a predicate
Bag′∗(·, S) which includes the above mentioned modifications.

Bag′∗(·, S′)⇔ (∃S ⊆ S′)
(
Bag∗(·, S) ∧ v ∈ S′ \ S ↔ ∃Sp∃Sc

(
S ⊆ Sc

∧ (2-ConnB2(Sc) ∨ 3-ConnB3(Sc) ∨ CycleB3(Sc))

∧ParentBlock(Sp, Sc) ∧ v ∈ Sp
))

We can define the Parent-predicate for (T ,X) using the ideas ex-
plained above to add edges between blocks and cut-bags. We denote

50

this predicate by ParentBC(Sp, Sc). We consider the case of adding
edges between the tree decomposition of a 3-block and a cut bag and
note that for 2-blocks the definition works analogously. In the fol-
lowing, Bag′B3(S) denotes any bag type of an MSOL-definable tree
decomposition of a 3-connected k-outerplanar graph.

ParentCB3(Sp, Sc)⇔ (BagC1(Sp) ∨BagC2(Sp)) ∧Bag′B3(Sc)

∧ Root′B3(Sc) ∧ ∃S′(Sc ⊆ S′ ∧ParentBlock(Sp, S
′))

ParentB3C(Sp, Sc)⇔ Bag′B3(Sp) ∧ (BagC2(Sc) ∨BagC1(Sc))

∧ ∃S′(Sp ⊆ S′ ∧ParentBlock(Sp, S
′))

∧ ¬(∃S′(Parent′B3(S′, S) ∧ S′ ⊆ Sc))

Let ParentBC(Sp, Sc) denote the predicate, which encodes all neces-
sary cases. Then, the Parent-predicate of (T ,X) can be defined as:

Parent(Sp, Sc)⇔ Parent′B3(Sp, Sc) ∨ParentBC(Sp, Sc)

To show that the number of parameters that we need to define the
above mentioned predicates is constant, we note that we only use
constructions of previous results with constant numbers of parameters.
(For the exact number see the corresponding result.) Note that for the
cycle components one additional parameter is as well enough (see the
proof of Proposition 4.41) to turn all cycles into directed cycles, since
they are connected in a tree structure in the Tutte decomposition of G.
Hence, fixing the direction of one cycle will always yield the possibility
to direct adjacent (i.e. sharing a 2-cut) cycles in a conflict-free manner.

This completes the proof of Lemma 4.38.

As mentioned in the previous proof, another obstacle in applying
Lemma 4.20 to define a tree decomposition for G using its (defina-
ble) hierarchical graph decomposition is the cardinality constraint of
MSOL. We illustrate this problem with an example.

Example 4.42 ([37]). Let G be a k-outerplanar graph, whose Tutte
decompositions have O(n/ log n) 3-connected 3-blocks of size O(log n).
Let P denote a graph property, which is definable for 3-connected k-
outerplanar graphs by a predicate φP . Suppose that φP uses O(1)
parameters. When applying φP to all 3-connected 3-blocks of G, this
might result in a predicate using O(n/ log n) parameters and hence,
P not definable in this straightforward way for G.

However, for the case of encoding a tree decomposition of a k-
outerplanar graph, we can avoid this problem. When defining a tree
decomposition for a 3-connected k-outerplanar graph in MSOL, one
first guesses a rooted spanning tree of G. To avoid guessing a non-
constant number of spanning trees, we will find a set of edges SE ,

51

v w

y

x

B3

(a) TB3
without edge direction.

v w

y

x

B3

(b) TB3
with edge direction.

Figure 11: A forest TB3 of a 3-connected 3-block of an example graph. The
dashed lines indicate the paths in T between two endpoints of a incident cut of
B3. Here, {v, w} is the root cut of B3 and {x, y} a child cut. Note that by
Propositions 4.46 and 4.47, this small example is already somewhat general.

which contains a spanning tree with bounded edge and face remember
number for each 3-connected 3-block of G. Furthermore we guess one
set RV , containing one unique vertex for each 3-connected 3-block of
G, which we will use as the root of its spanning tree. We need to
make some observations about such candidate sets SE and RV . We
first prove the existence of these sets and then their MSOL-definability.

Lemma 4.43. Let G = (V,E) be a planar graph and G = (V,E ∪
E′) the graph obtained by adding the virtual edges E′ of the Tutte
decompositions of the 2-connected blocks of G to G. Let T = (V, F)
be a spanning tree of G with er(G,T) ≤ λ and fr(G,T) ≤ µ. Let
B3 = (VB3 , EB3) ∈ B3 be a 3-connected 3-block of G′ (including virtual
edges) and TB3 = T [VB3]. One can construct from TB3 a spanning tree
T ∗B3

of B3 with er(B3, T
∗
B3

) ≤ λ and fr(B3, T
∗
B3

) ≤ µ by adding edges
from E ∪ E′ to TB3.

Proof. Clearly, TB3 = (VB3 , FB3) is a forest in B3 and in the fol-
lowing we denote its tree components by F1 = (VF1 , EF1), . . . , Fc =
(VFc , EFc). We will now show how to connect these components to a
tree. Let C′2 ⊆ C2 denote the set of incident 2-cuts of B3.

Proposition 4.44. Let T ′B3
denote the graph obtained by adding an

edge between all 2-cuts {x, y} ∈ C′2 in TB3 (if not already present).
Then, T ′B3

is connected.

Proof. Let (TT = (NT , FT), X) denote the Tutte decomposition con-
taining B3 and let B3 = Xt with t ∈ NT . Let v, w ∈ VB3 and consider

52

the unique path Pvw between v and w in T . There are two cases: (I)
The path Pvw is completely contained in B3 and v and w belong to
the same connected component. (II) Suppose that they do not and
let Fi denote the component with v ∈ VFi and Fj the component
with w ∈ VFj . Let x and y be the vertices on the path Pvw with
x, y ∈ VB3 (and x 6= y), such that x has a neighbor x′ /∈ VB3 and y
has a neighbor y′ /∈ VB3 (both in Pvw). Denote this subpath by Pxy.
Then, Pxy is a VB3-path in G. Hence, there is a unique component in
T ′T = TT [NT \ {t}] containing all internal vertices of Pxy. Since the
neighbor of t in T ′T is a cut-bag, we know that it has to contain both
x and y and hence {x, y} ∈ C′2.

By Proposition 4.44 we know that we can find a subset of incident
2-cuts of each 3-connected 3-block to turn TB3 into a tree. We now
prove that adding these edges does not increase the edge and face
remember number. Consider a 2-cut C2 = {x, y} ∈ C′2, such that
{x, y} /∈ F . Since T is a spanning tree of G, we know that there
is one unique path Pxy between x and y in T . Let T ′B3

= (V ′B3
, F ′B3

)
denote the tree obtained by adding the above described paths between
the components of TB3 . Then, T ′B3

is a spanning tree of the graph
G′B3

= (V ′B3
, EB3∪F ′B3

) with er(G′B3
, T ′B3

) ≤ λ and fr(G′B3
, T ′B3

) ≤ µ,
since G′B3

v G and no edges, which are not members of T ′B3
, are

introduced in G′B3
. Subsequently, replacing each path Pxy by a single

edge in T ′B3
does not increase the edge and face remember number as

well and after these replacements, we have that T ′B3
= T ∗B3

and our
claim follows. For an illustration of this proof see Figure 11a.

Lemma 4.45. The statement of Lemma 4.43 also holds, if one re-
places the term spanning tree by rooted spanning tree. Furthermore
there is a set RV ⊆ V , which contains precisely one vertex acting as
a root for a spanning tree for each 3-connected 3-block of G.

Proof. We use the same notation as in the proof of Lemma 4.43. Since
T = (V, F) is a rooted spanning tree, we know that its components
F1, . . . , Fc in B3 are rooted trees as well, see Figure 11b for an illus-
tration. Since the direction between block and cut bags of a Tutte
decomposition of a block of G are based on the root of the spanning
tree T (see Remark 4.37 on page 44 and the proof of Lemma 4.38 on
pages 45 ff.), we observe the following. Let C2 = {x, y} ∈ C2 denote
an incident 2-cut of B3 with {x, y} /∈ F . There are two cases we have
to consider. Either, C2 is the parent cut of B3 or it is a child cut.

Proposition 4.46. Let C2 be a child cut of B3. Wlog. x is a vertex
in a tree Fi and y is the root of a tree Fj.

53

Proof. Suppose not. We know that there is a path Pxy between x and
y in T . If y is a non-root vertex in Fj , then we cannot direct the edges
of Pxy in T such that every vertex has precisely one parent. Hence, T
is not a directed tree and we have a contradiction.

Proposition 4.47. Let C2 be the parent cut of B3. Then, x and y
are roots of two trees Fi and Fj.

Proof. For any vertex v ∈ VB3 we know by definition (see the proof
of Lemma 4.38) that for every vertex v ∈ VB3 , the directed path from
the root r of T to v in T is either a subpath of the directed path from
r to x or from r to y. Hence, neither x nor y can have a parent in
TB3 .

We can direct the additional edges using Propositions 4.46 and
4.47. In the case that C2 is a child cut, we can always direct the edge
{x, y} from x to y (using the notation of Proposition 4.46). If C2 is
the parent cut, we know by Proposition 4.47 that we can orient {x, y}
arbitrarily. There are two cases we need to analyze to make sure we
do not create a conflicting orientation of SE . In the first case, the
edge {x, y} has been added to SE by the parent block of C2. We then
use the same orientation. In the second case, if {x, y} /∈ SE , we can
choose the direction arbitrarily.

We now turn to finding the set of roots RV . If B3 is the root block
according to the spanning tree of G with root rG, then we add rG to
RV as the root of B3. Otherwise, we find its parent cut C2 = {x, y}.
Assume wlog. that the edge {x, y} is directed from x to y according
to the construction explained above. Then we add x to RV . Since
each cut-bag has precisely one child block bag (Definition 4.25(ii)), we
know that this vertex is unique for each 3-block B3.

Lemma 4.48. The sets SE and RV of Lemmas 4.43 and 4.45 are
existentially MSOL-definable with 3k + 2 parameters.

Proof. LetG = (V,E) denote a k-outerplanar graph, such that the vir-
tual edges introduced by the Tutte decompositions of its 2-connected
blocks are already included in E. On a high level, for defining RV
and SE , we need to encode is the following:

(i) There are sets RV ⊆ V , F ⊆ E and F ′ ⊆ E with SE = F ∪ F ′.
(ii) Guess a root rT ∈ V , such that F is the edge set of a rooted

spanning tree in G.

(iii) An edge e = {x, y} is possibly (but not necessarily) a member of
F ′, if {x, y} ∈ C2 and e /∈ F .

54

(iv) For all B3 ∈ B3, the graph T ∗B3
= (B3,SE ∩ (B3 × B3)) is a

spanning tree of the graph GB3 = G[B3] with er(GB3 , T
∗
B3

) ≤ 2k
and fr(GB3 , T

∗
B3

) ≤ k.

(v) A vertex v ∈ V is possibly (but not necessarily) a member of
RV , if it is a member of a 2-cut {v, w} ∈ C2.

(vi) For each 3-connected 3-block B3 ∈ B3, there is a vertex rB3 ∈
RV , such that T ∗B3

can be rooted at rB3 (without altering the
edge direction of any other edge in SE).

The existence of such sets RV and SE is shown in Lemmas 4.43 and
4.45, so we do not need to encode all details mentioned in the corre-
sponding proofs explicitly. Property (iv) is MSOL-definable by Propo-
sition 4.21, since GB3 is 3-connected. The details are as follows. To
shorten our notation, we will use the symbol EB3,SE instead of the
term ’IncE(B3) ∩ SE ’.

(i) (∃RV ⊆ V)(∃F ⊆ E)(∃F ′ ⊆ E)(∃SE ⊆ E)(SE = F ∪ F ′)
(ii) (∃rT ∈ V)(Tree→(rT , F))

(iii) e ∈ F ′ → ∃x∃y(¬x = y ∧ Inc(x, e) ∧ Inc(y, e) ∧ ¬e ∈ F
∧ ∃X(BagC2(X) ∧ x ∈ X ∧ y ∈ X))

(iv) (∀B3 ⊆ V)
(

3-ConnB3(B3)→
(
er(B3, IncE(B3), EB3,SE) ≤ 2k

∧ fr(B3, IncE(B3), EB3,SE) ≤ k
))

(v) v ∈ RV → ∃X(BagC2(X) ∧ v ∈ X)

(vi) (∀B3 ⊆ V)
(

3-ConnB3(B3)→ (∃rB3 ∈ RV)(
Tree→(rB3 , B3, EB3,SE)

))
As parameters we have the edge set of the spanning tree and again
a 3k-coloring and one edge set to fix the orientation of the edges in
SE .

We can now use the above results to conclude that we can find
predicates defining tree decompositions of 3-connected 3-blocks of k-
outerplanar graphs.

Corollary 4.49. Let G = (V,E) be a k-outerplanar graph. Then,
there exist predicates existentially defining tree decompositions of width
at most 3k for each 3-connected 3-block of G with O(1) parameters.

Proof. By Lemma 4.20 we know that a 3-connected k-outerplanar
graph admits an MSOL-definable tree decomposition of width 3k,
based on a rooted spanning tree of the graph. By Corollary 4.36

55

we can define such a tree decomposition in a structure, which also
includes the virtual edges of a 3-block in G (and by Lemma 4.29 we
know that this graph is still k-outerplanar). Finally, by Lemmas 4.43,
4.45 and 4.48 we know that we can find definable edge and vertex sets
which contain the edges of spanning trees for each 3-connected 3-block
with the required bound on their vertex and edge remember numbers
without violating the cardinality constraint of monadic second order
logic. Similarly, we can find sets containing anchor and co-anchor
edges for all 3-connected 3-blocks in a straightforward way. Hence,
also for defining the ordering of all incident edges of all vertices in a
3-connected 3-block, two sets are sufficient.

Eventually we observe that number of parameters involved is boun-
ded by a constant in each step, for the exact bounds see the corre-
sponding result.

Combining Lemma 4.38 and Corollary 4.49 yields that k-outerpla-
nar graphs admit existentially MSOL-definable tree decompositions of
width at most 3k+ 3 with O(1) parameters, hence we proved Lemma
4.3(ii). By Lemma 2.12(iii) (page 9) and in the light of Courcelle’s
Theorem [12] we have the first main result of this paper.

Theorem 4.50. CMSOL-definability equals recognizability for k-out-
erplanar graphs.

5 `-Chordal Partial k-Trees

In this section we prove the second main result of this paper, which
is that recognizability implies CMSOL-definability for all partial k-
trees that do not contain a cycle of length at least some constant
` as an induced subgraph (in the following referred to as `-chordal
partial k-trees). Our proof strategy is the same as in the previous
section, i.e. we show that all `-chordal partial k-trees admit existen-
tially MSOL-definable bounded width tree decompositions which by
Lemma 2.12(iii) (page 9) yields the desired result.

Definition 5.1 (Chordality, Triangulation, Fill Edges). Let G =
(V,E) be a graph.

(i) The chordality of G is the length of a longest induced cycle.

(ii) G is called chordal, if it has chordality 3 (and `-chordal if it has
chordality `).

(iii) A triangulation of G is a graph H = (V,E ∪ F) w G which is
chordal. The edges in F are called the fill edges.

56

(iv) Let H = (V,E∪F) be a triangulation of G. H is called minimal,
if the graph H ′ = (V,E ∪ F ′) is not chordal for any F ′ ⊂ F .

The following result is a well-known connection between graphs of
bounded treewidth and minimal triangulations.

Proposition 5.2. Let G be a graph. G has treewidth at most k if and
only if it has a triangulation with maximum clique size at most k+ 1.

In particular, we will first show how to construct an existentially
MSOL-definable tree decomposition for each chordal graph of tree-
width k in Section 5.1 and in Section 5.2 we extend this construc-
tion to all graphs of bounded chordality. The main idea in the latter
proof, as indicated by Proposition 5.2, is to show that the construc-
tion for chordal partial k-trees can be applied to a triangulation of
an `-chordal partial k-tree as well. We will show that we can define
in monadic second order logic a predicate to identify the fill edges of
minimal triangulations of such graphs. This in turn allows for another
application of Lemma 4.35 (page 43), which states that every defina-
ble graph property for a subclass of partial k-trees is also definable for
graphs equipped with an additional set of virtual edges, if there exists
a predicate identifying these edges.

5.1 Chordal Partial k-Trees

We will now show how to construct existentially MSOL-definable width-
k tree decompositions for chordal partial k-trees.

Definition 5.3 (Perfect Elimination Order (peo)). Let G = (V,E)
be a graph and n = |V |. A linear order π : V → N|n is called perfect
elimination order, if for every v ∈ V , we have that G[{w | {v, w} ∈
E ∧ π(w) > π(v)}], i.e. the graph induced by all higher numbered
neighbors of v in π, is a clique.

To (implicitly) encode perfect elimination orders in MSOL, we now
define a property of edge orientations of graphs.

Definition 5.4 (Adjacent Out-Neighbors (aon) Property). Let G =
(V,E) be a graph and φ an orientation on the edges in E. For an
edge e = {v, w} ∈ E we denote by (v, w)φ that e is oriented from v
to w according to φ. We say that φ has the adjacent out-neighbors
property, if for any pair of edges {u, v}, {u,w} ∈ E, if (u, v)φ and
(u,w)φ, then {v, w} ∈ E. We call an acyclic orientation with the aon-
property an aon-order. We will sometimes denote the directed graph
obtained from G by orienting all edges according to φ by Gφ.

57

1

1

2

2

3

3

3

(a) A 3-coloring γ =
{1, 2, 3} and a chosen
subset F of the edges in
bold.

1

1

2

2

3

3

3

(b) The edge orientation
induced by γ and F .

1

5

3

6

2

4

7

(c) A perfect elimination
order π defined by γ and
F .

1

5

3

6

2

4

7

(d) The aon-defined
spanning tree of π in G.

1, 3, 4

2, 3, 5

3, 4, 5 4, 5, 6 5, 6, 7 6, 7 7

(e) The tree decomposition defined by γ and F . Ver-
tices v ∈ V are identified with their peo-number π(v),
where the bold vertex in each bag is its witness.

Figure 12: A chordal graph G = (V,E) of treewidth 2 and its tree decomposition.

Theorem 5.5. Let G = (V,E) be a graph. The following are equiva-
lent.

(i) G is chordal.

(ii) G has a perfect elimination order.

(iii) G has a tree decomposition of minimum width, where each bag
induces a clique in G.

(iv) There is an acyclic orientation φ on the edges of G that has the
adjacent out-neighbors property.

Proof. (i) ⇔ (ii) ⇔ (iii) is well-known, see e.g. [22]. (ii) ⇒ (iv). Let
π denote the peo of G. We construct φ as follows. For each edge
{v, w} ∈ E we let (v, w)φ if and only if π(v) < π(w). (iv)⇒ (ii). Take
an arbitrary topological order of the (directed) graph Gφ. One easily
verifies that this is a peo.

Proposition 5.6. Let G = (V,E) be a chordal graph of treewidth k.
There is an aon-order φaon on E which is existentially MSOL-definable
with k + 2 parameters.

Proof. The existence of φaon is stated in Theorem 5.5, so in the fol-
lowing we show its existential MSOL-definability. By Lemma 2.10
(page 8), every orientation on the edge set E is existentially MSOL-
definable with k + 2 parameters. For an edge e = {v, w} ∈ E, denote

58

by (v, w)φaon that e is oriented from v to w according to φaon (and
note that a predicate to verify this can be encoded by Lemma 2.10).
Furthermore, using methods similar to [10, Theorem 4], one can en-
code a predicate Cycleφaon→ (V,E), which is true if and only if (V,E) is
a directed cycle according to φaon. We can now encode φaon straight-
forwardly.

¬((∃E′ ⊆ E)(Cycleφaon→ (IncV(E′), E′)))

∧ ∀u∀v∀w((((u, v)φaon ∧ (u,w)φaon))→ {v, w} ∈ E)

We now have all the ingredients to construct existentially MSOL-
definable width-k tree decompositions for chordal partial k-trees. For
an illustration of the ideas presented above and the construction of
the tree decomposition in the following proof, see Figure 12.

Lemma 5.7. Chordal partial k-trees admit existentially MSOL-defi-
nable width-k tree decompositions with k + 3 parameters.

Proof. Let G = (V,E) be a chordal partial k-tree. Suppose we have an
MSOL-definable aon-order φaon on E as stated in Proposition 5.6. We
use φaon to construct an MSOL-definable spanning tree of G, based
on which we will construct a width-k tree decomposition of G, which
is existentially MSOL-definable. Our construction will be based on a
spanning tree T of G which can be derived from φaon.

Definition 5.8. Let G = (V,E) be a chordal partial k-tree, φaon as
above and π the perfect elimination order corresponding to φaon. A
spanning tree T = (V, F) of G is called aon-defined spanning tree, if
the following holds.

(i) For each vertex v ∈ V with out-degree (according to φaon) at
least one and out-neighbor w ∈ V , {v, w} ∈ F iff20

w = argmin
x:{v,x}∈E
π(x)>π(v)

π−1(x).

(ii) The root of T is the unique vertex with outdegree zero in φaon.

One can verify that there is precisely one vertex satisfying condi-
tion (ii) of the previous definition.

20I.e. the vertex w is the neighbor of v that appears first in π.

59

Proposition 5.9. Let G, π and φaon be as above. The aon-defined
spanning tree T = (V, F) of G is existentially MSOL-definable with
one additional parameter, its edge set F .

Proof. We guess an edge set F and encode predicates verifying the two
conditions stated in Definition 5.8. We first note that by Theorem 5.5
and its proof, for an edge {v, w} ∈ E the statements π(v) < π(w)
and (v, w)φaon are equivalent. Let degφaon→ (v) denote the out-degree of
a vertex v ∈ V . Note that one can encode predicates comparing the
out-degree of vertices to constants in a similar way as in [10, Theorem
4], then we encode property (i) of T as follows. Let for now Nφaon→ (v)
denote the set of out-neighbors of v.

∀v
(

degφaon→ (v) > 1→ (∀w ∈ Nφaon→ (v))
(
{v, w} ∈ F

↔ (∀x ∈ Nφaon→ (v) \ {w})((w, x)φaon)
))

We can encode a predicate identifying the root of T trivially.

Root(v)⇔ degφaon→ (v) = 0

In the following, let T = (V, F) denote the aon-defined spanning
tree of G. We construct from T a width-k tree decomposition (T =
(N ,F),X) as follows. For each vertex v ∈ V there is one node t ∈ N ,
such that Xt = {v} ∪ Nφaon→ (v), i.e. Xt contains v and all its out-
neighbors according to φaon. For any pair of nodes tv, tw ∈ N , where
tv is associated with v ∈ V and tw is associated with w ∈ V , we add
the edge {tv, tw} to F , if and only if {v, w} ∈ F , i.e. there is an edge
between v and w in the aon-defined spanning tree T . To make (T ,X)
a rooted tree decomposition, we give {tv, tw} the opposite orientation
of {v, w} according to φaon. (Recall that the vertex with out-degree 0
is the root of the tree.)

We now turn to encoding the Bag- and Parent-predicates. We
only require one vertex bag type τ and define Bagτ (v, S) according
to the above explained construction.

Bagτ (v, S)⇔ ∀v′(v′ ∈ S ↔ (v = v′ ∨ (v, v′)φaon))

We define Parent(Sp, Sc) accordingly.

Parent(Sp, Sc)⇔ ∃vp∃vc(Bagτ (vp, Sp) ∧Bagτ (vc, Sc)

∧ {vp, vc} ∈ F ∧ (vc, vp)φaon)

The number of parameters is k + 2 for defining φaon and the edge set
F is the parameter for the aon-defined spanning tree.

This completes the proof of Lemma 5.7.

60

5.2 Extension to `-Chordal Partial k-Trees

We will now prove that the construction given in the previous section
can be applied to `-chordal partial k-trees. We first introduce the
notion of (non-perfect) elimination orders.

Definition 5.10 (Elimination Order). Let G = (V,E) be a graph and
n = |V |. An elimination order π : V → Nn is a linear order on the
vertices of G. The fill edges, again denoted by Fill, introduced by π
are the edges obtained by removing the vertices of the graph in the
order given by π and making all its non-adjacent neighbors adjacent
via a fill edge. The graph Gπ = (V,E ∪ Fill) thus obtained is called
the filled graph.

Proposition 5.11. Let G be a graph and π an elimination order of
G. Then, π is a perfect elimination order of Gπ.

A central step in the following proof is that each `-chordal partial k-
tree has an elimination order π such that Gπ is a chordal partial k-tree.
Furthermore we will see that the fill edges Fill can be partitioned into
sets F1, . . . , Fq, with q ≤ `−3, according to when they were introduced
(and we let F0 = E). That is, for an edge f ∈ Fill, how many fill
edges had to be added to make the two non-adjacent endpoints of f
neighbors. Suppose v has two non-adjacent neighbors w and x with
{v, w} ∈ Fi and {v, x} ∈ Fj . Then, {w, x} ∈ F1+max{i,j}. Since this
gives us a partition into a constant number of sets, we will be able to
guess a constant number of witness sets to identify these edges.

For the proof of our next lemma, we use the following famous
characterization of minimal triangulations by Parra and Scheffler [30].

Theorem 5.12 (Theorem 4.7 in [30]). A triangulation of G is mini-
mal if and only if it is obtained by completing into cliques a maximal
set of non-crossing minimal separators of G.

Lemma 5.13. If G has treewidth k and chordality ` ≥ 3 then G has
an elimination order π giving Fill = F1 ∪ F2 ∪ ... ∪ Fq with q ≤ `− 3
and with the filled graph Gπ being chordal and having treewidth k.

Proof. It is well-known that G has treewidth k if and only if G has a
minimal triangulation where the largest clique is of size k+ 1 (Propo-
sition 5.2). Consider such a minimal triangulation G′ of G, and
let π be a perfect elimination order of G′ such that G′ = Gπ. Let
Fill = F1 ∪F2 ∪ · · · ∪Fq be the fill given by π on G. Let F0 = E. For
i = 0, 1, 2, 3, . . . , q, let Gi be the graph Gi = (V, F0 ∪ F1 ∪ · · · ∪ Fi).
Hence G0 = G and Gq = Gπ.

61

We will show by induction on decreasing i starting from i = q that
Gi contains an induced cycle of size at least q − i + 3. This implies
that in G = G0 there is an induced cycle of length at least q+3. Since
G has chordality `, it will follow that q ≤ `− 3, completing the proof
of the lemma.

The induction hypothesis is the following statement: Gi has an
induced cycle of size at least q− i+ 3 that contains an edge belonging
to Fi.

For the base case i = q, in Gq, let {u, v} be a fill edge in Fq and let
x be the vertex whose elimination introduced the edge {u, v}. Clearly
{u, v} is an edge of the 3-cycle {u, v, x}.

Assume that the induction hypothesis is true for i, and let us prove
it for i−1. In Gi, let C be an induced cycle of size at least q−i+3 that
contains an edge {u, v} ∈ Fi. Let x be the vertex whose elimination
resulted in the edge {u, v}. If i < q then clearly C does not contain x
since C has no chord. In case i = q, since u and v are in a minimal
separator of Gq, they separate x from a vertex y. Since Gq is chordal,
u and v are adjacent to y, and x is not adjacent to y. In this case, we
take the cycle {u, v, y} as C. Observe that neither {x, u} nor {x, v}
belongs to Fi, and at least one of them belongs to Fi−1. Since by
Theorem 5.12 every fill edge appears inside a minimal separator of G
and no fill edges are ever added across such a minimal separator, we
know that x is not adjacent in Gq to any vertex of C other than u
and v. Hence when we remove edge {u, v}, we get a cycle C ′ of length
q − i + 4 that contains one less edge from Fi, and at least one edge
of Fi−1. If there are edges of Fi remaining on C ′, we can repeatedly
use the same argument to remove each of them and get a new cycle of
length one more and containing one less edge of Fi, until all edges of
Fi are removed from the current cycle. Consequently, in Gi−1 there
is an induced cycle of length at least q − i + 4 = q − (i − 1) + 3 that
contains at least one edge from Fi−1.

Our strategy to complete the proof of Courcelle’s Conjecture for
graphs of bounded treewidth and bounded chordality is now as follows.
We show that there are predicates identifying edges of each fill-level
and then apply Lemma 4.35 (page 43). Recall that this result states
that every definable graph property is also definable for a graph with
some set of virtual edges (in this case: the set Fill), if we can encode a
predicate φFill(v, w) identifying edges {v, w} ∈ Fill. This will in turn
allow for an application of Lemma 5.7 for the filled graph, taking into
account the additional parameters which are necessary for defining
φFill(v, w). Hence, we will now prove the following.

62

Lemma 5.14. Let G = (V,E = F0) be a partial k-tree of chordality `.
There is an existentially MSOL-definable predicate φFill(v, w), which
is true if and only if {v, w} ∈ Fill = F1∪F2∪· · ·∪Fq, where q ≤ `−3,
with O(1) parameters.

Proof. Suppose without loss of generality that we are given a (k +
1)-coloring of V , and in the following we denote its color classes by
V1, . . . , Vk+1. We use this coloring throughout the proof to induce an
orientation on the edges of G (and filled versions of G). We denote this
orientation by ψ and let (v, w)ψ indicate that there is an edge {v, w}
in G, which is oriented from v to w according to ψ. We furthermore
assume that we are given an elimination order π as stated in Lemma
5.13.

To guess the fill edges Fi of level i, we guess k(k+ 1)/2 vertex sets
Z1,2, Z1,3, . . . , Zk,k+1 with the following interpretation. Suppose v and
w are two non-adjacent vertices that share a common neighbor x, such
that {x, v} ∈ Fj and {x,w} ∈ Fj′ with j, j′ < i and either j = i − 1
or j′ = i − 1. (Note that the latter is a necessary condition for the
edge {v, w} to be a member of the fill level Fi.) Suppose that v ∈ Vc1
and w ∈ Vc2 with c1 < c2, (x, v)ψ and (x,w)ψ. Then, to represent the
edge {v, w} ∈ Fi, we add x as a witness for this edge to Zc1,c2 . We are
now ready to encode φFilli(v, w), which identifies such edges. First,
we guess the witness sets of the edges:

(∃Zi1,2 ⊆ V)(∃Zi1,3 ⊆ V) · · · (∃Zik,k+1 ⊆ V)

The details for φFilli(v, w) are as follows, where φFill0(v, w)⇔ {v, w} ∈
E. Note that this construction is recursive, i.e. when defining φFilli ,
we assume that φFilli−1

is already defined and the aon-ordering ψ has
been updated in each step, see the next paragraph of the proof.

φFilli(v, w)⇔ ∃x
(∨

j,j′=0,...,i−1
j=i−1∨j′=i−1

(
φFillj (x, v) ∧ φFillj′ (x,w)

)

∧ (x, v)ψ ∧ (x,w)ψ

∧
∨

c1<c2=1,...,k+1

(
v ∈ Vc1 ∧ w ∈ Vc2 ∧ x ∈ Zic1,c2

))
We are now ready to define φFill(v, w).

φFill(v, w)⇔
∨

i=1,...,q

φFilli(v, w)

To complete the proof, we need to ensure that φFill(v, w) indeed iden-
tifies the edges of the filled graph Gπ, i.e. we have to encode the
following.

63

(i) Gπ is a chordal partial k-tree.

(ii) V1, . . . , Vk+1 is a valid coloring in Gπ.

(iii) The edge orientation ψ has the aon-property.

We note that every definable graph property for chordal graphs is
definable for Gπ as well by an application of Lemma 4.35 (page 43)
with φV irt(v, w) = φFill(v, w). Hence the definability of (ii) follows
directly, (iii) follows from a combination with Proposition 5.6 and for
(i) we observe the following. It is not hard to encode the chordality
constraint using the predicate Cycle(V ′, IncE(V ′)) (due to [10, The-
orem 4]) on sets V ′ ⊆ V and another way of stating that Gπ is a
partial k-tree is to say that the out-neighborhood of each vertex v in
Gψ (the graph obtained by orienting the edges of G according to ψ)
is a clique of at most k vertices, see Theorem 5.5. The latter condi-
tion can as well be encoded in a straightforward way using a predicate
Cliquek(N→(v), IncE(N→(v))) (again due to [10, Theorem 4]).

This completes the proof of Lemma 5.14.

We now have the following consequence.

Corollary 5.15. Partial k-trees of chordality at most ` admit exis-
tentially MSOL-definable width-k tree decompositions with O(1) pa-
rameters.

Proof. Combine Lemmas 4.35 (page 43), 5.7 and 5.14.

By Lemma 2.12(iii) (page 9), Corollary 5.15 and Courcelle’s The-
orem [12] we have the main result of this section.

Theorem 5.16. Recognizability equals CMSOL-definability for `-chor-
dal partial k-trees.

6 Conclusion

In this paper, we investigated a conjecture by Courcelle from 1990,
which states that every recognizable graph property is definable in
counting monadic second order logic [12]. We introduced a new proof
technique, based on the Myhill-Nerode theory for graphs of bounded
treewidth (see [21, Section 12.7] and Theorem 3.10 on page 12) to
give self-contained proofs of two special cases of this conjecture — for
the class of k-outerplanar graphs and for `-chordal graphs of bounded
treewidth.

In particular, we proved that defining a bounded width tree de-
composition for a graph class C in monadic second order logic suffices

64

to resolve Courcelle’s Conjecture for C (Lemma 2.12, page 9) and
in some cases we even obtain a stronger result. That is, for all graph
classes that admit bounded degree or ordered MSOL-definable tree de-
compositions, the counting predicates of CMSOL are not needed. We
showed that this holds for 3-connected k-outerplanar graphs (Theorem
4.23, page 39). However, Courcelle proved that CMSOL-definability
equals MSOL-definability for each graph class whose members have
an MSOL-definable linear order on their vertices [16] (see also [5]).
This includes every graph class, whose members have spanning trees
of bounded degree and subsequently the statement holds for each 3-
connected planar graph, since a well-known result by Barnette states
that every 3-connected planar graph has a spanning tree of degree at
most 3 [3]. Hence, we would like to know whether MSOL-definable
linear orders are indeed a necessary condition for avoiding the use of
the counting predicate in a proof of (a special case of) Courcelle’s
Conjecture.

Open Question 6.1. Is it possible to construct ordered or bounded
degree MSOL-definable tree decompositions for a graph class whose
members do not admit MSOL-definable linear orders?

In both our proofs, a result by Courcelle which states that for some
graph classes, including partial k-trees, all predicates which use quan-
tification over vertex and edge sets can be translated into predicates
only using vertex quantification [14], has been an essential tool. This
way we were able to construct MSOL-definable tree decompositions for
more restricted graph classes which had favorable properties in terms
of definability in MSOL. We then showed that these results general-
ize to the whole graph class, once we added a set of MSOL-definable
virtual edges to each member. In particular, for k-outerplanar graphs
the main step of our construction was to find MSOL-definable tree
decompositions for 3-connected graphs and for partial k-trees of boun-
ded chordality, constructing an MSOL-definable tree decompositions
for chordal graphs was the main step. However, these results did not
generalize trivially, see Sections 4.3 and 5.2.

It seems though that the general idea of this approach might be the
right step towards resolving Courcelle’s Conjecture in general, which
can be formulated as the following question.

Open Question 6.2. Is there a set of fill edges, which can be identified
with an MSOL-predicate for any partial k-tree, such that the filled
graph admits a width-k MSOL-definable tree decomposition?

65

Acknowledgements

The first author thanks Bruno Courcelle and Mike Fellows for inspiring
discussions. The third author thanks an anonymous referee of IPEC
2015 for very useful comments on a proof in Section 4, Paul Bonsma
for his clear presentation of Tutte decompositions which contained the
proof of Proposition 4.30 [9, Lecture V.(9)] and Tom van der Zanden
for Example 4.42 [37].

References

[1] Karl R. Abrahamson and Michael R. Fellows. Finite automata,
bounded treewidth, and well-quasi-ordering for bounded tree-
width. In Proceedings of the AMS Summer Workshop on Graph
Minors and Graph Structure Theory, volume 147 of Contempo-
rary Mathematics, pages 539–564. AMS, 1993.

[2] Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems
for tree-decomposable graphs. Journal of Algorithms, 12(2):308–
340, 1991.

[3] David Barnette. Trees in polyhedral graphs. Canadian Journal
of Mathematics, 18(58):731–736, 1966.

[4] René van Bevern, Rodney G. Downey, Michael R. Fellows, Serge
Gaspers, and Frances A. Rosamond. Myhill–Nerode methods for
hypergraphs. Algorithmica, 73(4):696–729, 2015.

[5] Achim Blumensath and Bruno Courcelle. Monadic second-order
definable graph orderings. Logical Methods in Computer Science,
10(2), 2014.

[6] Hans L. Bodlaender. A partial k-arboretum of graphs with boun-
ded treewidth. Theoretical Computer Science, 209(1-2):1–45,
1998.

[7] Hans L. Bodlaender, Pinar Heggernes, and Jan Arne Telle. Re-
cognizability equals definability for graphs of bounded treewidth
and bounded chordality. In Proceedings EUROCOMB 2015, Elec-
tronic Notes in Discrete Mathematics. Elsevier, 2015.

[8] Hans L. Bodlaender and Arie M.C.A. Koster. Safe separators for
treewidth. Discrete Mathematics, 306(3):337 – 350, 2006.

[9] Paul Bonsma. Lecture material for algorithmic graph theory
2011/2012 at Humboldt University, Berlin. Retrieved 03/05/2015
via http://www2.informatik.hu-berlin.de/logik/lehre/WS11-
12/Para/index.html.

66

[10] Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic
generation of linear-time algorithms from predicate calculus de-
scriptions of problems on recursively constructed graph families.
Algorithmica, 7(1-6):555–581, 1992.

[11] J. Richard Büchi. Weak second-order arithmetic and finite au-
tomata. Mathematical Logic Quarterly, 6(1-6):66–92, 1960.

[12] Bruno Courcelle. The monadic second-order logic of graphs. I.
Recognizable sets of finite graphs. Information and Computation,
85(1):12–75, 1990.

[13] Bruno Courcelle. The monadic second-order logic of graphs V:
On closing the gap between definability and recognizability. The-
oretical Computer Science, 80(2):153–202, 1991.

[14] Bruno Courcelle. The monadic second order logic of graphs VI:
On several representations of graphs by relational structures. Dis-
crete Applied Mathematics, 54(2-3):117–149, 1994.

[15] Bruno Courcelle. The monadic second-order logic of graphs VIII:
Orientations. Annals of Pure and Applied Logic, 72(2):103–143,
1995.

[16] Bruno Courcelle. The monadic second-order logic of graphs X:
Linear orderings. Theoretical Computer Science, 160(12):87–143,
1996.

[17] Bruno Courcelle. The monadic second-order logic of graphs XI:
Hierarchical decompositions of connected graphs. Theoretical
Computer Science, 224(1-2):38–53, 1999.

[18] Bruno Courcelle. The monadic second-order logic of graphs XII:
Planar graphs and planar maps. Theoretical Computer Science,
237(1-2):1–32, 2000.

[19] Bruno Courcelle and Joost Engelfriet. Graph Structure and
Monadic Second-Order Logic — A Language-Theoretic Approach,
volume 138 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2012.

[20] Reinhard Diestel. Graph Theory. Number 173 in Graduate Texts
in Mathematics. Springer, 4th edition, 2012. Corrected reprint.

[21] Rodney G. Downey and Michael R. Fellows. Fundamentals of
Parameterized Complexity. Texts in Computer Science. Springer,
2013.

[22] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect
Graphs. Number 57 in Annals of Discrete Mathematics. Elsevier,
2nd edition, 2004.

67

[23] Lars Jaffke and Hans L. Bodlaender. Definability equals reco-
gnizability for k-outerplanar graphs. In Proceedings IPEC 2015,
Leibniz International Proceedings in Informatics, pages 175–186.
Dagstuhl Publishing, 2015.

[24] Valentine Kabanets. Recognizability equals definability for par-
tial k-paths. In Proceedings ICALP 1997, volume 1256 of LNCS,
pages 805–815. Springer, 1997.

[25] Damon Kaller. Definability equals recognizability of partial 3-
trees and k-connected partial k-trees. Algorithmica, 27(3-4):348–
381, 2000.

[26] Ioannis Katsikarelis. Computing bounded-width tree and branch
decompositions of k-outerplanar graphs. ArXiv e-prints, 2013.
http://arxiv.org/abs/1301.5896.

[27] Denis Lapoire. Recognizability equals monadic second-order defi-
nability for sets of graphs of bounded tree-width. In Proceedings
STACS 1998, volume 1373 of LNCS, pages 618–628. Springer,
1998.

[28] John R. Myhill. Finite automata and the representation of events.
Technical Report WADC TR-57-624, Wright-Paterson Air Force
Base, 1957.

[29] Anil Nerode. Linear automaton transformations. Proceedings of
the American Mathematical Society, 9(4):541–544, 1958.

[30] Andreas Parra and Petra Scheffler. Characterizations and al-
gorithmic applications of chordal graph embeddings. Discrete
Applied Mathematics, 79(1-3):171–188, 1997.

[31] Maciej M. Sys lo. Characterizations of outerplanar graphs. Dis-
crete Mathematics, 26(1):47 – 53, 1979.

[32] Wolfgang Thomas. Languages, automata, and logic. In Handbook
of Formal Languages. Beyond Words, volume 3, pages 389–455.
Springer, 1996.

[33] William T. Tutte. Connectivity in Graphs. University of Toronto
Press, 1966.

[34] William T. Tutte. Graph Theory, volume 21 of Encyclopedia of
Mathematics and its Applications. Addison-Wesley, 1984.

[35] Klaus Wagner. Über eine Eigenschaft der ebenen Komplexe.
Mathematische Annalen, 114(1):570–590, 1937.

[36] Hassler Whitney. Congruent graphs and the connectivity of
graphs. American Journal of Mathematics, 54:150–168, 1932.

[37] Tom van der Zanden. Personal communication, 2015.

68

