Linear-Time Register Allocation for a Fixed Number of Registers

Hans Bodlaender*

Abstract We show that for any fized number of registers
there is a linear-time algorithm which given a structured
(= goto-free) program finds, if possible, an allocation of
variables to registers without using intermediate storage.
Our algorithm allows for rescheduling, i.e. that straight-
line sequences of statements may be reordered to achieve a
better register allocation as long as the data dependencies
of the program are not violated.

If we also allow for registers of different types, e.g. for
integers and floats, we can give only a polynomial time
algorithm. In fact we show that the problem then becomes
hard for the W-hierarchy which is a strong indication that
no O(n°) algorithm exists for it with ¢ independent on
the number of registers. However, if we do not allow
for rescheduling then this non-uniform register case is also
solved in linear time.

1 Introduction and Overview

In the register allocation problem one tries to assign
hardware registers to the dynamically allocated vari-
ables (auto-variables in C) of a program written in
a high level programming language. These variables
might be explicitly defined by the program or implic-
itly generated to hold intermediate computational re-
sults. The allocation must be done in such a way that
whenever two variables interfere, i.e. are needed at the
same time during the execution of the program, they
are found in different registers. In general this is not
possible and some variables must be saved to the stack
and then restored from there afterwards. This is called
spilling. Spilling is time consuming so compilers try to
avoid it whenever possible by assigning the same regis-
ter to several variables that do not interfere.

Concrete machines have a fixed number of registers.
It is an important task for a compiler written for a
concrete machine to decide whether or not a given
program (function, subroutine, etc.) can be realized

~ *University of Utrecht, Department of Computer Science,
Utrecht, P.O. Box 80 089, NL 3508 TB Utrecht, The Netherlands.
Email: hansb@cs.ruu.nl.

TTU Berlin, Fachbereich Mathematik, Sekr. MA 6-1, D-
10623 Berlin, Germany. Email: gustedt@math.TU-Berlin.DE.
Supported by IFP Digitale Filter.

tUniversitetet i Bergen, Institutt for Informatikk, 5020 Bergen,
Norway. Email: telle@ii.uib.no

Jens Gustedt!

Jan Arne Tellef

on that machine without spilling. In this paper we give
algorithms to achieve such a goal.

It is well known, see e.g. [1, 12], that the register
allocation problem for a program P written in a high
level programming language is equivalent to the problem
of coloring its variable interference graph Gp. This
graph has the variables of the program as vertices with
an edge between two variables if their live variable
ranges overlap, i.e. if there is a statement where both
variables are needed in registers. Taking the set of
available registers to be the set of available colors for
Gp the translation to a coloring of Gp is immediate.
Since coloring of graphs in general is NP-hard and any
graph can appear as Gp, heuristics are usually applied
to solve the problem, see [1].

The picture changes when certain restrictions on the
programming language are imposed. The first result
here seems to be in [15] where it is shown that for
structured Pascal programs the graph Gp is in fact
the intersection graph of subgraphs of a series-parallel
graph. More recently, Kannan and Proebsting [13] gave
a 2-approximation algorithm for the coloring of Gp of
such a program P. This is a vast improvement over
the general case, as under the assumption NP # coRP
general graph coloring is not approximable within a
factor n'=¢ for any € > 0 [10].

But Pascal lacks many programming constructs,
such as short circuit evaluation and multiple exits
from loops and functions, that complicate the picture.
Recently, Thorup [18] was able to show that even with
those constructs, for so-called structured programs,
that simply avoid gotos!, Gp still has a lot of structure:
it can be found as the intersection graph of subgraphs
of a graph of treewidth at most 6. Thorup used that
observation to give a 4-approximation algorithm for the
coloring of Gp of such a program P.

In this paper we solve a problem with a different
flavour. We are not interested in the minimum number
of registers needed to realize a given program without
spilling, but on the following fized parameter problem:

TIn the paper [13], structured is defined as just having a series-
parallel control-flow graph. Thus the term “structured” has an

ertended meaning for us.

UNIFORM REGISTER ALLOCATION PROBLEM
Instance: A structured program P.

Parameter: Integer w.

Question: Can P be realized without spilling using at
most w uniform registers?

As the main result of this paper we are able to give
a linear time algorithm for this problem:

THEOREM 1. For any uniform register allocation prob-
lem, with fixed w, there is a linear time algorithm that
giwen a structured program P either finds a valid allo-
cation with w registers or states that such an allocation
does not exist. Herein rescheduling of statements that
does not violate data dependencies is permitted.

One main ingredient to the solution is Thorup’s bound
on the treewidth which in fact remains valid even if
we allow rescheduling. Note that the restriction to
structured programs is crucial, as otherwise we must
solve w-coloring of general graphs, a problem NP-hard
for any fixed w > 3 [11].

The approximation algorithms of [13, 18] mentioned
above, deal with the 'macroscopic’ view of a program,
namely to solve the register allocation problem under
the assumption that the local order of statements is
fixed. This assumption is too strong for modern RISC
architectures that gain much of their improved perfor-
mance from the fact that statements might be reordered
by the compiler, as long as the data dependencies are
not violated, so-called rescheduling. It is known that
if we allow rescheduling then the problem to determine
the minimum number of registers needed is N P-hard
even for straight-line code, i.e. code with no conditional
branching or loops, [16]. Perhaps surprisingly, our algo-
rithm is able to handle rescheduling of statements com-
pletely within the linear time bound, for a fixed number
of registers w (with running time exponential in w.)

In the fixed parameter non-uniform register alloca-
tion problem we allow for special-purpose registers for
variables of specific types, e.g. separate registers for
integers and floats:

NON-UNIFORM REGISTER ALLOCATION PROBLEM

Instance: A structured program P.

Parameter: Integers wy, ..., wy.-

Question: Can P be realized without spilling using at
most w; registers for variables of type ¢;?

In the case that we do not allow for rescheduling we
can give a linear time algorithm for this problem. Even
when allowing for rescheduling we are able to give a
(high-order) polynomial-time algorithm. However, we

show that we may then not expect to get an O(n°)
algorithm where ¢ is not dependent on the number of
registers:

THEOREM 2. Non-uniform register allocation with
rescheduling with at least two different types of registers
is W{t]-hard for any t > 0.

Our main algorithmic technique is to separate the
problems into two parts. One that deals with the
statements and variables that are involved in possible
branchings of the program and another that deals with
straight code in which no branching is involved. The
different types of graphs we obtain all have bounded
treewidth, if a solution with w registers exists.

Section 2 introduces the basic notation, gives the
modelling for the straight line code part and for the re-
maining branching part and shows how both parts lead
to graphs with bounded treewidth. Thorup[18] shows
how parsing of a structured program in a straightfor-
ward way gives a tree-decomposition of its control-flow
graph of width at most 6. In using this result for the
variables involved in branchings of the program, our
algorithms avoid the usual computation of the tree-
decomposition [4] and thereby overcome the major ob-
stacle to the practical use of bounded treewidth algo-
rithms. For rescheduling of the straight-line part we
apply in a pre-processing step the algorithm from [4] to
compute a path-decomposition, but have hope that a
good approximation could instead be used for practical
purposes.

In Section 3 we use dynamic programming to solve
the problems in polynomial time. The modelling is
used relatively easily in Section 3.3 to give, in a brute
force manner, a coloring (and thus register allocation)
in polynomial time for the non-uniform register case.
In Section 3.2 we are able to prove Theorem 1. The
methods used are similar to techniques in [7] to solve
problems on graphs of bounded treewidth.

Section 4 gives a brief introduction to the fixed pa-
rameter W-hierarchy and sketches a proof of the hard-
ness result of Theorem 2 for the non-uniform register
case.

2 Treewidth Modelling

In the following graphs may either be directed or
undirected. We will use the standard notions of path-
and tree-decompositions of undirected graphs and
the corresponding parameters pathwidth, pw, and
treewidth, tw. These notions are defined in e.g. [3].
We describe on assembly level the directed data flow
graph Fp that models data dependencies of program P.
Every assembler statement uses a certain set of registers
for its input, the right hand side, RHS, and assigns

values to another set of registers, the left hand side,
LHS. Observe that these sets may overlap and that
they may be empty for a particular statement.

The vertices of the data flow graph are the as-
sembler statements and there is an arc from state-
ment s to statement ¢ if there is a register R with
either R € LHS(s) N RHS(¢) (def-use dependency) or
R € LHS(s) N LHS(¢) (def-def dependency) or R €
RHS(s) N LHS(t) (use-def dependency) and in each
case there is some execution of the program where s
is the last statement containing R as specified before
statement ¢. For the sake of simplicity we do not con-
sider other data dependencies such as memory aliasing.
Since the program P may have loops the graph Fp is
not necessarily a dag (directed acyclic graph).

High level programming languages abstract from as-
sembler by introducing the concept of variables of the
program. When translating such a program into assem-
bler the variables are assigned to particular registers if
possible. The definition of the data flow graph is easily
extended to pseudo assembler, only that variables play
the role that registers did before. For our purposes this
translation process may be seen as a multi step proce-
dure:

1. Pseudo assembler statements that still operate on
the variables are generated.

2. The pseudo assembler statements are topologically
sorted according to the data flow graph, state-
ment scheduling.

3. Variables are mapped to hardware registers if pos-
sible, register allocation.

Our main concern in this paper is the last step,
the register allocation. But since statement scheduling
greatly influences the possibilities for allocation we are
forced to consider both problems simultaneously.

A variable z is alive in statement u if z is either
directly affected by u or in some execution of the
program there is a def-use dependency on z from a
statement preceding u to a statement succeeding wu.

The live range of variable z is the set of all
statements for which z is alive and is usually computed
by exploring the flow graph in a reverse depth-first
ordering. For the sake of simplicity we assume that the
live range of a variable = forms a connected subgraph of
Fp. Otherwise we may easily reformulate the program
by distinguishing different incarnations of z.

Two variables z and y interfere if their live ranges
intersect, i.e. if there is a statement u where both
variables are alive. It is easy to see that if z and y
interfere they may not be assigned to the same register.
The exceptional case is a variable copy statement s :

z = y where s is the last (resp. first) statement in
the live range of x (resp. y) in which case we simply
identify the two variables and drop s. In fact such
anomalies disappear with a modelling of Fp that is a
bit more involved, but which exceed the possibilities of
this abstract. The variable interference graph Gp is
now defined with the set of variables as vertices and an
edge between two variables z and y iff z and y interfere.

2.1 The Straight Line Parts In this section we
show how to model the problem for pieces of code that
do not contain any branching operations. The solutions
for these pieces of code will then be used later as a
subroutine to solve the problem as a whole.

A subsequence of the pseudo assembler is called
straight line code if it does not contain any jump
statements (but the last) and if none of the statements
(but the first) are jumped to. The maximal subse-
quences of straight line code of a program P are the
basic blocks of P.

To each basic block B there corresponds a subgraph
F p|B of the data flow graph. Unfortunately, this graph
is not necessarily a dag: jump statements that follow
the basic block may cause data flow from the end of a
basic block to its beginning. To handle this situation
we assume that each basic block has begin and end
statements. The variables that are alive for the begin
and end statement respectively are the inflow and
outflow of the block. On the level of the block, inflow
resp. outflow variables are seen as if they were the LHS
of the begin resp. the RHS of the end statement.

To be able to reduce the scheduling and allocation
problems on a basic block B to a dag we compute the
data flow graph for this basic block —as if it were a
program of its own— resulting in the constrained data
flow graph ﬁB. Since the basic block does not contain
any branching statement this graph is in fact a dag.
The only additional information that we have to keep
is which variables of the inflow and outflow are to be
identified, the border constraints. When computing
a solution for the constrained graph we have to ensure
that the same register is used for a particular variable
as it appears in the inflow and in the outflow. In the
middle of a basic block this might well be relaxed.

In general we may assume that each variable is
initialised exactly once inside a basic block B. This
is 80, since in a statement ¢ that initializes a variable x
the previous value of z —if present— is overwritten. Thus
if is initialized in statements t1,%s,...,% (in order of
the original specification of B) it can be replaced by
different incarnations zi,, Z,, - - ., Zt, - This means that
we do not have def-def dependency arcs in Fg.

Moreover, Fg will not contain use-def dependency

arcs from s to t either, as a variable that is used before
initialization must have been part of the inflow, and
thus we have a def-use dependency arc from the begin
statement to s, and the variable initialized in statement
t is considered a different incarnation.

The only side constraint we have to worry about, is
that if z is part of the inflow and part of the outflow of
the block the registers assigned to z;, and z;, must be
the same.

So in the following we may assume that every
variable of a basic block is initialized exactly once,
and that Fg contains only def-use dependency arcs.
Many computer architectures, e.g. all modern RISC
architectures, see [12], also ensure that in turn any
statement initializes at most one register. Since such
an assumption eases the following discussion we will
assume that this is the case, and only mention at the
end how the results can be extended to the more general
case.

It is easy to see that any rescheduling and sub-
sequent register allocation that obeys the border con-
straints is valid for the original problem and, vice versa,
that every valid solution for the original problem leads
to an equivalent one for the constrained problem.

For each basic block B any feasible sequencing of
the assergbler statements corresponds to a topological
sort of Fg and vice_‘versa. Observe that the set of
topological sorts of Fg does not change if we add or
delete transitivity edges to it. The number of registers
needed translates to the directed vertex separation
number of FB, which is defined as follows:

Let D = (V,A) be a dag. For a topological sort
v1,...,U, of D the separator at i is the set of vertices

e that have a number j < ¢ in the sort

e such that there is (v;,v;) € A with 4 < k.

The vertex separation width at i is [sep(4)|, and in-
dicates how many variables are alive at i (recall that A
contains only def-use dependency arcs). The vertex sep-
aration number for a given sort is the maximum width
over all 7 and the directed vertex separation number of
D, dvs(D), is the minimum over all topological sorts. It
is closely related to the vertex separation number of an
undirected graph G, vs(G), a parameter defined in an
analogous way but instead of only allowing topological
sorts this parameter is a minization over all linear order-
ings of the vertices of G. If Gp is the undirected graph
obtained from D by dropping the directions on the arcs
we therefore have vs(Gp) < dvs(D). It is well-known
that the undirected vertex separation number and path-
width parameters coincide (McKinnersley [14]), so that
we can bound pw(Gp) by dvs(D).

LEMMA 2.1. Let D be a dag and Gp its underlying
undirected graph. Then pw(Gp) = vs(Gp) < dvs(D).

Consider now the statement interference graph Fp,
the underlying undirected graph of Fg. The presence
of an edge {s,t} in Fp means that either a result of s
is needed in t or vice versa. So in particular this means
that some variables initialised by s and ¢ interfere. We
can now state the main result of this section that for the
cases of interest the graph modelling the straight-line
code has bounded pathwidth (and hence also bounded
treewidth.)

COROLLARY 2.2. If the variables of a basic block B can
be allocated to at most w registers then the directed
vertex separation number of Fg is at most w and
pw(Fp) <w.

It is relatively easy to see that a similar result holds even
without the restriction that all assembler statements
initialise at most one register. This is so, since in that
case we can show that Fp is a minor of G and the
pathwidth parameter cannot increase by taking minors.

So far in this graph theoretic model the particular
assignment of a specific register to a variable has not
yet been important; we have only been interested in the
number of registers needed at a certain time. To be
able to use the constrained problem on basic blocks as
a subroutine, we must add the border constraints to the
problem. These will ensure that in the topological sort
corresponding to a coloring the coupled variables of the
in- and outflow are colored the same. This problem is
dealt with in Section 3.2.

2.2 The Branching Part We now turn to the
branching part of the program. Since rescheduling is
not an issue here, we focus on the control flow and not
the data flow of the program. In general the control-flow
graph and hence also the variable interference graph of a
program can be arbitrary graphs. However, in a recent
result [18], Thorup shows that for programs written in
high-level languages that avoid goto’s the underlying
undirected graph of the (directed) control-flow graph
has bounded treewidth:

THEOREM 3. (Thorup [18]) The control-flow graphs of
structured (i.e. goto-free) C programs have treewidth
bounded by 6, and similar results for other languages
are Algol (8), Pascal (8), Modula-2 (5).

The differing bounds for different languages are due to
the presence or not of language constructs like short-
circuit evaluation of boolean functions, multiple returns
from functions and multiple exits from loops. For
example, without short-circuit evaluation, the bounds

on the treewidth in the results above will for each
language drop by one [18].

The paper [18] also shows how treewidth is pre-
served under standard compiler optimizations, includ-
ing rescheduling. We consider the pseudo-assembler
program realizing the structured high-level program and
assume that this translation does not introduce any
unnecessary branching, so that the structural aspects
of branching statements are preserved. For example
a break or continue statement inside a loop which in
the high-level language involves branching to the end or
to the beginning of the loop translates in the pseudo-
assembler code simply to a jump to the corresponding
positions.

The reduced control flow graph of an assembler
program has statements as vertices that are begin’s and
end’s of basic blocks. i.e. the first and last statements of
the basic blocks. Arcs in this graph specify that a basic
block can immediately follow another in some execution
of the program, and are given by the jumps: there is an
arc from statement s to statement ¢ if

1. s and ¢ are the begin and end statements of a single
basic block

2. end statement s is a jump and begin statement % is
its target

3. end statement s is a conditional jump or not a jump
statement and begin statement ¢ follows it in the
order of the program.

Arcs of type 1, the straight line arcs, correspond to
basic blocks of the program.

In general only a subset of all variables will be alive
at statements of the reduced control-flow graph, the
branching variables. The other variables only play a
role in what register combinations they enforce between
the in- and outflow of a basic block.

So if we assume that we have solutions for all pos-
sible register combinations on basic blocks that corre-
spond to arcs of type 1 we may place this information
on the corresponding arcs of the reduced control-flow
graph. The branching problem we are now left with
is then to find an assignment of registers to the branch-
ing variables s.t. for every straight line arc of the flow
control graph there is a valid pairing constraint for the
basic block.

The reduced control-flow graph has vertices corre-
sponding to assembler statements that are sources or
targets of jumps. The vertices of this graph and its
jump arcs can be identified with vertices and arcs of
the control-flow graph of the high-level language, while
the arcs representing basic blocks can be identified with
paths of the latter graph that have been contracted to a

single edge. The pseudo-assembler reduced control-flow
graph is therefore a minor of the high-level control-flow
graph. Since it is well-known that treewidth can only
decrease by taking minors, we have:

COROLLARY 2.3. The reduced control-flow graph of a
structured program has bounded treewidth.

For fixed values of k there exists a linear-time algo-
rithm [4] which finds, if possible, a tree-decomposition
of width k of an input graph, but unfortunately this
algorithm is not practical for values of & > 4. How-
ever, in the case of control-flow graphs the parsing of the
program can be used to quite easily discern their tree
structure. Indeed, the paper of Thorup [18] shows how a
small width tree-decomposition of these graphs can be
found in a straighforward manner in linear-time from
three-address code, and a similar technique will work
for the reduced control-flow graphs given by pseudo-
assembler code.

Now we show that, for fixed w, if w registers suffices
to allocate variables of the reduced control flow graph
without spilling, then its variable interference graph has
bounded treewidth.

The live variable ranges correspond, for each vari-
able, to a subgraph of the reduced control-flow graph.
The variable interference graph is the intersection graph
of live variable ranges, hence by Corollary 2.3 it is an
intersection graph of a family of subgraphs of a bounded
treewidth graph. If the bound on the treewidth is
1, then the intersection graph is a chordal graph and
for this class of graphs it is well-known that treewidth
equals chromatic number. In the general case, we get a
slightly weaker result:

LEMMA 2.4. If H is an intersection graph of a family
of subgraphs of a treewidth-k graph G and the chromatic
number of H is at most w, then the treewidth of H is
at most (k+ Nw —1

Proof. At most w subgraphs of G corresponding to
vertices in H can share a common vertex of G, since
otherwise H has a clique of w + 1 vertices and is not
w-colorable. We build a tree-decomposition of H in
the following way: take a width k tree-decomposition of
G, every bag has at most k + 1 vertices. Replace every
vertex in every bag by the vertices of H whose subgraph
contain that vertex. This gives a tree-dec of H, and by
the previous observation, no bag has more than (k+1)w
vertices.

The treewidth upper bound of (kK + 1)w — 1 is not
optimal, but we can show that treewidth is lower
bounded by kw/2. We omit the proof of this fact for
the sake of brevity.

3 The Algorithms

This section develops the techniques that are necessary
to achieve polynomial (and even linear) time algorithms.
The principal ideas are the following.

For the branching part we will not use fewer regis-
ters by reordering e.g. the then and the else parts of an
if-then-else-fi construct; valid colorings of the vari-
able interference graph stand in one-to-one correspon-
dence with valid register allocations. For the straight-
line part however, reordering of the statements is re-
ally important and in fact this makes the problem more
difficult to treat, both in the sense that we obtain W-
hardness results for the non-uniform register problem
and in the sense that the linear time algorithm for the
uniform register problem is more complicated.

The two principal parts of the problem solution —
straight-line and branching— are combined by what we
call the border constraints of a basic block. In the
branching part, a basic block B is represented simply
by an arc (s,t) where statement s can be taken to be
the begin statement of B and ¢ to be the end. Consider
a variable z of the inflow but not the outflow of B, and
conversely variable y of the outflow but not the inflow
of B. A solution of the branching part might try to
assign the same register to both variables, but the only
w-colorings of B may be ones where z and y are assigned
different registers (colored with different colors).

There are two reasons we are able to handle this
combination of the two parts in linear time:

1. The size of the inflow and outflow are both bounded
by a constant so if we are able to solve any
particular instance of a block B in linear time,
doing so for different pairings only multiplies the
running time by a constant factor.

2. In the tree-decomposition of the variable interfer-
ence graph for the branching part all variables of
the inflow and outflow of a particular basic block B
belong to the same node of the tree-decomposition
and hence in the dynamic programming algorithm
they are dealt with as a set, so that in any case all
combinations of pairings are considered.

Section 3.1 describes a linear-time algorithm for the
branching part, for both uniform and non-uniform
registers. This algorithm relies on an oracle that
tells whether or not certain combinations of pairing of
variables are feasible — and the subroutine for this is
given in the next two subsections. Section 3.2 the linear-
time straight-line algorithm for the uniform register
case, and Section 3.3 gives the polynomial-time straight-
line algorithm for the case of non-uniform registers.

3.1 The Branching Problem

Since w-coloring for graphs of bounded treewidth
can be solved in linear time by standard dynamic
programming techniques, see e.g. [2], Lemma 2.4 has
the corollary:

COROLLARY 3.1. w-coloring for fixed w is linear for
any class of graphs that are intersection graphs of
subgraphs of bounded treewidth graphs.

See [3] for definitions of graphs of bounded
treewidth k, also called partial k-trees. In [17] w-
coloring of partial k-trees is solved by a linear time
algorithm having a constant whose dependency on w
and k is w?(**1)_ To handle registers of different types
we modify the coloring algorithm in a straightforward
manner to a restricted coloring algorithm where certain
vertices can only receive certain colors. Were it not for
the border constraints, this would suffice to solve the
branching part of our problem.

To deal with the border constraints is rather
straight forward, as mentioned in Section 3. We use
dynamic programming similar to the algorithms men-
tioned above, except that we weed out, by a call to
an oracle — the subroutine for the straight-line code —
those table entries that correspond to solutions where
variables of the border constraints of a basic block are
given the same color in such a combination that does
not allow a w-coloring of the basic block. A block is
represented by an arc in the reduced control-flow graph
and hence all vertices playing a role in a single border
constraint belong to a clique of the variable interference
graph, and are a set in some of the tables that are gen-
erated. This gives a linear-time algorithm.

3.2 The Straight Line Problem

In this subsection we will complete the proof of
Theorem 1, by showing that for the uniform register
case the straight-line part can be solved in linear time.
This is a consequence of the following result.

THEOREM 4. For each fixred w, there exists a linear
time algorithm that, when given a dag D, decides
whether the directed vertex separation number of D is
at most w, and if so, finds a topological sort of D with
verter separation width at most w.

Our algorithm uses Lemma 2.1: if the directed
vertex separation number of D is at most w, then the
pathwidth of the underlying undirected graph Gp is at
most w. Thus, we start by finding a path-decomposition
of Gp of width at most w, or, equivalently, a linear
ordering f of Gp with vertex separation width at most
w. If these do not exist, then we stop and output this
fact.

The algorithm from [4] can be used for finding
the path-decomposition; using the characterization from
[14], the path-decomposition can be transformed to the
linear ordering of Gp. Both steps cost linear time, but
unfortunately the first has a high constant factor.

A more practical approach is to not compute the
pathwidth with the algorithm from [4] but to use instead
a topological sort of D produced by some good heuristic
for the straight line problem. The hope is that this
heuristic has directed vertex separation number close to
optimality, and hence also is more or less to be taken as
a constant.

So, the problem we are left with can be stated as
follows: we have a linear ordering f: V — {1,2,...,n}
of the undirected graph Gp with vertex separation
width at most w, and want to find a topological sort
of D with vertex separation width at most w, or decide
that such a topological sort does not exist.

Given a topological sort g of an induced subdigraph
H = (W,B) of D = (V, A), we say g can be extended
to a topological sort of D with vertex separation width
at most w, if the vertices in V' \ W can be inserted in
the sort g, yielding a topological sort of D whose vertex
separation width is at most w. A spot in a topological
sort is a position between two successive vertices in the
sort, or the position before or after all vertices. We say
a topological sort is extended at set of spots S, iff it can
be extended by inserting vertices only in these spots.
Let D; be the subdigraph of D induced by the vertices
in f71{1,2,...,4}, i.e. the first i vertices in f.

The crux of the algorithm is the following. For
each topological sort g of an induced subdigraph D;,
we can point out a constant size set of spots S, where
the constant quadratically depends on w. S has the
property that g can be extended, iff g can be extended
at S. So we may assume we will only insert vertices in
spots in the set S.

For a topological sort g of induced subdigraph H =
(W, B), the following procedure computes this set of
spots S: Let Z be the set of vertices in W, adjacent
to a vertex not in W. When working with a path
decomposition of width w, we have that |Z| < w+1. Say
that v € Z belongs to a certain gap, if v appears before
the gap, and a neighbor of v appears after the gap. The
gaps to which a vertex v € Z belong will be consequtive.
Thus, we can partition the gaps in g in at most 2w + 3
ranges, where every range is a set of consequtive gaps
with the same set of vertices in Z belonging to each
gap in the range. In each range, we write down the
separation widths at the gaps (or more precisely, the
number of vertices belonging to the gaps.) Thus, for
each range, we have a sequence of integers. When we
have a subsequence s;, s;41,. - ., s; of such integers with

si,8; the smallest and largest integer in the subsequence
or vice versa, we can remove the integers s;y1,...,5;_1,
from the sequence. Repeat this operation until it is
no longer possible. The gaps corresponding with the
resulting integers are placed in S.

In essence, these ideas borrow from a technique
given in [7], and correctness can be proven using results
and techniques from that paper; but in the current
framework, the result is both more practical and easier
to understand. It also follows from [7] that S will have
O(w?) gaps.

It can be shown that for each subdigraph D;, there
is a constant sized set of topological sorts, the full set
of partial solutions of D;, such that if D has directed
vertex separation number at most w, then one of the
elements of this set can be extended. (Basically, if two
topological sorts have the same ranges and sequences
of integers in each corresponding range, as computed
above, then only one needs to be in this set.) Moreover,
we can compute a representation of the set for D;;q in
constant time from a similar representation of the set for
D;. Then, the linear time algorithm works as follows:

e We compute first a full set of partial solutions for
D, then for D, etc.

e When we have a full set for D,, we can already
decide whether the vertex separation of D = D,, is
at most w.

e With some bookkeeping we can also construct a
topological sort with vertex separation width at
most w if one exists.

Additional technical ideas are needed to deal with
the border constaints, which enforce that a variable
of the inflow and another of the outflow, which were
renamed for the sake of lowering the register usage, are
actually one and the same and need to be assigned to
the same register. The main idea here is that when
two registers are both free at the same time, then
they must no longer be distinguished. In fact any
border constraints concerning those two registers can be
fulfilled if the two corresponding variables are assigned
any of those registers. In general a partial solution can
be characterized in addition to what is stated above with
the relaxation of the border constraints that it allows.
Since the possible set of border constraints is a constant,
only depending on w, there are only a constant number
of positions ¢ where these may change. So there are at
most a constant number of spots where the additional
relaxation of the border constraints must be kept track
of.

The algorithm also allows for a solution method
that does not necessarily have a constant factor coming

close to the upper bound. For each i, we keep a subset
of a full set of partial solutions. We start with only one
element in D;. We always can take an element from one
of the sets, say D;, insert the vertex f~!(i+ 1) in one of
the O(1) spots, and put the resulting topological sort in
the set for D;y1, unless that set contained an element
with the same characteristic, or the vertex separation
width of the sort became too large. The aim is to get
an element of D,,. Different strategies can be tried here:
the dynamic programming algorithm corresponds to a
‘breadth first search’ strategy, but other methods could,
at least on the average, lead faster to a solution.

3.3 Non-uniform Registers If we do not allow
for rescheduling, then we need only concentrate on
the control-flow graph. Therefore, as discussed in
Section 3.1, a restricted coloring of bounded treewidth
graphs solves the problem of fixed parameter non-
uniform register allocation without rescheduling, in
linear time. Now we indicate how to solve this problem
while allowing for rescheduling, by a polynomial time
algorithm where the exponent is a function of the
number of registers. The previous discussion showed
that we may restrict ourselves to straightline code as
input.

So suppose we are given the dataflow graph Fg of
a block B. A topological sort sy, 82,...,s, that cor-
responds to a solution using at most w registers de-
fines a sequence of separators, sep(1), sep(2),...,sep(n),
cf. Section 2.1, that are all of size at most w. We will
do dynamic programming on F'g such that the family of
sets of vertices of size at most w can basically be identi-
fied with the set of states of the dynamic programming:
every such set will occur at most twice as such a sepa-
rator. So in total there will be less than O(n") states
that are visited by the algorithms.

The dynamic programming is done in phases, each
phase corresponding to a position 7 in the topological
sort of 13”3. A subset P of the statements is called an
initial segment if for all statements s that have a path in
13"3 to some element in P we already have that s € P. In
other words an initial segment P is a set of statements
for which there exists a topological sort of F'g such that
the elements of P form the first | P| elements of the sort.

To every initial segment P there corresponds a
separator S(P), namely the subset S C P of statements
in P that have an arc leading to the outside of P. Any
state s of the dynamic programming will have an initial
segment P; that is associated with it and that gives rise
to a separator Ss = S(P;) of size less than w.

For a set of statements S, define Pred(S), the open
predecessor set, to be the set of statements that have
a path to any of the elements S in Fp and Pred[S] =

Pred(S)US, the closed predecessor set. If P is an initial
segment then Pred[S(P)] = P.

To start a dynamic programming algorithm to
solve the problem, first compute the set of minimal
statements, i.e those that can immediately be executed
after the begin. Any of these may be chosen first
so any set {z} with z among these minimal elements
constitutes a possible initial state.

Then in phase ¢ we take the set of all reachable
states, i.e. all possible separators at position 4, and
compute the set for i + 1. Here we can go from a state
s on level 4 to s’ on level 7 + 1 iff

o [Sy| < w,

e P, has just one element more than P, (this is the
vertex that we can place next in the linear order).

The solution is obtained if there is a final state that
can be reached in phase n. This approach leads to a
polynomial time algorithm if we are able to bound the
the number of states by a polynomial in n.

Therefore let us assume first that we don’t have
statements on which the outflow doesn’t depend, i.e.
we have no store statements. Any set S may then
only occur as a separator for exactly one such phase.
Indeed the phase in which S may occur corresponds
to |Pred[S]|. So clearly the number of states then is
bounded by O(n").

The general case must be handled with more care.
The problem is that for a separator S there may be
some set of stores T that only depend on S or a subset
and may thus be scheduled in any order after S. Then
after having processed the first element in 7' we would
again reach a state that has S as its separator and so
forth. This could blow up the set of possible states in a
non-polynomial way.

To handle such a situation we need some new
definitions. For a set S call the statements ¢ that lie on
a non-trivial path from an s € S to some member of the
outflow of B the strict successors of S. Denote the set of
strict successors with Strict(S). Strict(S) is such that
whenever we have scheduled any element ¢t € Strict(S),
S will never occur as a separator again. A separator S
itself is called strict if every of its elements lie on a path
to the outflow of B.

We modify the dynamic programming such that
the separators that are associated to states will always
be strict. Other separators and thus initial segments
that naturally may occur in a solution are dealt with
differently.

Call a statement t ¢ S a weak successor of S
if there is a path from some element in S to ¢t and
if t ¢ Strict(S). These weak successors must not
necessarily be stores but may also represent some

intermediate computations that are needed to store a
particular value. Now call a set W of weak successors
of S feasible for S if

o W can be scheduled immediately after S if S is
the current separator and by respecting the given
constraints on registers, and

e after having scheduled W, S may act again as the
actual separator.

Now observe that if we have two such weak suc-
cessor sets W and W' that are feasible for S then
W UW' also is such a feasible weak successor set. Thus
there exist a unique maximal feasible weak successor set
Weak(S) for S.

The first rule that we impose now to reduce the
possible number of states is the following

greedy rule Whenever we have that a strict set S =
S, is the separator of a state s we schedule
Weak(S) immediately after s and proceed with the
dynamic programming on the state that is given by
P, U Weak(S).

The second rule is the following

lazy rule Whenever we find in phase i that a set Sy
of a state s’ that we want to visit by the dynamic
programming has been used as a separator for some
phase i’ < i we discard s’ from the set of possible
states.

This lazy rule may be used since it can be shown, that
for a strict set S that occurs as a separator at some point
there does indeed exist a unique first state s where it
occurs first in the dynamic programming.

The third and fourth ingredients that we need to
turn all of this into a polynomial time algorithm are the
ability to compute for every appropriate S

o the set Weak(S) and
o a feasible ordering for it.

This can be done by another dynamic programming,
that goes backward from sets of store statements to the
possible strict sets S.

A detailed discussion of that approach lies far
beyond the possibilities of this extended abstract and
must be delayed to the full version of this paper.

So together Section 3.1 we obtain:

THEOREM 5. The fized parameter register allocation
problem for non-uniform registers can be solved in linear
time without rescheduling and in polynomial time with
rescheduling.

4 Hardness of Non-uniform Registers

An interesting question for many problems whose in-
stance has a parameter k is: what is the complexity of
the problem when the parameter k is fixed? This is pre-
cisely the question we have been asking in this paper for
the register allocation problems. One would like to dis-
tinguish not only between polynomial time solvability
and (conjectured) needing exponential time (using the
theory of NP-completeness), but also between behavior
where the time is

e O(n®) with ¢ a fixed constant, i.e all dependency
on the constant factor k is hidden in the ‘O’, and

e Q(nf®), where f grows with k, i.e the exponent
depends on k.

To distinguish between these latter two behaviors,
Downey and Fellows called the class of problems hav-
ing algorithms of the first type FPT (Fixed Param-
eter Tractable) and introduced the theory of fixed-
parameter complexity, see e.g [9, 8. They introduced
a hierarchy of classes of parameterized problems, with
FPT CW[l] C W[2] C --- C W[P]. Tt is conjectured
that the hierarchy is proper, and hence that all prob-
lems hard for W{1] (for definition of reductions see e.g.
[8]) do not belong to FPT, i.e, the running time to solve
those problems has the parameter in the exponent above
the problem size.

We consider the following restricted version of our
straight line code optimization problem — but now with
the restriction that variables have specific types of
registers that they must be assigned to. For technical
reasons we still keep the assumption that any statement
initializes at most one variable. Thus we may label
such a statement s with c(s), the required type for the
variable that is initialized by it.

In [5], a version of this problem (in the abstract
graph setting) was proved to be hard for all classes Wt],
forallt € N: there all registers were of a different type
and each variable had one specific register it could be
assigned to. Here we look at the more natural problem
where the number of different types of registers is small,
but larger than one. In fact, we are able to show that the
problem becomes hard (in the fixed parameter sense),
even when there are two different types of registers. A
typical example of this is when there are floating point
registers, and registers for integer objects like integers,
pointers or booleans.

If we have a topological sort f of D and a particular
type ¢ of registers the (-vertex separation width
at i, widthe #(7), is defined analogously as width(s) for
the uniform problem, but with the difference that only
variables of type (are taken into account. Thus it is

10

the number of vertices v such that c(v) = ¢, f(v) <
and such that there is an arc (v,v') € A with i < f(v').
Following arguments as in Section 2, one can see that
the problem is equivalent to the following:

2-CoLOR DIRECTED VERTEX SEPARATION NUMBER
PROBLEM

Instance: Directed acyclic graph G = (V, E), coloring
c:V—{1,2}.

Parameter: The pair (ki, k2).

Question: Is there a topological sort f of G, such that
for any color ¢ € {1,2}, and for all 4,1 < i < n we
have that width¢ ¢(¢) < k¢?

THEOREM 6. 2-color directed vertex separation number
is hard for Wt], for allt € N, for graphs with indegree
at most 2.

This can be proven by using a reduction to the
problem of finding a topological sort of a graph whose
edges are colored with one of two colors such that
for each color, the cutwidth is bounded by a given
parameter. This latter problem can be shown to
be W{t]-hard by a reduction to a directed variant of
bandwidth, see [6]. We omit the proofs for the sake of
brevity. Theorem 2 follows as a corollary.

The restriction to indegree 2 strengthens the result
as it thereby applies to straight-line problems where as-
sembler statements never use more than a fixed amount
of registers on the RHS, which indeed is the case for
many modern RISC architectures, see [12].

4.1 Acknowledgements We thank the anonymous
referee for helping to formalize several important de-
tails.

References

[1] A. V. Ano, R. SETHI, AND J. D. ULLMAN, Compil-
ers, Principles, Techniques and Tools, Addison-Wesley,
1986.

[2] S. ARNBORG AND A. PROSKUROWSKI, Linear time
algorithms for NP-hard problems restricted to partial
k-trees, Discrete Appl. Math., 23 (1989), pp. 11-24.

[3] H. L. BODLAENDER, A tourist guide through treewidth,
Acta Cybernetica, 11 (1993), pp. 1-23.

[4] ——, A lnear-time algorithm for finding tree-
decompositions of small treewidth, SIAM J. Comput.,
25 (1996), pp. 1305-1317.

[6] H. L. BOoDLAENDER, M. R. FELLOows, M. T. HAL-
LETT, H. T. WAREHAM, AND T. J. WARNOW, The
hardness of problems on thin colored graphs, Tech. Rep.
UU-CS-1995-36, University of Utrecht, Utrecht, 1995.
Submitted for publication.

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

H. L. BoODLAENDER, M. R. FELLOWS, AND T. J.
WARNOW, Two strikes against perfect phylogeny, in
Proceedings 19th International Colloquium on Au-
tomata, Languages and Programming, Berlin, 1992,
Springer Verlag, Lecture Notes in Computer Science,
vol. 623, pp. 273-283.

H. L. BopLAENDER AND T. KLOKS, Efficient and
constructive algorithms for the pathwidth and treewidth
of graphs, Journal of Algorithms, 21 (1996), pp. 358
402.

R. G. DowNEY AND M. R. FELLOWS., Fized parame-
ter tractability and completeness II : On completeness
for W[1], Theoretical Computer Science, 141 (1995),
pp. 109-131.

R. G. DownNEY AND M. R. FELLOWS, wzed-parameter
tractability and completeness I: Basic results, SIAM J.
Comput., 24 (1995).

U. FEIGE AND J. KILLIAN, Zero-knowledge and the
chromatic number, in Proceedings of the 11th Annual
Conference on Structure in Complexity Theory, IEEE,
1996.

M. GAREY, D. JOHNSON, AND L. STOCKMEYER,
Some simplified np-complete graph problems, Theoret-
ical Computer Science, (1976), pp. 237-267.

J. L. HENNESSY AND D. A. PATTERSON, Com-
puter Architecture, A Quantitative Approach, Morgan-
Kaufmann Publishers, 2"? ed., 1996.

S. KANNAN AND T. PROEBSTING, Register allocation
in structured programs, in Proceedings of the Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms,
San Francisco, California, 22-24 Jan. 1995, pp. 360-
368.

N. G. KINNERSLEY, The vertex separation number of a
graph equals its path width, Inform. Process. Lett., 42
(1992), pp. 345-350.

T. NisHizeki, K. TAkKAMIZAWA, AND N. SArro, Al
gorithms for detecting series-parallel graphs and D-
charts, Trans. Inst. Elect. Commun. Eng. Japan, 59
(1976), pp. 259-260.

R. SETHI, Complete register allocation problems, SIAM
J. Comput., 4 (1975), pp. 226-248.

J. TELLE AND A. PROSKUROWSKI, Algorithms for
vertezr partitioning problems on partial k-trees, SIAM
J. Disc. Math., (1997). to appear.

M. THORUP, Structured programs have small tree-width
and good register allocation, in Graph-Theoretic Con-
cepts in Computer Science, 23rd International Work-
shop WG 97, Mohring et al., eds., vol. 1198 of Lec-
ture Notes in Computer Science, Springer Verlag, 1997,
pp- 318-332. journal version accepted for Information
and Computation.

