A Simple Cubic Algorithm for Computing
Minimum Height Elimination Trees for
Interval Graphs

Bengt Aspvall, Pinar Heggernes, Jan Arne Telle

Department of Informatics, University of Bergen
N-5020 Bergen, Norway

email: Bengt.Aspvall@ii.uib.no, Pinar.Heggernes@ii.uib.no, Jan.Arne.Telle@ii.uib.no

Abstract

In parallel sparse Cholesky factorization, finding elimination order-
ings that produce elimination trees of low height is important. The
problem of finding the minimum elimination tree height for a graph is
NP-hard for general graphs. This problem is equivalent to the prob-
lem of finding the vertex ranking number of a graph. The problem
can be solved in polynomial time for special classes of graphs. Aspvall
and Heggernes presented a polynomial time algorithm for solving the
problem for interval graphs, in 1993. This algorithm is O(n*). Later,
when Deogun, Kloks, Kratsch and Miller solved the vertex ranking
problem for permutation graphs in time O(n®%), they mentioned that
the problem for interval graphs could be solved in time O(n®). In
this paper we present a simple O(n®) algorithm for finding minimum
elimination tree height for interval graphs. In addition, our algorithm
gathers enough information so that an actual elimination tree of min-
imum height can be found within the same time bound.

1 Introduction

Elimination trees play an important role in parallel sparse Cholesky factor-
ization. The elimination tree height is a bound on the amount of parallelism
allowed by the sparse system and its associated graph. Different elimination
orderings of a graph may result in elimination trees of varying height. It is
desirable to find orderings that result in low elimination trees.



The problem of minimizing the elimination tree height for general graphs
is N'P-hard. However, there exist classes of graphs for which the problem
can be solved in polynomial time. It is therefore important to identify these
classes, and to find efficient algorithms for them. Two of the present authors,
Aspvall and Heggernes, showed in [1] that the problem can be solved for
interval graphs in polynomial time. The first version of their paper was
published as a technical report in March 1993. Before this result, little was
known about polynomial time solvable classes of graphs apart from trees.
The algorithm for interval graphs in [1] is O(n?*), but the main purpose of
the paper was to show that the problem for interval graphs was indeed in P.
Therefore, concentrating on the simplicity and clarity of the algorithm was
important, whereas efficiency was of secondary interest. Now in this paper,
we revisit the algorithms from [1], and with some new definitions, we are able
to present an O(n?) algorithm that solves the problem for interval graphs.

The problem of finding the height of a minimum elimination tree for a
graph is equivalent to the problem of finding the vertex ranking number of
a graph. An optimal vertex ranking does not by itself provide enough infor-
mation to compute an elimination tree of minimum height. However, given
also the input graph, a minimum height elimination tree can be constructed
rather efficiently. On the other hand, an optimal vertex ranking can readily
be found directly from an elimination tree of minimum height. We refer the
reader to [4] for details.

In [4], Deogun, Kloks, Kratsch and Miiller show that the vertex ranking
problem can be solved for permutation graphs in time O(n®). They also
mention that the vertex ranking problem for interval graphs possesses a cer-
tain structure that allows it to be solved in time O(n®). We will here give
a simple cubic algorithm for finding minimum height elimination trees for
interval graphs, along with some implementation details, and complete im-
plementation should be straightforward. Furthermore, we show that after
an O(n?) preprocessing, updating of each of the minimal separators can be
done in constant time whenever needed. This opens for a possible algorithm
of lower time complexity if the number of subproblems that can be treated
in constant time is lower than ©(n?).

The background for this paper will be [1]. We assume that the reader is
familiar with the results of [1], and we will frequently refer to these results.
Definitions will be repeated only when we feel that they are of additional
interest.



This paper is organized as follows. Some of the definitions from [1] are
repeated in Section 2. In Section 3, we introduce the notion of elimination
forests, which is then utilized to develop a simple algorithm for finding min-
imum elimination tree height in time O(n®). Some more implementation
details of this algorithm are explained in Section 4. We explain the prepro-
cessing on the maximal cliques and the minimal separators, and how they
can be updated later on. In Section 5, we discuss whether it might be possi-
ble to develop an algorithm that is significantly better than O(n?). Finally,
some concluding remarks are given in Section 6.

2 Definitions

The reader is assumed to be familiar with standard graph notation. Back-
ground on symbolic factorization, elimination trees, chordal graphs, and
clique trees may be found in [1]. A few of these definitions are repeated
in this section.

Let G be a chordal graph and let Vg = {C1,Cy,...,Cy,,} be the set of
maximal cliques in G. The following characterization of clique trees from [2]
will be used later in the paper.

Theorem 2.1 A tree T = (Vg,€) is a clique tree of G if and only if for
every pair of distinct cliques C; and C; € Vg, the intersection C; N Cj is
contained in every mazimal clique on the path connecting C; and C; in T.

In [1], the authors worked on two classes of graphs. One of these was in-
terval graphs, and the other one was a more restricted class called €2, which
is a subset of interval graphs. We repeat the definitions of these two classes,
along with some of their properties.

Definition: A graph G belongs to €2 if G is chordal and has at most two
maximal cliques that contain simplicial vertices.

Definition: A graph G = (V, E) is an interval graph if there is a map-
ping I of the vertices in GG into sets of consecutive integers such that for each
pair of vertices v, w € V the following is true: (v,w) € E < I(v)NI(w) # 0.

Definition: A trail is a tree T = (V, E), where V = {v,v,...,v,}, and
E = {(Ula ’1)2), (’U2,’U3), teey (Un—la v'n)}

Theorem 2.2 Let G be a graph in Q2. Then G has a unique clique tree T
that is a trail.



Theorem 2.3 Let G be a graph in ). Then every minimal v-w separator in
G divides G into ezactly two components.

The following theorem, here stated in terms of clique trees, was first proved
by Gilmore and Hoffman [5].

Theorem 2.4 A graph G = (V, E) is an interval graph if and only if there
exists a clique tree T for G, where T is a trail.

We would like to stress the difference between the clique trees for the
graphs in 2 and for interval graphs. As we see in Theorems 2.2 and 2.4,
a graph in ) has a unique clique tree that is a trail, whereas an interval
graph may have several clique trees where at least one is a trail. Booth and
Lueker show in [3] that the interval representation of an interval graph can be
constructed in linear time. A linear time algorithm for finding a clique tree
of a chordal graph can be found in [6]. Using these results, a trail clique tree
of an interval graph can be found within the time bounds of the algorithms
presented in this paper.

3 A cubic algorithm

In [1], two polynomial time algorithms were presented. Algorithm Dyn-
Height is an O(n®) algorithm that computes the minimum elimination tree
height for an input graph G € Q. Algorithm Interval is an O(n?) algorithm
that computes the minimum elimination tree height for an interval graph. In
this section we examine why Interval is slower than DynH eight by a factor
of n, and how we can eliminate this difference in complexity. In fact, Algo-
rithm DynHeight actually computes the minimum height also for interval
graphs. However, to find an actual elimination tree of minimum height, some
changes are necessary.

Let G be a graph in 2 with maximal cliques Cj, Cs, ..., C,,, numbered as
they appear in the clique tree of (G, and minimal separators Sy, S, ..., Sm_1,
where S; = C; N Cjy1. Algorithm DynHeight keeps a two dimensional ar-
ray Opt[l..m,1..m]. The entry Optli, j| holds the minimum elimination tree
height for the subgraph H;; induced by the vertices in (C; U ... U C}) —
(SiUS;-1). An additional array Root[1..m,1..m] is kept to store an actual
elimination tree of minimum height. The entry Root[é, j] holds a minimal
separator S; of H;;, where S is the top separator in a minimum height
elimination tree for H; ;. In {2, each subgraph H; ; is connected and thus has
a minimum height elimination tree. Furthermore, when Sj, is removed from
H; ;, the remaining graph has at most two nonempty connected components:

4



H; and Hyiq ;. Thus for each subproblem H; ;, Opt[i, j] and Root[i, j] can
be computed in a straightforward way. The situation is slightly different for
interval graphs.

Algorithm Interval keeps the same arrays Opt and Root as DynHeight.
For an interval graph GG with maximal cliques Cq,Cs, ..., C,,, numbered as
they appear in a clique tree of G that is a trail, the subgraph analogous
to H;; is called I; ;. A subgraph I;; may be disconnected. In this case,
Rootli, j] is left empty by Algorithm Interval, and Opt|i, j] is unaltered and
holds a large number as initiated at the beginning of the algorithm. If I; ; is
connected then the removal of a minimal separator Sj, can divide the graph
into several connected components. Algorithm Interval runs through all the
connected components of I; ; — S} to look up from the table the minimum
elimination tree height for each component. This introduces an extra loop
in the algorithm increasing the time complexity to O(n?). We will now in-
troduce elimination forests and empty separators in order to dismiss this last
loop. We hope that these definitions will be useful in other contexts as well.

Definition: An elimination forest for a disconnected graph G is a forest
where each connected tree is an elimination tree for a connected compo-
nent of G. The height of an elimination forest is the height of a highest
connected elimination tree in the forest. An elimination forest of minimum
height consists of elimination trees of minimum height for each of the con-
nected components of G.

We will change Algorithm Interval to reduce the time complexity. We can
rather say that we will extend Algorithm DynHeight slightly so that it can
handle interval graphs correctly without increasing the time complexity. We
still have to consider whether the subgraph I; ; is connected or not. If I ;
is not connected, then at least one of the sets S}, is empty. In this case we
want to find an elimination forest of minimum height for 7; ;. An elimination
forest F' with connected components 77, ...,T), can be regarded as having a
dummy top separator S which is empty, and where 71, ..., T}, are the children
of S. Thus we can treat an empty set S; as a separator of size 0; an empty
separator, and try it as the top separator for I; ;.

When trying Sj,, which might be empty, as the top separator, the min-
imum elimination tree heights of I;; and Iy, ; are found in Opt[i, k| and
Optlk + 1, j], which are already computed. If one or both of these subgraphs
are disconnected then the corresponding values in the table Opt are the
heights of elimination forests of minimum height.



Algorithm Newlnterval;

begin
for i =1 tom do (* Initialization*)
for j =1tom do
Opt[i, j] = oo;
Rootli, j] = 0;
end-for;
for i = m downto 1 do (* Main loop¥*)

Opt[i, i] = [Simp(C;)| — 1;
for j=¢+1tomdo
for k=1toj—1do
Skl = 1Sk = (Si U Sj-1);
height = |S| + max(Opt[i, k], Opt[k + 1, j]);
if height < Opt[i, j] then
Optli, j| = height;
Root[i, j] = k;
end-if;
if |S!| = 0 then
k = j; (*I;; is disconnected - jump out of the loop *)
end-for;
end-for;

end;

Figure 1: Algorithm Newlnterval.

If I;; is disconnected, then choosing an empty separator Sj as the top
separator must yield the minimum height. This will also give a correct elim-
ination forest with S}, as the dummy top separator. Choosing a separator in
a component of I; ; that has the highest minimum height elimination tree, as
the top separator for I; ;, may also give the minimum height for /; ;. But this
will not result in a valid elimination tree, since I; ; must have an elimination
forest which is disconnected. Therefore, when we find out that I; ; is discon-
nected, we choose an empty separator S;, as the top separator. Algorithm
NewlInterval is given in Figure 1.

Algorithm NewlInterval contains also some slight changes other than the
ones mentioned above. We find some of these changes necessary because



they will make it easier to explain the implementation details in Section
4. The set Simp(C;) in the algorithm is the set of simplicial vertices in C;.
Setting Opt[i, i] = |Simp(C;)|—1 is necessary in order to compute the correct
height. We remark that Algorithms DynHeight and Interval in [1] should
be changed so that the empty case is treated as the general case, when j = 1.

Algorithm NewlInterval computes the minimum elimination tree height
of an interval graph. It may be confusing that we choose empty sets to be
separators, but this is just symbolic. If the top separator is empty, then we
have an elimination forest. Otherwise the graph must be connected and has
an elimination tree. The elimination tree defined by the resulting array Root
at the end of the algorithm is a binary separator tree where some of the sep-
arators are empty sets. To find the separators of the actual elimination tree,
we must recursively do the following starting from the top separator. If a sep-
arator S in the elimination tree is empty then we set parent(leftchild(S)) =
parent(S) and parent(rightchild(S)) = parent(S). Since G is assumed con-
nected, we have always a top separator that is nonempty, and thus we have a
connected elimination tree for G. Therefore, we have a valid base case, and
for each new separator S to consider as we go down the elimination tree, we
know that none of the ancestors of S are empty.

In Algorithms DynHeight and Interval, the table Root actually contains
the vertices to be placed in the elimination tree, and the tree can be built
in linear time in a top-down fashion. How to actually build the elimination
tree from the table Root is straightforward and was not explained further
in [1]. Now in Algorithm NewlInterval, we only compute the sizes of the
separators and not which vertices they contain. Therefore, the construction
is a little more complicated. Again we build the tree in a top-down fashion.
The vertices of G are marked when they are placed in the elimination tree,
and each new separator to be placed in the tree must check which of its
vertices are already in the elimination tree. Thus the construction of the
elimination tree can be done in time O(n?).

4 Set update

In this section we look at how we can compute |S;| =[Sk — (S; U Sj_1)]
efficiently. For each pair (7,j),7 < j, |S;| is computed for i < k < j —1
by Algorithm NewlInterval. If the actual sets S} were to be computed,
this would take O(n?) time. But the algorithm only needs the sizes of the
minimal separators in order to be able to compute the minimum elimination
tree height. We will now see that after a preprocessing of O(n?) on all the



pairs of separators (5;,.5;), ¢ < j, computing a value |Si — (S; U S;)| can be
done in constant time when k is between ¢ and j.

Lemma 4.1 Let G be an interval graph, and let S1, S5, ..., Spm_1 be the min-
imal separators of G numbered as they appear in a clique tree that is a trail.
For1<i:<k<j<m, |Sk—(SmUS])| = |Sk|—|SiﬂSk|—‘SkﬂSj‘+|SiﬂSj‘.

Proof: From set theory we have the following result for general sets:

|A— (BUC)|=|A|-|ANnB|-|ANC|+|ANnBNC|. From Theorem 2.1,
we can conclude that (S;NS;) — S, = 0. Thus, ;NS NS; = S;NS;. From
this the lemma follows with A = S, B=5;, and C = S;. O

As we can see from Lemma 4.1, |Sy — (S; U Sj_1)|, for any triple (i, &, j),
can be computed in constant time if | Sy, |S; N Sk, |Sx N S;_1| and |S; N S;_1|
are already computed. We will show that in time O(n?), |S; N S;| can be
computed for all pairs (4, 7), 1 < i < j < m.

In order to explain how to find the sizes of the intersections between all
pairs of minimal separators in G, we need the following definitions. Let T
be a clique tree of GG that is a trail. To each vertex v in G, we associate
a number right(v) which is the number of the rightmost maximal clique in
T that contains v. That is, right(v) = maz{i | v € C;}. Let the vertices
in each minimal separator S; be sorted by their right values. The vertices
are renamed so that S; = {v},v},...,v}, }, where right(v}) < right(v},,),

For each S;, i =1,2,...,m — 2, we want to find |S;NS;| for i < j < m. For
a vertex v}, in S;, we know by Theorem 2.1 that if right(v}) > j then v}, € Sj,
since S; = C; N Cj41. Let k be the smallest index for which right(vi) > j.
Then we have right(vi_;) < j, and thus v}_; € S;. In this case, by the same
theorem, we can conclude that v},...,v;_; ¢ S;, and v},...,v, € S;. The
preprocessing algorithm is given in Figure 2.

In order to consider the time complexity of Algorithm Preprocess, notice
that k is initiated outside the j-loop, and the number of steps in this loop is
O(n; + (m — 1 —14)). The total number of steps for Algorithm Preprocess is
then O(X7%(n; + (m — 1 —i)) = O(n?), since n; < n and m < n, where n
is the number of vertices in G. Regarding Algorithm NewInterval, the sizes
of all the minimal separators and of Simp(C;) for all the maximal cliques
can easily be computed within this time bound. Algorithm NewInterval is
clearly O(n®).



Algorithm Preprocess;
begin

fori=1tom—2do
k=1,
for j=i+1tom—1do
while k < n; and right(vi) < j do

k=k+1;
‘SiﬂSj| =nz—k:+1,
end-for;
end-for;
end;

Figure 2: Algorithm Preprocess.

5 Can we do better?

As we have seen, the overhead work in Algorithm NewInterval is done in
time O(n?). What increases the time complexity is the number of minimal
separators that we have to run through for each subproblem I; ;.

In dynamic programming algorithms, a linear factor can often be removed
from the time bound if the problem possesses some monotonicity prop-
erty. When computing Opt[i, j] and Root[i, j|, Algorithm NewInterval runs
through every k between ¢ and j. Assume that the following monotonicity
property holds: There exists an integer k, such that Root[i,j — 1] < k <
Root[i+1, j], and setting Root[i, j| = k gives the minimum height for /; ;. In
this case, the total time is reduced to O(n?) when the innermost loop only
runs for k = Root[i, j — 1] to Root[i + 1, j].

Our algorithm finds an arbitrary minimum height elimination tree or for-
est for each subproblem. With this approach, the monotonicity property
mentioned above does not hold for interval graphs or for the class ). The
lack of monotonicity in the sizes of the separators S, i < k < j, seems to
be an obstacle. We still suspect and hope that at least one of these classes
possesses a similar property. For example, can one, by restricting the atten-
tion to minimum height elimination trees with some additional requirements,
obtain a desirable monotonicity property? We have not been able to prove
such a result so far.



6 Conclusion

In this paper we have given a simple O(n?®) algorithm for finding minimum
height elimination trees for interval graphs. An interesting open problem
is whether it is possible to develop an algorithm that is significantly better
than O(n®). Our algorithm uses the method of dynamic programming, and
there exist techniques for increasing the efficiency of dynamic programming
algorithms. We have given a discussion on how one might possibly reduce
the time complexity of this particular algorithm. Unfortunately, we have to
leave as an open problem to show some appropriate monotonicity property
for interval graphs.

10



References

1]

B. AsPvVALL AND P. HEGGERNES, Finding minimum height elimination
trees for interval graphs in polynomial time, BIT, 34 (1994), pp. 484 —
5009.

J. R. S. BLAIR AND B. W. PEYTON, On finding minimum-diameter
clique trees, Nordic Journal of Computing, 1 (1994), pp. 173 —201.

K. S. BoorH AND G. S. LUEKER, Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algorithms,
J. Comput. System Sci., 13 (1976), pp. 335-379.

J. S. DEoGUN, T. KLOKS, D. KRATSCH, AND H. MULLER, On vertex
ranking for permutation and other graphs, Proceedings of the 11th Annual
Symposium on Theoretical Aspects of Computer Science, 775 (1994),
pp. 747 — T58.

P. C. GILMORE AND A. J. HOFFMAN, A characterization of compara-

bility graphs and of interval graphs, Canadian Journal of Mathematics,
16 (1964), pp. 539-548.

J. G. LEwis, B. W. PEYTON, AND A. POTHEN, A fast algorithm for
reordering sparse matrices for parallel factorization, SIAM J. Sci. Stat.

Comput., 10 (1989), pp. 1146-1173.

11



