
Softparsmap - Manual
Pär Steffansson

pars at kth dot se

2005-04-22

Revision History
Revision 0.12 2006-03-20 Revised by: PS
Sooce has been replaced by www.jooc.org
Revision 0.11 2005-03-06 Revised by: PS
first official release
Revision 0.1 2003-04-22 Revised by: PS
first draft

Table of Contents
Introduction ...3
Overview ..3
Jooc - The Java-based Object Oriented Container ...4
String Templates ...4
Gene and Species Trees ...5
Tree Parsers ..7
In-paralogous...9
Data Sources ..9
Families and Family Groups ..10
Compute Tasks ..12
Create a Tag Instance..13
Further Information..14

Introduction
As species and their genomes diverge during evolutionary history, the sets of genes
and their sequences also diverge. Gene duplication has been proposed as a crucial
source of evolutionary innovation in organisms, like Eukaryotes, with small effective
population sizes (Ohno, 1970). With duplication, comes initial redundancy, followed
by neofunctionalization, subfunctionalization, and most commonly pseudogeniza-
tion (Lynch, 2001). This differential retention of duplicate genes can result in a dif-
ferent phylogenetic tree for individual gene families than for the species as a whole.
When differential parsing of shared ancestral gene and nucleotide polymorphism is
added to the picture as well as uncertainty in tree calculation methodologioes, the
correlation between the evolutionary history of a gene and a species becomes murky.

In the development of a large scale database for understanding species evolution
through the evolution of gene families (Liberles et al., 2001; Roth et al., 2005), it has
been necessary to develop a soft parsimony based approach to map gene trees onto
species trees.

Disclaimer
No liability for the contents of this document can be accepted. Use the concepts, ex-
amples and information at your own risk. There may be errors and inaccuracies, that
could be damaging to your system. Proceed with caution, and although this is highly
unlikely, the author(s) do not take any responsibility.

All copyrights are held by their by their respective owners, unless specifically noted
otherwise. Use of a term in this document should not be regarded as affecting the
validity of any trademark or service mark. Naming of particular products or brands
should not be seen as endorsements.

Feedback
Feedback is most certainly welcome for this document. Send your additions, com-
ments and criticisms to <david dot liberles at bccs dot uib dot no>.

References

1. A. C. Berglund, P. J. Steffansson, M. J. Betts, and D. A. Liberles, Optimal gene
trees from sequences and species trees using a soft interpretation of parsimony, Journal
of Molecular Evolution (2006).

Overview
Softparsmap is a Java based package implementing the soft parsimony approach pre-
sented in [1]. The first part in this section describes the problems that Softparsmap
solves. The second half gives an overview of Softparsmaps features.

Problem

• Given a free gene tree, find where to place the root such that duplications and
losses are minimized. Duplications are prioritized before losses.

3

Softparsmap - Manual

• Given a rooted gene tree, map the gene tree onto the species tree.

• Removing in-paralogous.

Depending on the model and assumptions this can be solved in many ways.

Solution
Softparsmap is based on the model presented in [1] which is using duplications, losses,
and alleles to explain the deviation found between the species tree and the gene tree.
Softparsmap assumes that species events that is close enough in time such that alleles
might survive, is presented in the species tree as uncertainties. Furthermore, genes
can only be transfered from one species to another through a speciation event.

With some additional Java programming the package can be adapted to almost
any source of data. However, existing interface retrieve species trees from NCBI
Taxonomy1, sequence data from an XML file, the gene trees from one file per family,
and the results are written to one or two files per family.

Current available features are

• rooting free gene trees by minimizing duplications and losses while allowing weak
edges to be collapsed

• removing in-paralogous while rooting the gene tree or just before the result is
saved

• resolve uncertainties by inserting splits from the species tree and using out-groups

• mapping rooted gene trees onto the species trees

• comparing gene trees using splits

• supports the Newick2 and the Schreiber format for parsing in and out trees

• the package is divided into parts that can be replaced to meet specific needs

Jooc - The Java-based Object Oriented Container
Jooc3 is a light weight Java-based Object Oriented Container. It assembles Plain Old
Java Objects (POJO’s) using dependency injection 4 while XML tags in the descriptor
use object oriented features. 5 It has no mandatory dependencies outside J2SE 1.4.2
6 (or later) and is easy to learn.

If you are not familiar with it, make sure you have read the Quick Start found at Jooc7.

String Templates
A string template is used to extract information from strings using templates, or cre-
ating a string by using a template and filling it with data. The class StringTemplate8

is taking care of this task. The constructor needs a template and two strings which
defines the start and the end of all markers in the template. The template can be an
empty string, but the strings defining markers must be non empty. Here is an exam-
ple on how the class can be used.

StringTemplate st = new StringTemplate("family{number}.tree", "{", "}");
st.setMarker("{number}", "100");
System.out.println(st.getPaintedTemplate());
st.paintTemplate("family200.tree");
System.out.println(st.getFirstValue("{number}"));

4

Softparsmap - Manual

Running the code gives following output.

family100.tree
200

The template in this example is family{number}.tree while the only marker is
{number} since markers start with ’{’ and ends with ’}’. The second line of code
sets the marker to 100 and the next row creates the results and prints it. The fourth
row extracts 200 from the value and the next row prints it.

Attributes used to define the start and the end of markers in Softparsmap are
markers_begin and markers_end. Some tags in def.xml9 are using templates and
markers in order to extract data from strings and create strings.

Gene and Species Trees
Tree nodes and trees in Softparsmap are represented by five classes, Node10,
GeneNode11, GeneLeaf12, SpeciesNode13, and SpeciesLeaf14. These classes are linked
together in order to create gene and species trees. The class names reflect if the
node is an internal node or a leaf. Species leaves and gene leaves are mapped
(one-to-many) since each gene sequence (represented by the class GeneLeaf15) is
found in a species (represented by the class SpeciesLeaf16). The species tree is a
subtree of the Tree of Life such that every species represented by the species leaves
harbor at least one gene sequence found in the gene tree. Before it is possible to map
gene nodes onto species nodes in the species tree, every gene leaf has to be added to
one species leaf.

A reference to a node has two different meanings depending on the context. Either
the reference is used in the context of the node alone, or in the context of a rooted
subtree. For instance

Set children = someNode.getChildren();

returns the children of someNode, while

Set leaves = someNode.getLeaves();

returns the set of leaves in the rooted subtree where someNode is the root.

Edge Types
Dependent on the method used when creating gene trees, different types of edges are
created. The interface EdgeType17 defines the properties regarding edge types that
this package needs. Every gene node has a reference to an instance of this interface.
In order to create your own edge type, extend AbstractEdgeType 18 and the abstract
edge tag found in def.xml19. For more information see section Create a Tag Instance.

StandardEdgeType 20 is the standard edge type in Softparsmap and has following at-
tributes.

• short_name - which is the short name used when printing tree tables (should be
1-3 letters long)

• value_limit - defines an edge value limit such that any edge value below this
limit is defined weak, else defined strong.

• divide_value - determines if the edge value should be divided when making a
mid-point re-root

5

Softparsmap - Manual

For more information see section Create a Tag Instance.

Printing Trees
There are three methods in the class Node21 used to print trees to the prompt,
toStringTree(), toStringTable(), and toStringAll(). These methods can
be used to print species trees as well as gene trees. Each node in the tree has a label
and the row in the table with the same label has all available data for that node. If a
cell contains ’-’ it means that the data for that node is not available and if a column is
missing it means that the whole tree is missing that data. Here is an example on
what a species tree and a rooted gene tree looks like after inferring mutation.

+--(9606)-
(-9347)|

+-(10090)-
+-------+-------------+--------------------------------+-----------------+
| Label | Class | Seq | Species name |
+-------+-------------+--------------------------------+-----------------+
-9347	SpeciesNode	-	placentals
10090	SpeciesLeaf	[20809742, 15126606, 12860621]	transgenic mice
9606	SpeciesLeaf	[15012045, 16550688]	man
+-------+-------------+--------------------------------+-----------------+

This is the species tree and the column Seq contains the sequences that exists in a
certain species. The column Species name is the name of the species.

+----------------(15126606)-
|
| +--(12860621)-
| +--(-6)|

(-92)| | +--(16550688)-
+--(-5)|

| +--(20809742)-
+--(-4)|

+--(15012045)-
+----------+----------+---------+---------------+------+---------------+-------+
| Label | Class | E.v. | M(g) | N.i. | SL(g) | m(g) |
+----------+----------+---------+---------------+------+---------------+-------+
-4	GeneNode	0.94-UN	[9606, 10090]	-	[10090, 9606]	-9347
-5	GeneNode	1.0-UN	[9606, 10090]	D1	[10090, 9606]	-9347
-6	GeneNode	0.92-UN	[9606, 10090]	-	[10090, 9606]	-9347
-92	GeneNode	NaN-UN	-	D1L1	-	-
12860621	GeneLeaf	1.0-UN	-	-	[10090]	10090
15012045	GeneLeaf	1.0-UN	-	-	[9606]	9606
15126606	GeneLeaf	1.0-UN	[10090]	-	[10090]	10090
16550688	GeneLeaf	1.0-UN	-	-	[9606]	9606
20809742	GeneLeaf	1.0-UN	-	-	[10090]	10090
+----------+----------+---------+---------------+------+---------------+-------+

This is the rooted gene tree after mutation has been inferred. The columns and what
they stand for are as follows.

• Label - is the label found in the tree.

• Class - is the name of the class used to represent this node.

• E.v. - is the edge value and the short name for the edge type.

• M(g) - used to infer mutation. See [1] for more information.

6

Softparsmap - Manual

• N.i. - contains other node information. At the most it consists of four parts. D1L2WC
means that the node has one duplication (D1), two losses (L2), is weak (W), and the
collapse flag is set to true (C).

• SL(g) - used to infer mutation. In [1] it is called Z(g).

• m(g) - used to infer mutation. See [1] for more information.

Tree Parsers
The interface TreeParser22 is used to parse in and out gene trees. The Newick and
Schreiber format is implemented. It is a redundant interface when it is using streams
as well as strings, but since both are used often it is worth it. If you want to create
your own parser, extend AbstractTreeParser 23 and the abstract tag found in the file
def.xml24. For more information see section Create a Tag Instance.

The Newick Format
TreeParserNewick 25 is a parser that supports the Newick26 format. There are three
different versions defined, but you can easily define new ones by extending any of
them and change their attributes. Following definitions are taken from the def.xml27

file. Take a look at the Quick Start for Jooc28 to find out how attributes and heritage
work.

<tree_parser did="abstract" eid="instance::linked, interface"
class="softparsmap.AbstractTreeParser"
abstract="yes"
encoding="@@string:=iso-8859-1"
/>

<tree_parser did="newick" eid="abstract"
class="softparsmap.TreeParserNewick"
instance_holder="singleton"
edge_type="@@instance||edge_type::interface:=unknown"
markers_begin="@@string:={"
markers_end="@@string:=}"
recursive_begin="@@string:=("
recursive_end="@@string:=)"
recursive_child_separator="@@string:=,"
marker_edge_value="@@string:={value}"
marker_leaf_label="@@string:={label}"
template_node_data="@@string:="
template_leaf="@@string:={label}"
before_body="@@string:="
after_body="@@string:=;"
/>

<tree_parser did="newick_edge_value" eid="newick"
template_node_data="{value}"
template_leaf="{label}"
/>

<tree_parser did="newick_edge_value_leaves_too" eid="newick"
template_node_data="{value}"
template_leaf="{label}:{value}"
/>

The parser named newick parse trees without any edge data "((1, 2), (3,
4))", the newick_edge_value parser parse trees with internal edge data "((1,

7

Softparsmap - Manual

2):100.0, (3, 4):95.0)", and the newick_edge_value_leaves_too parser
parse trees with internal edge values as well as leaf edge data "((1:100.0,
2:100:0):100.0, (3:100.0, 4:100.0):95.0)". Here is the list of important
attributes and what they control.

• encoding - provides the parser with an encoding to use when parsing in and out
gene tree using streams

• edge_type - defines which edge type tag instance that will be used

• before_body and after_body - give the possibility to end and begin the output
with constant strings

• default_node_edge_value and default_leaf_edge_value - define the default
edge values in case they are missing

• recursive_begin and recursive_end - define the start and the end strings of the
recursive part of the Newick29 format. The strings must be unique in the tree string

• recursive_child_separator - defines the child separator of the Newick30 format.
The string must be unique in the tree string

• marker_edge_value - defines the marker for the edge value

• marker_leaf_label - defines the marker for the label

• template_node_data - defines the template for edge data for internal nodes

• template_leaf - defines the template for labels and data for leaves

The Schreiber Format
This parser is divided up into a tree structure parser and a node converter. This is
done in order to make it more flexible by allowing combinations of these two.

As of now there are three structures supported. The most common one is that of type
[[1, 2], [3, [1]]] which parse the tree structure and call the node converter on
every internal node and leaf.

<tree_structure_parser did="schreiber" eid="instance::linked, interface"
class="softparsmap.TreeStructureParserSchreiber"
instance_holder="singleton"
before_core="@@string:=["
after_core="@@string:=]"
left_node_marker="@@string:=["
right_node_marker="@@string:=]"
node_divider="@@string:=,"
child_node_divider="@@string:=,"
/>

Combining this structure parser with the node converter

<node_converter did="schreiber_gene_node_label"
eid="string_template_gene_tree"
class="softparsmap.StringGeneNodeConverterSchreiberLabel"
edge_type="@@instance||edge_type::interface:=unknown"
left_linked_node="@@string:=["
right_linked_node="@@string:=]"
/>

creates the standard Schreiber tree parser

8

Softparsmap - Manual

<tree_parser did="schreiber_gene_label" eid="dual"
tree_structure_parser="schreiber"
node_converter="schreiber_gene_node_label"
/>

There are two more structure parsers and six more node converters, creating almost
7*3=21 combinations. Almost, because some combinations is not valid. For more in-
formation see the def.xml31.

In-paralogous
Instances implementing the interface Inparalogous32 are used to removing
in-paralogous. If you want to define your own in-paralog-handler, extend
AbstractInparalogous 33 and the abstract tag found in the def.xml34 file. For more

information see section Create a Tag Instance.

InparalogousStandard 35 is the standard procedure to remove in-paralogous in Soft-
parsmap and its tag did="standard" has following attributes.

• remove_before_saving - determines if in-paralogous are removed before saving
the final tree or not. The attribute can only be yes or no.

• remove_while_minimizing_mutation - determines if in-paralogous are removed
while minimizing mutation. The attribute can only be yes or no. The method finds
the list by rooting the free gene tree at one edge at the time and then inferring
mutation. Before inferring mutation it is possible to remove in-paralogous.

In order to choose the right sequence to replace the rooted subtree, the algorithm is
first sorting the sequences using a compare sorting algorithm and then as the last
step, the first in the sorted result is chosen. The procedure used to compare two se-
quences A and B is as follows.

1. if A is complete and B is not, A is preferred,

2. if the item above could not decide then if B is complete and A is not, B is
preferred

3. if items above could not decide then if A is longer then B then A is preferred

4. if items above could not decide then if B is longer then A then B is preferred

5. if items above could not decide then if A’s GI number is higher then B’s GI
number, then A is preferred

6. if items above could not decide then if B’s GI number is higher then A’s GI
number, then B is preferred

7. if items above could not decide then A is preferred. It has to choose one

Data Sources
The DataSource36 interface is responsible of providing the package with data regard-
ing species trees and gene sequences. In order to use your own data you can extend
the abstract class AbstractDataSource 37 and the abstract tag found in the def.xml38

file. For more information see section Create a Tag Instance.

The class DataSourceXmlNcbiTaxonomy 39 is using the NCBI Taxonomy40

database to extract a species tree for the gene family. The tag is <data_source
did="xml_ncbi_taxonomy" ...> and contains following attributes.

9

Softparsmap - Manual

• sequence_data - defines which XML sequence data tag instance that will be used.
See section XML Sequence Data below

• ncbi_taxonomy_names_file - points to the species name file in NCBI Taxonomy41

called names.dmp

• ncbi_taxonomy_nodes_file - points to the species nodes file in NCBI Taxonomy42

called nodes.dmp

• xml_database_file - points to your XML database file

• index_file - points to the index file. An index file has to be created for the genes
found in the XML database. This is done once and by typing
java softparsmap.DataSourceXmlNcbiTaxonomy [property file] [data source did]

XML Sequence Data
The SequenceDataXml 43 is the class handling the XML detail in the sequence data
file. The tag is called <sequence_data did="xml" ...> and contains following at-
tributes.

• file_reading_buffert_size - determines how many bytes to read from the file
in one cycle.

• main_tag_name - is the name of the main tag. Under this tag should all data re-
garding this sequence be placed.

• sequence_id_tag_name - is the name of the tag containing the id number for this
sequence. These numbers are mapped to the numbers found in the leaves in the
gene trees.

• sequence_tag_name - is the name of the tag containing the sequence.

• organism_name_tag_name - is the name of the tag containing the name of the or-
ganism that harbor this sequence. This name is used to map this sequence into the
NCBI Taxonomy44 database.

• gi_number_tag_name - is the name of the tag containing the GI number. See NCBI45

for more information.

• partial_complete_tag_name - is the tag containing the value defined in attribute
complete_name if the sequence is complete, else it is partial.

• complete_name - see attribute partial_complete_tag_name above.

For all tags but the main and the sequence tag, it is possible to define a template and
a marker which is useful if it is necessary to extract data from the tag string. The tag
names of the XML detail are case sensitive. For more information see def.xml46 or the
API47.

In order to implement your own sequence parser you can extend the abstract class
AbstractSequenceData 48 . For more information see section Create a Tag Instance

and the API49.

Families and Family Groups
Gene sequences are divided into groups in order to build more reliable gene trees. In
Softparsmap this kind of group is referred to as a family. Families are also divided into
groups and they are called family groups. A family is represented by the class Family50

and a family group by the interface FamilyGroup51. Instances of this interface are
responsible of providing everything needed to perform a task on a family, including
the families. In order to create your own family group, extend AbstractFamilyGroup

10

Softparsmap - Manual

52 and the abstract family group tag found in def.xml53. For more information see
section Create a Tag Instance.

FamilyGroupTreesInFiles 54 retrieves gene trees from files, one tree and family per file.
There are four different tags allowed under this tag in order to fill this family group
with families. The pair <include_directory>, <exclude_directory> are used to
include or exclude files from a family group. The attribute tree_files_directory is
used in these two tags to specify the directory to include or exclude. Last two tags are
<include_group>, <exclude_group> which are used to include and exclude other
groups. These two tags have following attributes.

• family_group - defines the did attribute of the family group to include or exclude

• family_numbers - can be ’all’ to include or exclude all families from the given
family group, or comma separated family numbers on those families to include or
exclude from the given family group

• min_family_number and max_family_number - give an upper and a lower limit
on those families to include or exclude from the given family group

When including or excluding directories there are two attributes in the family group
tag which are used to choose which files to include or exclude. It can be seen as a
filter and the attributes are

• marker_family_number - is the marker for the file number. It is used to find the
number in the file name.

• template_tree_file_name - is the template for all files that will be included or
excluded from given directories

Here is an example on a few linked family groups.

<family_group did="my_super" eid="trees_in_files"
data_source="my_data_source"
/>

<family_group did="all" eid="my_super">
<include_directory tree_files_directory="trees/dir_a"/>
<include_directory tree_files_directory="trees/dir_b"/>

</family_group>

<family_group did="not_yet_valid" eid="my_super">
<include_group eid="super" family_group="all"

family_numbers="123, 456, 789"/>
</family_group>

<family_group did="small_trees" eid="my_super">
<include_group eid="super" family_group="all"

max_number_leaves="20"/>
</family_group>

<family_group did="the_rest" eid="my_super">
<include_group eid="super" family_group="all"/>
<exclude_group eid="super" family_group="not_yet_valid"/>
<exclude_group eid="super" family_group="small_trees"/>

</family_group>

The family group with did="my_super" contains common attributes. The family
group with did="not_yet_valid" contains three families with number 123, 456, and
789. Creating a group with small families (did="small_trees") can be useful when
you need to test different settings since running the task will not take long. The last
family group, did="the_rest" makes sure that no family is overlooked. For more
information see def.xml55.

11

Softparsmap - Manual

Compute Tasks
The program Compute56 is used to compute tasks. The usage differ depending on the
task and can be printed by typing

$ java softparsmap.Compute [property file] [task did]

To define your own task, extend the abstract class Compute57 (or any of its sub classes)
and the abstract tag found in def.xml58. For more information see section Create a Tag
Instance

All tasks extending ComputeFamilyGroup 59 have following usage

$ java softparsmap.Compute [property file] [task did]
[family group did] [| [family #]]

and it is possible to compute all families in the family group or just one by adding
the number last. If only one is computed, it is done in verbose mode.

Rooting Gene Trees
The task with did="root" roots free gene trees by minimizing duplications and loss
while allowing weak edges to be collapsed. In-paralogous can also be removed. The
final tree will be written to the file specified by the attribute template_target and if
there are nodes with more then two children, these nodes are written to a file specified
by the attribute template_target_non_binary. So the output of this task is one or
two files per family. Below is an overview of the algorithm.

1. Find a list of rooted gene trees using the free gene tree. It is possible to
remove in-paralogous while finding the root. For details see method
SpeciesNode.minimizeMutation(...) in the API60.

2. From this list the preferred tree is chosen using following criteria

a. the tree with highest resolution is chosen (as close to binary as possible)

b. if criteria above could not decide, the tree with highest number of strong
edges is chosen

c. if criteria above could not decide, the tree with the smallest root distance
is chosen

d. if criteria above could not decide, the first tree in the list will be chosen
and a warning will be printed

If you want to choose the preferred tree in a different manner extend the ab-
stract class PreferredTree 61 and change the attribute preferred_tree found
in this task tag. For more information see section Create a Tag Instance

3. If the attribute resolve_uncertainties_using_species_splits="yes"
then uncertainties are resolved in the chosen tree by inserting splits from the
species tree

4. If the attribute resolve_uncertainties_using_outgroups="yes" then un-
certainties are resolved by using out-groups in combination with the original
tree

5. If the method removeBeforeSaving() in the in-paralogous instance defined
by the attribute inparalogous return true, in-paralogous are removed.

6. If the attribute resolve_uncertainties_using_outgroups_before_save="yes"
then uncertainties are resolved by using out-groups in combination with the
original tree. This is possible because in some cases there might be more
uncertainties that the out-group method can resolve after in-paralogous were
removed

12

Softparsmap - Manual

7. Save final tree to file

8. Save uncertain nodes to file

This tag must be extended to define target attributes.

Mapping a Gene Tree into a Species Tree
The task with did="map" will map gene trees onto species trees for a given family
group. Duplications and losses are also computed. The result will be written to one
file per family. This tag must be extended do define the target attribute.

Compare Gene Trees for Equality
The task with did="compare_gene_trees" compare gene trees from two given fam-
ily groups. It will compare gene trees with the same family number and the pair will
be considered rooted as well as free. This task does not have to be extended since no
attribute is required.

Gene Family Numbers
The task with did="family_numbers" prints the family numbers for a given family
group. This task does not have to be extended since no attribute is required.

Create a Tag Instance
There are several parts of Softparsmap that can be replace in order to meet more spe-
cific needs. The parts are defined by the interfaces in the package. Here is an example
on how to create a new parser and install it.

My Parser Code
Let the java file MyParser.java contain following lines.

import softparsmap.*;
import ooc.*

public class MyParser extends AbstractTreeParser {

public Node parseIn(String tree) {
// The code for parsing the string ’tree’ goes here.
// The method returns the root to the parsed gene tree.

}

public void parseIn(Node tree, String treeInfo) {
// The code for parsing in additional information into the
// tree nodes goes here

}

public String parseOut(Node tree) {
// The code for parsing the gene tree ’tree’ to a
// string goes here.
// getting an attribute value
String value = getAttributeString("some_attribute");
// rest of your code

}

13

Softparsmap - Manual

}

Add the parse in and out code and then compile the class by typing javac
MyParser.java. If it will not compile, the CLASSPATH has probably not been set
correctly. More information on how to set the class path is found at Solaris62 or at
Windows63.

My Property File
Since MyParser.java extends the AbstractTreeParser 64 it is a good idea to extend the
abstract tag defined in def.xml65 as well. This is because the abstract tag have some
default attributes which are used by the abstract class. Your property file will then
look something like this.

<?xml version="1.0" encoding="iso-8859-1"?>

<source title="My Project Name">

<!-- Importing package definitions -->
<import source="softparsmap/def.xml" source_context="classpath"/>

<!--
Your tasks, data sources and family groups can be defined here in
which you are using your new parser with did="my_parser"
-->

<!-- Defining my parser -->
<tree_parser did="my_parser" eid="abstract"

class="MyParser"
some_attribute="@@string:=some value"
/>

</source>

The attribute class is changed from AbstractTreeParser to MyParser in order to
connect the new code to the tag.

Further Information
The Quick Start Guide66 will guide you through the configuration and usage of the
package. For more information see [1], the API67, the def.xml68 file, or the source
code69.

Given a gene node, duplications and loss are computed in class MuNode70 and
pseudo code for this algorithm can be found in following three files: common71,
duplication72, loss73.

Notes
1. http://www.ncbi.nlm.nih.gov/Taxonomy/

2. http://evolution.genetics.washington.edu/phylip/newicktree.html

3. http://www.jooc.org

4. http://www.martinfowler.com/articles/injection.html

5. http://en.wikipedia.org/wiki/Object-oriented_programming

6. http://java.sun.com/j2se/
14

Softparsmap - Manual

7. http://www.jooc.org

8. ../api/softparsmap/StringTemplate.html

9. ../api/softparsmap/def.xml

10. ../api/softparsmap/Node.html

11. ../api/softparsmap/GeneNode.html

12. ../api/softparsmap/GeneLeaf.html

13. ../api/softparsmap/SpeciesNode.html

14. ../api/softparsmap/SpeciesLeaf.html

15. ../api/softparsmap/GeneLeaf.html

16. ../api/softparsmap/SpeciesLeaf.html

17. ../api/softparsmap/EdgeType.html

18. ../api/softparsmap/AbstractEdgeType.html

19. ../api/softparsmap/def.xml

20. ../api/softparsmap/StandardEdgeType.html

21. ../api/softparsmap/Node.html

22. ../api/softparsmap/TreeParser.html

23. ../api/softparsmap/AbstractTreeParser.html

24. ../api/softparsmap/def.xml

25. ../api/softparsmap/TreeParserNewick.html

26. http://evolution.genetics.washington.edu/phylip/newicktree.html

27. ../api/softparsmap/def.xml

28. http://www.jooc.org

29. http://evolution.genetics.washington.edu/phylip/newicktree.html

30. http://evolution.genetics.washington.edu/phylip/newicktree.html

31. ../api/softparsmap/def.xml

32. ../api/softparsmap/Inparalogous.html

33. ../api/softparsmap/AbstractInparalogous.html

34. ../api/softparsmap/def.xml

35. ../api/softparsmap/InparalogousStandard.html

36. ../api/softparsmap/DataSource.html

37. ../api/softparsmap/AbstractDataSource.html

38. ../api/softparsmap/def.xml

39. ../api/softparsmap/DataSourceXmlNcbiTaxonomy.html

40. http://www.ncbi.nlm.nih.gov/Taxonomy/

41. http://www.ncbi.nlm.nih.gov/Taxonomy/

42. http://www.ncbi.nlm.nih.gov/Taxonomy/

43. ../api/softparsmap/SequenceDataXml.html

44. http://www.ncbi.nlm.nih.gov/Taxonomy/

45. http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html#GInB

46. ../api/softparsmap/def.xml

47. ../api/index.html

15

Softparsmap - Manual

48. ../api/softparsmap/AbstractSequenceData.html

49. ../api/index.html

50. ../api/softparsmap/Family.html

51. ../api/softparsmap/FamilyGroup.html

52. ../api/softparsmap/AbstractFamilyGroup.html

53. ../api/softparsmap/def.xml

54. ../api/softparsmap/FamilyGroupTreesInFiles.html

55. ../api/softparsmap/def.xml

56. ../api/softparsmap/Compute.html

57. ../api/softparsmap/Compute.html

58. ../api/softparsmap/def.xml

59. ../api/softparsmap/ComputeFamilyGroup.html

60. ../api/index.html

61. ../api/softparsmap/PreferredTree.html

62. http://java.sun.com/j2se/1.4.2/docs/tooldocs/solaris/classpath.html

63. http://java.sun.com/j2se/1.3/docs/tooldocs/win32/classpath.html

64. ../api/softparsmap/AbstractTreeParser.html

65. ../api/softparsmap/def.xml

66. ../quick_start_guide/t1.html

67. ../api/index.html

68. ../api/softparsmap/def.xml

69. ../../src/softparsmap

70. ../api/softparsmap/MuNode.html

71. ../pseudo_code/alg_common

72. ../pseudo_code/alg_duplication

73. ../pseudo_code/alg_loss

16

	Table of Contents
	Introduction
	Disclaimer
	Feedback
	References

	Overview
	Problem
	Solution

	Jooc The Javabased Object Oriented Container
	String Templates
	Gene and Species Trees
	Edge Types
	Printing Trees

	Tree Parsers
	The Newick Format
	The Schreiber Format

	Inparalogous
	Data Sources
	XML Sequence Data

	Families and Family Groups
	Compute Tasks
	Rooting Gene Trees
	Mapping a Gene Tree into a Species Tree
	Compare Gene Trees for Equality
	Gene Family Numbers

	Create a Tag Instance
	My Parser Code
	My Property File

	Further Information

