Electrostatics surface potential and pKa prediction

Lars Skjærven
2010
Coulomb’s law:
The electric force acting on a point charge q_2 as the result of the presence of another charge q_1 is given by Coulomb’s law:

$$ \vec{F} = \frac{q_1 q_2}{4\pi\varepsilon_0 r^2} \hat{u} $$

q_2 “radiates”
Charged and polar amino acids
Charged and polar amino acids

Protein
Charged and polar amino acids

- Mix between charged amino acids
- Affect each other
- Total picture
Poisson-Boltzmann Equation

\[\vec{\nabla} \cdot \left[\epsilon(\vec{r}) \vec{\nabla} \Psi(\vec{r}) \right] = -4\pi \rho^f(\vec{r}) - 4\pi \sum_i c_i^\infty \, z_i q \lambda(\vec{r}) \cdot \exp \left[\frac{-z_i q \Psi(\vec{r})}{k_B T} \right] \]

- Solve it!
- Joint electrostatic potential
Protein electrostatics

- Interaction between electric charges
- Some very important molecules are charged
- Electrostatic interaction are long range
- accelerate molecule association
Molecular recognition

- Highly relevant for biomolecules
 - Protein-protein
 - Protein-ligand
 - Folding and stability

- Evaluation of the electrostatic properties
micotubule
Ligand binding

A) WO2Fab-Aβ 2-8

B) PFA1Fab-Aβ 2-8

*
Next tutorial

• Learn how to calculate electrostatics potential
 • APBS
• Visualize it
 • PyMOL
pKa prediction

- measure of the proton affinity of a group
- lower the pKa, the more weakly the proton is held
pKα prediction

charged side chains at pH 7, pKα in water:
- Asp 4.5
- Lys 11.1
- His 6.8
- Glu 4.5
- Arg 12.5
- Cys 8.6

The protein environment is different from water, the pKα of certain aa might shift

Prediction tool: propKa: http://propka.ki.ku.dk
propKa

Please enter either:

- a PDB ID: [blank]
- upload a PDB file: [file selection]
- PDB file web address: [URL]

- Specify PDB chain IDs (separated by a comma ","),

- Include ligands: Enabling this will include ligands. Disabling will use PROPKA 1.0.

Or upload a "new_PDB" PROPKA 2.0 input file: [file selection]

[Submit] [Clear Form]
Look for aa which pKa has shifted:
- from under 7 til above 7;
- and the other way around.

<table>
<thead>
<tr>
<th>RESIDUE</th>
<th>pKa</th>
<th>pKmodel</th>
<th>ligand atom-typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASP 213A</td>
<td>8.39</td>
<td>3.80</td>
<td></td>
</tr>
</tbody>
</table>

charged side chains at pH 7, pKa in water:
- Asp 4.5
- Lys 11.1
- His 6.8
- Glu 4.5
- Arg 12.5
- Cys 8.6
Add charges and hydrogens

- PDB2PQR
- Run propKa
- Assign protonation
- Add hydrogens (at different pH)
<table>
<thead>
<tr>
<th>Residue</th>
<th>Atom</th>
<th>Type</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Charge</th>
<th>Delta Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILE</td>
<td>N</td>
<td></td>
<td>23.542</td>
<td>10.481</td>
<td>39.802</td>
<td>1.00</td>
<td>30.41</td>
</tr>
<tr>
<td>ILE</td>
<td>CA</td>
<td></td>
<td>22.368</td>
<td>10.940</td>
<td>40.556</td>
<td>1.00</td>
<td>18.90</td>
</tr>
<tr>
<td>ILE</td>
<td>C</td>
<td></td>
<td>21.880</td>
<td>12.299</td>
<td>40.123</td>
<td>1.00</td>
<td>25.47</td>
</tr>
<tr>
<td>ILE</td>
<td>O</td>
<td></td>
<td>22.647</td>
<td>13.251</td>
<td>40.176</td>
<td>1.00</td>
<td>20.61</td>
</tr>
<tr>
<td>ILE</td>
<td>CB</td>
<td></td>
<td>22.728</td>
<td>11.870</td>
<td>42.035</td>
<td>1.00</td>
<td>18.24</td>
</tr>
<tr>
<td>ILE</td>
<td>CG1</td>
<td></td>
<td>23.234</td>
<td>9.740</td>
<td>42.510</td>
<td>1.00</td>
<td>2.80</td>
</tr>
<tr>
<td>ILE</td>
<td>CG2</td>
<td></td>
<td>21.565</td>
<td>11.607</td>
<td>42.063</td>
<td>1.00</td>
<td>16.23</td>
</tr>
<tr>
<td>ILE</td>
<td>CD1</td>
<td></td>
<td>22.141</td>
<td>8.667</td>
<td>42.534</td>
<td>1.00</td>
<td>8.36</td>
</tr>
<tr>
<td>VAL</td>
<td>N</td>
<td></td>
<td>20.590</td>
<td>12.427</td>
<td>39.775</td>
<td>1.00</td>
<td>18.65</td>
</tr>
<tr>
<td>VAL</td>
<td>CA</td>
<td></td>
<td>20.067</td>
<td>13.743</td>
<td>39.450</td>
<td>1.00</td>
<td>8.26</td>
</tr>
<tr>
<td>VAL</td>
<td>C</td>
<td></td>
<td>19.373</td>
<td>14.326</td>
<td>40.634</td>
<td>1.00</td>
<td>4.54</td>
</tr>
<tr>
<td>VAL</td>
<td>O</td>
<td></td>
<td>22.141</td>
<td>8.667</td>
<td>42.534</td>
<td>1.00</td>
<td>8.36</td>
</tr>
<tr>
<td>VAL</td>
<td>CB</td>
<td></td>
<td>22.728</td>
<td>11.870</td>
<td>42.035</td>
<td>1.00</td>
<td>18.24</td>
</tr>
<tr>
<td>GLY</td>
<td>N</td>
<td></td>
<td>21.565</td>
<td>11.607</td>
<td>42.063</td>
<td>1.00</td>
<td>16.23</td>
</tr>
<tr>
<td>GLY</td>
<td>CA</td>
<td></td>
<td>22.141</td>
<td>8.667</td>
<td>42.534</td>
<td>1.00</td>
<td>8.36</td>
</tr>
<tr>
<td>GLY</td>
<td>C</td>
<td></td>
<td>19.373</td>
<td>14.326</td>
<td>40.634</td>
<td>1.00</td>
<td>4.54</td>
</tr>
<tr>
<td>GLY</td>
<td>O</td>
<td></td>
<td>22.728</td>
<td>11.870</td>
<td>42.035</td>
<td>1.00</td>
<td>18.24</td>
</tr>
<tr>
<td>GLY</td>
<td>CB</td>
<td></td>
<td>22.141</td>
<td>8.667</td>
<td>42.534</td>
<td>1.00</td>
<td>8.36</td>
</tr>
<tr>
<td>GLY</td>
<td>CG1</td>
<td></td>
<td>21.565</td>
<td>11.607</td>
<td>42.063</td>
<td>1.00</td>
<td>16.23</td>
</tr>
<tr>
<td>GLY</td>
<td>CG2</td>
<td></td>
<td>19.373</td>
<td>14.326</td>
<td>40.634</td>
<td>1.00</td>
<td>4.54</td>
</tr>
<tr>
<td>GLY</td>
<td>CD1</td>
<td></td>
<td>22.141</td>
<td>8.667</td>
<td>42.534</td>
<td>1.00</td>
<td>8.36</td>
</tr>
<tr>
<td>GLY</td>
<td>CD2</td>
<td></td>
<td>19.373</td>
<td>14.326</td>
<td>40.634</td>
<td>1.00</td>
<td>4.54</td>
</tr>
<tr>
<td>GLY</td>
<td>CG2</td>
<td></td>
<td>22.141</td>
<td>8.667</td>
<td>42.534</td>
<td>1.00</td>
<td>8.36</td>
</tr>
<tr>
<td>GLY</td>
<td>CG2</td>
<td></td>
<td>19.373</td>
<td>14.326</td>
<td>40.634</td>
<td>1.00</td>
<td>4.54</td>
</tr>
<tr>
<td>GLY</td>
<td>CD1</td>
<td></td>
<td>22.141</td>
<td>8.667</td>
<td>42.534</td>
<td>1.00</td>
<td>8.36</td>
</tr>
</tbody>
</table>

REMARK: 1 PQR file generated by PDB2PQR (Version 1.3.0)
REMARK: 1 FORCEFIELD USED: parse
REMARK: 1 NAMING SCHEME USED: parse
REMARK: 1 PKA calculated by propka and assigned using pH 7.00
REMARK: 6 Total charge on this protein: 3.0000 e
www.bioinfo.no
to fetch the next tutorial