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Preface

The world consists of challenges and solutions, not problems and limitations.
An algorithm is a set of instructions for solving a challenge. A computation
is the process of applying an algorithm to a question to obtain an answer.
Often an algorithm is implemented on a computer using a programming
language, and the computation is performed by the computer.

Algorithms are a field in computer science, where in addition to find
solutions to challenges, we want the computations to perform as quickly as
possible.

Graph theory is a field in discrete mathematics. One way to think of
a graph is as a bunch of dots connected by lines. Surprisingly to many,
a mathematical graph is not a comparison chart, nor a diagram with an
x- and y-axis, nor a squiggly line on a stock report. For example, every
city with an airport can be represented by a dot, and lines connect pair
of dots corresponding to airlines between cities. An algorithm can then use
the resulting structure to find out how to get from one airport to another.
Because mathematicians stopped talking to regular people long ago[6], the
dots in a graph are called vertices, and the lines connecting the dots are
called edges.

This thesis is in the field of graph algorithms. Our focus is to recognize
the class of weakly chordal graphs, which are graphs with a special given
structure. We will consider sequential algorithms to be performed by a com-
puter with one processor, and parallel algorithms performed by a computer
containing multiple processors. To better enjoy this reading, some knowledge
about graphs and algorithms will be an advantage.

Motivation

Chordal graphs are a class of graphs which, among other things, is important
for solving sparse linear systems of equations. Weakly chordal graphs are a
superset of chordal graphs. Recently, Berry, Bordat and Heggernes[5] estab-
lished a strong structural relationship between the two classes of graphs,
leading to a new recognition algorithm for weakly chordal graphs.

We will study and implement this resulting algorithm. First we will do a
sequential implementation whose experimental results will be compared to
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the proven time complexity. Second we will do a simple but in practice ef-
fective parallel implementation and measure the effect of the parallelization.

The algorithm has never been implemented before, neither sequentially
nor in parallel, and even if some details are given in the paper of Berry,
Bordat and Heggernes[5], we will have to handle several challenges. Among
them are computations of minimal separators yielding a huge separator list,
and the computation of the connected components of complement graphs.

Chapter 1 Preliminaries briefly covers several topics essential to the the-
sis. We introduce basic graph terminology, asymptotic time and space
complexity, C++ and its Standard Template Library, and parallel
computing.

Chapter 2 Chordal vs. weakly chordal graphs gives a further moti-
vation of the thesis by giving a theoretical background of chordal and
weakly chordal graphs. After the definitions of the two classes of graphs
and some general properties, we see how to recognize chordal graphs
before we finally present the recognition algorithm for weakly chordal
graphs introduced by Berry, Bordat and Heggernes[5].

Chapter 3 Sequential implementation then explores how to make an
efficient implementation of the recognition algorithm for weakly chordal
graphs. Both the data structures and the implementation on a sequen-
tial computer are investigated in detail.

Chapter 4 Parallel implementation first introduces the concepts of load
balancing and termination detection, before developing a simple but
efficient parallel implementation of the studied algorithm.

Chapter 5 Performance results introduces the graphs which the tests
will be run on, both graphs that we have generated and graphs avail-
able on the Web. Then experimental results for both the sequential
and parallel implementation are presented.

Chapter 6 Concluding remarks gives an overview of the work and re-
sults of the thesis, ending with possible future work.
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Chapter 1

Preliminaries

In this first chapter we will consider some topics essential for the under-
standing of the thesis. We start out with basic graph terminology, followed
by a short introduction to asymptotic time and space complexity. Then we
take at look at C++ and its Standard Template Library, before ending with
an outline over parallel computing.

1.1 Basic graph terminology

A graph is a set of points with lines connecting some of the points. The
points are called vertices1, and the lines are called edges. More formally,
a graph G is a pair (V, E), where V is the set of vertices and E is the
set of edges. We denote the size of V by n, and the size of E by m, thus
|V | = n and |E| = m. All graphs in this work are undirected, and an edge
e ∈ E is then an unordered pair (u, v), where u, v ∈ V and u 6= v. We
will often denote the edge (u, v) simply by uv when there is no ambiguity.
Moreover, we will regard the notations v ∈ V and e ∈ E, knowing v is a
vertex and e is an edge, equivalent with v ∈ G and e ∈ G. Figure 1.1(a) is a
pictorial representation of a graph G = (V,E), where V = {1, 2, 3, 4, 5} and
E = {(1, 2), (1, 5), (2, 3), (3, 5), (4, 5)}.

The complement of a graph G is denoted G and contains the same
vertices as G, but precisely those edges which are not in G, (a, b) ∈ G ⇔
(a, b) 6∈ G. The graph G in Figure 1.1(b) is the complement of the graph in
(a).

A subgraph G′ of G = (V,E) is a graph that contains some of the
vertices, and some of the edges of G. An induced subgraph G′ contains a
subset of V as vertices, and all the edges between these vertices that are
present in G. G(A) denotes the subgraph induced by a vertex set A ∈ V ,
and G(A) denotes the subgraph induced by A in the complement of G. This

1Also called nodes
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Figure 1.1: The graph G in (b) is the complement of the graph G in (a).
The subgraphs G(A) and G(A), A = {1, 2, 5}, are shown darker.

can be seen in Figure 1.1, where A = {1, 2, 5} ∈ V , and the vertices and
edges belonging to the subgraphs are shown darker.

A vertex u is neighbor of or adjacent to another vertex v if there
is an edge joining them, (u, v) ∈ E, and we will then say that u sees v.
The neighborhood of a vertex x, N(x), is the set of all vertices y that x
sees, N(x) = {y 6= x | xy ∈ E}. The degree of the vertex is the number of
edges adjacent to it, or equivalent, the size of the neighborhood, |N(x)|. The
neighborhood of a set of vertices A is the set of all vertices seen from the
vertices in A, N(A) = ∪x∈AN(x)−A. For a set of vertices A, a confluence
point is a vertex of A that sees all the vertices in N(A).

In order to have analogous definitions for edges, we regard an edge ab as
a set of vertices {a, b}. Then we can let N(ab) denote the neighborhood of
an edge ab. The edge sees a vertex x if either a or b sees x.

A path in a graph is a sequence of vertices connected by edges. The
length of the path is the number of edges in it. If a path starts and ends
in the same vertex, the path is a cycle denoted Ck, where k is the length
of the cycle. When there are no cycles in a graph, the graph is acyclic.
A chord in a cycle is an edge between two non-consecutive vertices in the
cycle. An induced chordless cycle on five or more vertices in a graph is called
a hole , and the complement of a hole is an antihole. A connected acyclic
graph is a tree .

When all vertices in a graph are pairwise adjacent, the graph is com-
plete . The number of edges m is then (n2 − n)/2. A clique in a graph is a
complete subgraph. When m is much smaller than (n2−n)/2,2 the graph is
said to be sparse , otherwise it is dense .

A graph is connected if every vertex u can be reached by any other
vertex v through a path, and disconnected otherwise. Any disconnected
graph G can decomposed into maximal connected subgraphs (not a subgraph
of any other connected subgraph), each of which is a connected component
of G. The connected components of the complement graph G are denoted

2More precise m = O(n)
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as the co-connected components of G.
For X ⊆ V , C (X) denotes the set of connected components of G(V −X).

S ⊂ V is called a separator if |C (S)| ≥ 2, an ab-separator if a and b are
in different connected components of C (S), a minimal ab-separator if
S is an ab-separator and no proper subset of S is an ab-separator, and a
minimal separator if there is some pair {a, b} such that S is a minimal
ab-separator. A component C of C (S) is called full if N(C) = S.

Two graphs G and H are isomorphic if there is a one-one correspon-
dence between the vertices of G and those of H such that the number of
edges joining any two vertices of G is equal to the number of edges joining
the corresponding vertices of H. The graphs shown in Figure 2.3 in Chapter
2 are isomorphic.

1.2 Sequential time and space complexity

When working with an algorithm it is of great interest to know how much
resources we need to execute the algorithm, both theoretical and practical
when implemented on a computer. To achieve the best performance in prac-
tice when we run our implementations, we use computational complexity
theory as a tool to analyze algorithms. Computational complexity theory is
an investigation of the time, space3, or other resources required for solving
computational problems[21].

In our analysis we focus on the time and space complexity, expressed as
a function of the size of the input to the algorithm. For instance, if the input
is a graph, which often is our case, the size of the input may depend on the
number of vertices, number of edges, or a combination of these.

Because the exact running time or amount of space often is a complex
expression, we use the familiar big-0 notation to establish an asymptotic
upper bound for the computational complexity. We do so by only considering
the highest order term of the expressions, disregarding both the coefficient
of that term and any lower order terms, because the highest order term
dominates the other terms on large inputs.

For instance, if an algorithm takes a graph of n vertices and m edges
as input, we say that the algorithm has a time complexity of O(n2 + m)
if the exact theoretical running time is never more than a constant times
n2+m for large enough n and m. Similarly, using the same example, the time
complexity is Ω(n2 + m) if the time required is never less than a constant
times n2 + m in the worst case of input. If the algorithm is both O(n2 + m)
and Ω(n2 + m) we say that the time complexity is Θ(n2 + m).

3Also called memory
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1.3 C++ and the Standard Template Library

To implement our algorithms on a computer, we need a programming lan-
guage. We will use C++, which is a newer version of C , a powerful and
efficient language developed at AT&T’s Bell Labs in the early 1970s[15].

Although C++ is an object-based and object-oriented high level pro-
gramming language, it supports several fundamentally different program-
ming paradigms. Our implementations in this thesis can be viewed as mainly
being in the procedural paradigm, where a problem is directly modeled by
a collection of algorithms. However, algorithms are only one of the two pri-
mary aspects when programming. We also have to consider the matter of
the collection of data, the data structures, against which the algorithms are
run to provide the solutions.

For the data structures we will extensively use the Standard Template
Library, STL, which is a part of the C++ standard library. The STL is
actually an important tool in the generic programming paradigm, using
parameterized types or template classes. A class template is a predescription
for creating a class in which one or more types or values are parameterized.

Many of the basic algorithms and data structures are contained in the
STL, but decoupled from each other. It is more accurate to think of the STL
as a library of generic algorithms, which also contain data structures for the
algorithms to operate on, but we will rather use the STL as a container
class library, which our own algorithms operates on. Our use of the generic
programming paradigm through the STL is therefore limited to the data
structures.

1.3.1 Abstract container types

Containers are objects which contain and manage other objects and pro-
vide iterators that allow the contained objects (elements) to be addressed.
All of the STL’s predefined container classes are models of Sequence or
Associative Container, and all of them are templates that can be instan-
tiated to contain any type of object.

Sequences

A sequence container holds an ordered collection of elements of a single type.
The two primary sequence containers are the vector and list types.

Many of our considerations about data structures concerns the ques-
tion about whether to use list or a vector. Originally the question has been
whether to use a list or an array. We will see that both arguments and
conclusions in the list versus vector discussion differ from an original list
versus array discussion. Usually, the main rule has been to use an array if
we at compile-time know the number of elements to be stored, and oth-
erwise use a list. However, an array in the object-oriented C++ is not a
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first-class citizen of the language. It is inherited from the C language and
reflects the separation of data and the algorithms that operate on that data
that are characteristic of the procedural paradigm. As mentioned we will
use the data structures from the generic programming paradigm. Instead of
array we therefore use vector, which is is an abstraction of an array, and
in addition to fulfill the needs of an array provides several useful member
functions. For instance, the vector class supports operations such as assign-
ment of one vector to another, comparison of two vectors for equality, and
questions about its size.

Now, the criteria for choosing between a list and a vector is mainly
concerned with the insertion characteristics and subsequent access require-
ments of the elements, due to the fact that both a list and a vector grows
dynamically. We will now take a closer look into some of the criteria:

• If we require random access to the elements, a vector is the clear choice
over a list. A vector represents a contiguous area of memory in which all
elements are stored consecutively. Random access is then very efficient
because each access is a fixed offset from the beginning of the vector,
and therefore a constant time operation. For a list however, random
access to an element requires traversal of the intervening elements,
which in worst case is traversing all the elements in the list. In addition,
there is the space overhead of the two pointers per element.

• If we need to insert and delete elements other than at the end, a list is
the clear choice over a vector. A list represents noncontiguous memory,
where each element is doubly linked through a pair of pointers that
address the elements to the front and back. Insertion and deletion
of elements at any position is therefore efficient, since only pointers
must be reassigned and no element need to be moved by copying. The
operation is therefore performed in constant time.

• If we only need to insert and remove elements at the end, a vector may
be the best choice. For a vector to grow dynamically, it must allocate
enough memory to all the elements, copy the old elements into the
new memory, and deallocate the old memory, before it can add the
new elements. Therefore it may seem that a list may be a better choice
than a vector. In practice, however, for each time the vector allocates
more memory, it allocates more than it needs. How much it allocates is
C++ implementation-defined. In our version it starts allocating for one
element no matter the size of the element, and doubles the capacity
each time extra memory is needed. In this sense it is important to
distinguish between a vector’s size and its capacity. The size, retrieved
by invoking its size() operation, is the actual number of elements in
the vector. On the other hand, capacity, retrieved by its capacity()
operation, is the total number of elements for which there is allocated
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memory for. That is, the number of elements a vector can contain
before it needs to regrow itself.

This way of dynamically growing is much more efficient than the way
a list is growing, as long as the objects are small and simple.

One last comment is the possibility through the reserve() opera-
tion to allocate an upper bound for how much memory we need. A
drawback may be that we have a serious overhead, occupying needed
memory when dealing with a huge graph. Also, in [18], Lippman and
Lajoie question the use of of the reserve() operation, because tests
seem to show that adjusting the capacity cause the performance to
degrade, as long as the objects inserted are small and simple. If the
objects are large or complex, we will store them indirectly by pointers.
Therefore we will not adjust a vector’s capacity through the reserve()
operation.

Associative containers

An associative container supports efficient query to the presence and re-
trieval of an element. The two primary associative container types are the
map and the set. A map is a key/value pair: the key is used for lookup, and
the value contains the data we wish to use. A set contains a single key and
supports the efficient query of whether it is present. Both the map and the
set can contain only a single occurrence of each key.

When inserting elements into an associative container, the container
places them in their ordered positions. The obvious reason for this, is to
look up element faster in O(log n) time instead of O(n) time. In fact, all
lookup, insertion, and deletion operations perform in O(log n) time.

Iterators

An iterator is a generalization of a pointer; it is an object that points to
another object. Iterators provide a general method of successively accessing
each element within any of the sequential or associative container types. If
an iterator points to some object in a range of objects, and the iterator is
incremented, then it will point to the next object in that range. Iterators are
actually an interface between the algorithms and the data structures, and
they make it possible to decouple those two primary aspects of programming
when using the STL.

More concrete, each container type provide both a begin() and an end()
member function, returning an iterator, where begin() addresses the first
element of the container, and end() addresses 1 past the last element. If iter
is an iterator into any container type, then iter++ advances the iterator to
address the next element, and *iter returns the value of the element.
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For clarity, elements of a vector V can be accessed in three different ways.
Through iterating the range [V.begin(), V.end()) or [V.rbegin(), V.r-
end()), which both is equal but in reverse order, or if n is an integer, V[n]
returns the nth element. V[n] is actually a shorthand for *(V.begin()+n).

1.4 Parallel computing

Since there seems to exist a constant desire to always solve larger problems,
there exists a continual demand for greater computational speed. For the
conventional serial computer however, there is a fundamental physical limi-
tation imposed by the speed of light, which makes further improvements in
the speed of such machines definitely.

The solution to this challenge has been parallel computing, where com-
putational problems are solved by several processors that are able to work
cooperatively.

There are both scientific and commercial examples of applications that
demand greater computational speed, and where parallel computing is in
use. Common examples from science are numerical simulations of complex
systems such as weather, climate and chemical reactions. A good commercial
example is the entertainment industry, with virtual reality and video servers
serving thousands of simultaneous requests for real-time video.

The study of parallel algorithms and parallel computing are due to these
described above and also other trends become of increase interest. In addi-
tion is the algorithm we will study parallel in nature, like many tasks in the
real world; If there is a major job to be done, it is often better with several
workers working on it than just one. We will therefore also do a parallel
implementation of the studied algorithm.

1.4.1 Measure of performance

As described in section 1.2, the execution time of a sequential algorithm is
usually evaluated in relation to the size of its input. For a parallel algorithm
however, the execution time depends not only on input size, but also on the
architecture of the parallel computer and the number of processors. Because
we will not focus on parallel architectures, we will mainly consider practical
test results.

To measure the performance and describe the qualities of a parallel im-
plementation, we introduce the concepts serial and parallel run time, cost,
cost-optimal, speedup, efficiency, scalability, concurrency and locality.

The serial run time of a program is the elapsed time between the
beginning and the end of its execution on a sequential computer[14], which
wee denote Ts. The parallel run time, Tp, is then the time elapsed from the
parallel computation starts to the moment that the last processor finishes
execution. If the number of processors is p, then the total time spent in
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solving a problem summed over all processors is pTp, which we denote as
the cost of the parallel solution. The solution is said to be cost-optimal if
the cost on a parallel computer is proportional to the execution time of the
fastest-known sequential algorithm on a single processor.

When evaluating a parallel program, we are interested in how much
performance gain is achieved by parallelizing a sequential implementation.
Both speedup and efficiency is used for this.

We define the speedup S as the ratio of the serial run time of the
best sequential algorithm for solving a problem to the time taken by the
parallel algorithm to solve the same problem on p processors identical to
the one used by the sequential algorithm[14], that is, Ts/Tp. In other words,
the speedup says how many times faster we can solve a problem using p
processors instead of one. Under perfect conditions, the maximal speedup
should therefore theoretically be p ( Ts

Ts/p), which we call linear speedup.
However, a speedup greater than p is sometimes observed in practice,

which we later will see also can happen with our parallel implementation.
Then we have superlinear speedup. Actually, this is formally a contradiction,
because speedup by definition is computed with respect to the best sequen-
tial algorithm. In practice, superlinear speedup may be caused by extra
memory in a parallel computer, or working with a search algorithm[22].

Efficiency E is a measure of the fraction of time for which a processor
is usefully employed; it is defined as the ratio of speedup to the number of
processors[14], E = S

p , 0 < E ≤ 1. The efficiency equals 1 when we have
linear speedup, so with superlinear speedup it can actually exceed 1.

The scalability of a parallel algorithm is its ability to achieve perfor-
mance proportional to the number of processors. For instance, the scalability
is very good if the implementation has linear speedup for increasingly num-
ber of processors.

Concurrency refers to the ability to perform many actions simultane-
ously, and is essential for a program to run efficiently on many processors.

Locality means a high ratio of local memory access, so there is little
need for interprocessor communication.

1.4.2 Overhead

Linear speedup is achieved when it is possible to divide the work to be done
equally on p processors, Ts

Ts/p = p. Then we have maximal concurrency and
locality, which corresponds to perfect conditions. The total time pTp then
equals Ts.

Such conditions are rare, due to a variety of overheads associated with
parallelism. We mention three factors of overhead which limit the speedup.

Load imbalance In many parallel computations it is difficult to predict
the size of the subtasks assigned to various processors. If different pro-
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cessors have different work loads, some processors may be idle during
part of the time that others are working on the problem. This includes
the time when only one processor is active on inherently serial parts
of the computation.

Interprocessor communication Communication time for sending mes-
sages among processors. The time spent on transferring data between
processors is often the most significant source of overhead.

Extra computation Computation in the parallel implementation not ap-
pearing in the sequential version. For instance recomputing constants
locally, or calculate load balancing.

1.4.3 Parallel programming models

We will now describe the two main programming models, together with two
well known corresponding specifications, one among them we will use in a
parallel implementation.

Shared memory programming (SMP) and OpenMP

In the shared memory programming model, programmers view their pro-
grams as a collection of processes accessing a central pool of shared variables,
which they read and write asynchronously.

OpenMP[3] is a widely used standard specification containing compiler
directives, library functions, and environment variables for shared program-
ming parallelism. Parallel execution is achieved by executing loops or sec-
tions of code in parallel. For this to be possible, the order of the loops or
sections should not influence the answer.

When all the working processors need access to the same data, this model
has a clear advantage, since only one copy is necessary. It is also quite simple
to parallelize a sequential program using SMP, in order to minimize the
development time.

Message passing programming (MPP) and MPI

Message passing is probably the most widely used parallel programming
model today. Programmers view their programs as a collection of processes
with private local variables and the ability to explicitly send and receive
data between processes by passing messages.

The Message Passing Interface or MPI was released in 1994[1] and ex-
tended in 1997[2]. MPI is a specification of a standard set of library functions
useful to programmers writing portable message-passing programs in For-
tran, C or C++. It is designed for high performance and scalability, and has
succeeded in becoming widely used.
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The essentials when a MPI program is executed on a parallel computer
can be described in three steps[19]:

1. The user issues a directive to the operating system which has the effect
of placing a copy of the executable program on each processor.

2. Each processor begins execution of its copy of the executable.

3. Different processes can execute different statements by branching within
the program. Typically the branching will be based on process ranks.

1.4.4 IBM p690 Regatta Turbo system

The “IBM p690 Regatta Turbo system” is the supercomputer where we have
done our implementation and run our tests on. The supercomputer consists
of three 32-way eSeries p690 Regatta SMP nodes, with a total of 96 Power4
processors (1.3 GHz) and has a total of 192 Gigabyte memory. When the
Regatta system came alive in January 2002, it had the most powerful CPU’s
of the supercomputers in Norway.

The Regatta system is a shared-address-space computer, which is natu-
rally suited to the described shared memory programming model. However,
it can also be programmed using the message passing programming model,
by modeling a message-passing computer without loss of performance.



Chapter 2

Chordal vs. weakly chordal
graphs

The class of chordal graphs and the class of weakly chordal graphs have
several similarities. Recently, as mentioned in the preface, Berry, Bordat
and Heggernes[5] also established a strong structural relationship between
chordal and weakly chordal graphs where they applied a variant of Lekkerk-
erker and Boland’s recognition algorithm for chordal graphs to the class of
weakly chordal graphs. This yield a new characterization of the class, and
the motivation and goal of this thesis is to study practical implementations
of this characterization.

After the definitions of the two mentioned classes of graphs, we go
through some of the similarities of the two classes in addition to some of the
recognition algorithms for chordal graphs. We end the chapter by presenting
the recognition algorithm for weakly chordal graphs which will be further
studied and implemented in the next chapters. An overview of this chapter
is outlined in Figure 2.1.

G is a chordal graph ⇒ G is a weakly chordal graph
m m

Every cycle of length > 3 Every cycle of length > 4
in G has a chord in G and G has a chord

m m
Every vertex in G Every edge in G
is LB-simplicial is LB-simplicial

Figure 2.1: Schematic overview of chordal vs. weakly chordal graphs (some
of the properties)

21
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Definition 2.1 A graph G = (V, E) is chordal1 iff every cycle of length >
3 in G has a chord.

Definition 2.2 A graph G = (V, E) is weakly chordal2 iff every cycle of
length >4 in G and the complement graph G has a chord.

(b)(a) (c) (d)

Figure 2.2: The graph in (b) is the complement of the graph in (a), which
is both chordal and weakly chordal. In (c), the graph is weakly chordal but
not chordal. For the graph in (d), it is neither chordal nor weakly chordal.

In Figure 2.2(a), the longest chordless cycle is of length 3, and the graph
is therefore chordal. In addition, the complement of the graph seen in Figure
2.2(b), has no cycles at all, and the definition of a weakly choral graph is
fulfilled. The graph in Figure 2.2(a) is therefore also weakly chordal. Later,
in Section 2.2, we will show that this is a general result, i.e. the class of
weakly chordal graphs is a superset of the class of chordal graphs.

The graph in Figure 2.2(c) is weakly chordal but not chordal. The longest
cycle it contains is of length 4, excluding it from being a chordal graph. The
complement of the graph does not have any cycles, and the graph is therefore
weakly chordal.

In Figure 2.2(d), the graph is neither chordal nor weakly chordal since
it contains a chordless cycle of length 5.

2.1 Chordal and weakly chordal graphs are perfect

Weakly chordal graphs were introduced by Hayward[9] in 1985 under the
motivation that they were perfect, just as the class of chordal graphs.

Definition 2.3 A graph G = (V,E) is perfect if ω(G(X)) = χ(G(X)) for
all X ⊆ V .

The clique number of a graph G is the size of the largest clique in G, and
is denoted by ω(G). The chromatic number of a graph G, is the smallest
number c, where all the vertices in G are colored in one of the c colors, but
no adjacent vertices have the same color, and is denoted by χ(G).

1Also called triangulated
2Also called weakly triangulated
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In other words, the definition says that a graph G is perfect if, for each
induced subgraph X of G, the chromatic number of X equals the size of the
largest clique of X.

Perfect graphs are of interest partly because a number of optimization
problems can be formulated as coloring problems on perfect graphs.

2.2 The relationship between chordal and weakly
chordal graphs

Hayward shows in his original paper[9] that chordal graphs are weakly
chordal. In this section we state this result as a theorem, yielding that the
class of weakly chordal graphs is a superset of the class of chordal graphs.

Theorem 2.4 [9] A graph G = (V, E) is chordal ⇒ G is weakly chordal.

Before we give a proof, we make two observations.

Observation 2.5 A chordless cycle of length 5 is isomorphic to its com-
plement.

The observation is illustrated in Figure 2.3.

Observation 2.6 The complement of every chordless cycle of length ≥6
has a chordless cycle of length 4

This observation is illustrated in Figure 2.4. Figure 2.4(b) shows some of
the edges of the complement graph of the chordless cycle of length 6 in
Figure 2.4(a). We see that any subgraph induced by the endpoints of two
non-consecutive edges of the cycle of length 6 will make a chordless cycle
of length 4 in the complement graph. A chord in such a cycle will not exist
because it will be a part of the cycle in (a). The same is true for all chordless
cycles with length >6.

G: G:

a

b

c

de

a

e

b

c

d

Figure 2.3: G and G are isomorphic

Hayward[9] briefly sketches a proof of Theorem 2.4, which we now give
more detailed.
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(a) (b)

Figure 2.4: The complement of every chordless cycle of length ≥6 has a
chordless cycle of length 4.

Proof. We use the definition of weakly chordal graphs on a given chordal
graph G. That is, neither G nor G can contain a cycle of length >4 without
a chord.

It is obvious that G does not have any chordless cycle of length >4,
according to the definition of chordal graphs.

Since G does not have any chordless cycle of length 5, G cannot have
any chordless cycle of the same length, according to Observation 2.5. Neither
does G contain any chordless cycle of length 4, and according to Observation
2.6, G cannot have any chordless cycle of length ≥6. The longest chordless
cycle of G is then at most of length 4.

The chordal graph G is therefore also weakly chordal.
2

In addition is it clear that G is also weakly chordal, since we have seen
that neither G nor G = G contain a chordless cycle of length ≥4.

2.3 Recognizing chordal graphs

There are several different ways to characterize chordal graphs, and thus sev-
eral corresponding ways to recognize them. We will here mention two ways
of recognizing chordal graphs. One uses the notion of a simplicial vertex,
and the other the definition of an LB-simplicial vertex.

Definition 2.7 A vertex is called simplicial if its neighborhood induces a
clique.

This definition gives the basis for one characterization of chordal graphs:

Characterization 2.8 [7] Any non-complete chordal graph has at least two
non-adjacent simplicial vertices.

Since all induced subgraphs of a chordal graph also are chordal, we can
now give our first algorithm that recognizes chordal graphs. This is given in
Algorithm 2.1 [8].

Lekkerkerker and Boland[16] gave another characterization:
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Algorithm 2.1 Chordal graph recognition 1
→ A connected graph G = (V, E)
← An answer to the question: “Is G chordal?”
G′ = G
while ∃ a simplicial vertex in G′ do

Find a simplicial vertex u ∈ G′;
Remove u and all edges uv, v ∈ G′, from G′;

end while
if G = ∅ then

return (G is chordal);
else

return (G is not chordal);
end if

Characterization 2.9 [16] A graph is chordal iff for every vertex x, all the
minimal separators included in N(x) are cliques.

To simplify the notation, Berry, Bordat, and Heggernes[5] introduced the
definition of a LB-simplicial vertex (the abbreviation LB refers to Lekkerk-
erker and Boland).

Definition 2.10 [5] A vertex is LB-simplicial if all the minimal separators
included in its neighborhood are cliques.

We then reformulate Characterization 2.9 to a theorem. We also give
a proof of this theorem which uses our notation, much simpler than the
original proof.

Theorem 2.11 [16] A graph G = (V, E) is chordal iff every vertex of V is
LB-simplicial.

Proof. ⇒: Let G = (V, E) be chordal and let a ∈ V be any vertex of G.
Let s be any minimal separator of G included in the neighborhood of a,
separating a from a vertex b ∈ V . We let A and B denote the connected
components of C (s) containing respectively a and b. Further, let x and y be
any two vertices of s. We will show that (x, y) must be an edge of G, such
that s is a clique and a therefore is LB-simplicial.

First we observe that there must exist a path between x and y through
vertices belonging to A. Let p1 be a shortest such path. In the same way
we have a shortest path p2 between x and y through vertices of B. Joined
together, p1 and p2 make a cycle of length ≥4. Since G is chordal, this cycle
must have a chord. Since no edges exist between A and B, the edge (x, y)
must be present and is a chord in the cycle. s is then a clique and a is
LB-simplicial.
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⇐: Let G = (V, E) be a graph where all vertices are LB-simplicial.
Assume that G is not chordal, and let z1, z2, . . . , zk, z1 be a chordless cycle
where k ≥4. Consider the vertex z1, and let C1 be the component of C ({z1}∪
N(z1)) containing the vertices z3, . . . , zk−1. The neighborhood of C1, N(C1),
is a minimal separator in the neighborhood of z1, N(z1), such that N(C1) ⊆
N(z1). Since {z2, zk} ⊆ N(C1) and z1 is LB-simplicial, the edge (z2, zk) has
to exist, contradicting that the given cycle is chordless.
2

We can now form an algorithm based on the characterization of Lekkerk-
erker and Boland, which is shown i Algorithm 2.2.

Algorithm 2.2 Chordal graph recognition 2
→ A connected graph G = (V,E)
← An answer to the question: “Is G chordal?”
for all v ∈ G do

if v is not an LB-simplicial vertex then
return (G is not chordal);

end if
end for
return (G is chordal);

For clarity we give a last characterization of chordal graphs:

Characterization 2.12 [7] A graph G is chordal iff every minimal separa-
tor of G is a clique.

2.4 Recognizing weakly chordal graphs

Like chordal graphs, there are several different ways to characterize and rec-
ognize weakly chordal graphs. We will concentrate on recognizing weakly
chordal graphs by the definition of a LB-simplicial edge, which is the char-
acterization we will use for practical implementation.

We start with two observations done by Hayward[10] and Kratsch[13]:

Observation 2.13 [10] Chordal graphs can be generated by repeatedly adding
a vertex which is not the middle vertex of a chordless path on 3 vertices,
while weakly chordal graphs can be generated by repeatedly adding an edge
which is not the middle edge of a chordless path on 4 vertices.

Observation 2.14 [13] In a chordal graph G = (V, E), for every minimal
separator s, every component C of G(V − s) contains a confluence point,
while in a weakly chordal graph G, for every minimal separator s, every full
component C contains either a confluence point or a confluence edge3.

3An edge e such that N(C) ⊆ N(e)



2.4. RECOGNIZING WEAKLY CHORDAL GRAPHS 27

These observations show that an edge in a weakly chordal graph plays a role
similar to a vertex in a chordal graph.

Now we define the notion of an s-saturating edge, which is a stronger
version of a confluence edge.

Definition 2.15 [11] Given a set s of vertices, an edge e of G(V − s) is
said to be s-saturating if, for each connected component sj of G(s), at least
one endpoint of e sees all vertices of sj.

As Kratsch (Obs. 2.14), Hayward shows that in each full component of
a minimal separator in a weakly chordal graph, there is either a confluence
point or an s-saturating edge.

Further, in their work for a new characterization for weakly chordal
graphs, Berry, Bordat, and Heggernes[5] define the notion of a LB-simplicial
edge based on the role such an edge plays in a weakly chordal graph.

Definition 2.16 [5] An edge e is LB-simplicial if for each minimal sepa-
rator s included in the neighborhood of e, e is s-saturating.

Now we present their theorem yielding a new characterization of weakly
chordal graphs:

Theorem 2.17 [5] A graph G = (V, E) is weakly chordal iff every edge of
E is LB-simplicial.

To prove this theorem, they introduce two lemmas in addition to apply one
theorem from the paper where Hayward introduced weakly chordal graphs.

Lemma 2.18 [5] In a given graph G, an edge that belongs to a hole cannot
be LB-simplicial.

Lemma 2.19 [5] In a given graph G, each antihole contains an edge that
is not LB-simplicial.

Theorem 2.20 [9] Let G be a weakly chordal graph, and let s be a minimal
separator of G such that G(s) is connected. Then in each full component C
of C(s), there is a vertex that sees all the vertices of s.

Based on these results, we can give their proof of Theorem 2.17:

Proof.[5] ⇐: Let G be a graph in which every edge is LB-simplicial. Then
by Lemma 2.18 G cannot contain a hole, and by Lemma 2.19 G cannot
contain an antihole. Thus G must be weakly chordal.

⇒: Let G be a weakly chordal graph, and suppose some edge ab fails
to be LB-simplicial. Let s = N(C) be a minimal separator contained in the
neighborhood of ab for which ab fails to be s-saturating, let s1 be a connected
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component of G(s) such that neither a nor b sees all the vertices of s1, and
consider the subgraph G′ induced by C∪s1∪ab. As any subgraph of a weakly
chordal graph is itself weakly chordal, G′ must be weakly chordal. s1 is a
minimal separator of G′, with 2 full components, {a,b} and C, and G′(s1)
is connected. Neither a nor b sees all the vertices of s1, which contradicts
Theorem 2.20.
2

Now we form Algorithm 2.3 based on Theorem 2.17, and give an example
of an LB-simplicial edge.

Algorithm 2.3 Weakly chordal graph recognition
→ A connected graph G = (V,E)
← An answer to the question: “Is G weakly chordal?”
for all e ∈ E do

if e is not an LB-simplicial edge then
return (G is not weakly chordal);

end if
end for
return (G is weakly chordal);

Example 2.1 [5] We will demonstrate an LB-simplicial edge in Figure 2.5,
using a graph from Hayward’s original paper[9]. The graph is weakly chordal
and isomorphic to its complement. We will test if the edge from 2 to 8 is
LB-simplicial. The neighborhood of the edge is N(2, 8) = {4, 5, 6, 7}. The
only minimal separator included in the neighborhood is {4, 5, 7}. Connected
components of G({4, 5, 7}) are {4} and {5, 7}. Vertex 8 sees both vertices in
{5, 7}, and vertex 2 sees 4. The edge from 2 to 8 is then {4, 5, 7}-saturating
and thus LB-simplicial.

5 4

7

12

8

6 3

Figure 2.5: A weakly chordal graph isomorphic to its complement.
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Sequential implementation

This chapter will go in detail through our implementation of Algorithm 2.3,
Weakly chordal graph recognition, and describe an O(m2) time sequential
implementation.

First we sketch how we can make the algorithm to run in O(m2) time,
then we present the main data structures, before we finally give detailed
algorithms for each step of the implementation.

3.1 How to make the algorithm to run in O(m2)

As seen in Algorithm 2.3 in Chapter 2, we can check if each edge e is LB-
simplicial to decide whether a graph is weakly chordal. According to Def-
inition 2.16, we then have to check if e is s-saturating for each minimal
separator s in the neighborhood of e. For each s we therefore have to com-
pute the connected components of G(s) (the co-connected components of
G(s)), and for each such component check that at least one endpoint of e
sees all the vertices in the component. Algorithm 3.1 decides whether an
edge in a graph is LB-simplicial.

3.1.1 A direct approach will fail

For Algorithm 2.3 to have an overall time complexity of O(m2), Algorithm
3.1 has to have a time complexity of O(m). The computation of the neigh-
borhood and its minimal separators can, as we later will see, be done in O(n)
and O(m) time. However, an important issue is the number of minimal sep-
arators each of which will be processed. In [4] it is shown that this number
is at most n + m for a weakly chordal graph, which we will call the original
separators. But we may, as we will see in Section 3.3.2, encounter the same
separator many times. For each edge we actually may encounter at most
n separators. However, since each vertex x is adjacent to a distinct edge
for each separator x belongs to, the sum of the number of vertices in these

29
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Algorithm 3.1 LB-simpliciality of an edge
→ A connected graph G = (V,E) and an edge e ∈ E
← An answer to the question: “Is e LB-simplicial?”

Compute all minimal separators s in N(e);
for all minimal separators s ∈ N(e) do

Compute the co-connected components of s;
for all co-connected components ccc of s do

if no endpoint of e sees all the vertices of ccc then
return (e is not LB-simplicial);

end if
end for

end for
return (e is LB-simplicial);

separators will be less than m for each edge. Therefore, to process all the
co-connected components for all the minimal separators in the neighborhood
of an edge take at most m time. To compute the co-connected components
of only one of the minimal separators however, takes O(m) time1, which
gives a time complexity of O(mn) for each edge. Thus Algorithm 3.1 does
not obtain a time complexity of O(m).

3.1.2 Solution: Do not re-compute the co-connected compo-
nents

We now know that while checking a weakly chordal graph we may encounter
a total of mn minimal separators if we allow multiple copies, but only n+m
otherwise. We also know that we have enough time to compute and process
mn separators due to the fact that the sum of the vertices in all the sepa-
rators is m×O(m) = O(m2), but that we do not have the time to compute
the co-connected components for all the separators, which also would have
resulted in re-computing the co-connected components of a separator with
multiple copies. However, we can afford to compute the co-connected com-
ponents of the n+m original minimal separators, which yields a complexity
of O(mn + m2) = O(m2), m ≥ n. If we can gather all the copies of the
same separator and also know from which of the vertices of an edge a given
vertex in a separator is seen, it is enough to only compute the co-connected
components of the n+m minimal separators in a weakly chordal graph once.

Label the vertices of the minimal separators

We solve these challenges by first labeling the vertices when computing the
neighborhood of an edge. A vertex x in the neighborhood of an edge e from

1We will show how to do this in Subsection 3.3.5
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vertex a to b is labeled 1 if it is seen by a, 2 if it is seen by b, and 3 if it
is seen by both a and b. In a co-connected component containing several
vertices, combinations of 1 and 3, and 2 and 3 is allowed. Combinations of
1 and 2 is not allowed since it corresponds to that one endpoint of an edge
does not see all the vertices of the component. If such a combination exists,
we can conclude that the graph is not weakly chordal.

It should also be mentioned that computing the co-connected compo-
nents of a graph is not straight forward if one wants do to it efficiently. We
will come back to this issue while discussing the algorithm in more detail.

Compute and sort all the minimal separators

The second part of the solution to the mentioned challenges is to compute
a list of all the minimal separators, a total of at most mn, and then sort the
list using a linear sorting algorithm. All copies of each separator will now
appear consecutively in the sorted list. We can then decide the first copy
to be the original and compute the co-connected components only for the
original.

The final algorithm

By labeling all the vertices in the neighborhood of an edge, computing a
global separator list, computing the co-connected components of only the
original separators and in the end checking the labeling of each co-connected
component for each separator, we can find if each edge is LB-simplicial in
O(m2) time. This is done in Algorithm 3.2 [5]. The time complexity will be
clear as we will go through each step of the algorithm and explain everything
in detail in the coming sections.

3.2 Data structures

Although the presented algorithm for recognizing weakly chordal graphs is
quite simple to follow and understand, it demands well designed and com-
pact data structures to satisfy the O(m2) time bound. Both the graph itself,
the neighborhood of an edge with labeled vertices, the minimal separators
with labeled vertices, the list of minimal separators, the co-connected com-
ponents, and the set of co-connected components must all have efficient
representations for our purpose when checking graphs for weakly chordality.
In addition we need extra data structures to compute the minimal sepa-
rators, to sort the separators, and compute the co-connected components,
which will be described in the corresponding subsections in Section 3.3.
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Algorithm 3.2 O(m2) time weakly chordal graph recognition
→ A connected graph G = (V,E)
← An answer to the question: “Is G weakly chordal?”

for each edge ab ∈ E do
Go through the neighbors of a and b simultaneously and form N(ab) as
a sorted list of vertices x with labels l(x) = 1 if x sees only a, l(x) = 2
if x sees only b, and l(x) = 3 if x sees both a and b;
Compute the minimal separators s ⊆ N(ab) and insert them in the
global separator list S;

end for
Sort the global separator list;
original = S[0];
Compute the set of connected components CCC of G(S[0]);
separators = 1;
for each minimal separator s ∈ S do

if s 6= original then
original = s;
separators + +;
if separators > n + m then

return (G is not weakly chordal);
else

Compute the set of connected components CCC of G(s);
end if

end if
for each connected component ccc ∈ CCC do

if ∃{x, y} ∈ ccc with l(x) = 1 and l(y) = 2 in this copy of s then
return (G is not weakly chordal);

end if
end for

end for
return (G is weakly chordal);
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3.2.1 The graph

There are two well known standard ways to represent a graph G = (V, E).
As an adjacency-matrix or as a collection of adjacency-lists. We will not use
the standard definition of any of them.

Using an adjacency-matrix, we have the ability to quickly tell if there is
an edge connecting two given vertices. However we will need n2 space, which
is useless with our huge graphs.

Adjacency-list provides a compact way to represent sparse graphs and a
space of 2m is needed for an undirected graph. The adjacency-list represen-
tation consists of an array of n lists, one for each vertex in V . For a given
vertex v ∈ V , element number v in the array contains pointers to all the
vertices adjacent to v in G. To tell whether there is an edge connecting two
vertices or not, we usually have to perform a linear search. In addition, the
adjacency list can easily behave dynamically.

However, our graph is final, and we can therefore store it statically.
We will use a variant of an adjacency-list in that we place all the lists
consecutively in a vector, using another vector to tell where the different
lists begin. In this way we only need pointers to the start of the lists and not
to every element in each list. We will also store the lists internally sorted,
in that we can apply binary search to decide if there is an edge connecting
two vertices.

As earlier mentioned, a vector can also grow dynamically, but as far as
the representation of the graph is concerned, we use it in a static manner.

Figure 3.1 shows how we represent the graph from Example 2.1. Each of
the two vectors contain integer values:

vector<int> adj;

vector<int> lstart;

The vector adj contains all the adjacency-lists, while the vector lstart con-
tains one index pointer into adj for each vertex in the graph, illustrated by
arrows. The adjacency-list for a vertex i therefore starts at lstart(i) and ends
at lstart(i + 1)− 1 in adj. Then we can find the neighbors of vertex i in the
segment adj[lstart(i) : lstart(i + 1)− 1].

Because we number the vertices from 1 to n, we start the index at one
instead of zero in vector lstart. For simpliciality we also do this with adj. In
our undirected graph, adj then has a length of 2m + 1. Vector lstart has a
length of n + 2 because it contains one extra element at the end, pointing
to the element beyond the last in adj. This last element is necessary to see
where the last list in adj ends. Overall, the representation of our graph has
a space complexity of Θ(m + n) = Θ(m), m ≥ n.

All the graphs in our work will be connected, but due to the completeness
of the representation we note that vertices without any neighbors can be
represented in lstart by -1.
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Figure 3.1: Representation of the graph from Figure 2.5

3.2.2 The neighborhood of an edge

To be able to compute the minimal separators in the neighborhood of an
edge ab, it is necessary to first compute the neighborhood N(ab). As we will
see later, we do this by merging the two sorted adjacency-lists of the vertices
a and b. Due to the fact that a and b may have common adjacent vertices,
we do not know the final size of the neighborhood of the edge, even if we
do know the number of neighbors to a and b. We therefore need a dynamic
data structure.

In addition we want the neighborhood of an edge to be sorted, but as long
as the adjacency-lists are sorted, we only need to add elements to the end of
our data structure. According to the criteria in Subsection 1.3.1, the vector
data structure is therefore our clear choice as long as the stored objects are
small and simple, which is the case with integers. We will represent vertices
in the neighborhood of an edge by a vector of type integer and name it by
capital N :

vector<int> N;

During the computation of the neighborhood the vertices will be labeled.
Although there may be a space overhead, we will store the labeling in a
vector of size n + 1, to secure a fast random access when we later compute
the minimal separators. We denote the vector l, for label:

vector<int> l;

Only the elements corresponding to a vertex in the neighborhood of the
present edge are in use.

It is only necessary to store the neighborhood and the labels until the
minimal separators are computed. The needed space for the neighborhood
is therefore n − 2, since an edge can be adjacent to all other vertices, and
Θ(n) for the labels. This yields a space complexity of Θ(n).
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3.2.3 The labeled vertices

For an efficient representation of a labeled vertex in a separator we use the
pair class template, which is part of the C++ standard library. This class
allows us to associate two integer values within a single object, corresponding
to a labeled vertex.

An alternative could be to use vectors of size 2, but a vector is a much
larger and more complex class than the pair class. This would affect the per-
formance when instantiating objects, and when inserting the labeled vertices
into separators.

The individual elements of a pair can be accessed using the member
access notations first and second. For example:

pair<int, int> lv( 1, 3);

represents the labeled vertex 1, seen by both vertices in an edge, and is
therefore labeled 3. We access the vertex by lv.first and the labeling of
the vertex by lv.second.

3.2.4 The separators

The minimal separators in the neighborhood of an edge is of course subsets
of the neighborhood of the edge. However, when computing the separators,
we do not discover the vertices in an ordered sequence. Because we need
them ordered when we will later sort the global separator list, we have to
add the vertices to their right position in the separator. At this point a list
may seem to be the obvious choice to represent a single separator.

On the other hand, we need random access to the elements of a separator,
especially when sorting the list of separators.

In addition will we in Subsection 3.3.2 see that inserting the vertices
directly at their ordered place will ruin the time limit. This is solved by only
adding vertices to the end of a separator. Therefore vector turns out to be
the best choice.

Before the final data structure of a separator is decided, we will consider
how to store the global list of separators. Here it is favorable to have random
access to the separators, in addition to that we only need to insert them
at the end. The clear choice is therefore a vector. However, a separator
represented by a vector, is a too large and complex object to directly be
inserted into another vector. As mentioned in Subsection 1.3.1, we solve
this by storing the objects indirectly by pointers, leading to a very efficient
insertion.

To reduce the notational complexity in the description of the data struc-
tures, we use the mechanism typedef in C++. With typedef we can intro-
duce a synonym for an existing data type to improve the readability of our
definitions of complex template declarations.

Now, we represent a single separator by a vector of type pair, and give
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it the synonym “separator”. A single separator is in the algorithms named
by the lower-case s:

typedef vector<pair<int, int> > separator;

separator* s;

The star indicates that s is a pointer to an object, not the object itself.
The global list of separators is then represented by a vector of pointers

to single separators. We denote it by the capital letter S:
vector<separator*> S;

As observed in Subsection 3.1.2, the sum of the number of vertices in
the separators is less than m for each edge. Including the labeling, we then
need at most 2m2 space, obtaining a space complexity of O(m2).

3.2.5 The co-connected components

For the co-connected components and the set of co-connected components in
a minimal separator, we will use data structures quite similar to the minimal
separators and the list of minimal separators.

Both the co-connected components and the set of them will have their
elements in sorted order inserted to the back, with no needs for the properties
of a list. Therefore we will also here use vectors.

Opposite a minimal separator, we do not need the vertices to be la-
beled. For a co-connected component we then use a vector of type int, with
the synonym “co connected component”. We denote a single co-connected
component by the lower-cases ccc:

typedef vector<int> co_connected_component;

co_connected_component* ccc;

As with the minimal separators, we let the set of co-connected compo-
nents be a vector of pointers to single co-connected components, which we
name by the capital letters CCC:

vector<co_connected_component*> CCC;

For each minimal separator, each vertex can only be in one co-connected
component and we do not need to store more than one set at the time.
Therefore is the space needed the same as for a minimal separator, namely
O(n).

3.2.6 Total space complexity

Now we can aggregate the space complexity for the examined main data
structures. The graph representation needed Θ(m + n) space, the neigh-
borhood of an edge together with its label needed Θ(n), all the computed
minimal separators take O(m2), while the set of co-connected components
will need O(n) space. Totally we then need a space complexity of O(m2), as
long as m ≥ n.
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We have mentioned that we will need some extra data structures to com-
pute the minimal separators, to sort them, and to compute the co-connected
components. However, the structures will not ruin the overall space complex-
ity, which we will see in the corresponding subsections of Section 3.3.

3.3 Algorithms

We are now ready to give detailed algorithms of each step of Algorithm 3.2.

3.3.1 Computing N(ab) and the labeling

The first we have to do is to compute the neighborhood N(ab) of each edge
e = ab, along with the labeling of each vertex in the neighborhood.

As we can see in Algorithm 3.3, we do this by merging the two sorted
adjacency-lists of a and b. To know where in the lists we are, we hold one
counter for each list. As long as both lists have more vertices, we continue
to increment the counters, depending on which list we added a vertex to the
neighborhood from.

First we check if the current vertex in a’s adjacency-list is less than or
equal to the current vertex in b’s adjacency-list. If so, we add the vertex in
a’s list to N , unless it is the other endpoint b of e. If the vertex in a’s list is
the same as the vertex in b’s list, the vertex is seen by both a and b, and is
labeled 3. Otherwise it is only seen by a, and is labeled 1.

If current vertex in b’s list is less than the current vertex in a’s list, we
will add the vertex in b’s adjacency-list, unless it is the vertex a in e, and
label it 2.

After adding a vertex to the list of neighbors, we increment the counters
pointing into the lists according to where we added a vertex from. If the
vertex is seen by both endpoints of the edge, we increment both counters.

When one of the adjacency-lists has no vertices left, we add the rest
of the other list’s vertices to the list of neighbors with correct labeling, in
addition to check that the opposite vertex of the edge is not added.

Complexity

Both a and b can have n neighbors, so we need 2n time go through both
adjacency-lists, yielding a time complexity of O(n).

3.3.2 Computing the minimal separators

Second we explain in detail the computation of the minimal separators,
which will be stored in the global separator list S.

In general, generating minimal separators can be done by computing the
neighborhoods of the connected components resulting from the removal of
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Algorithm 3.3 Computing N(ab) and the labeling
→ A connected graph G = (V, E) and an edge e = ab ∈ E. G is repre-
sented with the two vectors lstart and adj.
← A sorted vector N containing the vertices in the neighborhood of e.
Each vertex x ∈ N has label l(x) = 1 if x sees only a, l(x) = 2 if x sees
only b, and l(x) = 3 if x sees both a and b.

countera = lstart[a];
counterb = lstart[b];
while both adjacency-lists of a and b have more vertices do

if adj[countera] ≤ adj[counterb] then
x = adj[countera];
if x 6= b then

if x is seen by both a and b then
l(x) = 3;

else
x is seen by only a
l(x) = 1;

end if
Add x to the end of N ;

end if
if x is seen by both a and b then

counterb + +;
end if
countera + +;

else
if x 6= a then

l(x) = 2;
Add x to the end of N ;

end if
counterb + +;

end if
end while
if a’s adjacency-list has more vertices then

for all remaining vertices x do
if x 6= b then

l(x) = 1;
Add x to the end of N ;

end if
end for

end if
if b’s adjacency-list has more vertices then

for all remaining vertices x do
if x 6= a then

l(x) = 1;
Add x to the end of N ;

end if
end for

end if
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certain vertex sets. In [5], a formal description of all the minimal separa-
tors included in the neighborhood of a set of vertices inducing a connected
subgraph is given as a theorem:

Theorem 3.1 [5] Let K ⊂ V be a set of vertices inducing a connected
subgraph of a graph G = (V, E). The set of minimal separators of G included
in N(K) is exactly {N(C) | C ∈ C (K ∪N(K))}.

For our special case when computing the minimal separators in the neigh-
borhood of an edge, we let K be the vertices of the given edge and the
neighborhood of that edge.

As mentioned in Subsection 3.1.1, we may encounter the same separa-
tor many times. This can be seen in Figure 3.2, where we find the minimal
separators in the neighborhood e, which are {s1} and {s2}. However, sepa-
rator {s1} is discovered 5 times and {s2} 3 times, due to the fact that all
{c1}...{c8} are connected components when we remove e ∪ N(e) from the
graph. In a special case, we only have one minimal separator, but compute
it n− 3 times, which gives O(n) number separators in the neighborhood of
one edge.

e

C1

C2

C4C3 C5
C6

C7

C8

S1 S2

Figure 3.2: Computation of minimal separators

To be able to compute the connected components C of C (e ∪ N(e)) as
well as their neighborhoods, for a given edge e in a graph, we will use a
variant of a depth-first graph search (DFS). Generally a DFS searches from
a source vertex recursively deeper into the graph whenever possible, until all
the vertices that are reachable from the source vertex have been discovered.
If any undiscovered vertices remain, one of them is selected as a new source
to continue the search from. The process is repeated until all vertices are
discovered.

During the search the vertices are colored to indicate their state. Initially
each vertex is white. When a vertex is discovered in the search it is grayed,
and when the search finishes, it will finally be blackened. This means the
adjacency-list has been examined completely.
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In a general DFS, it is usual to record the predecessor of each vertex to
form the predecessor subgraph. For a DFS of a non-connected graph, such
subgraph forms a depth-first forest composed of several depth-first trees,
corresponding to the connected components of the graph. For connected
graphs it is a tree. Thus it is a good tool for computing the connected
components.

Beside creating a depth-first forest, it is common that each vertex has
a time stamp when it is discovered (grayed), and when the search finishes
examining its neighbors (blackened).

For our purpose, we do not explicitly need the predecessor subgraph nor
the time stamps. Algorithm 3.4 is the general DFS which our variant of
DFS is based on. The coloring of the vertices is stored in the vector color
of length n + 1.

Algorithm 3.4 General depth-first search
→ A graph G = (V, E).

for each vertex u ∈ V do
color[u] = white;

end for
for each vertex u ∈ V do

if color[u] = white then
Let u be a source vertex
Call DFS visit(u);

end if
end for

DFS visit(u)
color[u] = gray;
for all v ∈ N(u) do

if color[v] = white then
Call DFS visit(v);

end if
end for
color[u] = black;

In our variant of DFS, we remove a given edge e and its neighborhood
from the graph. However, we let the removed vertices exist in the color
vector, but give the neighborhood the color red and the vertices in the edge
black. Coloring the vertices of the edge black is actually not necessary, since
they are surrounded by red vertices, but we do so to emphasize that they are
not to be discovered since they do not belong to the graph at this moment.

Now, for each source vertex we discover, we continue the search in a new
depth-first tree, which is a connected component in the graph. The vertices
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in the neighborhood of the component in the original graph is according
to Theorem 3.1 a minimal separator. These vertices are colored red. For
each time we then discover a red vertex, we want to add it to a separator.
However, we want the separators to be sorted, and to insert the vertices in
their correct places may take O(n) time for each inserted vertex. This ruins
the overall time complexity of O(m) for each edge.

To solve this challenge we use a vector to store all the minimal sepa-
rators a given vertex will exist in. We name the vector v_in_separators.
Even though we will only use the elements x, x ∈ N(e), we let the size
equal n + 1 to ensure direct access to the elements. When we discover a
given red vertex v which we want to be in a separator s, we add a pointer
to s in v_in_separators at element v. Since vertex v may exist in sev-
eral separators, and also be discovered to be in a specific separator several
times, element v has to contain a structure for which the pointers to the
separators will be added to. We let this structure be a vector, and let then
v_in_separators be a vector of pointers, due to earlier mentioned reasons
about the vector class’ complexity and size. That is, v_in_separators is a
vector of pointers to vectors of pointers to separators:

vector<vector<separator* >* > v_in_separators;

For each time we are about to continue the search from a new source
vertex, we create a new separator and add it to the global separator list.
When we then discover a red vertex, we add a pointer to this separator to
the vertex’ list in v_in_separators.

Now, after we have completed the DFS, adding which separators each
vertex v belongs to, we can traverse each element in vector v_in_separators,
and add the element v to the separators we find. Actually, we only need to
traverse the neighborhood which is sorted, avoiding the overhead of travers-
ing empty elements of the v_in_separators vector. The elements of the
separators will now be added in sorted order, and we are able to exclude
repeated elements. Our version of DFS when computing the minimal sepa-
rators are shown in Algorithm 3.5.

Figure 3.3 shows both a graph and the corresponding data structure
when computing minimal separators in the neighborhood of an edge. In
(a) we see the graph, where the letters W, R, and B indicate the initial
colors white, red, and black when starting the computation of the minimal
separators in the neighborhood of e = (5, 6). The vertices of edge e is colored
black, the vertices in its neighborhood red, and the rest of the vertices,
belonging to the connected components C (e ∪N(e)), white.

Figure 3.3(b) shows the data structure when the DFS is finished, while
(c) shows the resulting global separator list S, containing the minimal sep-
arators in the neighborhood of e.
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Algorithm 3.5 Computing the minimal separators
→ A connected graph G = (V,E), an edge e = ab ∈ E, the neighborhood
N(e) to the edge, and the labeling l to the neighborhood.
← A global list S of minimal separators.

for each vertex u ∈ V do
color[u] = white;

end for
color[a] = color[b] = black;
for each vertex u ∈ N(e) do

color[u] = red;
end for
for each vertex u ∈ V do

if color[u] = white then
Create new s;
Add s to the global separator list S;
Call DFS visit MinSep(u);

end if
end for
for each vertex u ∈ N(e) do

for each separator s u belongs to do
Get the labeling from l;
Add u to s;

end for
end for

DFS visit MinSep(u)
color[u] = gray;
for all v ∈ N(u) do

if color[v] = white then
Call DFS visit MinSep(u);

else if color[v] = red then
Add s to the list of separators v belongs to;

end if
end for
color[u] = black;
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Figure 3.3: Data structures when computing the minimal separators

Complexity

When running the DFS we traverse only those edges incident to initially
white vertices, after initializing the color vector. This takes O(n+m) time.
The number of vertices in the separators for one edge is at most m, as
mentioned in Subsection 3.1.1. Traversing all the elements in the separators
for one edge therefore takes O(n+m) time, yielding a total time complexity
of O(n + m) = O(m), m ≥ n, which is within our time limit.

The extra space needed for the computation is Θ(n+m) = Θ(m), m ≥ n,
for the color and v_in_separators structures. This is within the limit of
the previously found space complexity.

To reduce the potential overhead of space regarding the v_in_separators
structure, it could be an issue to use the associative container map. However,
both insertion and lookup in a map is performed in O(log n) time, which



44 CHAPTER 3. SEQUENTIAL IMPLEMENTATION

ruins the time complexity.

3.3.3 Sorting the separator list

After the minimal separators have been computed, we are ready to sort the
global separator list. As mentioned several times, this list may contain mn
separators, but the total number of elements is O(m2), which also is our
overall time limit.

To obtain this time complexity we apply radix sort, a linear time sorting
algorithm. We regard each separator s as a number with |s| digits d, where
1 ≤ |s| ≤ k ≤ n, and 1 ≤ d ≤ n. Generally, given all elements with k digits,
radix sort applies bucket sort k times. The sorting is done from right to left,
starting from the least significant digit. That is, first we sort the separators
according to their last vertex, then the second last vertex, and so on until
the first vertex.

Initially, as we can see in Algorithm 3.6, we keep the separators in a
global queue GQ. Starting at the front, we insert each separator in one of n
buckets, determined by the least significant digit (last vertex). Thereafter we
scan the buckets in order and add all the elements to GQ. This is repeated
for all the digits from right to left, a total of k times, which is the size of
the largest separator.

For the algorithm to work correctly it is essential that elements that are
put in the same bucket remain in the same order. This is achieved by using
a queue for each bucket.

Since all the separators do not have size k, it is necessary to remove those
of less size before k steps have been done. When we discover a separator from
GQ, all of whose elements have been traversed, we can add it to the end of
our global separator list S, and it will be added to its correct place. When
finished with k steps, we add the remaining separators of GQ, all of size k,
to the end of S, and S is now in sorted order.

Mark that the separators initially are in our separator list S, we first
have to put them into GQ. At the same time we also find k, the size of the
largest separator. Strictly, we could have done this at an earlier point, but
as long as it does not obtain extra time nor space complexity, we do it here
for clarity.

Complexity

The only thing actually done in the algorithm is to move pointers to sep-
arators. First, all separators are added to GQ, which takes O(mn) time.
Second, for each element in the separators, the pointer of its separator is
moved from GQ to another queue, before moving it back. The total time
complexity is therefore O(mn + m2) = O(m2), since we assume connected
graphs and thus m ≥ n.
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Algorithm 3.6 Sorting the global separator list
→ The global separator list S
← S in sorted order

for all s ∈ S do
Insert s into the global queue GQ;
if |s| > k then

k = |s|;
end if

end for
Empty S;
for i = 1 to n do

Create queue Q[i];
end for

for i = 0 to k do
while GQ is not empty do

Pop s from GQ;
j = s[|s| − i]; (the i’th last index of s)
if j < 0 then

Add s to the end of the global list S;
else

d = s[j];
Insert s into Q[d];

end if
end while
for i = 1 to n do

Insert Q[i] into GQ;
end for

end for
while GQ is not empty do

Pop s from GQ;
Add s to the end of the global list S;

end while
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3.3.4 Identify original separators

When we have sorted the global separator list we are ready to compute the
co-connected components and check the labeling in them for each separator
in the list. As earlier explained, we have only time to compute the compo-
nents for the O(n + m) original separators. We therefore have to identify
them when processing the sorted list.

This is done by comparing the present original separator with the next
separator in the list. The algorithm is straight forward, the size of the original
and the size of the next separator are checked for equality. If they are, each
of the vertices must be compared, as seen in Algorithm 3.7. Of course, the
label of each of the vertices may be different.

Algorithm 3.7 Comparing two separators
→ Two separators s1 and s2

← An answer to the question: “Do s1 and s2 contain exactly the same
vertices?”

if |s1| 6= |s2| then
return (s1 and s2 are unequal);

else
for i = 0 to |s1| do

if s1[i] 6= s2[i] then
return (s1 and s2 are unequal);

end if
end for
return (s1 and s2 contain the same vertices);

end if

Complexity

Though the comparison between two separators may take O(n) time, which
is the maximum size of a separator, the total time complexity for identifying
the originals is the total number of vertices in the global separator list,
namely O(m2).

3.3.5 Computing the co-connected components

Now we take a closer look at the computation of the co-connected com-
ponents in an original minimal separator. Since a separator is an induced
subgraph of a graph with, as seen in Subsection 3.3.2, O(n) vertices, it is the
same problem as finding the connected components of the complement of a
graph G. One straight forward way to do this, is to first compute the com-
plement of the graph, G, and then perform a depth-first search, where the
connected components will be the depth-first trees in the depth-first forest.
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However, this will take O(m) time, where m is the number of edges in G.
As long as we do not know whether m ≤ m, this is not a satisfactory way
to do it. We therefore have to do it in a better way, using only the edges of
G and not those of G, to be sure to achieve O(m) time, which is the limit
since we may have a total of O(m+n) different original minimal separators.

In fact, the time complexity of computing the co-connected components
in a minimal separator was an issue the authors of [5] had to review to be
sure that the overall time limit were satisfied.

High level description

We will now describe a method that considers only edges of G and thus runs
in O(m) time. The method is based on the following observation:

Observation 3.2 If we mark all neighbors of a vertex v in a graph G, at
least all unmarked vertices must be in the same connected component as v
in the complement graph G.

The observation is correct due to the fact that there clearly have to be edges
in G to all the unmarked vertices from v.

We start the method by assigning each vertex a label initialized to 0. A
vertex v1 are chosen arbitrarily to be in the first co-connected component. All
its neighbors are then marked by incrementing their labels to 1. We know
that all vertices still having a label 0, must be in the same co-connected
component as v1. We therefore choose a new vertex v2 with label 0, add it
to the same co-connected component as v1, and increment the label to all
vertices in the neighborhood of v2.

Now, if v1 and v2 both see a given vertex v in the original graph, that
vertex has label 2. More important, every vertex labeled less than 2 must be
in the same component as v1 and v2, since this means that either v1 or v2

does not have an edge to v in G, and thus does have an edge to v in G. We
therefore continue to choose a vertex having a label < 2. From the following
observation we find when to stop adding vertices to the component:

Observation 3.3 By repeatedly adding vertices to a co-connected compo-
nent of a graph, and for each added vertex mark all vertices in its neighbor-
hood, no further vertices can be added when all remaining vertices have been
marked by all vertices in the co-connected component.

The correctness of the observation is clear since all remaining vertices are
marked by all vertices in the co-connected component, the remaining vertices
must all have an edge in G to every vertex in the co-connected component,
and no edge in G can exist to any of these vertices.

If we denote the number of vertices in a co-connected component the
size of the component, we know that all remaining vertices are marked
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by all vertices of the component when all their labels equals the size of
the component. We therefore continue adding vertices with labels less than
the size of the component as long as possible. When no further vertices
can be added, we add the computed co-connected component to the set
of co-connected components. Then we can start all over again, setting the
labels of the remaining vertices to 0 and creating a new empty co-connected
component.

We repeatedly create new co-connected components as long as there are
remaining vertices.

The described method can be seen in Algorithm 3.8.

Algorithm 3.8 Computing the co-connected components of a separator
→ A connected graph G = (V,E) and a separator s
← The set CCC of co-connected components ccc in s

X = s;
while G(X) not empty do

Create an empty co-connected component ccc;
for all remaining x ∈ G(X) do

vlabel(x) = 0;
end for
repeat

Choose a vertex v ∈ G(X), vlabel(v) < |ccc| or vlabel(v) = 0;
for all neighbors w of v in G(X) do

vlabel(w) + +;
end for
Add v to ccc and remove it from X;

until every x ∈ G(X) has vlabel(x) = |ccc|
Add ccc to CCC;

end while

Detailed description

Now we take a closer look into how we can implement Algorithm 3.8 in
O(m) time, which is shown in Algorithm 3.9.

As we can see from Algorithm 3.8, we need in constant time to choose a
vertex with label less than the size of the present co-connected component,
and also be able to tell when all remaining vertices have a label equal to the
size of the co-connected component.

If we for each label have a list containing the vertices having that label,
we manage to choose a vertex with the smallest label in constant time.
We store the lists in a vector vlist, and by starting with the smallest
label minLabel = 0, we can add vertices to a co-connected component ccc
and empty each list, vlist[minLabel], by incrementing minLabel as long as
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minLabel < |ccc|. When minLabel = |ccc| all remaining vertices clearly
have a label that equals |ccc|. No further vertices can then be added to the
component, and we therefore create a new component.

However, when we have added a vertex u to a component, we want
to increment the label of all its remaining neighbors. When analyzing the
complexity, it will become clear that we do not have time to search the lists
in vlist to find the neighbors, so we store in vector vlabel of length n + 1
what label each vertex in the graph has. If the vertex does not belong to a
separator or if it already has been added to a component, its corresponding
element is set to −1. Then we know which list the element we want to move
to the next list belongs to, but we still do not have the time to search the
list. We therefore keep a pointer to the elements in the lists, or actually an
iterator, which is a generalization of a pointer as explained in Section 1.3.1.
The iterators are also stored in a vector called vpointer of length n + 1.
Through the iterator into the list given by vlabel, we can remove the vertex
the iterator is pointing to and add it to the next list in constant time.

Figure 3.4 shows the computation of the co-connected components of a
graph G, using Algorithm 3.9. The input separator is then the vertex set
V of the graph. Initially, all vertices are put into vlist[0]. Then, in three
steps, 3 vertices are added to the first co-connected component. All the
tree vertices had edges to the two last vertices, so they cannot belong to
the same component. When vlist[minLabel = 0] now is empty, minLabel is
incremented, but we find no vertices in the 1st or 2nd list. At list 3, minLabel
equals the size of the first co-connected component, and all the vertices of
that list are moved to list 0, and are candidates for the next component,
which as seen is computed in two steps.

Complexity

Putting all the vertices of a separator into the data structure takes O(n)
time.

When computing the components, each edge ab ∈ E is traversed not
more than twice. At most once for b ∈ N(a), and at most once for a ∈ N(b).
Since separator s ⊆ V , not all the edges in the graph is traversed.

In addition, after an edge has been traversed, and a vertex’ label is
incremented and the vertex is moved to the next list, it may be moved back
to vlist[0], but not more than once for each time it is moved up. It will
therefore only influence on the constant in the time complexity, which have
a total of O(m + n) = O(m), m ≥ n.

Both vlabel and vpointer take n space. Also vlist takes at least n space
since it has place for n lists. However, the content of the lists take also no
more than n space, since the number of vertices in a separator is O(n). The
total extra space is therefore O(n), which fits nicely in the overall space
complexity of O(m2).
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Algorithm 3.9 Computing the co-connected components of a separator in
O(m) time
→ A connected graph G = (V,E) and a separator s
← The set CCC of co-connected components ccc in s

for each vertex v ∈ s do
Add v to vlist[0];
vlabel[v] = 0;
Let vpointer[v] point to v in vlist[0];

end for
minLabel = 0;
while vlist[0] not empty do

Create an empty co-connected component ccc;
repeat

while vlist[minLabel] not empty do
Remove a vertex u from the front of vlist[minLabel];
Add u to ccc;
vlabel[u] = −1;
for all v ∈ N(u) do

if vlabel[v] 6= −1 then
Move v from vlist[vlabel[v]] to the end of vlist[vlabel[v] + 1];
vlabel[v] + +
Get the new vpointer[v] from vlist[vlabel[v]];

end if
end for

end while
minLabel + +;

until minLabel = |ccc|
for each vertex vlist[minLabel] do

Through vpointer[v] move v to vlist[0]
vlabel[v] = 0;
Get the new vpointer[v] from vlist[0];

end for
Add ccc to CCC;
minLabel = 0;

end while
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3.3.6 Checking the labeling in the co-connected components
of a separator

When we have computed a set of co-connected components for an original
separator, we have to process each component and check that one endpoint
of the edge the separator is in the neighborhood of sees all vertices of the
component. As mentioned in Subsection 3.1.2, this corresponds to that the
combination of two vertices in a component labeled 1 and 2 is not allowed.

The procedure has to be repeated for all the copies of the original sepa-
rator.

When checking the labels we must in total process all the vertices of
the global separator list of size O(m2). Thus, the labels of the vertices in
each separator have to be accessed in constant time. In the actual C++
implementation we therefore have to first go through the present separator
and insert the label of vertex v in element v in vector l, which we also used
when computing the neighborhood of an edge. The result is that we have to
traverse the separator list twice, only influencing the constant in the time
complexity. Alternatively we could have stored the labels for each separator
in a vector of length n, resulting in a space complexity of O(mn2), which
would ruin the overall space complexity of O(m2). An associative container
map would neither be suitable, since lookup takes O(log n) time with a
separator of length O(n).

Algorithm 3.10 shows how the labeling in a set of co-connected compo-
nents are checked for one separator. The access of the label of a vertex v of a
separator s is done through the notation s[v].label in constant time. We keep
a masterlabel mlabel which is set to the first 1 or 2 which is discovered. A
label 3 is accepted at any time, since it corresponds to the case where both
endpoints of an edge sees the vertex. However, if another label not equal to
the master label is discovered, we can conclude that at least one edge is not
LB-simplicial.

Complexity

As mentioned we have to process all elements in the global separator list
when checking the labeling in the co-connected components of each separa-
tor, yielding a time complexity of O(m2).

The restoring of direct access to the labels of a separator in vector l,
yields no extra space complexity.

3.3.7 Total time complexity

Now we can review Algorithm 3.2 and take a closer look at the time com-
plexity.

The computation of the neighborhood and the minimal separators of an
edge takes O(n) and O(m) time. The first for each loop which processes
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Algorithm 3.10 Checking the labeling in the co-connected components of
a separator
→ A separator s and a set of co-connected components CCC
← An answer to the question: “Does there in any component ccc ∈ CCC
exist {x, y} where s[x].label = 1 and s[y].label = 2?”

for each ccc ∈ CCC do
mlabel = 0
for each v ∈ ccc do

if s[v].label 6= 3 then
if mlabel 6= 0 then

if mlabel 6= s[v].label then
return (Such {x, y} exists);

end if
else

mlabel = s[v].label
end if

end if
end for

end for
return (Such {x, y} does not exist);

each edge then takes a time of O(m2 + mn) = O(m2), m ≥ n.
In the second for each loop, processing all the minimal separators, both

the identification of the originals, the computation of the O(n + m) co-
connected components, and checking the labels take a total of O(m2) time.

Together with the sorting of the separator list in O(m2) time, we obtain
an aggregated time complexity of O(m2), as expected.



Chapter 4

Parallel implementation

In this chapter we take a parallel approach to Algorithm 2.3, Weakly chordal
graph recognition, and describe a parallel implementation using the Message
passing programming (MPP) model mentioned in Subsection 1.4.3.

The MPP model is chosen because it gives the most interesting parallel
approach. When implemented by using the MPI, it has succeeded, as earlier
mentioned, to achieve high performance and scalability. A drawback may be
that every processor needs access to the entire graph, yielding one copy of
it for each processor. However, the memory taken by the graph, O(m), is a
small part of the total space complexity of O(m2), as long as the number of
processors are much less than the number of edges m, which will be realistic.

Algorithm 2.3 is based on Theorem 2.17, stating that a graph is weakly
chordal if and only if every edge is LB-simplicial. It is obvious that if we
could have as many processors as edges, that is m processors, we could let
each processor check one edge each for LB-simpliciality. Hence, the iterations
of the for-loop in Algorithm 2.3 is independent of each other and can be
processed in parallel, yielding an algorithm parallel in nature.

The parallel time complexity is then the time it takes to check one edge
for LB-simpliciality, which is O(mn) as seen in Subsection 3.1.1. We note
that the approach gives a cost of O(m2n). This is not cost-optimal since
it is not proportional to O(m2), which is the time complexity of the best
known sequential algorithm. This is due to the fact that we parallelized the
sequential direct approach which we know from Section 3.1 will fail to obtain
the O(m2) time complexity.

Another note is that using m processors is unrealistic when working with
huge graphs, and from now on we assume that we have p processors, where p
is much less than m. An important issue to obtain concurrency yielding high
speedup is therefore the load balance of the work between the processors,
and the subsequent termination detection to find out when we have a global
answer to the question whether a graph is weakly chordal or not.

54
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4.1 Load balancing

For load balancing, the aim is to distribute the computations evenly across
the processors in order to obtain the highest possible concurrency and exe-
cution speed.

Figure 4.1 illustrates the concept using four processors. In Figure 4.1(a),
processor P1 operates for a longer period and processor P3 completes its
work early. This yields a longer execution time than optimal. For the highest
concurrency it would be ideal that part of P1’s work should be given to P4

to equalize the workload. This is shown in Figure 4.1(b).

Time

P0

P1

P2

P0

P1

P2

P3

P3

(a) Imperfect load balancing

(b) Perfect load balancing

Figure 4.1: Load balancing

The issue of load balancing takes two approaches, static and dynamic.

Static load balancing is usually referred to as the mapping problem or
scheduling problem[14]. When using p processors, we divide the com-
putations in what we hope is p equally large time consuming subtasks
and assign each processor one subtask each. If communication is nec-
essary, it should be taken into account that the communicating pro-
cessors should be close to each other. In newer machines this is not
straight forward.

The disadvantage of using static load balancing is the estimation of the
size of the subtasks. It can be hard to equally part the computations
because there may be an unknown number of steps to reach the so-
lution. In addition, extra computations may be necessary to compute
the estimation.

Dynamic load balancing is done in several ways, but all these ways man-
age to cope with the challenge of dividing the computations. The divi-
sion of load is dependent upon the execution of the parts as they are
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being executed. If one processor finishes working, it helps one other
processor that still has more computations to work on.

The disadvantage here is the need for communication. There has to
be communication between processors to discover the need to share a
workload. If the need is present, transfer of data to be computed is
likely to be necessary.

To sum up, static and dynamic load balancing may lead to different
types of overhead. In Subsection 1.4.2, three factors was mentioned; load
imbalance, interprocessor communication, and extra computation.

Static load balancing may cause load imbalance, missing the goal of
evenly distributing the work load. Extra computations may also be needed.

Dynamic load balancing does need interprocessor communication, and
the time spent on the transfer of data is often a significant source of overhead.

The choice between static and dynamic load balancing is a consideration
of which will lead to least overhead. The next two subsections take a closer
look at the approaches of our algorithm.

4.1.1 Dynamic load balancing of the best known sequential
algorithm

First we take Algorithm 3.2, O(m2) time weakly chordal graph recognition,
the best known sequential algorithm, as a starting point. Note that also
other algorithms have acchieved this bound[12].

In the first for each-loop, a simple dynamic load balancing is possible
when we for each edge find the neighborhood and all minimal separators.
Initially we can distribute the edges equally among p processors, and when
one processor finishes, it can ask for more work from other processors. This
of course requires the processors to check frequently if there are other pro-
cessors wanting to help them with their work.

After we have found the neighborhoods and separators, each processor
has its own collection of computed separators. To fulfill the sequential algo-
rithm, the co-connected components are only to be computed once for each
different separator. All equal separators therefore have to be placed at the
same processor. The transfer of all equal separators to one processor may
yield a heavy transfer of data.

Now the sorting of the separators can take place, and all copies of a
separator will be processed by one processor.

Further, the computation of the co-connected components may take
place, together with the checking of the labeling of each separator. Only
the co-connected components of the originals will now be computed. If one
processor finishes early, it can help another processor having more work to
be done, of course with extra interprocessor communication.
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4.1.2 Simple static load balancing

Next we combine the direct approach described in the beginning of this
chapter and the best sequential algorithm. By distributing the edges evenly
among the processors and run the best sequential algorithm on the resulting
subgraph on each processor, we manage to do a static parallelization that
avoids interprocessor communication, but with O(p) recomputations of each
of the original co-connected components.

This parallelization is simple but powerful under the assumption that
the time to do extra computation of some co-connected components are
much less than the transfer of data when placing all equal separators at one
processor, and that the load imbalance resulting from static load balancing is
small and less than the time to do interprocessor communication and data
transfer to dynamically correct the imbalance. Algorithm 4.1 shows this
parallelization. If all processors answer “All my edges are LB-simplicial”,
the graph G is weakly chordal, otherwise it is not. We assume that the call
to Algorithm 3.1 can be executed with a subgraph, despite the fact that the
Algorithm may need access to the entire graph.

Algorithm 4.1 Parallel weakly chordal graph recognition with static load
balancing
→ A connected graph G = (V, E), p processors Pi, i = 0, ..., p− 1
← A local answer from all processors to the question: “Are all of “your”
edges LB-simplicial?”

for each processor Pi do
Divide E into equal parts and find my E;
Call Algorithm 3.1(G′ = (V,my E));
if answer is “G′ is weakly chordal” then

return (All my edges are LB-simplicial);
else

return (At least one of my edges are not LB-simplicial);
end if

end for

We will use this static load balancing in our final parallel implementa-
tion, but first we consider the matter of termination detection. After all,
we are interested in one global answer, and as soon as one processor has
discovered one edge which is not LB-simplicial, all processors should end
their computations.

4.2 Termination detection

Termination detection is mainly connected to dynamic load balancing to find
out when all computations to be done are finished. Special algorithms exist
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to detect when to terminate, because a processor may believe it has finished
its work, but later it can be delivered more work from another processor.

However, search algorithms do need termination detection both in con-
nection with static and dynamic load balancing, due to the fact that it is
not necessary to search through unexplored parts of the search space if the
search has succeeded.

Our algorithm takes a similar approach. We check edges for LB-simpliciality,
but as soon as we have found one edge that is not LB-simplicial, we can end
our computations and conclude that the graph is not weakly chordal. So
when p processors each get a number of edges and the question of whether
they are LB-simplicial or not, termination and a global answer can be
reached in one out of two ways.

1. All processors finish locally, and find that all their edges are LB-
simplicial. This yields the global answer that the graph is weakly
chordal.

2. One processor finishes locally after finding that one of its edges are
not LB-simplicial. All other processors are then told to terminate, and
the graph is not weakly chordal, which is the global answer.

Algorithm 4.2 roughly implements this termination detection, using the
static load balancing from Algorithm 4.1. We let processor P0 be a mas-
ter, and all other processors report to P0 when returning an answer from
Algorithm 3.1. We postpone the details of the communication to the next
section, and for the time being we assume that P0 finishes Algorithm 3.1
as soon as another processor needs to tell that it has an edge which is not
LB-simplicial. Likewise we assume that P0 can just tell another processor to
stop working.

4.2.1 The possibility for superlinear speedup

In Subsection 1.4.1 we mentioned that superlinear speedup is possible in
parallel search algorithms. Since our algorithm is of similar nature, the same
is possible. Figure 4.2 outlines this possibility.

In Figure 4.2(a) 16 minimal separators are found and are about to be
processed when checking the separators labeling. One of the separators,
S13, has a labeling corresponding to the case where the edge it is in the
neighborhood of is not LB-simplicial. When using one sequential processor,
that processor will start processing at separator S1 and finish working when
S13 is processed.

Linear speedup is achieved if we manage to divide all the work done by
the sequential processor equally among several processors. In Figure 4.2(b)
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Algorithm 4.2 Parallel weakly chordal graph recognition and termination
detection
→ A connected graph G = (V, E), p processors Pi, i = 0, . . . , p− 1
← A global answer to the question: “Is G weakly chordal?”

for each processor Pi do
Divide E into equal parts and find my E;
Call Algorithm 3.1(G′ = (V,my E)) and return answer to P0;
if I am P0 then

for all processors Pi do
Receive local answer;
if local answer is “G′ is not weakly chordal” then

Tell all still working processors to stop;
return (G is not weakly chordal);

end if
end for
return (G is weakly chordal);

end if
end for

we use 4 processors. Processor P3 starts its work at S13, immediately discov-
ering that this separator has an irregular labeling. A global answer is then
reached and all processors can stop working.

Assuming that the processors use equal time to process a separator, the
separators S2 − S4, S6 − S8, and S10 − S12 will not have to be processed.
This leads to less work being performed in the parallel than in the sequential
approach, opening up for the possibility for superlinear speedup.

4.3 Final parallel implementation

Now we are ready to combine the load balancing and termination detection
from the previous sections in a final parallel algorithm for checking a graph
for weak chordality. This is done in Algorithm 4.3, which consists of the
computation of the static load balancing, a call to Algorithm 4.4, “LB-
simplicial(my E)”, which checks the edges in my E for LB-simpliciality, and
one part where processor P0 controls the termination detection. Algorithm
4.4 is quite similar to the best known sequential algorithm, Algorithm 3.2
“O(m2) time weakly chordal graph recognition”, except that it in addition
communicates with processor P0 to handle termination detection. All its
details of data structures and step by step implementation are therefore
explained in Chapter 3, Sequential implementation. Only the details of the
load balancing in Algorithm 4.3 and the termination detection concerning
both Algorithm 4.3 and 4.4 are left to be explained.



60 CHAPTER 4. PARALLEL IMPLEMENTATION

Algorithm 4.3 Final parallel weakly chordal graph recognition
→ A connected graph G = (V,E), p processors Pi, i = 0, . . . , p− 1
← A global answer to the question: “Is G weakly chordal?”

for each processor Pi do
Divide E into equal parts and find my E;
Call LB-simplicial(my E); (Algorithm 4.4)
if I am P0 then

if NOT “All the edges in my E are LB-simplicial” then
for i = 1 to p− 1 do

Isend((Terminate), Pi, request);
end for

else
for i = 1 to p− 1 do

Recv(msg = ANY MSG, ANY SOURCE);
if msg is “At least one edge in my E are not LB-simplicial”
then

for i = 1 to p− 1 do
Isend(“Terminate”, Pi, request);

end for
return (G is not weakly chordal);

end if
end for

end if
return (G is weakly chordal);

end if
end for
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Algorithm 4.4 LB-simplicial(my E)
→ A connected graph G = (V, E), a set of edges my E ∈ E, processor P0

to send an answer
← Nothing if the processor is told to terminate during the process. Oth-
erwise an answer sent to processor P0 to the question: “Are the edges in
my E LB-simplicial?”

Call Irecv(msg != “All the edges in my E are LB-simplicial”,
ANY SOURCE, requestA);

for each edge ab ∈ my E do
Call Test(requestA, completed);
if completed then

Terminate;
end if
Form N(ab) with labels;
Compute the global separator list S of minimal separators;

end for
Sort the global separator list;
original = S[0];
Compute the set of connected components CCC of G(S[0]);
separators = 1;
for each minimal separator s ∈ S do

Call Test(requestA, completed);
if completed then

Terminate;
end if
if s 6= original then

original = s;
separators + +;
if separators > n + m then

Isend((At least one edge in my E are not LB-simplicial), P0,
request);

Terminate;
else

Compute the set of connected components CCC of G(s);
end if

end if
for each connected component ccc ∈ CCC do

if ∃{x, y} ∈ ccc with l(x) = 1 and l(y) = 2 in this copy of s then
Isend((At least one edge in my E are not LB-simplicial), P0,

request);
Terminate;

end if
end for

end for
Isend((All the edges in my E are LB-simplicial), P0, request);
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Figure 4.2: Possibility for super linear speedup: Separator 13 has irregular
labeling, excluding weak chordality. The sequential processor in (a) discovers
this almost in the end. In (b), processor P3 discovers this immediately, and
the processing can end.

4.3.1 The load balancing in detail

The time it takes to verify LB-simpliciality for an edge is mainly deter-
mined by the size of the neighborhood of the edge and the number of and
the sizes of the minimal separators in the neighborhood. The possibility for
great differences in time is therefore present. For example a neighborhood
of 1 vertex versus O(n) vertices. However, the processing of Θ(n) separa-
tors of O(1) size, will take approximately the same time as processing O(1)
separators of Θ(n) size.

As a result, the time for verifying an edge for LB-simpliciality is approx-
imately even for all the edges if the size of the neighborhood is even for each
edge.

Making this assumption, we can divide E equally among p processors,
letting P0 verify the m/p first edges, P1 the next m/p edges, and so on. Our
implementation follows this approach, which suits well for the distribution
of the graph.

Before we take a closer look at the distribution, we mention that when
different parts of the graph have different density, it is not possible to detect
which edges take long time to process and which take short time. If we had
known that, we could distribute the edges unevenly among the processors.
Instead it is likely that edges close to each other have almost the same
degree. One of several approaches is then to let processor P0 process the
edges 1,m/p+1, 2m/p+1, . . . , (p−2)m/p+1, P1 process the edges 2,m/p+
2, 2m/p + 2, . . . , (p − 2)m/p + 2, and so on, where E = {1, 2, . . . , m}. The
distribution of the work load could then be improved.

Now we return to our distribution of the edges of the graph. From Section
3.2, we remember that our graph is represented by two vectors adj and
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lstart, where element i in lstart points to the place where the adjacency-
list of vertex i starts in adj. We give one processor the responsibility for
all edges in adjacency-list i, but we keep in mind that one edge shall only
belong to one processor. This distribution works well for huge graphs.

The details of the load balancing can be seen in Algorithm 4.5. We go
through all edges of the graph, keeping in mind which processor will take
responsibility for the edge we are counting at each time.

By proc assigned we keep track of whether a processor is assigned or
not, and by present proc we know which processor is about to get its edges.
present proc counts from 0 to p − 1, and as soon as a processor knows
both my start and my end, pointing into lstart, it can start processing its
edges.

We observe that the distribution of the load balancing is sequential in
nature as long as all processors are computing the same numbers. However,
there is no gain in letting one processor compute the distribution, since the
other processors could not start the work, and we would have to communi-
cate to tell the other processors what edges to work on.

Also note that the computation of load balancing is extra computations
not needed in the sequential implementation, and therefore pure overhead.

4.3.2 The termination detection in detail

Now we give details of the termination detection of algorithms 4.3 and 4.4.
As we did in Section 4.2, we let P0 be the master processor, which is the des-
tination of all the local answers, and responsible for telling all still working
processors whether they ought to terminate.

To handle the termination detection we need to send and receive mes-
sages between processor P0 and the other processors. Communication con-
cerning sending and receiving messages by processors is the basis of message
passing programming through send and receive operations. Generally, the
operations have to specify which destination processor to send to or which
source processor to receive from. For example, send(msg, P0) can be a call
to a send routine, sending the message “msg” to processor P0.

We differ between synchronous and asynchronous message passing.

Synchronous message passing[22]

The term synchronous is used for routines that actually return when the
message transfer has been completed. A pair of processes, one with a syn-
chronous send operation and one with a matching synchronous receive op-
eration, will be synchronized, with neither the source processor nor the des-
tination processor being able to proceed until the message has been passed
from the source to the destination. Hence, synchronous routines intrinsically
perform two actions: They transfer data and they synchronize processors.
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Algorithm 4.5 Detailed load balancing
→ A connected graph G = (V,E), p processors Pi, i = 0, . . . , p− 1
← Each processor Pi returns my E = (my start, my end)

for each processor Pi do
compute m = bm/pc;
proc assigned = FALSE;
present proc = 0
for each vertex a ∈ V do

if proc assigned is FALSE then
if I am present proc then

my start = a;
end if
proc assigned = TRUE;
edge counter = 0;
if present proc is Pp−1 then

my end = n;
return (my E = (my start, my end));

end if
end if
for each neighbor b to a do

if a < b then
edge counter + +;
if edge counter has reached compute m then

if I am present proc then
my end = a;
return (my E = (my start, my end));

end if
present proc + +;
proc assigned = FALSE;
Break for-loop;

end if
end if

end for
end for

end for
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Asynchronous message passing

The term asynchronous is used for communication routines returning imme-
diately, allowing the next statement to execute, whether the communication
is completed or not. Later, completion can be detected by other routines.
Asynchronous routines provide the ability to overlap communication and
computation.

Communication routines

For our parallel implementation we need to use a synchronous receive rou-
tine, which we call Recv(msg = ‘‘What message’’, source). In this call,
msg is the buffer where the receiving message is stored, and source is the
source processor, for example P0. We let ANY SOURCE denote that we
can receive from an arbitrary processor.

To be able to control what message to receive, we let the receive rou-
tine have the extra syntax =’’What massage’’. It is then only possible to
receive the indicated message. This is needed, because while processing the
“LB-simplicial(my E)” routine, processor P0 is only interested in a message
leading to abortion. Here we let ANY MSG denote that we can receive an
arbitrary message. In the MPI implementation this can be easily handled
with the tag-parameter.

In addition we need asynchronous send and receive routines. We name
the routines Isend(msg, destination, request) and Irecv(msg= ‘‘What
message’’, source, request), where I refers to the word immediate. The
last parameter request is used to detect completion of the routines. Through
a Test(request, completed) routine we can test if a Isend or Irecv is
completed. The request parameter must match. We will for example name
our request requestA, and Test(requestA, comp) will then detect whether
a routine with requestA is completed. If it is, the parameter comp is set to
true.

The described message passing routines have corresponding routines in
the MPI.

The termination detection step by step

Returning to our algorithms, we see that the call to the “LB-simplicial(my E)”
routine in Algorithm 4.3 is done by all processors. In the routine, the first in-
struction is a call to the asynchronous Irecv(msg != ‘‘All the edges in
my_E are LB-simplicial’’, ANY_SOURCE, requestA). This call initiates
the possibility to receive a message telling the present processor to termi-
nate. This receiving operation is completed if another processor finds an edge
that is not LB-simplicial. The completion has to happen before the present
processor finds an edge which is not LB-simplicial, or finishes processing
when all its edges is found to be LB-simplicial. This terminating message is
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either received by processor P0 from an arbitrary processor, or sent from P0

to any other processor. That is why the source is set to ANY SOURCE,
and the message has to be something else than “All the edges in my E are
LB-simplicial”.

The completion of the initial call to the asynchronous receive routine
is tested for each edge processed while computing the global separator list,
and for each minimal separator when checking the labeling.

As soon as a processor finds out that an edge is not LB-simplicial or that
all its edges are LB-simplicial, it will try to tell processor P0 so. Again we
use an asynchronous routine, Isend. This is because we want the processor
to terminate. If processor P0 already has received a message that one of the
other processors have found an edge not LB-simplicial, it will not receive
any more messages from the processors.

After the processors have finished their call to Algorithm 4.4, “LB-
simplicial(my E)”, they return to Algorithm 4.3. Only processor P0 has more
work to do by determining when we have a global answer. First it checks if
it has discovered an edge not LB-simplicial, or during the computation of
“LB-simplicial(my E)” has received a message that another processor has
found so. If it has, it tells all other processors to terminate.

If it has not, it starts to count the number of processors returning an
answer. It does so by using a synchronous receive routine p − 1 number
of times. We use a synchronous routine because we know that all other
processors have to send P0 an answer.

This synchronous receive routine is equivalent to an asynchronous rou-
tine, immediately followed by a wait routine which will hold until the com-
pletion of the routine.

For each answer P0 receives, it checks if the message is “At least one edge
in my E are not LB-simplicial”. If it is, P0 tells all processors to terminate.

The process of telling the processors to terminate is done by p− 1 calls
to the asynchronous send routine. We use an asynchronous routine because
it is likely that some of the processors have already terminated and have
not the possibility to receive the message. Processor P0 must however carry
on. After telling all the still working processors to terminate, processor P0

returns the global answer that the graph is not LB-simplicial.
If P0 has received p − 1 answers, and no message is evaluated to “At

least one edge in my E are not LB-simplicial”, all edges in the graph are
LB-simplicial. Then processor P0 has only left to return the global answer
that the graph is weakly chordal.



Chapter 5

Performance results

Finally we will test our implementations and measure the performance. The
questions we want to answer are

• How does the theoretical complexity of the sequential implementation
correspond to the test results?

• What gains did the parallel implementation achieve?

To answer the two questions, we need graphs to test on. We will both
generate own graphs, and use graphs available one the Web. These graphs
are described in the first section of this chapter.

The second and the third section will try answering the two introduced
questions, while we in the last section of the chapter draw the conclusion
lines of our results.

5.1 Test graphs

The graphs we need to test our implementations can either be weakly chordal
or not. To answer the first of our two questions, we need the graphs to be
weakly chordal, since the theoretical time complexity is given as an asymp-
totic upper bound. Because if the graph is weakly chordal, every edge will be
checked. If not, the computation may stop quite quickly. Therefore, to an-
swer the first question we want to verify weak chordality of graphs, rather
than recognize them. In Subsection 5.1.1, Elimination game, we show how
we generate weakly chordal graphs.

In addition, to give a complete picture, we also need graphs which we
do not know whether or not they are weakly chordal, and test them for this
purpose. In Subsection 5.1.2 we introduce graphs to be recognized if they
are weakly chordal.

A general property of the graphs we test on are their sizes. To compare
the test results with big-O notation, we need huge graphs, so that the high-
est order term of the run time is the significant. This will also demonstrate
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whether or not the algorithm is suitable for practical applications. In addi-
tion we want the number of edges m to be much greater than the number
of processors in the parallel implementation.

5.1.1 Elimination game

Theorem 2.4 states that every chordal graph is weakly chordal. We now use
this result to generate chordal, and thus weakly chordal graphs.

From Section 2.3, Recognizing chordal graphs, and Algorithm 2.1, Chordal
graph recognition 1, we know that a graph is chordal if we repeatedly can
remove a vertex whose neighborhood induces a clique. Such a vertex was
called simplicial. We take advantage of this characterization by removing
one vertex at a time from a given graph, after making the vertex simplicial.
We then add the new edges to the original graph. This procedure is called
“Elimination game” and can be seen in Algorithm 5.1. It was first intro-
duced by Parter[20] as a simulation of sparse matrix factorization, and later
by Fulkerson and Gross[8], who connected it to chordal graphs, and showed
that all graphs resulting from this process are chordal.

Algorithm 5.1 Elimination game
→ A connected graph G = (V,E)
← A connected weakly chordal graph G+ = (V, E+)

G+ = (V,E+) = G;
G′ = (V ′, E′) = G;
while G′ 6= ∅ do

Choose an arbitrary vertex u ∈ G′;
Make N(u) into a clique and copy the added edges into E+;
Remove u and all edges uv from G′;

end while
return (G+);

Now, the graphs we will generate should contain a given arbitrary num-
ber of vertices and edges in addition to be connected. The number of vertices
does not make any challenge. For the matters of the edges and connectivity,
we start by looking at the connectivity.

To be sure that the graphs we generate are connected, we simply start by
making the given number of vertices into a tree. This is shown in Algorithm
5.2, where we let each of the n vertices in the wanted graph initially be a
tree containing one vertex. Then we start connecting two an two arbitrary
trees until we are left with only one tree. When connecting two trees, it is
done by adding an edge between two arbitrary vertices in the trees.

For the matter of the number of wanted edges, which we denote m∗, we
know that we want to add edges as long as m∗ > m, where m is the number
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Algorithm 5.2 Tree generator
→ G = (V,E = ∅)
← A tree G+ = (V,E+)

i = 0
for each vertex u ∈ V do

tree set[i] = u
i + +;

end for
while i > 1 do

treeA = a random tree set j, j = 1 . . . i;
treeB = a random tree set j, j = 1 . . . i, treeA 6= treeB;
a = a random vertex in treeA;
b = a random vertex in treeB;
E = E ∪ (ab);
treeA = treeA ∪ treeB;
delete treeB;
i−−;

end while
return (G+);

of edges currently in the graph. When we start generating the weakly chordal
graph after the tree is generated, the optimal number of edges added per
vertex is therefore (m∗ − m)/n = (m∗ − (n − 1))/n. After i vertices are
removed in the elimination game, the number is (m∗ −m)/(n− (i− 1)).

Just to run the elimination game may produce a number of edges far
away from m∗. If the number is larger than m∗, there is nothing to do, but
if we want more edges, we can add some more.

The way we add more vertices, is by comparing the number of edges
we possibly may add to the graph to make a neighborhood a clique, to
the optimal number of edges added per remaining vertex. So if the optimal
added edges for a vertex v is add∗, we add random edges from the vertex,
decrementing add∗, until add∗ equals deg(v)2 − deg(v).

In this way we are not able to generate exactly m∗ edges, but it can be
a quite good estimate. To further control the number of added vertices, in
addition to those added during elimination game, we correct the number
by multiplying by a given sensibility sense. So we add one more edge if
add∗ ≥ sense×(deg(v)2−deg(v)), 0 ≤ sense ≤ m∗. If sense is set to 0, that
indicates that no edges need to be added to make the neighborhood of any
vertex a clique, and all add∗ edges are added. If it is set to 1, it says that
the neighborhood is a clique, while setting sense to m∗ leads to no edges
added, disregarding those added in elimination game.

So if we try to generate a graph containing n vertices and m∗ edges,
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using a sensibility of 1, we can decrease the sensibility if we see that the
number of generated edges are too few, and increase the sensibility if the
number are too large. Then we have a heuristic which lets us control the
number of edges well, although not perfect due to the randomness when the
edges are added.

Another issue is that the degree for the first removed vertices in the
elimination game is less than for the last removed. This is because add∗

initially may be quite small, since the number of remaining vertices is large.
Due to the described sensibility it may be extra small. We do not wish the
effect that the degrees of the vertices vary much. To compensate we let more
edges be added in the beginning. After some testing, we have come to the
conclusion that add∗ = add∗2/(i + 1), where i is the number of removed
vertices, is a good estimate to use. However, we eliminate not the issue,
contradicting the assumption in Subsection 4.3.1, saying that the size of the
neighborhood is even for each edge. We are therefore not completely satisfied
with our generated graphs. The parallel test results may be worse than if
the density was equal all over the generated graphs.

Algorithm 5.3 shows the generation of the graphs. First the graph is cre-
ated with n vertices and no edges, before we ensure connectivity by calling
“Tree generator”, making the graph into a tree. Then we start the elimi-
nation game. Since the tree is randomly generated, we can use the natural
ordering from 1 to n when removing one by one vertex. When removing
vertex i, we can then regard all vertices v < i as if they do not exist in
the graph. Also note that when i is the present removed vertex, i− 1 is the
number of removed vertices.

For each removed vertex i, we calculate how many edges we should add,
and add them if suitable, before we make its neighborhood into a clique.

A random edge is only tried added once, because when the graph is
starting getting dense, there may be hard to find a non-existing edge. In
fact the graph may be complete.

5.1.2 Matrix market

Matrices are useful sources for graphs if they have suitable attributes. We
want our graphs to be connected and undirected. Square, symmetric sparse
matrices can represent such graphs if they turn out to be connected.

Matrix market, a component of the NIST project on Tools for Evalua-
tion of Mathematical and Statistical Software, at http://math.nist.gov/
MatrixMarket/ provides convenient access to a repository of test data pri-
marily for use in comparative studies of algorithms for numerical linear
algebra, featuring nearly 500 sparse matrices from a variety of applications.

Each matrix and matrix set has its own home page which provides de-
tails of matrix properties, visualization of matrix structure, and permits
downloading of the matrix in one of several text file formats.
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Algorithm 5.3 Weakly chordal graph generator
→ Wanted number of vertices and edges, n and m∗, and sensibility sense.
← A connected weakly chordal graph G = (V,E), where |V | = n and
|E| ≈ m∗.

G = (|V | = n,E = ∅);
G = Tree generator(G); (Call to Algorithm 5.2)
for i = 1, n− 1 do

add∗ = (m∗ −m)/(n− (i− 1));
if add∗ > 0 then

add∗ = add∗2/i;
end if
for j = 0, add∗ do

if add∗ − j ≥ sense× (deg(i)2 − deg(i)) then
v = a random vertex k, k = i + 1 . . . n;
if (iv) 6∈ E then

E = E ∪ (iv);
end if

end if
for all pairs (u, v) ∈ Adj[i], u, v > i do

if (uv) 6∈ E then
E = E ∪ (uv);

end if
end for

end for
end for
return (G);
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Among the provided sets, we find the CYLSHELL set resulting from fi-
nite element discretization of an octant of a cylindrical shell in the discipline
of structural mechanics. The matrices there are all square and symmetric.
Wanting huge graphs, the S3DKQ4M2 matrix is the largest with its dimen-
sion of 90449 × 90449 and 2455670 nonzero elements. Since the matrix is
symmetric, only half of it is represented. Translating to graph terminology,
we have a graph containing 90449 vertices and 2455670 edges.

Another set is the BCSSGRUC1 set from the Harwell-Boeing Sparse
Matrix Collection containing standard test matrices arising from problems
in linear systems, least squares, and eigenvalue calculations from a wide
variety of scientific and engineering disciplines. BCSSTK13 is a matrix from
a generalized eigenvalue problem in the mentioned set, having the same
attributes as the previous matrix, but the size is much smaller. Its dimension
is 2003 × 2003 and 42943 nonzero elements, including all elements at the
diagonal. That is, we have a graph with 2003 vertices and 40940 edges, since
we do not want edges starting and ending in the same vertex, corresponding
to the elements at the diagonal.

For the purpose of recognizing graphs we will use these graphs, one quite
big and one really huge, as examples, both sequentially and in parallel.

5.2 Sequential experimental results

Now we will try to answer the first of the two introduced questions from the
beginning of this chapter.

• How does the theoretical complexity of the sequential implementation
correspond to the test results?

By using Algorithm 5.3, Weakly chordal graph generator, we have gen-
erated two sets of weakly chordal graphs. The first set contains graphs with
5000 vertices and 25000 to 100000 edges, while the second set has graphs
with 10000 vertices and 60000 to 130000 edges. The edge number of the
graphs differ by 5000 from the closest graph, thus there are 16 graphs in the
first set, and 15 graphs in the second set.

While running the sequential algorithm on the graphs, we measure the
time consumed for computing the neighborhoods and minimal separators,
the sorting of the separator list, the computing of the co-connected compo-
nents and the checking of the labeling in all separators, and of course the
total time consumed. The time t is given in minutes.

In the Figures 5.1 and 5.2 we can see the performance measured for the
two sets of graphs. We there see that the computation of neighborhoods
and minimal separators take most of the time, although both the sorting of
the separator list and the computation of the co-connected components and
checking their labeling have the same time complexity. However, returning
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to our question, we want to know if the the total time fits into a second
degree polynomial, since our proven time complexity is O(m2).

By applying the method of least squares[17], we can approximate poly-
nomials to our sets of data. If we approximate a second degree curve, for
n = 5000 we get

t = 4.2937× 10−10m2 + 4.9550× 10−5m− 0.8223

and for n = 10000

t = −2.5007× 10−10m2 + 2.2289× 10−4m− 7.5377

We also try to fit linear curves, yielding

t = 1.0329× 10−4m− 2.2749

for n = 5000 and

t = 1.7523× 10−4m− 5.3841

for n = 10000.
In Figure 5.3 and 5.4 the polynomials are plotted together with the total

times. We see that for these graphs we do not get any significantly worse
approximation by using a linear approximation. Our curves therefore look
more like an O(m) algorithm. At least for these two sets of graphs, we are
well within the time complexity.

5.3 Parallel experimental results

Then we turn to the second of the introduced questions.

• What gains did the parallel implementation achieve?

To answer this question, we use both some of the graphs from the gen-
erated set of weakly chordal graphs with 10000 vertices and the mentioned
graphs from Matrix market.

First we take a look at the graph resulting from the matrix S3DKQ4M2.
After almost 88 hours, or equivalently 5258 minutes on a 1.3 GHz processor
it is decided not to be weakly chordal. Our serial run time is then Ts = 5258
minutes. In Table 5.1 we see the run time, speedup and efficiency for 1,
2, 4, 6,. . . , 16 processors. In Figure 5.5 the speedup is plotted versus the
number of processors. Recall from Section 1.4 that the number of processors
is an upper bound on the speedup, denoted linear speedup and shown by the
dotted line in the figure, but that superlinear speedup sometimes is observed
in practice. We see that for a single processor the speedup of course is one,
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Figure 5.1: Verifying weak chordality of chordal graphs with 5000 vertices
and increasing number of edges.
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Figure 5.2: Verifying weak chordality of chordal graphs with 10000 vertices
and increasing number of edges.
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Figure 5.3: Square and linear approximation to the run time (n = 5000)
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Figure 5.4: Square and linear approximation to the run time (n = 10000)
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and for two processors it is 2.1, exceeding the number of processors, yielding
superlinear speedup. When further processors are added however, speedup
is less than the number of processors because of the described sources of
overhead in Chapter 4. Though, an efficiency of 0.76 for 16 processors is
pretty good.

p Run time (min) Speedup Efficiency
1 5258 1.0 1.00
2 2505 2.1 1.05
4 1563 3.4 0.85
6 1223 4.3 0.72
8 892 5.9 0.74
10 801 6.6 0.66
12 602 8.7 0.73
14 549 9.6 0.69
16 436 12.1 0.76

Table 5.1: Run time, speedup and efficiency for increasing number of pro-
cessors when recognizing if S3DKQ4M2 is weakly chordal

Next we look at the much smaller graph resulting from the matrix BC-
SSTK13. After only 1.17 minutes when using one 1.3 GHz processor, it is
recognized not to be weakly chordal. Table 5.2 shows run time, speedup and
efficiency for 1, 2, 4, 6, 10, and 14 processors. In Figure 5.6 the speedup is
plotted versus the number of processors. Again we get a significant speedup,
actual linear speedup for all the processors, even slightly exceeding linear
speedup for 10 and 14 processors. Because of the short run times, this very
good scalability should not be emphasized too much. We notice however,
that our implementation works well both for huge and not so huge graphs.

p Run time (min) Speedup Efficiency
1 1.17 1.0 1.00
2 0.61 1.9 0.96
4 0.34 3.4 0.86
6 0.21 5.6 0.93
10 0.11 10.6 1.06
14 0.08 14.6 1.04

Table 5.2: Run time, speedup and efficiency for increasing number of pro-
cessors when recognizing if BCSSTK13 is weakly chordal

Finally we consider the set of graphs containing 10000 vertices and in-
creasing number of edges. We choose the graphs with 60000, 80000, 100000,
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and 120000 edges1 to try to see if the size has any impact on the scalabil-
ity. Theoretically, increasing the number of processors should decrease the
speedup because of more overhead, and increasing the problem size should
increase the speedup.

Table 5.3 shows the efficiency of the chosen graphs for 1, 4, 8, and 12
processors, while Figure 5.7 shows the speedup versus the number of pro-
cessors. We see that the efficiency for all the graphs are quite stable, varying
from 0.69 to 0.80, but slightly decreasing for increasing number of vertices.
It is not possible to see any clear pattern for the size. As a matter of fact,
the biggest graph has worst efficiency, contradicting that in theory, increas-
ing size should improve speedup. However, this is not a general observation
when we compare to the other graphs, so no clear pattern can be observed.

m p = 1 p = 4 p = 8 p = 12
60000 1.00 0.80 0.80 0.71
80000 1.00 0.77 0.74 0.77
100000 1.00 0.78 0.70 0.76
120000 1.00 0.73 0.69 0.69

Table 5.3: Efficiency as a function of m and p for graphs with 10000 vertices

As previously mentioned in this chapter, we are not very satisfied with
our generated graphs, because of varying density, which may decrease the
speedup. Taking this into consideration, the efficiency for these graphs are
very well.

1The exact number of edges are actually 60378, 80295, 99884, and 120029
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Chapter 6

Concluding remarks

This last chapter first gives a brief overview of the work and results in this
thesis, before we mention some possible improvements for the future.

6.1 Overview of our work

The goal and motivation for this thesis has been to study practical imple-
mentations of the recognition algorithm for weakly chordal graphs by Berry,
Bordat and Heggernes[5].

After introducing some topics essential for the thesis in the first chapter,
the second chapter gave a more detailed and theoretical introduction to
chordal and weakly chordal graphs. Among other things we did a detailed
proof of Theorem 2.4, and a proof of Theorem 2.11 much simpler than
the original proof. The chapter ended with the introduction to the studied
recognition algorithm for weakly chordal graphs.

The third chapter presented the details of a sequential implementation of
the algorithm. First we outlined how to obtain the time complexity of O(m2).
Then we explored the data structures yielding a space complexity of O(m2),
and gave details for each step of the algorithm. Of special interest was the
computation of minimal separators by using a variant of depth-first graph
search, the linear sorting of the global separator list, and the computation
of co-connected components which we based on two observations.

In Chapter 4 we described how to parallelize and implement the algo-
rithm with the Message passing programming model. When distributing the
work load among several processors, we focused on minimizing overhead in
load imbalance, communication and data transfer, and extra computations.
After a total consideration of what would result in least overhead, we used a
quite simple static load balancing by letting every processor check an equal
number of edges for LB-simpliciality. To obtain a global answer as soon as
possible we compared our algorithm to search algorithms, and developed a
termination detection.
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In Chapter 5 we performed both sequential and parallel tests. First we
compared sequential test results with the proven worst time complexity of
O(m2). For the graphs we used, the sequential run time was well within the
time complexity, and looked more like an O(m) algorithm. Second we mea-
sured the effect of the parallel implementation. Despite that we had several
sources of overhead using static load balancing and O(p) re-computations of
each of the original co-connected components, we managed to obtain very
well speedup and scalability for our test graphs for both verifying and rec-
ognizing weak chordality.

6.2 Future work

While working with the sequential implementation of our algorithm we have
been mainly focused on describing the worst case time complexity. For the
tested graphs in Chapter 5 we observed that we were well within this worst
time. It would be interesting though, to further analyze if we could tighten
the complexity in general or for certain types of graphs, for example sparse
graphs, or construct worst case examples that match the given complexity.

In the parallel implementation we chose to use the Message passing pro-
gramming model because it gave the most interesting parallel approach,
and has through MPI succeeded to achieve high performance and scalabil-
ity, which also our tests have shown. However, using the Shared memory
programming model through OpenMP we would have the advantage that
all the processors could share the data, instead of having copies of the graphs
at all processors. Also the global separator list would be accessible to all pro-
cessors. If our algorithm had been implemented using OpenMP, we could
compare the run time and speedup using the two different models of par-
allel programming, gaining further knowledge about suitability of the two
programming models.

Another interesting test would be to implement the dynamic load bal-
ancing described in Subsection 4.1.1, and observe differences in performance.

Last we will also mention that there are probably more advanced meth-
ods to generate random chordal graphs, so that they become totally random,
and not with increasing degree for the removed vertices in the elimination
game.
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