
Parallel Cleaning of a Network with Brushes ∗

Serge Gaspers† Margaret-Ellen Messinger‡ Richard J. Nowakowski‡

Pawe l Pra lat‡

†Department of Informatics, University of Bergen,

N-5020 Bergen, Norway
‡Department of Mathematics and Statistics, Dalhousie University,

Halifax, NS, B3H 3J5, Canada

Abstract

We consider the process of cleaning a network where at each time step, all vertices
that have at least as many brushes as incident, contaminated edges, send brushes down
these edges and remove them from the network. An added condition is that, because of
the contamination model used, the final configuration must be the initial configuration
of another cleaning of the network. We find the minimum number of brushes required
for trees, cycles, complete bipartite networks; and for all networks when all edges must
be cleaned on each step. Finally, we give bounds on the number of brushes required for
complete networks.

1 Introduction

Imagine a network of pipes with a biological contaminant that is: (1) relatively mobile so that
contamination can spread from one area to another; and (2) that regenerates. For example,
water pipes that have algae or zebra mussels contamination [5, 6]. To prevent the network
from clogging, the pipes must be cleaned on a regular basis and steps must be taken to
prevent recently cleaned pipes from being recontaminated. Because of the regeneration of the
contaminant, the final configuration is the basis for the start of the next round of network
cleaning. There is much work on models of contamination of networks where condition (1)
is paramount, see [1, 8] for examples. Condition (2), regeneration, is new in this context.
See [12] for a situation where the contaminant regenerates but is immobile.

The (sequential) brush cleaning model was introduced in [7, 10]. Initially, every edge and
every vertex of a network is dirty and a fixed number of brushes start on a set of vertices. A
vertex may be ‘cleaned’ if it contains as many brushes as dirty incident edges. At each step,
one vertex v is cleaned and each incident, dirty edge is traversed by a brush from v. Once a
brush has traversed a dirty edge, that edge has been cleaned and for this round of cleaning,
may be regarded as being deleted from the network. Thus, a network has been cleaned once
every edge has been cleaned. The brush number of network G, is the minimum number of
brushes needed to clean G and is denoted b(G). The model requires that the cleaning process

∗Partially supported by grants from the ACEnet, NFR, NSERC, MITACS, and SHARCNET.

serge@ii.uib.no, messnger@mathstat.dal.ca, rjn@mathstat.dal.ca, pralat@mathstat.dal.ca

1

be continual: once the network has been cleaned, the network is regarded as contaminated
again and the brushes re-clean the network. If the vertices are cleaned sequentially, it was
shown in [10] that the process is always continual, or more specifically ‘reversible’. That is,
let ω0 be an initial configuration of brushes that will clean a network G, which leaves a final
configuration ωn of brushes. Using the initial configuration τ0 = ωn of brushes, G can be
cleaned leaving the final configuration τn = ω0. The sequential brush number has also been
studied on random regular networks [2, 11] and on random networks [13], showing a that the
brush number is almost surely close to dn/4 for networks of (large average) degree d.

In this paper, we consider a variant of the cleaning model, introduced in [7] where at
each step, every vertex which may be cleaned, is cleaned simultaneously. In this variant, the
parallel cleaning model, the minimum number of brushes needed to clean a network G,
with parallel firing of vertices, is called the parallel brush number and is denoted pb(G). See
Figure 1 for an example. It is also clear that the parallel cleaning process for this network
is always reversible. This is not the case for the network G′ in Figure 2, with one brush

2

v1

v6

v4

v3

v5

v21

1

2

1

1

2

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 1: The parallel cleaning process for a network G with one brush initially at each of
v1, v6.

initially at each of v1, v7. It can only be cleaned once. The final configuration of brushes (one
at each of v4, v5) is not a viable initial configuration of brushes if the edges of the network
were to become dirty again. This provides motivation for the results of this paper. We wish
to determine the minimum number of brushes needed to ensure a network can be parallel
cleaned continually. Note that, although the practical situation being modeled only requires

v1

v7

v4

v5

v3

v6

v21

1

2

1

1

1

1

1

1

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 2: The parallel cleaning process for a network G′ with one brush initially at each of
v1, v7.

every edge to be cleaned for the network to be deemed clean, the assumption taken in [10]
and taken here, is that a network has been cleaned once every vertex (and hence every edge)

2

has been cleaned. Although this viewpoint may seem unnatural, it simplified much of the
analysis in [10]. Therefore, in Figure 1, at time t = 3, vertex v4 is cleaned (although it has
no dirty incident edges).

Section 2 formally defines the parallel cleaning process and the notion of continually par-
allel cleaning a network. In Section 3, we determine the exact number of brushes required to
continually one-step clean a network (in each cleaning, all edges of the network are cleaned in
the first step). Section 4 focuses on the minimum number of brushes to continually parallel
clean various networks, finding exact results for cycles, trees and complete bipartite networks.
Finally, Section 4.4 bounds the number of brushes needed to continually parallel clean a
complete network Kn between 5

16n2 + O(n) and 4
9n2 + O(n), a table of exact values is also

given.

2 Definitions

Following the terminology used for the (sequential) cleaning model in [10], at each time step
t, ωt(v) denotes the number of brushes at vertex v and Dt denotes the set of dirty vertices.
An edge uv ∈ E is dirty if and only if both u and v are dirty: {u, v} ⊆ Dt. Finally, let Dt(v)
denote the number of dirty edges incident to v at step t:

Dt(v) =

{

|N(v) ∩ Dt| if v ∈ Dt

0 otherwise.

Definition 2.1 The parallel cleaning process C = {(ωt,Dt)}
K
t=0 of an undirected network

G = (V,E) with an initial configuration of brushes ω0 is as follows:

(0) Initially, all vertices are dirty: D0 = V ; set t := 0

(1) Let ρt+1 ⊆ Dt be the set of vertices such that ωt(v) ≥ Dt(v) for v ∈ ρt+1. If ρt+1 = ∅, then
stop the process (K = t), return the parallel cleaning sequence ρ = (ρ1, ρ2, . . . , ρK),
the final set of dirty vertices DK , and the final configuration of brushes ωK

(2) Clean each vertex v ∈ ρt+1 and all incident, dirty edges by traversing a brush from v to
each dirty neighbour. More precisely, Dt+1 = Dt \ ρt+1; for every v ∈ ρt+1, ωt+1(v) =
ωt(v)−Dt(v) + |N(v)∩ ρt+1|; for every u ∈ Dt+1, ωt+1(u) = ωt(u) + |N(u)∩ ρt+1|; and
ωt+1(v) = ωt(v) for all other vertices.

(3) t := t + 1 and go back to (1).

One condition the cleaning model has, like the chip-firing game, but not the edge-searching
problem, is that the cleaning process is to be automatic, continuing on for the lifetime of the
network. That is, a final configuration of brushes (after a network has been cleaned) is to be
a viable initial configuration of brushes (to clean the network again).

Definition 2.2 The parallel brush number, pb(G), is the minimum number of brushes
needed to clean G using a parallel cleaning process.

3

It was shown in [10] that b(G) = pb(G) for any network G. However, as shown in Figure 2,
a final configuration of brushes using the parallel cleaning process may not be a viable initial
configuration. Consequently, an obvious question and the focus of this paper, is “how many
extra brushes are required to continually clean a network?”

Let δA denote the Kronecker delta where

δA =

{

1 if A is true

0 otherwise.

Definition 2.3 Let G be a network with initial configuration ω0
0 = ω0. Then G can be

continually cleaned using the parallel cleaning process beginning from configuration ω0 if
for each s ∈ N ∪ {0}, G can be cleaned in parallel using initial configuration ωs

0, yielding the
final configuration ωs

Ks
where ωs+1

0 = ωs
Ks

.

Given initial configuration ωs
0, let Ds

t denote the set of dirty vertices at step t; let Ds
t (v) =

|N(v)∩Ds
t |δv∈Ds

t
denote the number of dirty edges incident to v at step t; and let ρs

t+1 = {v ∈
Ds

t : ωs
t (v) ≥ Ds

t (v)} denote the set of vertices that may be cleaned at step t.

Definition 2.4 The continual parallel brush number, cpb(G), of a network G is the
minimum number of brushes needed to continually clean G using a parallel cleaning process.

3 Continual One-Step Cleaning

In this section, we address the problem of continually cleaning all the edges of a network in
one step.

Definition 3.1 Let ω0 be an initial configuration that will continually clean network G. For
each s ∈ N ∪ {0}, if Ds

1(v) = 0 for each v ∈ V (G), then we say that G can be continually

one-step cleaned.

Note that the condition “Ds
1(v) = 0 for each v ∈ V (G)” in the previous definition requires

only that each edge is cleaned in one step, not each vertex (which would require the condition
“Ds

1 = ∅”).
Given configuration ω0, suppose network G can be continually one-step cleaned. As each

edge must be cleaned after the first step in each cleaning, the set of vertices ρs
1 for s ∈ N∪{0}

must be a vertex cover.

Theorem 3.2 Given initial configuration ω0, G can be continually one-step cleaned if and
only if ρs

1 is a vertex cover for every s ∈ N ∪ {0}.

For every network G = (V,E) there is an initial configuration ω0 such that the network
can be continually one-step cleaned. Simply set ω0(v) = deg(v) for every v ∈ V . Then at
t = 0, every vertex is cleaned (using a total of 2|E| brushes). Thus, the following definition is
natural.

Definition 3.3 The continual one-step brush number of network G, denoted by cpb1(G),
is the minimum number of brushes needed to continually one-step clean G.

4

It is also not difficult to see that cpb1(G) ≥ |E| as every edge of G must be traversed by at
least one brush in one step. It will be shown in Theorem 3.4 that for a network G = (V,E),
|E| and 2|E| are the only two possible values for cpb1(G).

The chip firing game (see [4] for example), begins after each vertex is assigned a (finite)
number of chips. At each step, one vertex, with at least as many chips as its degree, is fired
(whereupon it sends one chip to each neighbour). In the parallel chip firing game, introduced
in [3], at each step, every vertex with at least as many chips as its degree is fired. Note that
the process of one-step cleaning a network is simply a case of the parallel chip-firing game. It
was observed in [3] that for the parallel chip-firing game, any chip configuration converges in
a finite time T to a limit cycle of period p. As the one-step cleaning process is an instance
of the parallel chip-firing game, the observation can be applied here also and in the proof of
Theorem 3.4, the focus is on the steps from T to T + p − 1.

Theorem 3.4 For any connected network G = (V,E),

cpb1(G) =

{

|E| if G is bipartite

2|E| otherwise.

Proof: Suppose first that G is bipartite with partite sets: V0 and V1. For every v ∈ V , let

ω0
0(v) = deg(v)δv∈V0

.

Then for every v ∈ V ,
ω0

1(v) = deg(v)δv∈V1

and ω0
2(v) = ω0

1(v) with K0 = 2. It is easy to see that ωs
t = ωs mod 2

t for all t ∈ {0, 1, 2} and all
s ∈ N ∪ {0}. Thus cpb1(G) ≤ |E| and, since cpb1(G) ≥ |E| for every network G, the assertion
follows.

Suppose now that G is not bipartite. Let ω0
0 = ω0 be an initial configuration that will

continually one-step clean G.
Recall that as the continual one-step cleaning of a network G is an instance of the parallel

chip-firing game, it must eventually become cyclic with period p (since there are finitely
many possible configurations of brushes); that is, ωT

0 = ωT+p
0 for some T, p ∈ N. Thus,

ωT+t
0 = ω

T+(t mod p)
0 for t ≥ 0 where p is the length of the period.

During a period of length p, suppose a vertex v is cleaned kv times in the first step. Then
in one period, kv deg(v) brushes traverse from v to its neighbours and

∑

u∈N(v) ku brushes
traverse from neighbours of v to v. So

kv deg(v) =
∑

u∈N(v)

ku (1)

for every v ∈ V . It will be shown that all vertices are cleaned in the first step the same
number of times during the period of length p.

For a contradiction, suppose that there is a vertex v such that kv ≥ ku for u ∈ N(v) and
there is a vertex w ∈ N(v) such that kv > kw. But, using (1), we get the contradiction

deg(v) =
∑

u∈N(v)

ku

kv
< deg(v) .

5

Thus, all vertices must be cleaned in the first step exactly k times during each period.
It is clear that k ≤ p. Note also that if a vertex is not cleaned at the first step of the

ith cleaning process, it will be cleaned at the first step of the i + 1th cleaning process. So
p/2 ≤ k ≤ p. In fact, k is greater than p/2. For a contradiction, suppose that k = p/2:
every vertex is cleaned in the first step during the ith process for i = 2, 4, 6, . . . (or for
i = 1, 3, 5, . . .) only and the vertex set can be decomposed into two sets ρi

0 and ρi
1. Note that

no two neighbours are cleaned in the first step of the ith process (for any i); if they are, then
they both are not cleaned in the first step of the i + 1th process and the edge joining them
is not cleaned in the first step of the i + 1th process. However, this implies there is no edge
between sets ρi

0 and ρi
1. This is a contradiction because G is not bipartite.

Now, let us fix an edge uv ∈ E. Since both u and v are cleaned more than p/2 times
during the period of length p, there must be some step Tu,v at which both vertices are cleaned.
Then a brush bu is sent from u to v and a brush bv is sent from v to u. We will show that we
can force these two brushes to stay in vertices u or v from that step of the process on.

Let A(t) denote the event that exactly one of bu, bv is at each of u, v; A(Tu,v) trivially
holds. If both u and v are cleaned at step t and A(t) holds, then brushes exchange each other
and A(t + 1) holds as well. If only one vertex, say u, is cleaned at step t and A(t) holds, then
v contains at least deg(v) + 1 brushes at time t + 1, including brushes bu and bv; v is cleaned
at time t + 1, and since we have enough brushes we can leave bu at v and move bv to u, thus
A(t+2) holds as well. So brushes bu, bv stay at u or v at every time t ≥ Tu,v and every edge is
associated with two brushes for t ≥ max{Tu,v : uv ∈ E}. Finally, the total number of brushes
is at least 2|E|, and since cpb1(G) ≤ 2|E| for every network G, the proof is complete.

The concept can easily be extended to continual k-step cleaning of a network G where
cpbk(G) is the minimum number of brushes needed to continually k-step clean a network G.

4 Continual Parallel Cleaning

In this section, the focus shifts from examining the number of brushes needed to continually
clean a network in one step, to the more general problem of determining the minimum number
of brushes, cpb(G), needed to continually clean a network G (regardless of the number of steps).
Section 4.1 determines the continual brush number for cycles and Section 4.2 determines the
continual brush number for trees. Although the continual brush number for complete bipartite
networks is determined in Section 4.3, only upper and lower bounds will be determined for
complete networks. Theorem 4.7 and Corollary 4.11 bound the continual brush number for a
complete network Kn between 5/16n2 + O(n) and 4/9n2 + O(n).

Given initial configuration ω0 = ω0
0, suppose that a network G can be continually cleaned.

As G is finite, there are finitely many possible configurations of brushes. Thus, the cleanings
must eventually become cyclic with period p, that is, settle into some periodic sequence of

initial conditions. That is, ωT
0 = ωT+p

0 for some T, p ∈ N. Thus, ωT+t
0 = ω

T+(t mod p)
0 for t ≥ 0

where p is the length of the period.
Let ω0 be an initial configuration for a network G. The problem of determining cpb(G)

is also made difficult by the fact that G may be cleaned k times (for some value of k), but
not k + 1 times. For example, given the network G with initial configuration ω0

0 shown in
Figure 3 (a), the network can be cleaned, leaving final configuration ω0

7. Using ω0
7 = ω1

0

as the initial configuration for the second cleaning as in Figure 3 (b), G is cleaned leaving

6

final configuration ω1
5. Using ω1

5 = ω2
0 as the initial configuration for the third cleaning as in

Figure 3 (c), G cannot be cleaned a third time.

4

1

1

1

1

1 1

1 1

ω0
0 ω0

7 = ω1
0 ω1

5 = ω2
0(a) (b) (c)

Figure 3: A network G with several ‘good’ initial configurations.

4.1 Continual Parallel Cleaning: Cycles

Given a cycle C3 with vertices a, b, c, it is easy to see that b(C3) = 2 and cpb(C3) = 3. Suppose
two brushes are initially placed at vertex a. Then in the first step, a is cleaned, sending one
brush to each of b, c. In the second step, both b and c are cleaned, each sending a brush to
the other. In the final configuration, each of b, c has one brush. Certainly, this is not a viable
initial configuration to clean C3 again. Thus, at least 3 brushes are needed to clean C3 and
it is easy to see this is an exact value.

Theorem 4.1 For any cycle Cn with n ≥ 2,

cpb(Cn) =

2 if n is even

3 if n = 3

4 otherwise.

Proof: Let Cn = (V,E) be a cycle on n vertices and label the vertices of Cn such that
vivi+1 ∈ E for all i ∈ {0, 1, . . . , n − 2} and v0vn−1 ∈ E. It is clear that at least two brushes
are needed to clean a cycle. If n = 3, then by the argument above, cpb(C3) = 3. Suppose n
is even. If two brushes are placed at v0 in the initial configuration, then after the network
has been cleaned (in parallel), the two brushes must be located at vn/2. As the network is
symmetric, the final configuration is equivalent to the initial configuration. Thus, cpb(Cn) = 2
if n is even.

Suppose n is odd and n > 3. Two brushes are placed at v0 in the initial configuration.
Then in the final configuration, there is one brush located at v(n−1)/2 and one at v(n+1)/2. As
Cn cannot be cleaned a second time, cpb(Cn) > 2.

Now we try to clean Cn using 3 brushes. Initially place two brushes at v0. The third
brush must be located at either v(n−1)/2 or v(n+1)/2 in order to be able to clean the network
again. By symmetry, suppose it is located at v(n−1)/2. Once Cn has been cleaned, there are

7

two brushes at v(n−1)/2 and one brush at v(n+1)/2. The network can be cleaned a second time,
but note that the brush located at v(n+1)/2 has no impact on the second cleaning process.
That is, the final configuration (of the second cleaning) yields one brush at each of v(n+1)/2,
v0 and vn−1. As Cn cannot be cleaned a third time, cpb(Cn) > 3.

It is easy to see that cpb(Cn) ≤ 4 by initially placing two brushes at each of v0, v1. After
the first cleaning there are two brushes at v(n+1)/2 and one at each of v0, v1. After the second
cleaning, there are two brushes at each of v0, v1, which is where they began originally.

4.2 Continual Parallel Cleaning: Trees

Theorem 4.2 Let G = (V,E) be a network that contains a bridge ab ∈ E. Suppose G is
cleaned by a parallel cleaning process using b(G) = pb(G) brushes. Then the vertices a and b
are not cleaned at the same time step.

Proof: Let P = {(ωt,Dt)}
K
t=0 be a parallel cleaning process cleaning G with b(G) brushes.

For a contradiction, suppose that a and b are cleaned at time step k, 1 ≤ k ≤ K. To show
that the number of brushes used by P is not minimum, we distinguish two cases.

First, suppose there is at least one brush at vertex a or b in the initial configuration.
Without loss of generality, assume that ω0(b) > 0 (the case ω0(a) > 0 is symmetric). Let
ρ = (ρ1, ρ2, . . . , ρK) be the parallel cleaning sequence corresponding to P where ρi is the
set of vertices that are cleaned (in parallel) at time step i. To show that P does not use a
minimum number of brushes, let us define a new initial configuration τ0 that uses less brushes
to sequentially clean G:

τ0(v) =

{

ω0(v) − 1 if v = b

ω0(v) otherwise.

The following sequential cleaning sequence C cleans G starting from the initial configu-
ration τ0. First, clean (in any order) the set of vertices ρ1, then ρ2, and so on, up to (and
including), ρk−1, then ρk\{b}, then vertex b, then ρk+1, ρk+2, and so on. Note that for each
vertex v, the set of vertices cleaned before v in P is contained in the set of vertices cleaned
before v in C. Vertex b can be cleaned as it received an extra brush from vertex a in an earlier
step, and all the other vertices can be cleaned as τ0 = ω0 for every vertex except b.

Now, suppose that ω0(a) = ω0(b) = 0. Let (A,B) be a partition of V such that a ∈ A,
b ∈ B and ab is the only edge adjacent to a vertex of A and a vertex of B in G. Let
GA = G[A ∪ {b}] and GB = G[B ∪ {a}] where G[S] denotes the subnetwork of G induced
by the set S ⊆ V . As P is a parallel cleaning sequence where no brush that started from a
vertex in A cleans an edge in G[B], no brush that started from a vertex in B cleans an edge in
G[A] and the edge ab is cleaned by both a brush that started from a vertex in A and a brush
that started from a vertex in B, there exist sequential cleaning sequences for GA and GB

with initial configurations τA
0 and τB

0 where τB
|B|+1(a) = 1, τA

|A|+1(b) = 1, and τA
0 + τB

0 = ω0.
Therefore the following initial configuration τ0 for G uses one brush less than ω0:

τ0(v) =

{

τA
0 (v) if v ∈ A

τB
|B|+1(v) otherwise.

8

It is straightforward to compose the cleaning sequence for GA (starting from τA
0) and

the reversed cleaning sequence for GB (starting from τB
|B|+1) into a cleaning sequence for G

starting from τ0, as the only edge cleaned by both sequences is ab and it is cleaned in the
same direction. Thus, indeed P does not use a minimum number of brushes which gives a
contradiction and finishes the proof.

As every edge of a tree is a bridge, the following corollary follows.

Corollary 4.3 Consider a parallel cleaning sequence cleaning a tree T using b(T) = pb(T)
brushes. The set of vertices cleaned at each time step is an independent set.

Theorem 4.4 For any tree T , cpb(T) = b(T) = pb(T).

Proof: Consider a parallel cleaning process P cleaning tree T with b(T) brushes. It is clear
that we can also clean T using the following sequential cleaning C: clean (in any order) the
set of vertices cleaned at the first step of P, then the set of vertices cleaned at the second
step, and so on. Note also that it follows from Corollary 4.3 that the final configuration of C

is the same as in P.
It was shown in [10] that the sequential cleaning process is reversible. Given an initial

configuration ω0, let ωn be the final configuration of brushes after a network G has been
sequentially cleaned. It was shown in [10] that using initial configuration τ0 = ωn, G can be
sequentially cleaned, yielding final configuration τn = ω0.

Consequently C is reversible which implies that P is reversible.

4.3 Continual Parallel Cleaning: Complete Bipartite networks

Theorem 4.5 For any complete bipartite network Km,n, cpb(Km,n) = ⌈mn/2⌉.

Proof: It was shown in [9] that b(Km,n) ≥ ⌈mn/2⌉; consequently cpb(Km,n) ≥ pb(Km,n) ≥
b(Km,n) ≥ ⌈mn/2⌉.

Let M and N be the partite sets of Km,n, where M = {u1, u2, . . . , um} and N =
{v1, v2, . . . , vn}. The proof is broken into two cases: first, assuming m is even and second,
assuming both m,n are odd.

Suppose m is even and set

ω0
0(v) =

{

n if v = ui for i = 1, 2, . . . ,m/2

0 otherwise.

In step 1, the first m/2 of the ui’s are cleaned and at step 2, all vj ’s are cleaned as ω0
1(vj) = m/2

for all j. The final configuration is

ω0
3(v) = ω0

2(v) =

{

n if v = ui for i = m/2 + 1,m/2 + 2, . . . ,m

0 otherwise

and as the final configuration is equivalent to the initial one, the process is continual.

9

Suppose now that both m,n are odd and set

ω0
0(v) =

1 if v = ui for i = 1, 2, . . . , (m + 1)/2

m if v = vj for j = 1, 2, . . . , (n − 1)/2

0 otherwise.

At step 1, the first (n − 1)/2 of the vj’s are cleaned as ω0
0(vj) = deg(vj).

ω0
1(v) =

(n + 1)/2 if v = ui for i = 1, 2, . . . , (m + 1)/2

(n − 1)/2 if v = ui for i = (m + 1)/2 + 1, . . . ,m

0 otherwise.

At step 2, there are (n + 1)/2 dirty vertices in N , so all vertices in M with (n + 1)/2 brushes
are cleaned.

ω0
2(v) =

(n − 1)/2 if v = ui for i = (m + 1)/2 + 1, . . . ,m

(m + 1)/2 if v = vj for j = (n + 1)/2, . . . , n

0 otherwise.

At step 3, there are (m−1)/2 dirty vertices in M , so all vertices in N with (m+ 1)/2 brushes
are cleaned. Every edge has now been cleaned and

ω0
4(v) = ω0

3(v) =

n if v = ui for i = (m + 1)/2 + 1, . . . ,m

1 if v = vj for j = (n + 1)/2, . . . , n

0 otherwise.

It is easy to see the network can be cleaned a second time: Let ω1
0 = ω0

4. Then (m − 1)/2
vertices of M are cleaned in the first step, each sending a brush to each vertex in N . Then
(n + 1)/2 vertices in N each have (m + 1)/2 brushes while the other vertices of N each have
(m−1)/2. In the second step, the (n+1)/2 vertices of N with (m+1)/2 brushes are cleaned.
Then the (m + 1)/2 dirty vertices of M each have (n + 1)/2 brushes and the (n − 1)/2 dirty
vertices of N each have (m−1)/2 brushes. In the third step, each dirty vertex of M is cleaned,
leaving a brush at each, and each dirty vertex of N now has m brushes. Finally, ω1

3 = ω1
4 and

as ω1
4 = ω0

0, the process must be continual.
In both cases, the network is cleaned with ⌈mn/2⌉ brushes.

Let G = (V,E) be a bipartite network with initial configuration ω0 that will parallel clean
G using pb(G) = b(G) brushes (note that we are considering G to be cleaned once). One
might be tempted to suggest that if the vertices cleaned at each step form an independent
set, then cpb(G) = pb(G) = b(G). This is actually not the case. If the vertices cleaned at
each step form an independent set, then G may be cleaned a second time, but it does not
guarantee that G can be continually cleaned using the initial configuration ω0. This is easily
demonstrated by the example in Figure 4. Given the initial configuration in Figure 4 (a),
network G can be cleaned such that the vertices cleaned at each step in the process form an
independent set. The vertices cleaned at each time step mod 2 are indicated in Figure 4 (b).
However, note from the explanation of Figure 3, that the network can be cleaned a second
time, but not a third time.

10

4

1

1

1

1

ω0
0 ω0

7 = ω1
0(a) (b)

if the vertex is cleaned
at time t ≡ 0 (mod 2)

if the vertex is cleaned
at time t ≡ 1 (mod 2)

Figure 4: A network G with several initial configurations.

It is interesting to note, however, that given the initial configuration shown in Figure 5
(a), it is easy to see that G can be continually cleaned using cpb(G) = b(G) brushes.

The final configuration for the first cleaning can be used as an initial configuration for the
second cleaning, whose final configuration is the same as the initial configuration of the first
round.

2

1

1

1

2

1

2

1

1

(a) ω0
0 (b) ω0

5 = ω1
0 (c)ω1

6 = ω2
0 = ω0

0

Figure 5: A network G with an initial configuration such that cpb(G) = b(G).

This leads to the following question: does there always exist an initial configuration that
yields cpb(G) = b(G) for a bipartite network G? The answer to this question is a resounding
‘no’ and an example of a bipartite network G for which cpb(G) > b(G) is given in Figure 6.
One can easily determine that b(G) ≤ 4 (in fact b(G) = 4), by placing three brushes at x2

and one brush at y2 in the initial configuration. We now try to clean G in parallel using four
brushes. There are only five initial configurations that can be used to clean network G from
Figure 6 using four brushes:

11

(1) ω0(v) =

3 if v = x2

1 if v = y2

0 otherwise;

(2) ω0(v) =

3 if v = y2

1 if v = x2

0 otherwise;

(3) ω0(v) =

2 if v = x1

1 if v = x2

1 if v = y2

0 otherwise;

(4) ω0(v) =

2 if v = y1

1 if v = y2

1 if v = x2

0 otherwise;

(5) ω0(v) =

1 if v = x4

1 if v = x6

1 if v = y4

1 if v = y6

0 otherwise;

y1 y2 y3 y4 y5 y6

x1 x2 x3 x4 x5 x6

Figure 6: A bipartite network G for which cpb(G) > b(G).

If G is parallel cleaned using initial configuration (1), (2), (3), or (4), the final configuration
is (5). However, if G is cleaned using initial configuration (5), the final configuration, shown
in Figure 7, cannot be used to clean the network a second time. Consequently cpb(G) >
pb(G) = b(G) for the network shown in Figures 6 and 7. Given the initial configuration with
two brushes at each of u1, v1, one can easily determine that cpb(G) = 5. See Figure 8 for a
configuration of 5 brushes that continually clean.

This leads us to the following question.

Question 4.6 For a bipartite network G, can the difference between cpb(G) and b(G) be
arbitrarily large?

12

y1 y2 y3 y4 y5 y6

x1 x2 x3 x4 x5 x6

1

1

1

1

2

2

Figure 7: A bipartite network G with initial configuration (5) and final configuration indicated
with circles.

x5 y4

x6

x3

x1

y1

y2

y51

2

1

1

Figure 8: Alternative drawing of the network in Figure 6 with 5 brushes that continually
clean.

13

It certainly is not trivial to check all possible non-isomorphic (connected) bipartite net-
works on n vertices. However, we implemented and ran programs written in C/C++ to
determine that cpb(G) = b(G) for every bipartite network G = (V,E) with |V | ≤ 11; Figure 6
illustrates the only network on 12 vertices for which cpb(G) 6= b(G) (the programs can be
downloaded from [14]).

4.4 Continual Parallel Cleaning: Complete networks

In this section, we show that the continual parallel brush number for complete networks Kn

is bounded between 5/16n2 + O(n) and 4/9n2 + O(n) by Theorems 4.7 and Corollary 4.11.
Initial configurations that will continually parallel clean Kn using 4/9n2 + O(n) brushes are
also given in Theorems 4.8, 4.9, and 4.10.

As determined in Section 4.1, cpb(K3) = 3. Similarly, one can easily determine that
cpb(K4) = 5. However, determining cpb(Kn) for larger values of n is certainly not trivial and
this section concludes with a table of calculated values of cpb(Kn).

Theorem 4.7 For any complete network Kn, cpb(Kn) ≥ 5
16n2 + O(n).

Proof: Label the vertices of Kn as v0, v1, . . . , vn−1 and note that

cpb(Kn) ≥ pb(Kn) = b(Kn) = ⌊n2/4⌋.

It was determined in [10] that to clean Kn with ⌊n2/4⌋ brushes, we must use the following
assignment:

ω0
0(vi) =

{

n − 2i − 1 if i ≤ ⌊n−1
2 ⌋

0 otherwise.

Note that up to a relabelling of the vertices, none of the vertices can have less brushes than
given in the assignment. It is easy to see that after Kn has been parallel cleaned once, the
final configuration is

ω0
T (vi) =

{

0 if i ≤ ⌊n−1
2 ⌋

⌊n
2 ⌋ otherwise.

After the first cleaning, there are ⌈n/2⌉ vertices, each with ⌊n/2⌋ brushes. However, if we
wish to continually clean Kn, then in the final configuration (of the first cleaning), there must
be at least one vertex which has at least n− 1 brushes, at least one additional vertex with at
least n − 3 brushes, and so on.

More precisely, if ⌈n/2⌉ is even, then to continually parallel clean Kn, at least an additional

1 + 3 + 5 + · · · + ⌈n/2⌉ − 1 = ⌈n/2⌉2/4

brushes are required. If ⌈n/2⌉ is odd, then to continually parallel clean Kn, at least an
additional

2 + 4 + 6 + · · · + ⌈n/2⌉ − 1 = (⌈n/2⌉2 − 1)/4

brushes are required.

14

cpb(Kn) ≥

5
16n2 if n is even and ⌈n/2⌉ is even
5
16n2 − 1

4 if n is even and ⌈n/2⌉ is odd
5
16n2 + 1

8n − 3
16 if n is odd and ⌈n/2⌉ is even

5
16n2 + 1

8n − 7
16 if n is odd and ⌈n/2⌉ is odd.

We now determine upper bounds for the continual parallel brush number of Kn. Note
that it is broken into three results: n = 3k in Theorem 4.9; n = 3k + 1 in Theorem 4.10;
and n = 3k + 2 in Theorem 4.8. We only give the proof of Theorem 4.8 since all the initial
configurations, and hence the proofs, are very similar,

Theorem 4.8 For any complete network on n = 3k + 2 vertices,

cpb(K3k+2) ≤ 4k2 + 4k + 2.

Proof: Let n = 3k + 2, label the vertices of Kn as v0, v1, . . . , v3k+1, and set

ω0(vi) =

{

k + 1 if i = k, k + 1, . . . , 2k + 1

i otherwise.

As ω0(v3k+1) = deg(v3k+1), we clean v3k+1 at step 1. At step 2 we clean 22−1 = 2 vertices;
at step 3 we clean 23−1 = 4 vertices; at step 4 we clean 24−1 vertices; and so on up to step
⌈log2(k + 1)⌉ − 1 when we clean 2⌈log2(k+1)⌉−2 vertices. This can be done as

ωt−1(vi) = i + 2t−1 − 1

≥ (3k − 2t + 3) + 2t−1 − 1

= 3k − 2t−1 + 2

= Dt−1(vi)

for each i ∈ {3k + 2 − 2t + 1, 3k + 2 − 2t + 2, . . . , 3k + 2 − 2t + 2t−1}.
For a vertex vi that is cleaned at step t = ⌈log2(k + 1)⌉: it had i brushes initially, it has

received 2t−1 − 1 brushes in the previous steps, and Dt−1(vi) = (3k + 1) − (2t−1 − 1). There
are a total of (3k + 2)− (2k + 2)− (2t−1 − 1) = k − (2t−1 − 1) vertices cleaned at step t, so in
total, ωt+2(vi) = i + (2t−1 − 1) − 3k − 1 + (2t−1 − 1) + k − (2t−1 − 1) − 1 = i + 2t−1 − 2k − 3.

At step t + 1 = ⌈log2(k + 1)⌉ + 1, Dt(vi) = 2k + 2 and ωt(vi) = ω0(vi) + k for all vi ∈ Dt.
Thus, we clean vk, vk+1, . . . , v2k+1 at step t + 1.

At step t+2, ωt+1(vi) = i+2k+2 for all vi ∈ Dt+1 so the remaining k vertices are cleaned,
yielding final configuration of

ωt+2(vi) =

i + 3 · 2t∗−1 − 3k − 4 for i = 3k − 2⌈log2(k+1)⌉−1 + 3, . . . , 3k + 1

i + 2⌈log2(k+1)⌉−1 − 2k − 3 for i = 2k + 2, . . . , 3k − 2⌈log2(k+1)⌉−1 + 2

k for i = k, k + 1, . . . , 2k + 1

i + 2k + 1 for i = 0, 1, . . . , k − 1

where t∗ = ⌈log2(3k − i + 3)⌉ is the step at which vi was cleaned.
By renaming the sets and variables, we have an initial configuration ω1

0 = ωt+2 equivalent
to ω0 = ω0

0.

15

Theorem 4.9 Let n = 3k and label the vertices of Kn as v0, v1, . . . , v3k−1. If

ω0(vi) =

{

k if i = k − 1, k, . . . , 2k − 1

i otherwise,

then K3k can be continual parallel cleaned using this initial configuration of 4k2−k+1 brushes.

Theorem 4.10 Let n = 3k + 1 and label the vertices of Kn as v0, v1, . . . , v3k. If

ω0(vi) =

{

k if i = k, k + 1, . . . , 2k

i otherwise,

then K3k+1 can be continual parallel cleaned using this initial configuration of 4k2 +k brushes.

From Theorem 4.9, Theorem 4.10, and Theorem 4.8:

Corollary 4.11

cpb(Kn) ≤

4/9n2 − 1/3n + 1 if n = 3k

4/9n2 − 5/9n + 1/9 if n = 3k + 1

4/9n2 − 4/9n + 10/9 if n = 3k + 2.

So in general, cpb(Kn) ≤ 4/9n2 + O(n).

We implemented and ran programs written in C/C++ to determine the values of cpb(Kn)
for n = 3, 4, . . . , 20 — see Table 1 (the programs and results can be downloaded from [14]).
It seems that there should be at least one initial configuration with the maximum value of
n− 1 that can be used to start the process that continues forever, but no proof of this fact is
known. However, by checking all such configurations we were able to find an upper bound for
cpb(Kn) for n = 21, 22, . . . , 26. We also conjecture that those are, in fact, the exact values.

n b(Kn) cpb(Kn)

3 2 3
4 4 5
5 6 10
6 9 15
7 12 18
8 16 25
9 20 33
10 25 39

n b(Kn) cpb(Kn)

11 30 50
12 36 60
13 42 66
14 49 76
15 56 95
16 64 105
17 72 122
18 81 135

n b(Kn) cpb(Kn)

19 90 150
20 100 170
21 110 ≤ 173
22 121 ≤ 197
23 132 ≤ 214
24 144 ≤ 243
25 156 ≤ 258
26 169 ≤ 279

Table 1: b(G) and cpb(Kn) for n = 3, 4, . . . , 26.

Figure 9 plots b(Kn)/cpb(Kn) for n = 3, 4, . . . , 20 and it remains an open question to
determine the value of limn→∞ b(Kn)/cpb(Kn) if it exists. From Table 1, the upper bound
of Theorems 4.10, 4.8 and 4.9 sometimes give the minimum number of brushes. Thus, we
conjecture that:

lim
n→∞

b(Kn)/cpb(Kn) = (1/4)/(4/9) = 9/16.

16

0.6

0.65

0.7

0.75

0.8

4 6 8 10 12 14 16 18 20

Figure 9: A network of b(Kn)/cpb(Kn) versus n (from 3 to 20).

5 Acknowledgement

This work was made possible by the facilities of

• the Shared Hierarchical Academic Research Computing Network SHARCNET, Ontario,
Canada (www.sharcnet.ca): 8,082 CPUs,

• the Atlantic Computational Excellence Network ACEnet, Memorial University of New-
foundland, St. John’s, NL, Canada (www.ace-net.ca): 412 CPUs.

References

[1] B. Alspach, Searching and Sweeping Graphs: A Brief Survey, Le Matematiche, 2004, 59,
5-37.

[2] N. Alon, P. Pra lat, and N. Wormald, Cleaning d-regular graphs with brushes, SIAM
Journal on Discrete Mathematics, submitted, 19pp.

[3] J. Bitar, E. Goles, Parallel chip firing games on graphs, Theoretical Computer Science
92 (1992), 291–300.

[4] A. Björner, L. Lovász, W. Shor, Chip-firing games on graphs, European Journal of Com-
binatorics 12 (1991) 283–291.

[5] B. Hobbs, J. Kahabka, 1995. Underwater Cleaning Technique Used for Removal of Zebra
Mussels at the Fitzpatrick Nuclear Power Plant. Proceedings of The Fifth International
Zebra Mussel and Other Aquatic Nuisance Organisms Conference, Toronto, Canada,
February 1995.

[6] S. R. Kotler, E. C. Mallen, K. M. Tamms, Robotic Removal of Zebra Mussel Accumula-
tions in a Nuclear Power Plant Screenhouse, Proceedings of The Fifth International Zebra
Mussel and Other Aquatic Nuisance Organisms Conference, Toronto, Canada, February
1995.

17

[7] S. McKeil, Chip Firing Cleaning Processes, MSc Thesis, Dalhousie University, 2007.

[8] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson & C. H. Papadimitriou, The
complexity of searching a graph, Journal of the Association for Computing Machinery,
1988, 35, 18-44.

[9] M. E. Messinger, Methods of Decontaminating a Network, PhD Thesis, Dalhousie Uni-
versity, 2008.

[10] M. E. Messinger, R. J. Nowakowski, and P. Pra lat, Cleaning a Network with Brushes,
Theoretical Computer Science 399 (2008) 191–205.

[11] M. E. Messinger, R. J. Nowakowski, P. Pra lat, and N. Wormald, Cleaning random d-
regular graphs with brushes using a degree-greedy algorithm, Proceedings of the 4th
Workshop on Combinatorial and Algorithmic Aspects of Networking (CAAN2007), Lec-
ture Notes in Computer Science, Springer, 2007, 13–26.

[12] M. E. Messinger, R. J. Nowakowski, The Robot Cleans Up, Proceedings of the 2nd Annual
International Conference on Combinatorial Optimization and Applications (COCOA’08),
Lecture Notes in Computer Science, Springer, 2008, 309–318.

[13] P. Pra lat, Cleaning random graphs with brushes, Australasian Journal of Combinatorics,
submitted, 16pp.

[14] P. Pra lat, programs written in C/C++,
http://www.mathstat.dal.ca/~pralat/index.php?page=publications.

18

