
On the minimum feedback vertex set problem:

Exact and enumeration algorithms∗

Fedor V. Fomin†‡ Serge Gaspers†‡ Artem V. Pyatkin§‡

Igor Razgon¶

October 6, 2007

Abstract

We present a time O(1.7548n) algorithm finding a minimum feedback
vertex set in an undirected graph on n vertices. We also prove that a graph
on n vertices can contain at most 1.8638n minimal feedback vertex sets
and that there exist graphs having 105n/10 ≈ 1.5926n minimal feedback
vertex sets.
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1 Introduction

The problem of finding a minimum feedback vertex set in a graph, i.e. the small-
est set of vertices whose deletion makes the graph acyclic, has many applications
and its history can be traced back to the early ’60s (see the survey of Festa et
al. [12]). It is also one of the classical NP-complete problems from Karp’s
list [21]. Thus not surprisingly, for several decades, many different algorith-
mic approaches were tried on this problem including approximation algorithms
[1, 2, 11, 22], linear programming [8], local search [4], polyhedral combinatorics
[7, 19], probabilistic algorithms [25], and parameterized complexity [9, 10, 20].

The problem is approximable within a factor of 2 in polynomial time [1].
It was also extensively studied from the point of view of parameterized com-
plexity. There was a chain of improvements (see e.g. [27]) concluding with two
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2O(k)nO(1)-time algorithms obtained independently by different research groups
[9, 20].

In recent years the topic of exact (exponential-time) algorithms for NP-hard
problems has led to much research (see the surveys [15, 31]). However, despite
much progress on exponential-time solutions to other graph problems such as
chromatic number [3, 5, 23], maximum independent set [16, 29], and minimum
dominating set [14], no algorithm faster than the trivial 2n ·nO(1) was known for
feedback vertex set until recently. For some special graph classes, like bipartite
graphs or graphs of maximum degree 4, algorithms of running time O(1.8621n)
and O(1.945n) respectively can be found in the literature [18, 26].

The first exact algorithm breaking the trivial 2n barrier is due to the fourth
author [28]. The running time O(1.8899n) of the algorithm from [28] was re-
duced by the first three authors in [13] to O(1.7548n). Both results are based
on the algorithm which can be seen as a branching algorithm (or a variation
of Davis-Putnam-style exponential-time backtracking). The main idea behind
breaking the 2n barrier is based on the choice of the measure of the subproblems
recursively generated by the algorithm. A good choice of the measure lead us to
a significantly better worst case time analysis of the branching algorithm. The
exact algorithm given in this paper that finds a minimum feedback vertex set
in time O(1.7548n) resulted by merging preliminary results announced in [28]
and [13].

By making use of similar ideas, we show that every graph on n vertices
contains at most 1.8638n minimal feedback vertex sets. It is the first known
upper bound for the number of minimal feedback vertex sets breaking the trivial
O(2n/

√
n) bound (which is roughly the maximum number of subsets of an n-set

such that none of them is contained in the other). This bound has algorithmic
consequences as well. By the result of Schwikowski and Speckenmeyer [30], all
minimal feedback vertex sets can be enumerated with polynomial time delay.
Thus our result implies that the running time of the algorithm by Schwikowski
and Speckenmeyer is O(1.8638n). We also show that there exist graphs with at
least 1.5926n minimal feedback vertex sets.

The combinatorial bound on the number of feedback vertex sets is of inde-
pendent interests. One of the very natural questions in graph theory is: how
many minimal (maximal) vertex subsets satisfying a given property can be con-
tained in a graph on n vertices? The trivial bound is O(2n/

√
n). Surprisingly,

for very few problems better bounds, i. e. bounds of the form O(cn) for c < 2,
are known. One example of such a bound is the celebrated Moon and Moser
[24] theorem stating that every graph on n vertices has at most 3n/3 maximal
cliques (independent sets). Another example is the result from [17], where it is
shown that the number of minimal dominating sets is at most 1.7170n.

The rest of the paper is organized as follows. Section 2 contains preliminary
results. In section 3 we present an O(1.7548n) algorithm finding a minimum
feedback vertex set in a graph on n vertices. In section 4 we prove that every
graph on n vertices has at most 1.8638n minimal feedback vertex sets and that
there exists an infinite family of graphs having 1.5926n minimal feedback vertex
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sets.

2 Preliminaries

Let G = (V,E) be an undirected graph on n vertices. For V ′ ⊆ V we denote
by G[V ′] the graph induced by V ′ and by G \ V ′ the graph induced by V \ V ′.
For a vertex v ∈ V let N(v) be the set of its neighbors. We denote by ∆(G) the
maximum vertex degree of G.

A set X ⊆ V is called a feedback vertex set or an FVS if G \X is a forest.
An FVS is minimal if it does not contain any other FVS as a proper subset, and
minimum if it has minimum cardinality among all FVS’s in a graph. Let us note
thatX is a minimal (minimum) FVS if and only ifG\X is a maximal (maximum)
induced forest. Thus the problem of finding a minimum FVS is equivalent to the
problem of finding a maximum induced forest or an MIF. Similarly, the number
of minimal feedback vertex sets in a graph is equal to the number of maximal
induced forests. For the description of the algorithm it is more convenient to
work with MIF than with FVS.

We call a subset F ⊆ V acyclic if G[F ] is a forest and independent if G[F ] has
no edges. The notions of maximal and maximum independent sets are defined
similarly to those of FVS’s. If F is acyclic then every connected component of
G[F ] on at least two vertices is called non-trivial.

If T is a non-trivial component then we denote by Id(T, t) the operation of
contracting all edges of T into one vertex t and removing appeared loops. Note
that this operation may create multiedges in G. We denote by Id∗(T, t) the
operation Id(T, t) followed by the removal of all vertices connected with t by
multiedges.

For an acyclic subset F ⊆ V , denote by MG(F ) and by M∗G(F ) the set of
all maximal and maximum acyclic supersets of F in G, respectively (we omit
the subindex G when it is clear from the context which graph is meant). Let
M∗ =M∗(∅). Then the problem of finding a MIF can be stated as finding an
element of M∗. We solve a more general problem, namely finding an element
of M∗(F ) for an arbitrary acyclic subset F .

To simplify the description of the algorithm, we suppose that F is always an
independent set. The next proposition justifies this assumption.

Proposition 1. Let G = (V,E) be a graph, F ⊆ V be an acyclic subset of
vertices and T be a non-trivial component of F . Denote by G′ the graph obtained
from G by the operation Id∗(T, t) and let F ′ = F ∪ {t} \ T . Then

• X ∈MG(F ) if and only if X ′ ∈MG′(F ′), and

• X ∈M∗G(F ) if and only if X ′ ∈M∗G′(F ′),

where X ′ = X ∪ {t} \ T .

Proof. Assume that X ∈ MG(F ). If after the operation Id(T, t) a vertex v is
connected with t by a multiedge, then the set T ∪{v} is not acyclic in G. Hence,
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no element of MG(F ) may contain v. In other words, X does not contain any
vertices removed by the transformation from G to G′ and hence X ′ = X∪{t}\T
is a set of vertices of G′. Moreover, X ′ is an acyclic subset of G′. To see this,
assume by contradiction that X ′ induces a cycle C ′ in G′. Then C ′ necessarily
includes t because otherwise C ′ is induced by X in G in contradiction to the
acyclicity of X. Let x1 and x2 be two neighbors of t in C ′. It follows that there
is a path in G from x1 to x2 including vertices of T only. Replace t in C ′ by
such a path. As a result we obtain a cycle induced by X in G in contradiction
to the acyclicity of X. It remains to show that X ′ is a maximal acyclic subset
of G′. For this purpose, assume that there is a vertex v ∈ V (G′) \X ′ such that
X ′ ∪{v} is an acyclic subset. Then X ∪{v} is an acyclic subset of G (any cycle
in X∪{v} can be transformed into a cycle in X ′∪{v} by the operation Id(T, t))
larger than X in contradiction to the maximality of X.

Arguing similarly, we can prove that if X ′ ∈ MG′(F ′) then X ∈ MG(F )
and that X ∈M∗G(F ) if and only if X ′ ∈M∗G′(F ′).

By using the operation Id∗ on every non-trivial component of F , we obtain an
independent set F ′.

The following proposition is used to justify the main branching rule of the
algorithm.

Proposition 2. Let G = (V,E) be a graph, F ⊆ V be an independent subset
of vertices and v 6∈ F be a vertex adjacent to exactly one vertex t ∈ F . Then

1. For every X ∈ M(F ), either v or at least one vertex of N(v) \ {t} is in
X.

2. There exists X ∈ M∗(F ) such that either v or at least two vertices of
N(v) \ {t} are in X.

Proof. 1. If there is X ∈ M(F ) such that v 6∈ X and no vertex of N(v) \ {t}
is in X, then X ∪ {v} is also an induced forest of G. Thus X is not maximal,
which is a contradiction.

2. Let us consider X ∈ M∗(F ) such that v 6∈ X. By item 1, at least one
vertex z ∈ N(v) \ {t} is in X. For the sake of contradiction, let us assume that
z is the only such vertex. Since X is maximal, we have that X ∪ {v} is not
acyclic. Because v is of degree at most 2 in G[X ∪{v}], we conclude that all the
cycles in G[X ∪ {v}] must contain z. Then the set X ∪ {v} \ {z} is in M∗(F )
and satisfies the conditions.

Consequently, if N(v) = {t, v1, v2, . . . , vk}, then there exists X ∈ M∗(F ) satis-
fying one of the following properties:

1. v ∈ X;

2. v 6∈ X, vi ∈ X for some i ∈ {1, 2, . . . , k − 2} while vj 6∈ X for all j < i;

3. v, v1, v2, . . . , vk−2 6∈ X but vk−1, vk ∈ X.
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In particular, if k ≤ 1, then v ∈ X for some X ∈M∗(F ).
The following proposition is needed to handle the case where every vertex

in V \ F is adjacent to a vertex t ∈ F . We reduce this case to finding a
maximal (respectively maximum) independent set in the graph G[V \ F ] with
some additional edges.

Proposition 3. Let G = (V,E) be a graph and F be an independent set in
G such that V \ F = N(t) for some t ∈ F . Consider the graph G′ = G[N(t)]
and for every pair of vertices u, v ∈ N(t) having a common neighbor in F \ {t}
add an edge uv to G′. Denote the obtained graph by H and let I ⊆ N(t).
Then F ∪ I ∈ MG(F ) if and only if I is a maximal independent set in H. In
particular, F ∪ I ∈ M∗G(F ) if and only if I is a maximum independent set in
H.

Proof. Let X ∈MG(F ) and u, v ∈ V \F . If uv ∈ E then u, v, t form a triangle.
If there is a vertex w ∈ F \ {t} adjacent to both u and v then tuwv is a 4-
cycle. In both cases, X cannot contain u and v at the same time. Therefore,
X ∈MG(F ) if and only if X \ F is a maximal independent set in H.

There are several fast exponential algorithms computing a maximum indepen-
dent set in a graph. We use the polynomial space algorithm of Robson.

Proposition 4 ([29]). Let G be a graph on n vertices. Then a maximum
independent set in G can be found in time O(1.2278n).

We need also the following well known result of Moon and Moser [24]:

Proposition 5 ([24]). A graph on n vertices has at most 3n/3 maximal inde-
pendent sets.

3 Computing a minimum feedback vertex set

In this section we show how to compute the minimum size of a feedback vertex
set. Our algorithm can easily be turned into an algorithm computing at least one
such set. Instead of working with feedback vertex sets directly, the algorithm
finds the maximum size of an induced forest in a graph. In fact, it solves a more
general problem: for any acyclic set F it finds the maximum size of an induced
forest containing F .

During the work of the algorithm one vertex t ∈ F is called an active vertex.
The algorithm branches on a chosen neighbor of t. Let v ∈ N(t). Denote by
K the set of all vertices of F other than t that are adjacent to v. Let G′ be
the graph obtained after the operation Id(K ∪ {v}, u). We say that a vertex
w ∈ V \ {t} is a generalized neighbor of v in G if w is the neighbor of u in
G′. Denote by gd(v) the generalized degree of v which is the number of its
generalized neighbors.

The description of the algorithm consists of a sequence of cases and subcases.
To avoid a confusing nesting of if-then-else statements let us use the following
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convention: the first case which applies is used in the algorithm. Thus, inside a
given case, the hypotheses of all previous cases are assumed to be false.

Algorithm mif(G,F ) computing for a given graph G and an acyclic set F the
maximum size of an induced forest containing F is described by the following
preprocessing and main procedures (let us note that mif(G, ∅) computes the
maximum size of an induced forest in G).

Preprocessing

1. If G consists of k ≥ 2 connected components G1, G2, . . . , Gk, then the
algorithm is called on each of the components and

mif(G,F ) =
k∑
i=1

mif(Gi, Fi),

where Fi = Gi ∩ F for all i ∈ {1, 2, . . . , k}.

2. If F is not independent, then apply operation Id∗(T, vT ) on every non-
trivial component T of F . Moreover, if T contains the active vertex then
vT becomes active. Let G′ be the resulting graph and let F ′ be the inde-
pendent set in G′ obtained from F . Then

mif(G,F ) = mif(G′, F ′) + |F \ F ′|.

Main procedures

1. If F = V then MG(F ) = {V }. Thus,

mif(G,F ) = |V |.

2. If F = ∅ and ∆(G) ≤ 1 then MG(F ) = {V } and

mif(G,F ) = |V |.

3. If F = ∅ and ∆(G) ≥ 2 then the algorithm chooses a vertex t in G of
degree at least 2. Then t is either contained in a maximum induced forest
or not. Thus the algorithm branches on two subproblems and returns the
maximum:

mif(G,F ) = max { mif(G,F ∪ {t}),
mif(G \ {t}, F )}.

4. If F contains no active vertex then choose an arbitrary vertex t ∈ F as an
active vertex. Denote the active vertex by t from now on.

5. If V \ F = N(t) then the algorithm constructs the graph H from Propo-
sition 3 and computes a maximum independent set I in H. Then

mif(G,F ) = |F |+ |I|.
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6. If there is v ∈ N(t) with gd(v) ≤ 1 then add v to F .

mif(G,F ) = mif(G,F ∪ {v})

7. If there is v ∈ N(t) with gd(v) ≥ 4 then either add v to F or remove v
from G.

mif(G,F ) = max { mif(G,F ∪ {v}),
mif(G \ {v}, F )}

8. If there is v ∈ N(t) with gd(v) = 2 then denote its generalized neighbors
by w1 and w2. Either add v to F or remove v from G but add w1 and w2

to F . If adding w1 and w2 to F induces a cycle, we just ignore the last
branch.

mif(G,F ) = max { mif(G,F ∪ {v}),
mif(G \ {v}, F ∪ {w1, w2})}

9. If all vertices in N(t) have exactly three generalized neighbors then at
least one of these vertices must have a generalized neighbor outside N(t),
since the graph is connected and the condition of the case Main 5 does not
hold. Denote such a vertex by v and its generalized neighbors by w1, w2

and w3 in such a way that w1 6∈ N(t). Then we either add v to F ; or
remove v from G but add w1 to F ; or remove v and w1 from G and add
w2 and w3 to F . Similarly to the previous case, if adding w2 and w3 to F
induces a cycle, we just ignore the last branch.

mif(G,F ) = max { mif(G,F ∪ {v}),
mif(G \ {v}, F ∪ {w1}),
mif(G \ {v, w1}, F ∪ {w2, w3})}

The correctness and the running time of the algorithm are analyzed in the
following.

Theorem 6. Let G be a graph on n vertices. Then a maximum induced forest
of G can be found in time O(1.7548n).

Proof. Let us consider the algorithm mif(G,F ) described above. The correct-
ness of Preprocessing 1 and Main 1,2,3,4,7 is clear. The correctness of
Main 5 follows from Proposition 3, while the correctness of Preprocessing 2
and Main 6,8,9 follows from Proposition 1 and 2 (indeed, applying Proposi-
tion 2 to the vertex u of the graph G′ shows that for some X ∈ MG(F ) either
v or at least two of its generalized neighbors are in X).

In order to evaluate the time complexity of the algorithm we use the following
measure:

µ = |V \ F |+ α|V \ (F ∪N(t))|
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where α = 0.955. In other words, each vertex in F has weight 0, each vertex
in N(t) has weight 1, each other vertex has weight 1 + α, and the size of the
problem is equal to the sum of the vertex weights. We will prove that a problem
of size µ can be solved in time O(xµ) where

x < 1.33328.

During its execution, the algorithm naturally explores the search tree whose
nodes are associated with the pairs (G,F ) to which the algorithm is recursively
applied. Since the algorithm spends polynomial time per node of the search
tree, its running time is polynomially related to the number of nodes of the
search tree.

Observe that each path from the root to a leaf of the tree is of length O(n).
To observe this, it is sufficient to show that if (G,F ) corresponds to a non-
leaf node of the tree and (G1, F1) corresponds to a child of (G,F ) then either
(G1, F1) is a leaf or

|V (G1)|+ |V (G1) \ F1| ≤ |V (G)|+ |V (G) \ F | − 1.

For the preprocessing cases and the cases Main 3,6,7,8,9, this immediately
follows from the description. Cases Main 1,2 correspond to the leaf nodes.
As Case Main 4 never occurs in two consecutive nodes of the search tree, its
statement may be reformulated as “choose an arbitrary vertex t as new active
vertex and go through the list of cases again to select the appropriate one”.
That is, the node corresponding to the case Main 4 may be analyzed together
with the next node where t is specified. Finally in case Main 5, the graph H has
exactly µ vertices since each vertex that is not in F has weight 1. By Theorem 4,
a maximum independent set in H can be found in time O(1.2278µ). Thus, in
the considered case we may represent (G,F ) as the parent of 1.2278µ leaves
which reflect the runtime spent for processing the subtree rooted by (G,F ) and
hence preserve the polynomial relation of the number of nodes of the search tree
to the running time.

The argumentation in the previous paragraph verifies that each path from
the root to a leaf of the tree is of length O(n). It follows that the number
of nodes of the search tree is O(n) multiplied by the number of leaves of the
search tree. Taking into account that the running time of the algorithm is
polynomially related to the number of nodes of the search tree, we obtain T (µ) =
O(f(µ) ·nO(1)), where T (µ) is the worst-case runtime of the algorithm called on
the problem of size µ and f(µ) is the largest number of leaves of the search tree
corresponding to an execution of the algorithm when applied to a problem of size
µ. We use induction on µ to prove that f(µ) ≤ xµ. Then, since the polynomial
is suppressed by rounding the exponential base, we have T (µ) = O(1.33328µ).
Clearly, f(0) = 1. Suppose that f(k) ≤ xk for every k < µ and consider a
problem of size µ.

It is now clear that the following steps do not contribute to the expo-
nential factor of the running time of the algorithm: Preprocessing 1,2 and
Main 1,2,4,6.
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If the condition of the case Main 5 then, by construction the number of
leaves is 1.2278µ which is smaller than 1.33328µ.

In all the remaining cases the algorithm is called recursively on smaller prob-
lems. We consider these cases separately.

In the case Main 3 every vertex has weight 1 + α. So, removing v leads to
a problem of size µ− 1−α. Otherwise, v becomes active after the next Main 4
step. Then all its neighbors become of weight 1, and we obtain a problem of
size at most µ− 1− 3α since v has degree at least 2. Thus

f(µ) ≤ f(µ− 1− α) + f(µ− 1− 3α) ≤ (xµ−1−α + xµ−1−3α) ≤ xµ

by the induction assumption and the choice of x and α.
In the case Main 7 removing the vertex v decreases the size of the problem

by 1. If v is added to F then we obtain a non-trivial component in F , which is
contracted into a new active vertex t′ at the next Preprocessing 2 step. Those
of the generalized neighbors of v that had weight 1 will be connected with t′

by multiedges and thus removed during the next Preprocessing 2 step. If a
generalized neighbor of v had weight 1 +α then it will become a neighbor of t′,
i. e. of weight 1. Thus, in any case the size of the problem is decreased by at
least 1 + 4α. So, we have that

f(µ) ≤ f(µ− 1) + f(µ− 1− 4α) ≤ (xµ−1 + xµ−1−4α) ≤ xµ.

In the case Main 8 we distinguish three subcases depending on the weights
of the generalized neighbors of v. Let i be the number of generalized neighbors
of v having weight 1 + α. Adding v to F reduces the weight of a generalized
neighbor either from 1 to 0 or from 1 + α to 1. Removing v from the graph
reduces the weight of both generalized neighbors of v to 0 (since we add them
to F ). According to this, we obtain three recurrences: for i ∈ {0, 1, 2},

f(µ) ≤ f(µ− (3− i)− iα) + f(µ− 3− iα) ≤ (xµ−3+i−iα + xµ−3−iα) ≤ xµ.

The case Main 9 is considered analogously to the case Main 8, except that
at least one of the generalized neighbors of v has weight 1 + α, that is i ≥ 1
(i = 0 is excluded by Main 5). In this case, we have for i ∈ {1, 2, 3},

f(µ) ≤ f(µ− (4− i)− iα) + f(µ− 2− α) + f(µ− 4− iα)
≤ (xµ−4+i−iα + xµ−2−α + xµ−4−iα) ≤ xµ.

Thus
f(µ) ≤ xµ.

Since every vertex of G is of weight at most 1 +α, we have that the running
time of the algorithm is

T (µ) = O(xµ) = O(x(1+α)n) = O(1.333281.955n) = O(1.7548n).
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The improved running time of the algorithm, compared to the algorithm
in [28] is based on Main 5 and Main 9 and their analysis. The removal of
these cases and replacing gd(v) ≥ 4 by gd(v) ≥ 3 in Case Main 7 results in the
O(1.8899n) algorithm presented in [28].

Remark. The only tight recurrence is the one of case Main 7 when v has degree
4. Thus, an improvement of this case would improve the overall (upper bound
of the) running time of the algorithm.

4 On the number of minimal feedback vertex
sets

In this section we use the Branch & Reduce method in order to obtain an
upper bound of 1.8638n for the number of maximal induced forests (and thus
the number of minimal feedback vertex sets) in a graph G on n vertices. It
follows from the result of Schwikowski and Speckenmeyer [30] that all maximal
induced forests and all minimal feedback vertex sets can be enumerated in time
O(1.8638n).

We also give a lower bound, namely we exhibit an infinite family of graphs,
all having 105n/10 ≈ 1.5926n maximal induced forests. Thus, the worst-case
running time of the algorithm in [30] is between O(1.5926n) and O(1.8638n).

First, we prove the upper bound for the number of maximal induced forests.

Theorem 7. A graph G on n vertices contains at most 1.8638n maximal induced
forests.

Proof. To prove the theorem, we show that |MG(∅)| ≤ 1.8638n. We will prove a
slightly stronger statement, namely that for any acyclic subset F of G = (V,E),
|MG(F )| ≤ 1.8638n. By Proposition 1 we may assume that F is independent.
For a graph G, an independent set F and a vertex t ∈ F (we call such a vertex
t an active vertex ), we use the same kind of measure as in the previous section:

µ(G,F, t) = |V \ F |+ α|V \ (F ∪N(t))|,

where
α = 0.5491.

In the case where F = ∅, we put

µ(G, ∅) = |V |(1 + α).

Note, that µ(G,F, t) ≤ µ(G, ∅) = (1 + α)n for every F and t ∈ F . Let
f(G,F ) = |MG(F )| be the number of maximal induced forests containing F
and let f(µ) be a maximum f(G,F ) among all triples (G,F, t) of measure at
most µ. We claim that for x = 1.49468,

f(µ) ≤ xµ.
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Since for F = ∅ every vertex of G has weight 1 + α, the claim implies that
|MG(∅)| ≤ x(1+α)n ≤ 1.494681.5491n ≤ 1.8638n, which proves the theorem.

Let us observe that the claim is true for µ = 0. In fact, for µ = 0 we have
that F = V . ThusMG(F ) = {V } and f(0) = 1. To prove the claim we proceed
by induction assuming that f(k) ≤ xk for every k < µ. Let (G,F, t) be an
instance of measure µ.

We consider several cases. As in the previous section, we assume that inside
a given case, the hypotheses of all previous cases are assumed to be false.

Case 1: G is not connected. Denote by G1, G2, . . . , Gk the components of G.
Let Fi denote the intersection of F and the vertices of Gi, for i = 1, 2, ..., k.
If the vertices of V \ F are present in at least two components, then, by the
induction assumption,

f(µ) =
k∏
i=1

f(Gi, Fi) ≤
k∏
i=1

xµ(Gi,Fi) = x
∑k

i=1 µ(Gi,Fi) = xµ.

Otherwise, each component which does not contain vertices of V \F has exactly
one maximal induced forest (see the next case) and the component including
all the vertices of V \ F (which determines the overall number of the maximal
induced forests) has less vertices than G. Hence we may consider that we prove
the theorem by two-dimensional induction, the first dimension is the induction
on µ, the second dimension is induction on the number of vertices of the under-
lying graph. The considered case follows from the induction assumption of the
second dimension. In fact, this is the only place in the proof where the second
dimension is ever used.

Case 2: F = ∅. If ∆(G) ≤ 1 thenMG(F ) = {V }, i. e. f(G,F ) = 1. Otherwise,
let t be a vertex in G of degree at least 2. Then every maximal forest either
contains t, or does not. Thus the number of maximal forests in G is equal to
the number of maximal forests containing t, that is f(G, {t}), plus the number
of maximal forests not containing t, that is f(G \ {t}, ∅). Since

µ(G, {t}, t) ≤ µ− 1− 3α

and
µ(G \ {t}, ∅) ≤ µ− 1− α,

we use the induction assumption and arrive at

f(µ) ≤ f(µ− 1− 3α) + f(µ− 1− α) ≤ xµ−1−3α + xµ−1−α ≤ xµ.

¿From now on we denote by t ∈ F an active vertex (if F 6= ∅ contains no
such vertex, we may always choose an arbitrary vertex as active, reducing the
measure).

Case 3: V \ F = N(t). Then by Proposition 3, f(µ) is equal to the number of
maximal independent sets in the graph H from Proposition 3. Since all vertices
of V \ F have weight 1, H has µ vertices. By Proposition 5,

f(µ) ≤ 3µ/3 ≤ xµ.
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Now we assume that V \ F 6= N(t), that F 6= ∅ and that G is connected.
Then there is a vertex v ∈ N(t) such that at least one of its generalized neighbors
lies not in N(t) (and thus contributes the weight 1 +α to the measure). Among
all such vertices we choose a vertex v of minimum generalized degree. Similarly
to the proof of Theorem 6, it follows from Propositions 1 and 2 that every
X ∈MG(F ) must contain either v or at least one of its generalized neighbors.

Case 4: gd(v) = 0. In this case every X ∈ MG(F ) contains v and thus
f(G,F ) = f(G,F ∪ {v}). Since µ(G,F ∪ {v}, t) < µ, we have that f(µ) ≤ xµ.

Case 5: gd(v) = 1. Every forest X ∈ MG(F ) either contains v, or does not
contain v and contains its generalized neighbor w1. The measure µ(G,F∪{v}, t)
is at most µ−1−α, and the measure µ(G\{v}, F ∪{w1}, t) is at most µ−2−α.
Hence

f(µ) ≤ f(µ− 1− α) + f(µ− 2− α) ≤ xµ−1−α + xµ−2−α ≤ xµ.

Case 6: gd(v) = 2. Let us denote the generalized neighbors of v by w1 and w2

and let us assume that w1 6∈ N(t). Then every forest X from MG(F )

— Either contains v;

— or does not contain v and contains w1;

— or does not contain v and w1 but contains w2.

Let us note that if w2 ∈ N(t) and v belongs to a maximal induced forest X,
then w2 does not belong to X. Thus if w2 ∈ N(t), then the number of forests
in M(F ) is at most

f(G \ {w2}, F ∪ {v}) + f(G \ {v}, F ∪ {w1}) + f(G \ {v, w1}, F ∪ {w2}).

Thus

f(µ) ≤ f(µ− 2− α) + f(µ− 2− α) + f(µ− 3− α)
≤ 2xµ−2−α + xµ−3−α ≤ xµ.

If w2 6∈ N(t), then

f(µ) ≤ f(µ− 1− 2α) + f(µ− 2− α) + f(µ− 3− 2α)
≤ xµ−1−2α + xµ−2−α + xµ−3−2α ≤ xµ.

Case 7: gd(v) = 3. Denote the generalized neighbors of v by w1, w2, and w3

according to the rule that wj 6∈ N(t) and wk ∈ N(t) imply j < k. Then for
every forest X from MG(F ) holds one of the following

— X contains v;

— X does not contain v and contains w1;

12



— X does not contain v and w1 but contains w2;

— X does not contain v, w1 and w2 but contains w3.

Let i be the number of generalized neighbors of v that are not adjacent to t.
For i = 1, 2, we have

f(µ) ≤ f(µ− 4 + i− iα) + f(µ− 2− α) + f(µ− 3− iα) + f(µ− 4− iα)
≤ xµ−4+i−iα + xµ−2−α + xµ−3−iα + xµ−4−iα ≤ xµ.

For i = 3,

f(µ) ≤ f(µ− 1− 3α) + f(µ− 2− α) + f(µ− 3− 2α) + f(µ− 4− 3α)
≤ xµ−1−3α + xµ−2−α + xµ−3−2α + xµ−4−3α ≤ xµ.

Case 8: gd(v) ≥ 4. Then every forest X fromMG(F ) either contains v or does
not. Thus

f(µ) ≤ f(µ− 1− 4α) + f(µ− 1) ≤ xµ−1−4α + xµ−1 ≤ xµ.

Remark. The two tight recurrences here are in the case Main 7, when i = 1 and
when i = 3. Again, an improvement of this case would provide a better bound
on the number of minimal feedback vertex sets.

Now, we prove the lower bound for the number of maximal induced forests.

Theorem 8. There exists an infinite family of graphs all having 105n/10 ≈
1.5926n maximal induced forests.

Proof. The infinite family consists of disjoint copies of the graph given in Fig-
ure 1. The same family of graphs has been used in [6] to show that the number
of maximal bipartite subgraphs is lower bounded by 1.5926n.

0

1

23

4

5

6

78

9

Figure 1: Generating graph for the lower bound
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A pair of vertices in the graph of Figure 1 are two vertices whose labels differ
by 5. This graph has 5 · 24 = 80 maximal induced forests containing one vertex
from 4 of the pairs, 5 · 22 = 20 containing one pair and one vertex from each
of the opposite pairs and 5 containing two pairs. In total, it has 105 maximal
induced forests.

It is clear that the maximal induced forests of a disconnected graph are the
union of one maximal induced forest of each component. Their number thus
equals the product of the number of maximal induced forests of each component.
By taking multiple copies of the graph in Figure 1, we get the lower bound of
105n/10.
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