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Abstract

We consider the well studied Full Degree Spanning Tree
problem, a NP-complete variant of the Spanning Tree problem, in
the realm of moderately exponential time exact algorithms. In this
problem, given a graph G, the objective is to find a spanning tree T of
G which maximizes the number of vertices that have the same degree
in T as in G. This problem is motivated by its application in fluid
networks and is basically a graph-theoretic abstraction of the problem
of placing flow meters in fluid networks. We give an exact algorithm
for Full Degree Spanning Tree running in time O(1.9465n). This
adds Full Degree Spanning Tree to a very small list of “non-local
problems”, like Feedback Vertex Set and Connected Dominat-
ing Set, for which non-trivial (non brute force enumeration) exact
algorithms are known.

1 Introduction

The problem of finding a spanning tree of a connected graph arises at various
places in practice and theory, like the analysis of communication or distribu-
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tion networks, or modeling problems, and can be solved efficiently in polyno-
mial time. On the other hand, if we want to find a spanning tree with some
additional properties like maximizing the number of leaves or minimizing the
maximum degree of the tree, the problem becomes NP-complete. This paper
deals with one of the NP hard variants of Spanning Tree, namely Full
Degree Spanning Tree from the view point of moderately exponential
time algorithms.

Full Degree Spanning Tree (FDST): Given an undirected con-
nected graph G = (V, E), find a spanning tree T of G which maximizes
the number of vertices of full degree, that is the vertices having the
same degree in T as in G.

The FDST problem is motivated by its applications in water distribution
and electrical networks [16, 17, 18, 19]. Pothof and Schut [19] studied this
problem in the context of water distribution networks where the goal is to
determine or control the flows in the network by installing and using a small
number of flow meters. It turns out that to measure flows in all pipes, it is
sufficient to find a full degree spanning tree T of the network and install flow
meters (or pressure gauges) at each vertex of T that does not have full degree.
We refer to [1, 4, 12] for a more detailed description of various applications
of FDST.

The FDST problem has attracted a lot of attention recently and has
been studied extensively from different algorithmic paradigms, developed for
coping with NP-completeness. Pothof and Schut [19] studied this problem
first and gave a simple heuristic based algorithm. Bhatia et al. [1] studied it
from the view point of approximation algorithms and gave an algorithm of
factor O(

√
n). On the negative side, they show that FDST is hard to ap-

proximate within a factor of O(n
1
2
−ε), for any ε > 0, unless coR = NP , a well

known complexity-theoretic hypothesis. Guo et al. [11] studied the problem
in the realm of parameterized complexity and observed that the problem
is W[1]-complete. The problem which is dual to FDST is also studied in
the literature, that is the problem of finding a spanning tree that minimizes
the number of vertices not having full degree. For this dual version of the
problem, Khuller et al [12] gave an approximation algorithm of factor 2 + ε
for any fixed ε > 0, and Guo et al. [11] gave a fixed parameter tractable
algorithm running in time 4knO(1). FDST has also been studied on spe-
cial graph classes like planar graphs, bounded degree graphs and graphs of
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bounded treewidth [4]. The goal of this paper is to study Full Degree
Spanning Tree in the context of moderately exponential time algorithms,
another coping strategy to deal with NP-completeness. We give a O(1.9465n)
time algorithm breaking the trivial 2nnO(1) barrier.

Exact exponential time algorithms have an old history [5, 15] but the
last few years have seen a renewed interest in the field. This has led to the
advancement of the state of the art on exact algorithms and many new tech-
niques based on Inclusion-Exclusion, Measure & Conquer and various other
combinatorial tools have been developed to design and analyze exact algo-
rithms [2, 3, 7, 8, 13]. Branch & Reduce has always been one of the most
important tools in the area but its applicability was mostly limited to ‘local
problems’ (where the decision on one element of the input has direct con-
sequences for its neighboring elements) like Maximum Independent Set,
SAT and various other problems, until recently. In 2006, Fomin et al.[9] de-
vised an algorithm for Connected Dominating Set (or Maximum Leaf
Spanning Tree) and Razgon [20] for Feedback Vertex Set combining
sophisticated branching and a clever use of measure. Our algorithm adheres
to this machinery and adds an important real life problem to this small list.
We also need to use an involved measure, which is a function of the number
of vertices and the number of edges to be added to the spanning tree, to get
the desired running time.

2 Preliminaries

Let G be a graph. We use V (G) and E(G) to denote the vertices and the
edges of G respectively. We simply write V and E if the graph is clear from
the context. For V ′ ⊆ V we define an induced subgraph G[V ′] = (V ′, E ′),
where E ′ = {uv ∈ E : u, v ∈ V ′}.

Let v ∈ V , we denote by N(v) the neighborhood of v, namely N(v) = {u ∈
V : uv ∈ E}. The closed neighborhood N [v] of v is N(v) ∪ {v}. In the same
way we define N [S] for S ⊆ V as N [S] = ∪v∈SN [v] and N(S) = N [S] \ S.
We define the degree of vertex v in G as the number of vertices adjacent to
v in G. Namely, dG(v) = |{u ∈ V (G) : uv ∈ E(G)}|.

Let G be a graph and T be a spanning tree of G. A vertex v ∈ V (G) is
a full degree vertex in T , if dG(v) = dT (v). We define a full degree spanning
tree to be a spanning tree with the maximum number of full degree vertices.
One can similarly define full degree spanning forest by replacing tree with
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forest in the earlier definition.
A set I ⊆ V is called an independent set for G if no vertex v in I has a

neighbor in I.

3 Algorithm for Full Degree Spanning Tree

In this Section we give an exact algorithm for the FDST problem.
Given an input graph G = (V, E), the basic idea is that if we know a

subset S of V for which there exists a spanning tree T where all the vertices
in S have full degree then, given this set S, we can construct a spanning tree
T where all the vertices in S have full degree in polynomial time. Our first
observation towards this is that all the edges incident to the vertices in S,
that is

ES = {uv ∈ E such that u ∈ S or v ∈ S } (1)

induce a forest. For our polynomial time algorithm we start with the forest
(V, ES) and then complete this forest into a spanning tree by adding edges
to connect the components of the forest. The last step can be done by using
a slightly modified version of the Spanning Tree algorithm of Kruskal [14]
that we denote by poly fdst(G, S). Moreover, it has been shown in [11]
that a full degree spanning tree can be computed in polynomial time if the
decision on degree 2 vertices is left open. That is, for a maximum set of
full degree vertices S, poly fdst(G, S \S2) returns a spanning tree with the
same number of full degree vertices as poly fdst(G, S) where S2 is the set of
degree 2 vertices in S. Therefore, our algorithm may postpone the decision
on degree 2 vertices to the polynomial time procedure.

The rest of the section is devoted to finding a subset of vertices S for
which poly fdst(G, S) returns a spanning tree with the largest number of
full degree vertices.

Our algorithm follows a branching strategy and as a partial solution keeps
a set of vertices S for which there exists a spanning tree where the vertices
in S have full degree. The algorithm grows one component of the forest
(N [S], ES) at a time. The vertices of this component are denoted by Sa, the
active set. We denote S \Sa by Sb, the inactive set. The standard branching
step chooses a vertex v that could be included in Sa and then recursively tries
to find a solution by including v in Sa and not including v in S. But when
v is not included in S, it cannot be removed from further consideration as
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cycles involving v might be created later on in (V, ES) by adding neighbors
of v to S. Hence we resort to a coloring scheme for the vertices, which can
also be thought of as a partition of the vertex set of the input graph. At any
point of the execution of the algorithm, the vertices are partitioned as below:

1. Selected S = Sa∪Sb: The set of vertices which are decided to be of full
degree. The set Sa corresponds to the active set of vertices which we
use in the current stage of the algorithm. The set Sb is the inactive set
of vertices which were decided to be of full degree in an earlier stage of
the algorithm.

2. Discarded D: The set of vertices which are not required to be of full
degree.

3. Postponed P : The subset of vertices of degree 2 which are to be decided
later by poly fdst(G, S).

4. Undecided U : The set of vertices which are not in S, D or P , that is
those vertices which are yet to be decided. So, U = V \ (S ∪D ∪ P ).

Next we define a generalized form of the FDST problem based on the above
partition of the vertex set. But before that we need the following definition.

Definition 1 Given a vertex set S ⊆ V , we define the partial spanning
forest of G induced by S as T (S) = (N [S], ES) where ES is defined as in
Equation (1).

For our generalized problem, we denote by G = (Sa, Sb, D, P, U, E) the graph
(V, E) with vertex set V = Sa ∪ Sb ∪D ∪ P ∪ U partitioned as above.

Generalized Full Degree Spanning Tree (GFDST): Given an
instance G = (Sa, Sb, D, P, U, E) such that T (Sa) is connected and
acyclic, and no vertex of T (Sb) is adjacent to a vertex in U , the objective
is to find a spanning forest which maximizes the number of vertices
of U ∪ P of full degree under the constraint that all the vertices in
S = Sa ∪ Sb have full degree.

If we start with a graph G, an instance of FDST, with the vertex partition
S = D = P = ∅ and U = V then the problem we will have at every
intermediate step of the recursive algorithm is GFDST. Also, note that a
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full degree spanning forest of a connected graph can easily be extended to a
full degree spanning tree and that a full degree spanning tree is a full degree
spanning forest.

As suggested earlier our algorithm is based on branching and will have
some reduction rules that can be applied in polynomial time, leading to a
refined partitioning of the vertices. Before we come to the detailed description
of the algorithm, we introduce a few more important definitions. For given
sets S, D, P and U , we say that an edge is

(a) unexplored if one of its endpoints is in U and the other one in U∪D∪P ,

(b) forced if at least one of its endpoints is in S, and

(c) superfluous if both its endpoints are in D.

The basic step of our algorithm chooses an undecided vertex u ∈ U and
considers two subcases that it solves recursively: either u is selected, that is
u is moved from U to Sa, or u is discarded, that is moved from U to D. But
the main idea is to choose a vertex in a way that the connectivity of T (Sa) is
maintained in both recursive calls. To do so we choose u from U ∩N [N [Sa]].
This brings us to the following definition.

Definition 2 The vertices in U ∩N [N [Sa]] are called candidate vertices.

On the other hand, if Sa is not empty and there are no candidate vertices,
then Sb := Sb ∪ Sa and Sa := ∅. If U is not empty, then the algorithm starts
to grow a new component.

Now we are ready to describe the algorithm in details. We start with
a procedure for reduction rules in the next subsection and prove that these
rules are correct.

3.1 Reduction Rules

Given an instance G = (Sa, Sb, D, P, U, E) of GFDST, a reduced instance
of G is computed by the following procedure.
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Reduce(G = (Sa, Sb, D, P, U, E))

R1 If there is a superfluous edge e, then return Reduce((Sa, Sb, D, P, U, E \
{e}))

R2 If there is a vertex u ∈ D∪U such that d(u) = 1, then remove the unique
edge e incident on it and return Reduce((Sa, Sb, D, P, U, E \ {e})).

R3 If there is an undecided vertex u ∈ U such that T (Sa ∪ {u}) contains
a cycle, then discard u, that is return Reduce((Sa, Sb, D ∪ {u}, P, U \
{u}, E)).

R4 If there is a candidate vertex u that is incident to at most one vertex in
U ∪ D ∪ P , then select u, and return Reduce((Sa ∪ {u}, Sb, D, P, U \
{u}, E)).

R5 If S = ∅ and there exists a vertex u ∈ U of degree 2, then select u and
return Reduce((Sa ∪ {u}, Sb, D, P, U \ {u}, E)).

R6 If there is a candidate vertex u of degree 2 that has a neigh-
bor v in D, then put u into P , remove the edge uv and return
Reduce((Sa, Sb, D, P ∪ {u}, U \ {u}, E \ {{u, v}})).

R7 If there is no candidate vertex and U 6= ∅ then return Reduce((∅, Sa ∪
Sb, D, P, U, E)).

Else return G

Now we argue about the correctness of the reduction rules. More precisely,
we prove that there exists a spanning forest of G such that a maximum
number of vertices preserve their degree and the partitioning of the vertices
into the sets S, D, P and U of the graph resulting from a call to Reduce(G =
(Sa, Sb, D, P, U, E)) is respected. Note that the reduction rules are applied
in the order of their appearance.

The correctness of R1 follows from the fact that discarded vertices are
not required to have full degree.

For the correctness of reduction rule R2, consider a vertex u ∈ D ∪ U of
degree 1 with unique neighbor w. Let G′ = (Sa, Sb, D, P, U, E \ {uw}) be the
graph resulting from the application of the reduction rule. Note that the edge
uw is not part of any cycle and that a full degree spanning forest of G can
be obtained from a full degree spanning forest of G′ by adding the edge uw.
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As Algorithm poly fdst(G, S) adds edges to make the obtained spanning
forest into a spanning tree, the edge uw is added to the final solution.

For the correctness of reduction rule R3, it is enough to observe that if
for a subset S ⊆ V , there exists a spanning tree T such that all the vertices
of S have full degree then T (S) is a forest.

We prove the correctness of R4 and R5 by the following lemmata.

Lemma 3 Let G = (V, E) be a graph and T be a full degree spanning forest
for G. If v ∈ V is a vertex of degree dG(v)− 1 in T , then there exists a full
degree spanning forest T ′ such that v has degree dG(v) in T ′.

Proof: Let u ∈ V be the neighbor of v such that uv is not an edge of T .
Note that both u and v do not have full degree in T , are not adjacent and
belong to the same tree in T . The last assertion follows from the fact that
if u and v belong to two different trees of T then one can safely add uv to
T and obtain a forest T ′ that has a larger number of full degree vertices,
contradicting that T is a full degree spanning forest. Now, adding the edge
uv to T creates a unique cycle passing through u and v. We obtain the new
forest T ′ by removing the other edge incident to u on the cycle, say uw,
w 6= v. So, T ′ = T \ {uw} + {uv}. The number of full degree vertices in T ′

is at least as high as in T as v becomes a full degree vertex and at most one
vertex, w, could become non full degree.
We also need a generalized version of Lemma 3.

Lemma 4 Let G = (Sa, Sb, D, P, U, E) be a graph and T be a full degree
spanning forest for G such that the vertices in S = Sa ∪ Sb have full degree.
Let v ∈ U be a candidate vertex such that its neighbors in D ∪P ∪U are not
incident to a forced edge. If v has degree dG(v) − 1 in T , then there exists
a full degree spanning forest T ′ such that v has degree dG(v) in T ′ and the
vertices in S have full degree.

Proof: The proof is similar to the one of Lemma 3. The only difference is
that we need to show that the vertices of S remain of full degree and for that
we need to show that all the edges of T (S) remain in T ′. To this observe
that all the edges incident to the neighbors of v in D ∪ P ∪ U in T do not
belong to edges of T (S), that is they are not forced edges. So if uv is the
unique edge incident to v missing in T then we can add uv to T and remove
the other non-forced edge on u from the unique cycle in T + {uv} and get
the desired T ′.
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First, observe that every vertex of P has has degree 0. Therefore, all
vertices in U are in different connected components than the vertices in Sb.

Now consider reduction rule R4. If u is a candidate vertex with unique
neighbor w in D ∪ P ∪ U then (a) u ∈ N(Sa) and (b) all the edges incident
to w are not forced, otherwise reduction rule R2 or R3 would have applied.
Now the correctness of the reduction rule follows from Lemma 4.

To prove the correctness of reduction rule R5, we need to show that there
exists a spanning forest where u has full degree. Suppose not and let T be
any full degree spanning forest of G. Without loss of generality, suppose
that u has degree 1 in T (if u is an isolated vertex in T , then add one edge
incident to u to T ; this does not create any cycle in T and does not decrease
the number of vertices of full degree in T ). Let v be the unique neighbor of
u in T . But since Sa = ∅, there are no forced edges incident to neighbors of
u and we can apply Lemma 4 again and conclude.

Reduction rule R6 postpones the decision for certain degree 2 vertices.
The edge uv may be deleted as the decision on this edge is made by the
polynomial time procedure. Note that u becomes of degree 1, which triggers
reduction rule R2, removing the other edge incident on u as there exists a
full degree spanning tree respecting our partitioning of vertices containing
this edge.

Reduction rule R7 only makes the active set inactive in order to start a
new component of the spanning forest as the current component cannot be
grown any further and is thus correct.

This finishes the correctness proof of the reduction rules. Before we go
into the details of the algorithm we would like to point out that all our
reduction rules preserve the connectivity of T (Sa).

3.2 Algorithm

In this section we describe our algorithm in details. Given an instance G =
(Sa, Sb, D, P, U, E) of GDPST, our algorithm recursively solves the problem
by choosing a candidate vertex u ∈ U and including u in Sa or in D and then
returning as solution the one with a maximum number of full degree vertices.
The algorithm has various cases based on the number of unexplored edges
incident to u.

Algorithm fdst(G), described below, returns a super-set S∗ of S = Sa∪Sb

corresponding to the full degree vertices (except some degree 2 vertices) in a
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full degree spanning forest respecting the initial choices for S and D. After
this, poly fdst(G, S∗) returns a full degree spanning tree of G.

We describe the procedure poly fdst(G, S) now in more details. Initially,
all edges are unweighted. To each edge incident to a vertex in S, assign weight
1. To each unweighted edge incident to a vertex in P , assign weight 2. To
each remaining unweighted edge, assign weight 3. Then compute a minimum
spanning tree T using the algorithm of Kruskal [14] of the resulting weighted
graph. Thus, all edges of T (S) are in T (T (S) is acyclic), and connecting
two different connected components of T (S) is done preferably by making
vertices of P of full degree rather than adding edges incident to discarded
vertices.

The description of the algorithm consists of the application of the re-
duction rules and a sequence of cases. A case consists of a condition (first
sentence) and a procedure to be executed if the condition holds. The first
case which applies is used in the algorithm. Thus, inside a given case, the
conditions of all previous cases are assumed to be false.

fdst(G = (Sa, Sb, D, P, U, E))

Replace G by Reduce(G).

Case 1: U is a set of isolated vertices. Return S ∪ U .

Case 2: Sa = ∅. Choose a vertex u ∈ U of degree at least 3. Return
the best solution among fdst((Sa ∪ {u}, Sb, D, P, U \ {u}, E)) and
fdst((Sa, Sb, D ∪ {u}, P, U \ {u}, E)).

Case 3: There is a candidate vertex u with at least 3 unexplored incident
edges. Make two recursive calls: fdst((Sa ∪ {u}, Sb, D, P, U \ {u}, E))
and fdst((Sa, Sb, D∪{u}, P, U \{u}, E)), and return the best solution.

Case 4: There is a candidate vertex u ∈ N(Sa) with at least one neighbor
v in U and exactly two unexplored incident edges. Make two recur-
sive calls: fdst((Sa ∪ {u}, Sb, D, P, U \ {u}, E)) and fdst((Sa, Sb, D ∪
{u, v}, P, U \ {u, v}, E)), and return best solution .

From now on let v1 and v2 denote the discarded neighbors of a
candidate vertex u (see Figure 1).
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u w1 w2

S D

U

Figure 1: Illustration of Case 6. Cases 5, 7 and 8 are similar.

Case 5: Either v1 and v2 have a common neighbor x 6= u; or
v1 (or v2) has a neighbor x 6= u that is a candidate vertex; or
v1 (or v2) has a neighbor x of degree 2.
Make two recursive calls: fdst((Sa ∪ {u}, Sb, D, P, U \ {u}, E)) and
fdst((Sa, Sb, D ∪ {u}, P, U \ {u}, E)), and return the best solution.

Case 6: Both v1 and v2 have degree 2. Let w1 and w2 (w1 6= w2) be the
other (different from u) neighbors of v1 and v2 in U respectively. Make
recursive calls as usual, but also explore all the possibilities for w1 and
w2 if u ∈ S. When u is in S, recurse on all possible ways one can add a
subset of A = {w1, w2} to S. That is make recursive calls fdst((S, D∪
{u}, U \{u}, E)) and fdst((S∪{u}∪X, D∪(A−X), U \({u}∪A), E))
for each independent set X ⊆ A, and return the best solution.

Case 7: One of {v1, v2} has degree ≥ 3. Let {u, w1, w2, w3} ⊆ N({v1, v2})
and let A = {w1, w2, w3}. Make recursive calls fdst((Sa, Sb, D∪{u}, P, U\
{u}, E)) and fdst((Sa∪{u}∪X, Sb, D∪ (A−X), P, U \ ({u}∪A), E))
for each independent set X ⊆ A, and return the best solution.

Case 8: Both v1 and v2 have degree≥ 3. Let {u, w1, w2, w3, w4} ⊆ N({v1, v2})
and let A = {w1, w2, w3, w4}. Make recursive calls fdst((Sa, Sb, D ∪
{u}, P, U \ {u}, E)) and fdst((Sa ∪ {u} ∪ X, Sb, D ∪ (A − X), P, U \
({u} ∪ A), E)) for each independent set X ⊆ A, and return the best
solution.
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4 Correctness and Time Complexity of the

Algorithm

We prove the correctness and the time complexity of Algorithm fdst in the
following theorem.

Theorem 5 Given an input graph G = (Sa, Sb, D, P, U, E) on n vertices
such that T (S = Sa ∪ Sb) is acyclic and T (Sa) is connected, Algorithm fdst

returns a set S∗, S ⊆ S∗ ⊆ S∪U , such that poly fdst(G, S∗) returns a span-
ning tree with a maximum number of full degree vertices, in time O(1.9465n).

Proof: The correctness of the reduction rules is described in Section 3.1.
To see that to every instance the algorithm applies some reduction or

branching rule, it is sufficient to note that if no reduction rule, nor Cases 1–4
apply, then every candidate vertex is in N(Sa) and has exactly two neighbors
in D: candidate vertices with at least 3 unexplored incident edges are handled
by Case 3, candidate vertices with at most one unexplored incident edge are
taken care of by reduction rule R4, and candidate vertices with exactly two
unexplored incident edges satisfy the condition of reduction rule R6 or Case
4, or belong to N(Sa) and have two neighbors in D.

The correctness of Case 1 follows, as any isolated vertex belonging to
U has full degree in any spanning forest. The remaining cases, except Case
4, of Algorithm fdst are branching steps where the algorithm chooses a
vertex u ∈ U and tries both possibilities: u ∈ Sa or u ∈ D. Sometimes the
algorithm branches further by looking at the local neighborhood of u and
trying all possible ways these vertices can be added to either Sa or D. Since
all possibilities are tried to add vertices of U to D or Sa in Cases 3 and 5
to 8, these cases are correct and do not need any further justifications. The
correctness of Case 4 requires special attention. Here we use the fact that
there exists a full degree spanning forest with all the vertices in S having
full degree, such that either u ∈ S or u and its neighbor v ∈ U are in D.
We prove the correctness of this assertion by contradiction. Suppose all the
full degree spanning forests such that all the vertices in S are of full degree
have u of non full degree and v of full degree. But since u ∈ N(Sa) and all
the neighbors of u in D ∪ U do not have any incident forced edges, we can
use Lemma 4 to get a spanning forest which contains u and is a full degree
spanning forest with all the vertices in S having full degree.
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Now we move on to the time complexity of the algorithm. The measure of
subproblems is generally chosen as a function of structure, like vertices, edges
or other graph parameters, which change during the recursive steps of the
algorithm. In our algorithm, this change is reflected when vertices are moved
to either S, D or P from U . The second observation is that any spanning
tree on n vertices has at most n− 1 edges and hence when we select a vertex
in S we increase the number of edges in T (S) and decrease the number of
edges we can add to T (S). Finally we also gain when the degree of a vertex
becomes two because reduction rules apply as soon as the degree 2 vertex is
in N(Sa) (R4) or in N(N(Sa)) and has a neighbor in D. (Candidate vertices
in N(N(Sa)) of degree 2 that are adjacent only to vertices in U fall into one
of these two categories once their neighbor in N(Sa) is put in either Sa or D.)
Our measure is precisely a function of these three parameters and is defined
as follows:

µ(G) = η|U2|+ β|U≥3|+ αm′, (2)

where U2 is the subset of undecided vertices of degree 2, U≥3 is the subset
of undecided vertices of degree at least 3, m′ = n − 1 − |E(T (S))| is the
number of edges that can be added to the spanning tree and η = 0.5, β =
0.722 and α = 0.23887 are numerically obtained constants to optimize the
running time. We write µ instead of µ(G) if G is clear from the context.
We prove that the problem can be solved for an instance of size µ in time
O(2µ). As µ ≤ 0.96087n, the final running time of the algorithm will be
O(20.96087n) = O(1.9465n). Denote by P [µ] the maximum number of times
the algorithm is called recursively on a problem of size µ (i. e. the number
of leaves in the search tree). Then the running time T (µ) of the algorithm is
bounded by P [µ] ·nO(1) because in any node of the search tree, the algorithm
executes only a polynomial number of steps. We use induction on µ to prove
that P [µ] ≤ 2µ. Then T (µ) = 2µ · nO(1) = O(1.9465n). Clearly, P [0] = 1.
Suppose that P [k] ≤ 2k for every k < µ and consider a problem of size µ.

Case 2: In this case, the number of vertices in U≥3 decreases by one in both
recursive calls and the number of edges in T (S) increases by at least 3
in the first recursive call. Thus,

P [µ] ≤ P [µ− β − 3α] + P [µ− β].

Case 3: This case has the same recurrence as Case 2 as the number of
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vertices in U≥3 decreases by one in both recursive calls and the number
of edges in T (S) increases by at least 3 in the first recursive call.

Case 4: When the algorithm adds u to S, the number of vertices in U≥3

decreases by one and the number of edges in T (S) increases by 2 while
in the other case, |U≥3| decreases by two or |U2| and |U≥3| both decrease
by one. So we get:

P [µ] ≤ P [µ− β − 2α] + P [µ− 2β], and

P [µ] ≤ P [µ− β − 2α] + P [µ− η − β].

Case 5: When the algorithm adds u to S, reduction rule R3 or R6 applies
to x. We obtain the following recurrences, based on the degree of x:

P [µ] ≤ P [µ− η − β − 2α] + P [µ− β], and

P [µ] ≤ P [µ− 2β − 2α] + P [µ− β].

Case 6: In this case we distinguish two subcases based on the degrees of w1

and w2. Our first subcase is when either w1 or w2 has degree 3 and the
other subcase is when both w1 and w2 have degree at least 4. (Note
that because of Case 4, v1 and v2 do not have a common neighbor
and do not have a neighbor of degree 2). Suppose w1 has degree 3.
When the algorithm adds u to D, the edges uv1 and uv2 are removed
(R1), the degree of v1 is reduced to 1 and then reduction rule R2 is
applied and makes w1 of degree 2. So, in this subcase, µ decreases by
2β− η. The analysis of the remaining branches is standard and we get
the following recurrence:

P [µ] ≤ P [µ−3β−2α]+2P [µ−3β−5α]+P [µ−3β−8α]+P [µ−2β+η].

For the other subcase we get the following recurrence:

P [µ] ≤ P [µ− 3β− 2α]+2P [µ− 3β− 6α]+P [µ− 3β− 10α]+P [µ−β].

Case 7: This case is similar to Case 6. Without loss of generality, suppose
v1 has degree 2 and has w1 as neighbor. If w1 has degree 3, then it be-
comes of degree 2 when u is discarded. Thus, we obtain the recurrence

P [µ] ≤ P [µ− 4β − 2α] + 3P [µ− 4β − 5α] + 3P [µ− 4β − 8α] +

P [µ− 4β − 11α] + P [µ− 2β + η].
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On the other hand, if w1 has degree at least 4, at least one more edge is
added to the spanning forest each time w1 is put into Sa and we obtain
the recurrence

P [µ] ≤ P [µ− 4β − 2α] + 2P [µ− 4β − 5α] + P [µ− 4β − 6α] +

P [µ− 4β − 8α] + 2P [µ− 4β − 9α] + P [µ− 4β − 12α] +

P [µ− β].

Case 8: This case easily gives the recurrence

P [µ] ≤ P [µ− 5β − 2α] + 4P [µ− 5β − 5α] + 6P [µ− 5β − 8α] +

4P [µ− 5β − 11α] + P [µ− 5β − 14α] + P [µ− β].

In each of these recurrences, P [µ] ≤ 2µ which completes the proof of the
theorem.

The bottleneck of the analysis is the recurrence in Case 8. Therefore, an
improvement of this case would lead to a faster algorithm.

We provide a Python program in the appendix for checking that the
values for η, β and α satisfy all the recurrences.

5 Conclusion

In this paper we have given an exact algorithm for the Full Degree Span-
ning Tree problem. The most important feature of our algorithm is the
way we exploit connectivity arguments to reduce the size of the graph in
the recursive steps of the algorithm. We think that this idea of combining
connectivity while developing Branch & Reduce algorithms could be useful
for various other non-local problems and in particular for other NP-complete
variants of the Spanning Tree problem. Although the theoretical bound
we obtained for our algorithm seems to be only slightly better than a brute-
force enumeration algorithm, practice shows that Branch & Reduce algo-
rithms perform usually better than the running time proved by a worst case
analysis of the algorithm. Therefore we believe that this algorithm, combined
with good heuristics, could be useful in practical applications.

One problem which we would like to mention here is Minimum Maximum
Degree Spanning Tree, where, given an input graph G, the objective is to
find a spanning tree T of G such that the maximum degree of T is minimized.
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This problem is a generalization of the famous Hamiltonian Path problem
for which no algorithm faster than 2nnO(1) is known. It remains open to
find even a 2nnO(1) time algorithm for the Minimum Maximum Degree
Spanning Tree problem.
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Appendix: Program to Check the Analysis

# weights

alpha = 0.23887

beta = 0.722

eta = 0.5

# case 2

print 2**(-beta-3*alpha) + 2**(-beta) < 1

# case 3

# case 4

print 2**(-beta-2*alpha) + 2**(-2*beta) < 1

print 2**(-beta-2*alpha) + 2**(-eta-beta) < 1

# case 5

print 2**(-eta-beta-2*alpha) + 2**(-beta) < 1

print 2**(-2*beta-2*alpha) + 2**(-beta) < 1

# case 6

print 2**(-3*beta-2*alpha) + 2*2**(-3*beta-5*alpha)

+ 2**(-3*beta-8*alpha) + 2**(-2*beta+eta) < 1

print 2**(-3*beta-2*alpha) + 2*2**(-3*beta-6*alpha)

+ 2**(-3*beta-10*alpha) + 2**(-beta) < 1

# case 7

print 2**(-4*beta-2*alpha) + 3*2**(-4*beta-5*alpha)

+ 3*2**(-4*beta-8*alpha) + 2**(-4*beta-11*alpha)

+ 2**(-2*beta+eta) < 1

print 2**(-4*beta-2*alpha) + 2*2**(-4*beta-5*alpha)

+ 2**(-4*beta-6*alpha) + 2**(-4*beta-8*alpha)

+ 2*2**(-4**beta-9*alpha) + 2**(-4*beta-12*alpha)

+ 2**(-beta) < 1

# case 8

print 2**(-5*beta-2*alpha) + 4*2**(-5*beta-5*alpha)

+ 6*2**(-5*beta-8*alpha) + 4*2**(-5*beta-11*alpha)

+ 2**(-5*beta-14*alpha) + 2**(-beta) < 1
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