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Abstract. Being a firefighter is a tough job, especially when tight city
budgets do not allow enough firefighters to be on duty when a fire starts.
This is formalized in the FIREFIGHTER problem, which aims to save as
many vertices of a graph as possible from a fire that starts in a vertex
and spreads through the graph. In every time step, a single additional
firefighter may be placed on a vertex, and the fire advances to each
vertex in its neighborhood that is not protected by a firefighter. The
problem is notoriously hard; it is NP-hard even when the input graph is
a bipartite graph or a tree of maximum degree 3, it is W/[1]-hard when
parameterized by the number of saved vertices, and it is NP-hard to
approximate within n'~¢ for any € > 0. We aim to simplify the task of a
firefighter by providing algorithms that show him/her how to efficiently
fight fires in certain types of networks. We show that FIREFIGHTER can be
solved in polynomial time on various well-known graph classes, including
interval graphs, split graphs, permutation graphs, and Pj-free graphs for
fixed k. On the negative side, we show that the problem remains NP-hard
on unit disk graphs.

1 Introduction

Extinguishing a fire is a difficult task; just ask any firefighter. In particular, the
task gets harder when there are not enough firefighters on duty when a fire breaks
out, and additional firefighter resources are granted only as the fire spreads. Our
aim here is to help firefighters extinguish a fire efficiently using the structure of
the burning site. In the Firefighting game on a graph, a fire starts in a vertex s.
At each step, a firefighter may be placed on a vertex which is not yet touched
by the fire, which makes that vertex protected, i.e., unburnable, for the rest of
the game. Then the fire spreads to every neighbor of the burning vertices that is
not protected by a firefighter. After this, a new step starts. If, after some step,
the burning vertices are separated from the rest of the graph by the protected
vertices, then the fire is contained and the unburned vertices are referred to as
saved. The FIREFIGHTER problem takes as input a graph G on n vertices and a
vertex s of G, and the goal is to place firefighters as to maximize the number of
saved vertices.

The FIREFIGHTER problem was introduced in 1995 and intended to cap-
ture also other important applications, like immunizing a population against a
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virus [13]. The problem is notoriously difficult. It is NP-hard even on bipartite
graphs [15] and on trees of maximum degree 3 [10]. It is NP-hard to approximate
the FIREFIGHTER problem within n!~¢ for any € > 0 [1]. From a parameterized
point of view, the problem is W/[l]-hard when parameterized by the natural
parameter of the number of saved vertices [2, 8].

Given the difficulty of the problem, it has naturally been studied for obtaining
tractability on restricted inputs. However, although the problem and its variants
are well studied [7], the only polynomial-time algorithms known for the problem
so far are on graphs of maximum degree three when the fire starts at a vertex of
degree at most two [10], and on so-called P-trees [15]. Even with respect to ap-
proximation and fixed-parameter tractability, the only positive results known so
far are on trees and graphs of bounded treewidth. On arbitrary trees, the prob-
lem is fixed-parameter tractable [6], and a simple 2-approximation algorithm [14]
along with a more involved (1—1/e)-approximation algorithm [6] exists. A recent
survey of combinatorial and algorithmic results on the FIREFIGHTER problem
has been given by Finbow and MacGillivray [11]

In this paper we show that FIREFIGHTER can be solved in polynomial time
on several well-known graph classes, giving the first polynomial-time algorithms
for a variety of graphs that are not (close to) trees. In particular, some of these
constitute large classes of graphs of unbounded treewidth and cliquewidth. Our
main results are polynomial-time algorithms for FIREFIGHTER on interval graphs
and on permutation graphs. We also obtain polynomial-time algorithms on Pj-
free graphs for every fixed k, and linear-time algorithms on split graphs and on
cographs. We complement these positive results by showing that FIREFIGHTER
remains NP-hard on unit disk graphs.

2 Preliminaries

Let (G, s) be an instance of the FIREFIGHTER problem. If G is disconnected then
all connected components except the one that contains s are automatically saved.
Hence we can assume G to be connected. Throughout the paper we consider
simple, undirected, unweighted, connected input graphs.

Given a graph G, its set of vertices is denoted by V(G) and its set of edges
by E(G). We adhere to the convention that n = |V(G) and m = |E(G)|. Given
a set U C V(@) the subgraph of G induced by U is denoted by G[U]. The set
of neighbors of a vertex v € V(G) is denoted by N(v). For a subset U C V(G),
N(U) = UyeuN(u) \ U. Given two non-adjacent vertices v and v in G, a set
S C V(G) is a minimal u,v-separator if u and v appear in different connected
components of G[V(G) \ S| and no proper subset of S has this property. A
minimal separator is a set S C V(@) that is a minimal u, v-separator for some
pair u,v in G.

As we study FIREFIGHTER when the input graph belongs to various graph
classes, we now we give the definitions of these. Below we list several well-known
results without references; all details can be found in one of several excellent
books on graph classes, e.g. [12,4]. Given an integer k, we denote by Py a path
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on k vertices and exactly k — 1 edges. A graph is Px-free if it does not contain
Py as an induced subgraph. An asteroidal triple (AT) in a graph G is a triple
of pairwise non-adjacent vertices, such that there is a path between any two of
them that does not contain a neighbor of the third. A graph is AT-free if no
triple of its vertices forms an AT.

A graph is an interval graph if intervals of the real line can be assigned to its
vertices such that two vertices are adjacent if and only if their intervals overlap.
A graph is a permutation graph if it can be obtained from a permutation 7 of the
integers between 1 and n in the following way: vertex i and vertex j are adjacent
if and only if i < j and j appears before i in 7. Interval graphs and permutation
graphs are not related to each other, but they are both AT-free. (For convenience,
we include a figure in Appendix A showing the inclusion relationship between
all mentioned graph classes.)

A graph is a split graph if its vertices can be partitioned into a clique and an
independent set. It is easy to see that split graphs are Ps-free. Split graphs are
unrelated to interval and permutation graphs. Cographs are defined recursively
as follows. A single vertex is a cograph; the disjoint union of two cographs is a
cograph; the complete join of two cographs is a cograph. Cographs are exactly
the class of Py-free graphs. Cographs form a subclass of permutation graphs, but
they are unrelated to split and interval graphs.

For some of our algorithms, we provide a different but equivalent definition of
the FIREFIGHTER problem (see also [8]). The FIREFIGHTER RESERVE DEPLOY-
MENT problem is defined as follows. Initially, the fire breaks out at a vertex s of G
and the firefighter reserve has one firefighter. At each time step, the fire brigade
can (permanently) deploy any number of its firefighter reserves to vertices of the
graph that are not yet on fire, and the reserve decreases accordingly. Afterwards,
the fire spreads to all of its unprotected neighbors, and one firefighter is added
to the reserve. The objective is to save the maximum number of vertices.

A strategy for the FIREFIGHTER problem is simply an ordered set of vertices,
representing the placement of the firefighters at each step. A strategy for the
FIREFIGHTER RESERVE DEPLOYMENT is then an ordered collection F1, ..., F}
of vertex subsets, such that firefighters are deployed on the vertices of F; at step
1. In particular, this means that F; might be empty for several 1.

Lemma 1. The FIREFIGHTER and the FIREFIGHTER RESERVE DEPLOYMENT
problems are equivalent.

Proof. Consider a strategy v, ..., v, for the FIREFIGHTER problem and look at
the FIREFIGHTER RESERVE DEPLOYMENT problem. At time step ¢, if the fire
reaches vertices Fy C {v1,..., v} at time step ¢t + 1 in G — Uf;i F;, deploy the
firefighters in F; at time ¢. Because vy, ..., v is a valid strategy, this must also
be a valid strategy. Moreover, it saves exactly the same set of vertices.
Consider a strategy F1, ..., Fj for the FIREFIGHTER RESERVE DEPLOYMENT
problem. Consider any ordering vy, ..., vi of the vertices in F1, ..., Fj such that
Vg € Fy, vy € Fj for 1 < j implies a < b. Clearly, any such ordering is a valid
strategy for FIREFIGHTER, saving exactly the same set of vertices. ad
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When it is more convenient algorithmically, we will solve FIREFIGHTER RE-
SERVE DEPLOYMENT instead of FIREFIGHTER. Recall that saved vertices are all
unburned vertices when the Firefighting game is over, including the protected
vertices. We refer to the saved vertices that are not protected, as rescued. The
last line of defense of a strategy is the set N(R), where R is the set of vertices
rescued by the strategy.

3 P.-Free Graphs

If a building on fire does not have long corridors then we will show the firefighters
how to find an optimal strategy efficiently. More formally, in this section we show
that FIREFIGHTER can be solved in time O(n*) on Py-free graphs. This result
can be considered tight, as it is not likely that FIREFIGHTER can be solved in
time f(k) n°M") on Py-free graphs, due to Theorem 2 below.

Lemma 2. Let (G, s) be an instance of FIREFIGHTER, and let ¢ be the number
of vertices on a longest induced path in G starting from s. Then no optimal
strategy can protect more than £ — 1 vertices.

Proof. Suppose that vertices vq,...,v; are protected by some optimal strategy
in that order, and that ¢ is maximum. Since the strategy is optimal, there is
an induced path P between s and vy, such that all vertices on P, except vy,
burn. Let P be a shortest path with this property. Then P contains at least
t + 1 vertices, or v; would burn before we could protect it. It follows from the
premises of the lemma that t < ¢ — 1. a

Theorem 1. FIREFIGHTER can be solved in O(n*~2(n +m)) = O(n*) time on
Py.-free graphs.

Proof. The longest induced path in a Pj-free graph G has at most k— 1 vertices.
Consequently, by Lemma 2, any optimal strategy on G protects at most k — 2
vertices. Hence we can enumerate all subsets S C V(G) of size at most k — 2,
check using a breadth-first search whether we can protect S and contain the fire,
and then count the number of saved vertices. a

In terms of complexity classes FPT and XP (see e.g. [9] for definitions),
Theorem 1 shows that the FIREFIGHTER problem is in XP when parameterized
by the length of the longest induced path in the graph. This result is in fact tight
in the sense that we cannot expect to solve FIREFIGHTER in time f(k) n°(") on
Py-free graphs, as stated in the next theorem, which was proved by Cygan et
al. [8]. The statement of the theorem is different in [8], however the statement
below is implicit. The reduction of [8] is from k-CLIQUE, and yields a bipartite
graph. Upon inspection, it is easy to see that the length of the longest induced
path in this construction is max{k + 1, 3}.

Theorem 2 ([8]). FIREFIGHTER is W[1]-hard when parameterized by the length
of a longest induced path in the input graph, even if the graph is bipartite.
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Since cographs are P4-free and split graphs are Ps-free, Theorem 1 immedi-
ately implies algorithms for FIREFIGHTER on these graph classes with running
times O(n*) and O(n®), respectively. However, we next show that the problem
can be solved in linear time on these graph classes.

Theorem 3. FIREFIGHTER can be solved in O(n) time on cographs.

Proof. Let G be a connected cograph and let s be the vertex where the fire
starts. Let G; and G4 be the cographs which G is the complete join of. Assume,
without loss of generality, that s is in G;. We can protect at most one vertex of
G- since s is adjacent to all vertices in GG3. In the next step, we can protect at
most one vertex of G since all vertices in G; will at that point have burning
neighbors. In particular, we can protect a vertex of GGy if is not adjacent to s,
regardless of the choice of protected vertex in the first step. Hence if s has a non-
neighbor then we can protect and save two vertices: an arbitrary neighbor and
an arbitrary non-neighbor of s. Otherwise we can protect and save one arbitrary
vertex. O

Theorem 4. FIREFIGHTER can be solved in linear time on split graphs.

Proof. Let (G, s) be an instance of FIREFIGHTER such that G is a split graph
with V(G) = I UC for an independent set I and a clique C. Observe first that
there is an optimal strategy that protects at most one vertex of I. To see this,
consider an optimal strategy that protects at least two vertices of I: u and v,
such that u is protected before v. Let w be a neighbor of v. At the time that u
is protected, w is not burning, otherwise it would not be valid to protected v.
The strategy that protects w instead of u saves at least as many vertices as the
optimal strategy. Hence in the following, consider optimal strategies that protect
at most one vertex from I. To avoid trivial cases, assume that both C' and [
contain at least two vertices each. Observe also that at most two vertices of C
can be protected regardless of where the fire starts, since C' is a clique. Since
split graphs are Ps-free, the longest induced path contains at most four vertices.
By Lemma 2, at most three vertices can be protected in total.

Suppose that s € C. Then only one vertex of C' can be protected, and all
vertices of C', except the protected vertex v, will burn. If v has neighbors of
degree 1, then these are saved. In the next step, the best we can do is to protect
an unsaved vertex w in I which is not adjacent to s. After this, all vertices that
are not protected or saved so far will be on fire. Hence an optimal strategy simply
finds a vertex v # s of C' with the highest number of degree 1 neighbors and
protects it. It then protects vertex w if it exists. Vertices v and w can clearly be
found in O(n) time.

Suppose that s € I. It then follows from the above arguments that any
optimal strategy protects either one or two vertices of C' and exactly one vertex
of I. Moreover, the first vertex that is protected is in C.

1. Suppose that any optimal strategy protects exactly one vertex of C. If s has
degree one, then the optimal strategy is trivial. So assume otherwise. By the
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above observation, at most one vertex of I is protected, and the strategy
protects at most two vertices in total. Then s must be adjacent to every
vertex of C, since we could have protected two vertices in C' otherwise, as
this saves at least as many vertices as protecting one vertex of C and at
most one vertex of I. But then the vertex of C that we want to protect is
one with the highest number of degree 1 neighbors in I\{s}.

2. Suppose that there is an optimal strategy protecting two vertices of C.
Let U(X) denote the set of vertices in I that only have neighbors in the
set X C C. Using a similar line of reasoning as above, we can conclude
that the two vertices u,v € C that the optimal strategy uses must have
maximal |U({u,v})| over all X C C with |X| < 2 and | X N N(s)| < 1L
The crux is to find these two vertices in linear time. We first compute
|U(c)| for each ¢ € C. This takes linear time. Note that |U({c1,c2})| >
|U(c1)| + |U(cz)|. However, as |I| < n, there are at most n pairs (¢1,cz) for
which |U({c1,¢2})| > |U(c1)| + |U(cz)|, namely those for which there is an
i € I with N(i) = {c1,c2}. Call |[U({c1, c2})| — (|U(e1)] + |U(c2)|) the pair-
bonus of (¢1,c2). We can find all pairs of vertices with a nonzero pair-bonus,
as well as the exact pair-bonus, in linear time as follows. Create a bucket for
each vertex of C. For each degree-two vertex i € I, adjacent to say cy, ca,
add c¢; to the bucket of ¢o, and vice versa. Then for any fixed ¢ € C, we
count how often each ¢’ in ¢’s bucket occurs in the bucket, which gives the
pair-bonuses in linear time. Now find the pair (¢1,co) with a nonzero pair-
bonus for which a := |U({c1, ca})| is maximal, and the pair (¢}, ¢;) for which
b:=|U(c}))| + |U(ch)| is maximal. Suppose that (u,v) is the pair attaining
max{a,b}. Then it follows that there is an optimal strategy that chooses
u, v, and possibly one more vertex of I.

From the above description, it is clear that an optimal strategy can be found in
linear time. a

4 Interval Graphs

We have seen that buildings without long corridors are helpful with respect to
deciding an optimal firefighting strategy when a fire breaks out. Now we will
see that even if there are long corridors, if all the long corridors go in the same
direction and have enough connections to each other, then the firefighters may
also be able to figure out an optimal strategy efficiently. In particular, we will now
show that FIREFIGHTER can be solved in polynomial time on interval graphs.

An interval model of an interval graph can be computed in linear time. We
will speak about vertices and intervals interchangeably. We say that an interval
w is to the left (right) of an interval v if the left (right) endpoint of the interval
of w is to the left (right) of the left (right) endpoint of the interval of v. We will
use leftmost and rightmost analogously.

In an arbitrary graph G, let C' C V(G) be such that G[C] is connected, and
let C4,...,C} be the connected components of G[V(G) \ C]. It is well known
that N(C;) is a minimal separator of G, for 1 < ¢ < t. Furthermore, if G is an
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Fig. 1. In this (unit) interval graph, the thicker lines represent ten intervals with the
same endpoints. The fire starts at a. The four vertices of j and vertex k both are
minimal separators (imagine that the graph continues after k) that can be protected
before the fire reaches them. However, if we choose to protect the vertices of j, we
can protect at most one of the vertices that come before, namely one of {g,i}. If we
choose to protect k, then we can also protect g, h, i, and three vertices of j. The latter
strategy saves more vertices (7) than the former (6).

AT-free graph and S is the union of N(C}),..., N(C}), then there is a collection
of at most two minimal separators whose union equals S [5, 3]. Although AT-free
graphs can have an exponential number of minimal separators (consider e.g., the
complement of a bipartite graph), in an interval graph every minimal separator
is a clique, and there are at most n — 1 minimal separators.

Let (G, s) be an instance of FIREFIGHTER RESERVE DEPLOYMENT, where G
is an interval graph, and let R be any maximal connected set of rescued vertices.
Then, by the above, N(R) is a minimal separator of G. Furthermore, since
interval graphs form a subclass of AT-free graphs, we can immediately conclude
that the last line of defense in an interval graph is the union of at most two
minimal separators. One could think that it sufficient to just protect the vertices
of these minimal separators, and then find the pair of minimal separators that
are closest to the root of the fire for which this works. However, the example
of Figure 1 shows that protecting vertices between the root and the separators
allows for strictly better solutions, even for unit interval graphs. We thus need
to get insight into which vertices to choose on the way.

Lemma 3. Let G be an interval graph and let Fy, ..., Fy be an optimal strategy
for FIREFIGHTER RESERVE DEPLOYMENT from a given start vertex. For a time
step t > 1, let u denote the rightmost interval that is on fire. Then there is
an optimal strategy Fy,...,F}, such that k = k', F; = F] for all i # t, and F]
consists of X and the |Fy|—|X| unburned intervals having the rightmost endpoint
and intersecting u, where X is the set of intervals in F; intersecting the leftmost
interval that is on fire.

Proof. Let Y be the set of vertices of F intersecting u and let Y’ be the |Y|
rightmost intervals intersecting u (i.e. the ones whose endpoint is rightmost).
Assume that Y # Y’ and let I’ be any interval of Y’ that is not in Y. Let I be
any interval of Y that is not in Y. Clearly, the set of unburned neighbors of T
in time step ¢ + 1 is a subset of the set of unburned neighbors of I’ in time step
t+1, as both I and I’ intersect u, but I’ ends further to the right than I. Hence
Fi,...,F} is also an optimal strategy. O
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An analogous result can be proved for the leftmost interval that is on fire.

Lemma 3 is not only helpful to identify which vertices to choose before the
last line of defense, but also to identify the last line of defense itself. In an interval
graph, every minimal separator is a clique, which in turn corresponds to a point
on the real line. Hence the rightmost minimal separator of the two that we need
to choose consists of all intervals containing the right endpoint of some other
interval. Consequently, we can avoid guessing the minimal separators that make
up the last line of defense, and rather use a unified approach.

Theorem 5. FIREFIGHTER can be solved in time O(n”) on interval graphs.

Proof. Consider the following table: A(sy, s2,u1,usg, f) is the maximum number
of vertices that can be protected if s; is the leftmost interval that is on fire, so
is the rightmost interval that is on fire, uy is the rightmost interval not ending
to the right of the right endpoint of s; that is unburned and unprotected, uo
is the leftmost interval not ending to the left of the left endpoint of s, that is
unburned and unprotected, and f is the size of the reserve. We also allow u
and wy to be the special symbol L to signify that the fire is contained on the
left respectively the right side of the graph. If u; #1# usy, we then set

A(51782au17u27f) {fl +f2 +A(S/1as/27ug_au/2af - fl - f2 + 1)}

= max

0<fit+f2<f
In the formula, s} is the (f1 4+ 1)-th leftmost unburned interval intersecting the
left endpoint of s1. This can easily be computed from u;. Similarly, s} is the
(f2 + 1)-th rightmost unburned interval intersecting the right endpoint of sa,
which can be computed from us. If s} does not exist, we set uj to L and s to
s1. Otherwise, we set u) to the rightmost nonneighbor of s; ending to left of s;.
If s does not exist, we set ub to L and s, to so. Otherwise, we set uj to the
leftmost non-neighbor of s, starting to the right of ss.

If say uy =1 ug, the formula simplifies to

A(s1, s2,u1,u2, f) = og}a}éf{h + A(s1, s, ur,uy, f — fa+ 1)},
>J2>

where the meaning of s} and u} is the same as before. A similar formula can
be given in can u; #1= uy. Finally, we set A(s1,s2, L, L, f) to the number of
vertices in the connected components of G\(X; U X3) that do not contain s,
where X7 is the set of vertices intersecting the left endpoint of s; and X5 is the
set of vertices intersecting the right endpoint of ss.

We now compute p* = A(s, s, u1,us, 1), where u; is the leftmost neighbor of
s and usg is the rightmost neighbor of s. Then there is a strategy that saves p*
vertices of G.

The correctness of the algorithm follows immediately from Lemmas 1 and 3,
and the mentioned properties of minimal separators of interval graphs. It is
immediate from the description that computing the table A and the solution
takes O(n") time. O
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5 Permutation Graphs

We continue our quest against fires in burning sites where all the long corridors
go in the same direction. Let (G, s) be an instance of FIREFIGHTER RESERVE
DEPLOYMENT such that G is a permutation graph. Since permutation graphs
are AT-free, exactly as for interval graphs, the last line of defense of any opti-
mal strategy can be expressed as the union of at most two minimal separators.
Permutation graphs have O(n?) minimal separators.

A permutation graph can be represented by a permutation diagram as follows:
The diagram has two rows, one containing the integers 1 to n in their natural
order and one containing these integers in the order given by 7. For each integer
i between 1 and n, draw a straight line segment between the occurrence of 4 in
the one row and the occurrence of ¢ in the other row. Now it is easy to see that
two vertices are adjacent if and only if their line segments cross each other. A
permutation diagram of a permutation graph can be computed in linear time.

We use the following definitions. Given a set of functions F' = {f1,..., fe},
where f; : R — R, the left envelope of F is the set of points (z,y) such that
fi(z) =y for some 1 < ¢ < £ and there is no 2’ < x such that fy(z') = y for some
1 <4’ < L. The right envelope of F is similarly defined. To get an algorithm, we
use the permutation diagram of the permutation graph and do not distinguish
between the line segments of the diagram and the vertices that they represent.
We can then talk about the left and right envelopes of a set of vertices.

Lemma 4. Let G be a permutation graph and let Fy, ..., Fy be an optimal strat-
egy for the FIREFIGHTER RESERVE DEPLOYMENT problem from a given start
vertex. For a time step t > 1, let U denote the set of vertices on the right enve-
lope of the set of vertices that are burned at time step t. Then there is an optimal
strategy Fy, ..., F}, and an integer £ > 0 such that k = k', F; = F] for all i # t,
and F] consists of X, Y', and Z', where

— X is the set of vertices in Fy intersecting the left envelope of the set of burned
vertices,

— Y’ is the set of £ vertices intersecting a vertex of U whose top endpoint is
rightmost, and

— 7' is the set of |Fy| — | X | — € vertices intersecting a vertex of U whose bottom
endpoint is rightmost.

Proof. First observe that any vertex that lies strictly between the left and the
right envelope and does not intersect a vertex on any of the envelopes must
be burned at time step t. This can easily be shown by induction. Hence any
protected vertex must intersect a vertex of U. Let Y be the set of vertices in
F; whose top endpoint lies to the right of the top endpoint of any vertex in U,
and let Z be the vertices of F; not in X or Y. Choose £ to be |Y|, which gives a
proper determination of Y/ and Z’.

Suppose that Y # Y’ and let v be any vertex of Y\Y”. Let u be the vertex of
Y’\Y having the rightmost top endpoint. Clearly, the set of unburned neighbors
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of v in time step ¢t + 1 is a subset of the set of unburned neighbors of u in time
step t + 1. Hence we may replace v by u without compromising optimality.

A similar argument can be employed in the case when Z # Z'. Tt follows
that F],..., F}, is also an optimal strategy. O

A similar lemma may be proven with respect to the left envelope.

If we want to be able to use a similar dynamic programming approach as in
the previous section, it seems to follow from the above lemma that we need to
maintain the left and right envelope of the set of burning vertices. Unfortunately,
these envelopes can contain up to O(n) vertices, which is not feasible with this
kind of dynamic programming approach. Upon closer inspection, however, we
only need to be able to discern vertices intersecting these envelopes. To do this
efficiently, we use the following observation.

Observation 1 Let X C V(G), and let R be the set of vertices forming the right
envelope of X . Let r1 denote the vertex in R with the rightmost top endpoint, and
let ro be the vertex in R with the rightmost bottom endpoint. Then any vertex of
G intersecting a vertex of R must intersect r1 or ra.

Proof. Since r; has the rightmost top endpoint and is in R, any other vertex
that is in R must have its bottom endpoint to the right of the bottom endpoint
of r1. We can make a similar observation about r5. The result follows. O

It follows that the vertices intersecting a vertex of an envelope can be found by
maintaining two vertices of the envelope. These are the representing vertices of
the envelope.

It only remains to figure out which vertices are unburned and unprotected
at the current time step. Those are the vertices that we can protect. But to that
end it suffices to observe that any such vertices must lie fully to the right of the
right envelope of the set of burned vertices in the previous time step, or fully to
the left of its left envelope. It is easy to verify this property from the representing
vertices of the envelope at the previous time step.

Theorem 6. FIREFIGHTER can be solved in polynomial time on permutation
graphs.

Proof. The above discussion yields the following dynamic programming algo-
rithm. We first guess two minimal separators X7, Xo. Then we find a table
A(L,L_1,R,R_1, f), which is the maximum number of vertices (including X; U
X>) that can be protected if L is the set of representing vertices of the left enve-
lope of the set of burned vertices, L _; is the set of representing vertices of the
left envelope of the set of burned vertices in a previous time step, R and R_;
are defined similarly with respect to the right envelope, and f is the size of the
reserve. From there the idea is mainly the same as for interval graphs, although
the details are more tedious. We leave out these details in this extended abstract.

The correctness of the algorithm follows immediately from Lemma 4 and the
fact that the last line of defense in an optimal strategy can be covered by at
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most two minimal separators. It follows immediately from the description of the
algorithm that its running time is polynomial. By Lemma 1, the result follows.
O

6 Concluding Discussion and Unit Disk Graphs

Although the FIREFIGHTER problem is NP-hard on even very restricted trees,
our positive results in this paper show that we should seek to determine where
its tractability border lies. A natural question, following the results on interval
and permutation graphs, is whether FIREFIGHTER is polynomial-time solvable
on common superclasses of these graph classes, for example co-comparability
graphs, or their superclass AT-free graphs.

The NP-hardness result on trees immediately implies that FIREFIGHTER is
NP-hard on chordal graphs, circle graphs, polygon-circle graphs, interval fil-
ament graphs, and disk graphs, since these are superclasses of trees. This list
contains several superclasses of co-comparability graphs. Hence we find the com-
putational complexity of FIREFIGHTER on co-comparability graphs an intriguing
open question.

We conclude our paper by giving a highly related NP-hardness result. A unit
disk graph is the intersection graph of disks of unit diameter on the plane, and
hence a superclass of unit interval graphs and a subclass of disk graphs.

Theorem 7. FIREFIGHTER is NP-hard on unit disk graphs.

Proof. We give a sketch of the proof. The full proof, together with several aux-
iliary lemmas and definitions is given in Appendix B.

We reduce from the FIREFIGHTER problem on trees of maximum degree
three, which is known to be NP-hard [10]. Let (7 s, k) be an instance of this
problem. The idea is to subdivide each edge a suitable number of times, and
then adapt the resulting tree such that the nature of the optimal solution to the
problem is unchanged. We then use a particular embedding of T to show that
the constructed graph is in fact a unit disk graph.

Root T at s, and let n := |V(T')|. Then each vertex (except s) has a unique
parent. For each vertex u # s, we call the edge between w and its parent the
edge of u. Note that each edge of the tree is uniquely assigned to a vertex in
this manner. Each edge of T" is now 2n — 1-subdivided, and the resulting tree is
called T". For each u € V(T)\{s}, let w,...,wY, _; denote the newly created
vertices for the edge of u, where w} is the vertex adjacent to the parent of w.
For each u € V(T)\{s}, we (2n — 1)-split w}" and 4n-split wy, ..., wy, _; and u.
Call the resulting graph G. Let k' := 4kn(2n — 1) + k(2n — 1) and let (G, s, k')
be the resulting instance of the FIREFIGHTER problem. The proof is completed
by proving that one can save at least k' vertices in (G, s) if and only if one can
save at least k vertices in (T, s). O

A more direct proof does not work, as not even all binary trees are unit disk
graphs: a unit disk graph of diameter ¢ can contain at most O(¢?) independent
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vertices, whereas a binary tree of diameter ¢ can contain 2(2°) independent
vertices.
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Appendix A :
Inclusion relationship between graph classes

Fig. 2. The graph classes mentioned in this paper, where — represents the D relation.

Appendix B:
NP-hardness on Unit Disk Graphs

In this section we give the full proof of Theorem 7, along with the necessary
additional definitions and lemmas.

First we need a special embedding of a low-degree tree in the plane. A planar
embedding of a graph G is an assignment of closed curves in the plane to each
edge of G such that a) no two curves intersect except possibly at their ends; b)
for each v € V(@) there is a unique point in the plane such that the set of all
curves meeting at this point corresponds precisely to the set of edges incident
to v. A rectilinear embedding of a graph is a planar embedding where all curves
consist of horizontal and/or vertical line segments. The number of bends of an
edge in a rectilinear embedding is the number of times the curve switches from
a horizontal to vertical segment or vice versa.

Lemma 5. Every tree T' of mazimum degree three has a rectilinear embedding
such that each edge has length exactly |V(T)| and at most one bend. Moreover,
such an embedding can be found in linear time.

Proof. Root T at an arbitrary leaf r. Use a pre-order (or depth-first) traversal
of T to obtain the list of leaves L of T, and number them 1 up to |L| in the
order in which they were found. Let x(u) denote the number assigned to a leaf
u. We can then compute x(v) = maxy,ec, {z(w)} in a bottom-up fashion, where
C, is the set of children of v. We will use = to determine the x-coordinates of
the vertices of the tree in the embedding.
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We first place r at position (z(r),0). For each internal vertex v of the tree (we
count the root among the internal vertices), do the following. Let ¢; denote the
child of v that has the smallest value of x, and (if it exists) let co denote the other
child. Draw an edge from v that goes to the left by x(v) — z(c1) > 0 and down
by |V(T)| — 2(v) + 2(¢1) > 1. Place ¢; at the end and recurse on ¢;. Similarly,
if co exists, draw an edge from v that goes to the right by x(c2) — z(v) > 0 and
down by |V(T)| — z(c2) + x(v) > 1. Place ¢o at the end and recurse on cs.

It is immediate from the description of the algorithm that each edge has
length |V(T)| and at most one bend. The choice of = ensures that this is indeed
a rectilinear embedding (note that max{z(v) — z(c1),z(ce) — z(v)} > 1). The
algorithm clearly has linear running time. a

Observe that the lemma extends to trees of maximum degree four, but we do
not need this.

Before we prove Theorem 7, we need a few more definitions. The operation
of splitting a vertexr v is to create a new vertex v’ and add edges such that
N[v] = N[v']. We then call v and v’ (true) twins. A k-split is obtained by splitting
a vertex k times (this adds k new vertices). The operation of k-subdividing an

edge (u,v) is to remove (u,v) and to add k new vertices wy, ..., wy such that w;
is adjacent to w;41 for ¢ = 1,...,k — 1, w; is adjacent to v and wy, is adjacent
to v.

Proof of Theorem 7. We reduce from the FIREFIGHTER problem on trees of
maximum degree three, which is known to be NP-hard [10]. Let (7, s, k) be an
instance of this problem. The idea is to subdivide each edge a suitable number
of times, and then adapt the resulting tree such that the nature of the optimal
solution to the problem is unchanged. We then use the embedding given by
Lemma 5 to show that the constructed graph is in fact a unit disk graph.

Root T at s, and let n := |V(T')|. Then each vertex (except r) has a unique
parent. For each vertex u # s, we call the edge between w and its parent the
edge of u. Note that each edge of the tree is uniquely assigned to a vertex in
this manner. Each edge of T" is now 2n — 1-subdivided, and the resulting tree is
called T". For each u € V(T)\{s}, let w,...,wY, _; denote the newly created
vertices for the edge of u, where w} is the vertex adjacent to the parent of w.
For each u € V(T)\{s}, we (2n — 1)-split w}" and 4n-split wy, ..., wy, ; and u.
Call the resulting graph G.

Let k' := 4kn(2n — 1) + k(2n — 1) and let (G, s, k') be the resulting instance
of the FIREFIGHTER problem. We now prove a series of claims to show that one
can save at least &’ vertices in (G, s) if and only if one can save at least k vertices
in (7, s).

Claim. There exists an optimal strategy for the FIREFIGHTER problem on (G, s)
that protects no vertices of the split of w¥, ..., w%,_; for any u € V(T)\{s}.

Proof. Consider any optimal strategy for the FIREFIGHTER problem on (G, s)
and suppose that it protects at least one vertex of the split of w}* for some
u € V(T)\{s} and some 2 < i < 2n — 1. If the strategy protects at least 4n
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vertices of the splits of wy, ..., w4, _;, then we can instead protect all vertices of
the split of w} and save more vertices. Note that since we 2n — 1-subdivided each
edge, at least 2n of the protected vertices are protected before the fire reaches
the vertices of the split of w, and thus protecting all vertices of the split of
w} is indeed possible. If the strategy protects £ < 4n vertices of the splits of
wy,...,wy,_;, then the fire will reach all vertices of the split of u anyway. Hence
one could just as well protect £ vertices of the split of u. The claim follows. O

We now strengthen this claim as follows.

Claim. There exists an optimal strategy for the FIREFIGHTER problem on (G, s)
that protects no vertices of the split of w¥,...,wy,_; for any u € V(T)\{s},
and protects vertices of the split of at most one such u. Moreover, u is a leaf of
T.

Proof. We further modify the strategy that we obtained in the previous claim.
First we observe that no optimal strategy protects all 4n vertices of the split of
u for any u € V(T)\{s}. Otherwise, using a similar argument as in the previous
claim, it would be possible to protect all vertices of the split of w}, and thus
save more vertices. But then at least one vertex burns of the split of each u €
V(T)\{s} that contains a protected vertex. Let v be the deepest leaf of the T’
such that a vertex of the split of v is burned. Then instead of protecting a vertex
in the split of some other u € V(T')\{s}, we can protect a vertex of the split of
v. Since v is at least as deep in the tree as u, the distance from s in G to the
split of v is at least as large as the distance to the split of u. Hence this poses
no problem. The claim follows. a

We strengthen this claim as well.

Claim. There exists an optimal strategy for the FIREFIGHTER problem on (G, s)
such that if the strategy protects at least one vertex of the split of w. for some
u € V(T)\{s}, then it protects all vertices of the split of wl. Moreover, all
protected vertices that are not in the split of w} for some u € V(T')\{s} are in
the split of u for some leaf u of T

Proof. 1t follows from the previous claim that there exists an optimal strategy
that protects no vertices of the split of wY,...,wy, ; for any u € V(T)\{s},
and protects vertices of the split of at most one such u. Moreover, u is a leaf of
T. Suppose there is a v € V(T)\{s} for which this strategy protects at least one,
but not all of the vertices of w}. But then we could just as well protect vertices
in the split of v. Following the arguments of the previous claim, we can instead
protect vertices in the split of the leaf u. If necessary, we re-apply the arguments
of the previous claim. The claim follows. ad

This third claim allows us to prove that the first crucial claim to this proof.

Claim. One can save at least k' vertices in (G, s) if and only if one can save at
least k vertices in (7, s).
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Proof. Let P = {p1,...,p¢} be a set of vertices that form a strategy for (T, s)
that save at least k vertices. Then protecting the vertices of the split of w{" for
each u € P is a strategy for (G, s) that saves at least k" vertices. Note that since
each edge of T' was (2n — 1)-subdivided, it is indeed possible to save this set of
vertices. Moreover, from the construction and the value of £/, it is immediate
that this strategy saves at least &’ vertices.

For the converse, consider an optimal strategy for (G, s) and suppose that it
saves at least k' vertices. Let P be the set of vertices u for which the strategy
protects all vertices of w{. By construction of G, P yields a feasible strategy
for (T,s). Suppose that this strategy saves at most k — 1 vertices in (T, s).
By the preceding claim, we may assume that the optimal strategy for (G, s)
is such that if the strategy protects at least one vertex of the split of w} for
some u € V(T)\{s}, then it protects all vertices of the split of w.. Moreover, all
protected vertices that are not in the split of wl for some u € V(T)\{s} are in
the split of u for some leaf u of T. But then the strategy for (G, s) that we have
can save at most 4(k — 1)n(2n — 1) + (k — 1)(2n — 1) + 4n vertices, which is less
than &’. This is a contradiction. O

It remains to prove the second crucial claim, namely that G is a unit disk graph.
Claim. G is a unit disk graph.

Proof. In order to prove this, we apply Lemma 5 to T' and multiply all coordi-
nates by 2. This means that each edge of the embedding has length exactly 2n.
But then we can embed 77 in the plane such that each vertex of T is placed
at a point of the grid. Moreover, each edge in this embedding has length one,
and each nonedge has length at least two due to the multiplication by 2 we did
before. But then 7" is a unit disk graph, as we can just place unit disks at the
points of the grid where vertices of T are placed in the constructed embedding.
Splitting a vertex v of a unit disk graph may be done by duplicating the unit
disk corresponding to v (i.e. we center the new disk at the same point as where
the disk corresponding to v would be centered). But then it follows from the
construction of G that GG is a unit disk graph. a

This proves the theorem. a

Note that the proof naturally extends to other unit geometric objects, such as
unit squares.



