Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees

Pinar Heggernes† Pim van ’t Hof† Benjamin Léveque‡ Christophe Paul‡

Abstract

We study the following two graph modification problems: given a graph G and an integer k, decide whether G can be transformed into a tree or into a path, respectively, using at most k edge contractions. These problems, which we call Tree Contraction and Path Contraction, respectively, are known to be NP-complete in general. We show that on chordal graphs these problems can be solved in $O(n + m)$ and $O(nm)$ time, respectively. As a contrast, both problems remain NP-complete when restricted to bipartite input graphs.

1 Introduction

Graph modification problems play a central role in algorithmic graph theory, not in the least because they can be used to model many graph theoretical problems that appear in practical applications [15, 16, 17]. The input of a graph modification problem is an n-vertex graph G and an integer k, and the question is whether G can be modified in such a way that it satisfies some prescribed property, using at most k operations of a given type. Famous examples of graph modification problems where only vertex deletion is allowed include Feedback Vertex Set, Odd Cycle Transversal, and Chordal Deletion. In problems such as Minimum Fill-In and Interval Completion, the only allowed operation is edge addition, while in Cluster Editing both edge additions and edge deletions are allowed.

Many classical problems in graph theory, such as Clique, Independent Set and Longest Induced Path, take as input a graph G and an integer k, and ask whether G contains a vertex set of size at least k that satisfies a
certain property. Many of these problems can be formulated as graph modification problems: for example, asking whether an \(n \)-vertex graph \(G \) contains an independent set of size at least \(k \) is equivalent to asking whether there exists a set of at most \(n - k \) vertices in \(G \) whose deletion yields an edgeless graph. Some important and well studied graph modification problems ask whether a graph can be modified into an acyclic graph or into a path, using at most \(k \) operations. If the only allowed operation is vertex deletion, these problems are widely known as Feedback Vertex Set and Longest Induced Path, respectively. The problem Longest Path can be interpreted as the problem of deciding whether a graph \(G \) can be turned into a path by deleting edges and isolated vertices, performing at most \(k \) deletions in total. All three problems are known to be NP-complete on general graphs [7].

We study two graph modification problems in which the only allowed operation is edge contraction. The edge contraction operation plays a key role in graph minor theory, and it also has applications in Hamiltonian graph theory, computer graphics, and cluster analysis [13]. The problem of contracting an input graph \(G \) to a fixed target graph \(H \) has recently attracted a considerable amount of interest, and several results exist for this problem when \(G \) or \(H \) belong to special graph classes [2, 3, 4, 11, 12, 13, 14]. The two problems we study in this paper, which we call Tree Contraction and Path Contraction, take as input an \(n \)-vertex graph \(G \) and an integer \(k \), and the question is whether \(G \) can be contracted to a tree or to a path, respectively, using at most \(k \) edge contractions. Since the number of connected components of a graph does not change when we contract edges, the answer to both problems is “no” when the input graph is disconnected. We therefore tacitly assume throughout the paper that all input graphs are connected. Note that contracting a connected graph to a tree is equivalent to contracting it to an acyclic graph. Previous results easily imply that both problems are NP-complete in general [1, 4]. Very recently, it has been shown that Path Contraction and Tree Contraction can be solved in time \(2^{k+o(k)} + n^{O(1)} \) and \(4.98^k \cdot n^{O(1)} \), respectively [9].

We show that the problems Tree Contraction and Path Contraction can be solved on chordal graphs in \(O(n + m) \) and \(O(nm) \) time, respectively. It is known that Tree Contraction is NP-complete on bipartite graphs [9], and we show that the same holds for Path Contraction. To relate our results to previous work, we would like to mention that Feedback Vertex Set and Longest Induced Path can be solved in polynomial time on chordal graphs [5, 19]. However, it is easy to find examples that show that the set of trees and paths that can be obtained from a chordal graph \(G \) by at most \(k \) edge contractions might be completely different from the set of trees and paths that can be obtained from \(G \) by at most \(k \) vertex deletions. As an interesting contrast, Longest Path remains NP-complete on chordal graphs [8].
2 Definitions and Notation

All the graphs considered in this paper are undirected, finite and simple. We use \(n \) and \(m \) to denote the number of vertices and edges of the input graph of the problem or the algorithm under consideration. Given a graph \(G \), we denote its vertex set by \(V(G) \) and its edge set by \(E(G) \). The (open) neighborhood of a vertex \(v \) in \(G \) is the set \(N_G(v) = \{ w \in V(G) \mid vw \in E(G) \} \) of neighbors of \(v \) in \(G \). The degree of a vertex \(v \) in \(G \), denoted by \(d_G(v) \), is \(|N_G(v)| \). The closed neighborhood of \(v \) is the set \(N_G[v] = N_G(v) \cup \{ v \} \). For any set \(S \subseteq V(G) \), we write \(N_G(S) = \cup_{v \in S} N_G(v) \setminus S \) and \(N_G[S] = N_G(S) \cup S \). A subset \(S \subseteq V(G) \) is called a clique of \(G \) if all the vertices in \(S \) are pairwise adjacent. A vertex \(v \) is called simplicial if the set \(N_G[v] \) is a clique. For any set of vertices \(S \subseteq V(G) \), we write \(G[S] \) to denote the subgraph of \(G \) induced by \(S \). If the graph \(G[S] \) is connected, then the set \(S \) is said to be connected. We say that two disjoint sets \(S, S' \subseteq V(G) \) are adjacent if there exist vertices \(s \in S \) and \(s' \in S' \) such that \(ss' \in E(G) \). For any set \(S \subseteq V(G) \), we write \(G - S \) to denote the graph obtained from \(G \) by removing all the vertices in \(S \) and their incident edges. If \(S = \{ s \} \), we simply write \(G - s \) instead of \(G - \{ s \} \).

The contraction of edge \(e = uv \) in \(G \) removes \(u \) and \(v \) from \(G \), and replaces them by a new vertex, which is made adjacent to precisely those vertices that were adjacent to at least one of the vertices \(u \) and \(v \). Instead of speaking of the contraction of edge \(uv \), we sometimes say that a vertex \(u \) is contracted on \(v \), in which case we use \(v \) to denote the new vertex resulting from the contraction.

Let \(S \subseteq V(G) \) be a connected set. If we repeatedly contract a vertex of \(G[S] \) on one of its neighbors in \(G[S] \) until only one vertex of \(G[S] \) remains, we say that we contract \(S \) into a single vertex. We say that a graph \(G \) can be \(k \)-contracted to a graph \(H \), with \(k \leq n - 1 \), if \(H \) can be obtained from \(G \) by a sequence of \(k \) edge contractions. Note that if \(G \) can be \(k \)-contracted to \(H \), then \(H \) has exactly \(k \) fewer vertices than \(G \) has. We simply say that a graph \(G \) can be contracted to \(H \) if it can be \(k \)-contracted to \(H \) for some \(k \geq 0 \). Let \(H \) be a graph with vertex set \(\{ h_1, \ldots, h_{|V(H)|} \} \). Saying that a graph \(G \) can be contracted to \(H \) is equivalent to saying that \(G \) has a so-called \(H \)-witness structure \(W \), which is a partition of \(V(G) \) into witness sets \(W(h_1), \ldots, W(h_{|V(H)|}) \) such that each witness set is connected, and such that for every two \(h_i, h_j \in V(H) \), witness sets \(W(h_i) \) and \(W(h_j) \) are adjacent in \(G \) if and only if \(h_i \) and \(h_j \) are adjacent in \(H \). By contracting each of the witness sets into a single vertex, which can be done due to the connectivity of the witness sets, we obtain the graph \(H \). An \(H \)-witness structure of \(G \) is, in general, not uniquely defined (see Fig. 1).

![Figure 1: Two \(P_4 \)-witness structures of a chordal graph.](image-url)
If H is a subgraph of G and $v \in N_G(V(H))$, then we refer to the vertices in $N_G(v) \cap V(H)$ as the H-neighbors of v. The distance $d_G(u,v)$ between two vertices u and v in G is the number of edges in a shortest path between u and v, and $\text{diam}(G) = \max_{u,v \in V(G)} d_G(u,v)$. For any two vertices u and v of a path P in G, we write uPv to denote the subpath of P from u to v in G. We use P_ℓ to denote the graph isomorphic to a path on ℓ vertices, i.e., P_ℓ is the graph with ordered vertex set $\{p_1,p_2,p_3,\ldots,p_\ell\}$ and edge set $\{p_1p_2,p_2p_3,\ldots,p_{\ell-1}p_\ell\}$. Similarly, C_ℓ denotes the graph that is isomorphic to a cycle on ℓ vertices, i.e., C_ℓ is the graph with ordered vertex set $\{c_1,c_2,c_3,\ldots,c_\ell\}$ and edge set $\{c_1c_2, c_2c_3,\ldots,c_{\ell-1}c_\ell,c_\ell c_1\}$. A graph is chordal if it does not contain a chordless cycle on at least four vertices as an induced subgraph.

3 Contracting Chordal Graphs

In this section we show that Tree Contraction and Path Contraction can be solved in polynomial time on chordal graphs. It is easy to see that the class of chordal graphs is closed under edge contractions, and we use this observation throughout this section.

We first consider Tree Contraction. We say that a tree T is optimal for G if G can be contracted to T, but cannot be contracted to any tree with strictly more vertices than T. A leaf of a tree T is a vertex that has degree 1 in T.

Lemma 1 Let G be a connected graph on at least 2 vertices. If v has a simplicial vertex v, then G has a T-witness structure W for some optimal tree T, such that $W(x) = \{v\}$ for some leaf x of T.

Proof. Suppose G has a simplicial vertex v. Let T be an optimal tree for G, and let W be a T-witness structure of G. Since $|V(G)| \geq 2$ and every connected graph on at least two vertices can be contracted to P_2, we know that T contains at least two vertices; note that T also has at least two leaves. Let x be the vertex of T such that $v \in W(x)$.

First suppose that $W(x) = \{v\}$. Since T is a tree on at least two vertices and $N_G[v]$ is a clique in G, all vertices of $N_G(v)$ must be contained in a single witness set $W(y)$ that is adjacent to $W(x)$. This means that y is the unique neighbor of x in T, implying that x is a leaf of T.

Now suppose v is not the only vertex in $W(x)$. Then $W(x)$ must contain at least one neighbor of v, since every witness set induces a connected subgraph of G. Since the set $N_G[v]$ is a clique of G, the vertices of $N_G[v]$ either all belong to $W(x)$, or belong to two witness sets $W(x)$ and $W(y)$, where y is a neighbor of x in T. In the first case, G can also be contracted to the tree T', obtained from T by adding a new vertex x' and an edge $x'x$ to T; we can define a T'-witness structure W' of G by setting $W'(x') = \{v\}$, $W'(x) = W(x) \setminus \{v\}$, and $W'(w) = W(w)$ for every $w \in V(T') \setminus \{x,x'\}$. Since T' has one more vertex than T, this contradicts the assumption that T is an optimal tree. Hence we must have the second case, i.e., the vertices of $N_G[v]$ belong to two witness sets
W(x) and W(y) for two adjacent vertices x and y of T. Let T'' be the tree obtained from T by contracting x on y and by adding a vertex y' and an edge y'y. We can define a T''-witness structure \(W'' \) of G by setting \(W''(y') = \{v\} \), \(W''(y) = (W(x) \cup W(y)) \setminus \{v\} \), and \(W''(w) = W(w) \) for every \(w \in V(T'') \setminus \{y, y'\} \). Since \(|V(T'')| = |V(T)| \), we conclude that T'' is an optimal tree of G. ■

Before we present our algorithm for Tree Contraction on chordal graphs in Theorem 1 below, we recall a useful characterization of chordal graphs via vertex orderings. For a given graph G and an ordering \(\sigma = (v_1, v_2, \ldots, v_n) \) of its vertices, we denote by G, the graph G[\(\{v_i, v_{i+1}, \ldots, v_n\} \)]. Such an ordering \(\sigma \) of the vertices in V(G) is called a perfect elimination ordering (peo) of G if \(v_i \) is simplicial in \(G_i \), for 1 \(\leq \) i \(\leq \) n. A graph is chordal if and only if it has a peo [6]. Chordal graphs can be recognized in linear time and a peo can be computed in linear time as well [18]. We denote by \(\sigma - v_i \) the ordering which is obtained by simply removing \(v_i \) from \(\sigma \) and keeping the ordering of all other vertices, and we define \(\sigma - S \) analogously for a vertex set S. The following lemma will allow us to implement our algorithm for Tree Contraction on chordal graphs in linear time.

Lemma 2 Let G be a chordal graph with peo \(\sigma = (v_1, v_2, \ldots, v_n) \). Let \(v_i, v_j \) be an edge of G such that \(i < j \). Let \(G' \) be the graph obtained from G by contracting \(v_i \) on \(v_j \). Then \(\sigma - v_i \) is a peo of \(G' \).

Proof. It suffices to show that \(v_p \) is simplicial in \(G'_p \), for 1 \(\leq \) p \(\leq \) n and \(p \neq i \). Observe first that, since \(v_i \) is simplicial in \(G_i \) and is adjacent to \(v_j \), every neighbor of \(v_i \) in \(G_i \) is also a neighbor of \(v_j \) in \(G_i \). Consequently, for every vertex \(v_p \) such that \(p > i \), \(N_{G'_p}(v_p) = N_{G_p}(v_p) \), and \(v_p \) is simplicial in \(G'_p \), since it is simplicial in \(G_p \). Let us consider \(p < i \). Since \(v_p \) is simplicial in \(G_p \), its neighborhood in \(G_p \) is a clique. If \(v_p \) is not adjacent to \(v_i \), or it is adjacent to both \(v_i \) and \(v_j \), then it clearly remains simplicial in \(G'_p \). If \(v_p \) is adjacent to \(v_i \) and not to \(v_j \) in \(G \), then its neighborhood in \(G'_p \) is the same as in \(G_p \), with the exception that \(v_j \) replaces \(v_i \). Since \(v_j \) inherits all neighbors of \(v_i \), the neighborhood of \(v_p \) is a clique in \(G'_p \), and hence \(v_p \) is simplicial in \(G'_p \). ■

Theorem 1 Tree Contraction can be solved in \(O(n + m) \) time on chordal graphs.

Proof. Before presenting our algorithm for Tree Contraction, we first make some observations. Let \(v \) be a simplicial vertex of a chordal graph G on at least 2 vertices. Let \(G' \) denote the graph obtained from G by first contracting \(N_G(v) \) into a single vertex \(w \), and then removing \(v \) from the graph. Note that \(G' \) is chordal. Let T be an optimal tree for G, and let \(W' \) be a T'-witness structure of \(G' \). Let \(W'(x) \in W' \) be the witness set containing vertex \(w \) for some vertex \(x \in V(T') \). Let T be the tree obtained from T by adding a new vertex y and an edge xy to T. We claim that T is an optimal tree for G.
By Lemma 1, \(G \) has an optimal tree \(T^* \) and a \(T^* \)-witness structure \(W^* \) such that \(v \) is the only vertex in some witness set \(W^*(a) \) of \(W^* \) for some leaf \(a \) of \(T^* \). It is clear that all the neighbors of \(v \) must belong to the witness set \(W^*(b) \) of \(W^* \), where \(b \) is the unique neighbor of \(a \) in \(T^* \). This means that \(G' \) can be contracted to the tree \(T^* - a \). Since \(T' \) is an optimal tree of \(G' \), this implies that \(|V(T')| \leq |V(T^* - a)| = |V(T^*)| - 1 \), or equivalently \(|V(T^*)| \geq |V(T')| + 1 \). Since \(|V(T)| = |V(T')| + 1 \), we have that \(|V(T^*)| \geq |V(T)| \). On the other hand, since \(G \) can be contracted to \(T \) as well as to \(T^* \), and \(T^* \) is an optimal tree for \(G \), we have \(|V(T^*)| \leq |V(T)| \). Hence \(|V(T^*)| = |V(T)| \), which implies that \(T \) is an optimal tree for \(G \).

The above arguments yield an algorithm for contracting a chordal graph to an optimal tree. Let \(G \) be a chordal input graph. If \(|V(G)| = 1 \), then the unique optimal tree that \(G \) can be contracted to consists of a single vertex. Suppose \(|V(G)| \geq 2 \). We repeatedly find a simplicial vertex \(v_i \), contract its neighborhood into a single vertex, and remove \(v_i \) from the graph. We continue this process until we have removed all vertices. By applying all the edge contractions that have been performed during this procedure to the original graph \(G \), we find an optimal tree for \(G \). Let \(\sigma = (v_1, v_2, \ldots, v_n) \) be a peo of \(G \), and let \(v_j \) be the neighbor of \(v_1 \) with the largest index. We pick \(v_1 \) to be the simplicial vertex we start with, and we choose \(v_j \) to be the vertex on which every vertex of \(N_G(v_1) \) is contracted. Let \(G' \) be the resulting graph after this operation. By repeatedly applying Lemma 2, we find that \(\sigma' = \sigma - (N_G(v_1) \setminus \{v_j\}) \) is a peo of \(G' \). Hence the first vertex in \(\sigma' - v_1 \) is a simplicial vertex of \(G' - v_1 \). Consequently, we can pick this vertex as our next simplicial vertex, and repeat the process.

For the running time of the algorithm, consider the following implementation. First we compute a peo \(\sigma = (v_1, v_2, \ldots, v_n) \) of \(G \) in \(O(n + m) \) time. Then we mark all vertices in \(N_G(v_1) \setminus \{v_j\} \), where \(v_j \) is the vertex of \(N_G(v_1) \) with the largest index. We now iterate over all values of \(i \) from 2 to \(n - 1 \), and proceed at each iteration \(i \) as follows. If \(v_i \) is marked, then we continue with the next iteration \(i + 1 \). If \(v_i \) is not marked, then we mark all neighbors of \(v_i \) in \(G_i \), except the neighbor with the highest index. If the neighbor with the highest index is already marked, then all neighbors of \(v_i \) in \(G_i \) will become marked. In the end, the unmarked vertices are the ones that become the vertices of the optimal tree resulting from the algorithm above. Hence it suffices to check whether we have at least \(n - k \) unmarked vertices. Since there are \(O(n) \) iterations and each iteration \(i \) requires \(O(d_G(v_i)) \) steps, the running time follows.

Note that the problem of contracting a chordal graph to a tree is equivalent to the problem of contracting a chordal graph to a bipartite graph. The “reverse” problem of contracting a bipartite graph to a chordal graph is equivalent to the problem of contracting a bipartite graph to a tree. It turns out that this problem is NP-complete, as we will see in the next section.

We now turn our attention to Path Contraction on chordal graphs. The following observation is due to Levin, Paulusma and Woeginger [13].
Observation 1 ([13]) Let W be an H-witness structure of a graph G. Let u and v be two vertices of G and let x and y be two vertices of H such that $u \in W(x)$ and $v \in W(y)$. Then $d_G(u, v) \geq d_H(x, y)$.

Observation 1 immediately implies that a graph G cannot be contracted to a chordless path of length more than $\text{diam}(G)$. We show that if G is chordal, then G can be contracted to a chordless path of length $\text{diam}(G)$. Note that this is not the case for every graph: for example, the graph C_ℓ has diameter $\lfloor \ell/2 \rfloor$, but cannot be contracted to a chordless path of length more than 1.

Theorem 2 Every connected chordal graph G can be contracted to a chordless path of length $\text{diam}(G)$.

Proof. Let u and v be two vertices of a connected chordal graph G such that $d_G(u, v) = \text{diam}(G)$, and let P be a shortest path from u to v. We show that G can be contracted to P. Since G is chordal, it has a simplicial vertex w. If $w \notin V(P)$, then we contract w on one of its neighbors. Since the neighborhood of w is a clique, this is equivalent to deleting w. Observe that a simplicial vertex cannot belong to a shortest path between two other vertices. Hence no shortest path between u and v contains w, and thus all shortest paths between u and v are unchanged after this operation. If $w \in V(P)$, then w is either u or v, as all other vertices on P have two non-adjacent neighbors on P, and are therefore not simplicial. Since $N_G(w)$ is a clique in G, any shortest path between u and v contains exactly one vertex of $N_G(w)$. Let x be the only vertex in $N_G(w) \cap V(P)$. We contract every vertex of $N_G(w)$ on x. After this operation, all shortest paths between w and the other endpoint of P are preserved. After the contraction of $N_G(w)$, we delete w from G. In each of the described two cases, the resulting graph G' is chordal and has at most $n - 1$ vertices. We can thus repeat this procedure until the graph is empty. Applying the edge contractions that are defined by this procedure on the original graph G will result in P, as no vertex of P is ever contracted on another vertex, and no chords are formed between non-consecutive vertices of P.

Corollary 1 Path Contraction can be solved in $O(nm)$ time on chordal graphs.

Proof. Theorem 2 implies that a connected chordal graph G can be k-contracted to a chordless path if and only if $k \geq n - \text{diam}(G)$. Hence, in order to solve Path Contraction, we only need to determine the diameter of G. Unfortunately, no faster algorithm for computing the diameter is known for chordal graphs compared to arbitrary graphs. Hence we resort to the straightforward algorithm of running a breadth first search n times, each time from a different vertex of G. As breadth first search has a running time of $O(n + m)$, we get a total $O(nm)$ running time.

7
4 Contracting Bipartite Graphs

In this section we show that Path Contraction is NP-complete when restricted to the class of bipartite graphs. We first show how previous work implies that the same holds for Tree Contraction.

The Red-Blue Domination problem takes as input a bipartite graph \(G = (A, B, E)\) and an integer \(t\), and asks whether there exists a subset of at most \(t\) vertices in \(B\) that dominates \(A\). This problem is equivalent to Set Cover and Hitting Set, and is therefore NP-complete [7]. Heggernes et al. [9] give a polynomial-time reduction from Red-Blue Domination to Tree Contraction. Since the graph \(G'\) in the constructed instance of Tree Contraction is bipartite, they implicitly proved the following result.

Theorem 3 Tree Contraction is NP-complete on bipartite graphs.

We now show that Path Contraction also remains NP-complete when restricted to bipartite graphs.

Theorem 4 Path Contraction is NP-complete on bipartite graphs.

Proof. We first introduce some additional terminology. A hypergraph \(H\) is a pair \((Q, S)\) consisting of a set \(Q = \{q_1, \ldots, q_n\}\), called the vertices of \(H\), and a set \(S = \{S_1, \ldots, S_m\}\) of nonempty subsets of \(Q\), called the hyperedges of \(H\). A 2-coloring of a hypergraph \(H = (Q, S)\) is a partition \((Q_1, Q_2)\) of \(Q\) such that \(Q_1 \cap S_j \neq \emptyset\) and \(Q_2 \cap S_j \neq \emptyset\) for \(j = 1, \ldots, m\). The Hypergraph 2-Colorability problem is to decide whether a given hypergraph has a 2-coloring. This problem, also known as Set Splitting, is NP-complete, and it remains NP-complete when we assume that \(H\) has at least two hyperedges and \(Q \in S\) (see for example [4]).

We now prove that the problem of contracting a bipartite graph to \(P_6\) is NP-complete, using a reduction from Hypergraph 2-Colorability. Let \(H = (Q, S)\) be a hypergraph with \(Q = \{q_1, \ldots, q_n\}\) and \(S = \{S_1, \ldots, S_m\}\), and assume that \(|S| \geq 2\) and \(S_m = Q\). The incidence graph of \(H\) is the bipartite graph with vertex set \(Q \cup S\) and an edge between a vertex \(q \in Q\) and \(S \in S\) if and only if \(q \in S\); note that every vertex of the incidence graph is labeled with the name of the vertex or hyperedge of \(H\) it corresponds to. We create a graph \(G\) from the incidence graph of \(H\) as follows. First we add four new vertices \(s_1, s_2, s'_1, s'_2\) and a copy \(S' = \{S'_1, \ldots, S'_m\}\) of \(S\), such that \(S'_i = S_i\) for every \(1 \leq i \leq m\). Then we add the following edges:

- \(S'_i q_j\) if and only if \(q_j \in S_i\);
- \(S_i S'_i\) for every \(1 \leq i, j \leq m\);
- \(s_2 S_i\) for every \(1 \leq i \leq m\);
- \(s'_i S'_i\) for every \(1 \leq i \leq m\);
- \(s_1 s_2\) and \(s'_1 s'_2\).

Finally, for every \(S_i \in S\) and \(q_j \in Q\) we subdivide the edge \(S_i q_j\) by replacing it with a path \(S_i t_{i,j} q_j\). Let \(T = \{t_{i,j} | 1 \leq i \leq m, 1 \leq j \leq n\}\).
The constructed graph G is bipartite, as assigning color 1 to the vertices in \(\{s_1, s'_2\} \cup S \cup Q \) and color 2 to the vertices in \(\{s_2, s'_1\} \cup T \cup S' \) yields a proper 2-coloring of G.

We claim that H has a 2-coloring if and only if G can be contracted to P_6. Suppose H has a 2-coloring, and let (Q_1, Q_2) be a 2-coloring of H. We define a P_6-witness structure W of G as follows. Let $W(p_1) = \{s_1\}$, $W(p_2) = \{s_2\}$, $W(p_3) = S \cup T \cup Q_1$, $W(p_4) = S' \cup Q_2$, $W(p_5) = s'_2$, and $W(p_6) = s'_1$. Since (Q_1, Q_2) is a 2-coloring of H, every vertex $S_i \in S$ has at least one neighbor $t_{i,k}$, which is adjacent to some $q_k \in Q_1$, and at least one neighbor $t_{i,\ell}$ adjacent to some $q_\ell \in Q_2$. Since S' is a copy of S, every vertex in S' has at least one neighbor in Q_1 and at least one neighbor in Q_2. This, together with the observation that the sets $S_m \cup \{t_{m,j} \mid 1 \leq j \leq n\} \cup Q_1 \subset W(p_3)$ and $S'_m \cup Q_2 \subset W(p_4)$ are both connected, implies that the witness sets $W(p_3)$ and $W(p_4)$ are connected. It is clear that contracting each of the witness sets $W(p_i)$ into a single vertex yields the graph P_6.

To prove the converse statement, assume that G can be contracted to P_6, and let W be a P_6-witness structure of G. The vertices s_1 and s'_2 are the only two vertices of G that have distance at least 5. Hence, as a result of Observation 1, we must have $W(p_1) \cup W(p_6) = \{s_1, s'_1\}$. Without loss of generality, let $W(p_1) = \{s_1\}$ and $W(p_6) = \{s'_1\}$. Again by Observation 1 and by the definition of a witness structure, we also know that $W(p_2) = \{s_2\}$, $W(p_5) = \{s'_2\}$, and $S \subset W(p_3)$ and $S' \subset W(p_4)$. Let $Q_1 = W(p_3) \cap Q$ and $Q_2 = W(p_4) \cap Q$. Since the witness set $W(p_4)$ is connected by definition, every vertex in S' must be adjacent to at least one vertex in Q_2. Similarly, the fact that $W(p_3)$ is connected implies that, for every vertex $S_i \in S$, there must be a vertex $q_j \in Q_1$ such that both $t_{i,j}$ and q_j are in $W(p_3)$. As S' is a copy of S, this implies that (Q_1, Q_2) is a 2-coloring of H.

Recall that G is bipartite. Hence we have proved that the problem of deciding whether a bipartite graph can be contracted to a chordless path on 6 vertices is NP-complete. For any fixed $\ell > 6$, we can prove that the problem of contracting a bipartite graph to P_ℓ is NP-complete by adding a path of length $\ell - 6$ to the graph G, making exactly one of its end vertices adjacent to the vertex s_1 in G, and slightly modifying the arguments accordingly. This, together with the observation that a graph G can be k-contracted to a path if and only if G can be contracted to P_{n-k}, proves the theorem.

5 Concluding Remarks

In the introduction, we mentioned the relationship between the problems Tree Contraction and Path Contraction and their vertex-deletion variants Feedback Vertex Set and Longest Induced Path. We would like to point out that the minimum number of edges that needs to be contracted to contract a graph G to a tree or a path might differ considerably from the minimum number of vertices or edges that needs to be deleted to obtain this goal.
In order to see this, let G_ℓ be the graph obtained from P_ℓ by adding a vertex x and making this vertex adjacent to all the vertices of the path, for any $\ell \geq 2$. Observe that G_ℓ can be transformed into a tree or a path by deleting just one vertex, namely x. The minimum number of edges that needs to be deleted to transform G_ℓ into a tree or a path is $\ell - 1$. The longest path G_ℓ can be contracted to is P_2, and it takes $\ell - 1$ edge contractions to contract G_ℓ into P_2. On the other hand, G_ℓ can be transformed into a star (with centre x) by contracting no more than $\lfloor \ell/2 \rfloor$ edges.

The class of interval graphs is a well known and intensively studied subclass of chordal graphs, with numerous applications in different fields. What is the computational complexity of the problem of deciding whether or not a chordal graph can be contracted to an interval graph using at most k edge contractions?

Acknowledgements

The authors would like to thank Daniel Lokshtanov, Daniël Paulusma, and Yngve Villanger for fruitful discussions.

References

