
Edge search number of cographs in linear time

Pinar Heggernes∗ Rodica Mihai∗

Abstract

We give a linear-time algorithm for computing the edge search number of
cographs, thereby proving that this problem can be solved in polynomial time on
this graph class. With our result, the knowledge on graph searching of cographs
is now complete: node, mixed, and edge search numbers of cographs can all be
computed efficiently. Furthermore, we are one step closer to computing the
edge search number of permutation graphs.

1 Introduction

Graph searching has been subject to extensive study [4, 3, 26, 28, 23, 31, 38, 16, 14,
27] and it fits into the broader class of pursuit-evasion/search/rendezvous problems
on which hundreds of papers have been written (see e.g., the book [1]). The problem
was introduced by Parsons [30] and by Petrov [34] independently, and the original
definition corresponds exactly to what we today call edge searching. In this setting,
a team of searchers is trying to catch a fugitive moving along the edges of a graph.
The fugitive is very fast and knows the moves of the searchers, whereas the searchers
cannot see the fugitive until they capture him (when the fugitive is trapped and has
nowhere to run). An edge is cleared by sliding a searcher from one endpoint to the
other endpoint, and a vertex is cleared when a searcher is placed on it; we will give
the formal definition of clearing a part of the graph in the next section. The problem
is to find the minimum number of searchers that can guarantee the capture of the
fugitive, which is called the edge search number of the graph.

There are two modifications of the classical Parsons-Petrov model, namely node
searching and mixed searching, introduced by Kirousis and Papadimitriou [24] and
Bienstock and Seymour in [4], respectively. The main difference between the three
variants is in the way an edge is cleared. In the node searching version an edge
is cleared if both its endpoints contain searchers. The mixed searching version

∗Department of Informatics, University of Bergen, N-5020 Bergen, Norway. Emails:
{pinar.heggernes, rodica.mihai}@ii.uib.no.

1

combines the features of node and edge searching, namely an edge is cleared if
either both its two endpoints contain searchers or a searcher is slided along it. The
minimum number of searchers sufficient to perform searching and ensure the capture
of the fugitive for each of the three variants are respectively the edge, node, and
mixed search numbers, and computations of these are all NP-hard [4, 28, 23].

Polynomial-time algorithms are known for computing the node search number of
trees [32, 35], interval graphs [8], k-starlike graphs for fixed k [31], d-trapezoid graphs
[6], block graphs [10], split graphs [20], circular-arc graphs [36], permutation graphs
[5, 29], biconvex bipartite graphs [33], and unicyclic graphs [13]. However, only for
a few of these graph classes polynomial-time algorithms are known for computing
mixed search and edge search numbers. Mixed search number of interval graphs,
split graphs [15] and permutation graphs [22] can be computed in polynomial time.
Edge search number of trees [28, 32], interval graphs, split graphs [31, 18], unicyclic
graphs [38], and complete multipartite graphs [2] can be computed in polynomial
time.

In this paper, we give a linear-time algorithm for computing the edge search
number of cographs, and thereby we prove that the edge search number of cographs
can be computed in polynomial time, which has been an open problem until now.
Cographs are an important and well studied subclass of permutation graphs [19, 9].
Hence, by the mentioned results on permutation graphs above, their node search and
mixed search numbers were already known to be computable in polynomial time.
An especially designed algorithm for the node search number of cographs also exists
[7]. Our new results complete the knowledge on the graph searching on cographs,
showing that node, mixed, and edge search numbers of cographs can all be computed
efficiently. Apart from cographs, we see from the above list that interval and split
graphs are the only graph classes for which polynomial-time algorithms are known
for computing their node, mixed and edge search numbers. For permutation graphs,
we still do not know how to compute their edge search number in polynomial time.
With our results, we extend the knowledge on permutation graphs in the sense that
we know at least how to compute the edge search number of some permutation
graphs, namely cographs.

2 Preliminaries

We work with simple and undirected graphs G = (V,E), with vertex set V (G) = V
and edge set E(G) = E. The set of neighbors of a vertex x is denoted by N(x) =
{y | xy ∈ E}. The degree of a vertex v is d(v) = |N(v)|. A vertex is universal if
N(v) = V \ {v} and isolated if N(v) = ∅. A vertex set is a clique all of its vertices
are pairwise are adjacent, and an independent set if all of its vertices are pairwise

2

non-adjacent. The subgraph of G induced by a vertex set A ⊆ V is denoted by
G[A]. For a given vertex u ∈ V , we denote G[V \ {u}] simply by G−u.

Kn denotes the complete graph on n vertices. In denotes the graph on n iso-
lated vertices (hence no edge), and by Kn,m we denote the complete bipartite graph
(X,Y, E) such that |X| = n and |Y | = m.

Let G = (V, E) and H = (W,F) be two undirected graphs with V ∩W = ∅. The
(disjoint) union of G and H is G⊕H = (V ∪W, E ∪F), and the join of G and H is
G⊗H = (V ∪W, E ∪ F ∪ {vw | v ∈ V, w ∈ W}). Cographs are defined recursively
through the following operations:

• A single vertex is a cograph.
• If G and H are vertex disjoint cographs then G⊕H is a cograph.
• If G and H are vertex disjoint cographs then G⊗H is a cograph.

Consequently, complements of cographs are also cographs. If G is a cograph then
either G is disconnected, or its complement G is disconnected, or G consists of a
single vertex. Using the corresponding decomposition rules one obtains the modular
decomposition tree of a cograph which is called a cotree. A cotree T of a cograph G
is a rooted tree with two types of interior nodes: 0-nodes and 1-nodes. The vertices
of G are assigned to the leaves of T in a one-to-one manner. Two vertices u and v
are adjacent in G if and only if the lowest common ancestor of the leaves u and v
in T is a 1-node. A graph is a cograph if and only if it has a cotree [11]. Cographs
can be recognized and their corresponding cotrees can be generated in linear time
[21, 12].

A path-decomposition of a graph G = (V, E) is a linearly ordered sequence of
subsets of V , called bags, such that the following three conditions are satisfied: 1.
Every vertex x ∈ V appears in some bag. 2. For every edge xy ∈ E there is a bag
containing both x and y. 3. For every vertex x ∈ V , the bags containing x appear
consecutively. The width of a decomposition is the size of the largest bag minus one,
and the pathwidth of a graph G, pw(G), is the minimum width over all possible path
decompositions.

The edge search game can be formally defined as follows. Let G = (V, E) be
a graph to be searched. A search strategy consists of a sequence of discrete steps
which involves searchers. Initially there is no searcher on the graph. Every step is
one of the following three types

• Some searchers are placed on some vertices of G (there can be several searchers
located in one vertex);

• Some searchers are removed from G;
• A searcher slides from a vertex u to a vertex v along edge uv.

3

At every step of the search strategy the edge set of G is partitioned into two
sets: cleared and contaminated edges. Intuitively, the agile and omniscient fugitive
with unbounded speed who is invisible for the searchers, is located somewhere on a
contaminated territory, and cannot be on cleared edges. Initially all edges of G are
contaminated, i.e., the fugitive can be anywhere. A contaminated edge uv becomes
cleared at some step of the search strategy if at this step a searcher located in u
slides to v along uv.

A cleared edge e is (re)contaminated at some step if at this step there exists a
path P containing e and a contaminated edge and no internal vertex of P contains a
searcher. For example, if a vertex u is incident to a contaminated edge e, there is only
one searcher at u and this searcher slides from u to v along edge uv 6= e, then after
this step the edge uv, which is cleared by sliding, is immediately recontaminated.

A search strategy is winning if after its termination all edges are cleared. The
edge search number of a graph G, denoted by es(G), is the minimum number of
searchers required for a winning strategy of edge searching on G. The differences
between mixed, edge, and node searching are in the way the edges can be cleared.
In node searching an edge is cleared only if both its endpoints are occupied (no
clearing by sliding). In mixed searching an edge can be cleared both by sliding and
if both its endpoints are occupied by searchers. The mixed and node search numbers
of a graph G are defined similarly to the edge search number, and are denoted by
ms(G) and ns(G), respectively. The following result is central; it gives the relation
between the three graph searching parameters and relates them to pathwidth.

Lemma 1 ([37]) Let G be an arbitrary graph.

• ns(G) = pw(G) + 1.

• pw(G) ≤ ms(G) ≤ pw(G) + 1.

• pw(G) ≤ es(G) ≤ pw(G) + 2.

Hence computing the pathwidth and the node search number are equivalent
tasks. However, note that, although pw(G) of a graph G can be computed easily,
it might be difficult to decide whether es(G) = pw(G) or es(G) = pw(G) + 1 or
es(G) = pw(G) + 2.

A winning edge search strategy using es(G) steps is called optimal. A search
strategy is called monotone if at any step of this strategy no recontamination occurs.
For all three versions of graph searching, recontamination does not help to search
the graph with fewer searchers [4, 26], i.e., on any graph with edge search number
k there exists a winning monotone edge search strategy using k searchers. Thus in
this paper we consider only monotone edge search strategies.

4

3 Edge search number of cographs

In this section we show how to compute the edge search number of a cograph. We
start by giving general results on the disjoint union and join of two arbitrary graphs.
Given an arbitrary graph G and an integer c, following Golovach [17], we define Gc

to a supergraph of G, obtained from G by attaching c new vertices of degree 1 to
each vertex of G. Hence Gc has c · |V (G)| vertices in addition to the |V (G)| vertices
of G.

Lemma 2 ([17]) Let G and H be two arbitrary graphs with |V (G)| = n and |V (H)| =
m, such that the pair {G,H} is not one of the following pairs {I1, I1}, {I1, I2},
{I2, I2}, {I2,Kk}. Then es(G⊗H) = min{es(Gm)+m, es(Hn)+n}.

We will relate the above lemma to edge search strategies. To have an easy notion
of the number of searchers that are used at each step of the search, assume for the
rest of this section that every searcher which is not necessary is removed from the
graph as soon as it becomes unnecessary. We define extra(G) = 1 if there is an
optimal edge strategy on G such that every time the maximum number of searchers
is used the following operation is executed: sliding a searcher through an edge whose
both endpoints are occupied by two other searchers. Hence extra(G) = 0 if every
optimal edge search strategy avoids this operation at least once when using the
maximum number of searchers.

Lemma 3 Let G be an arbitrary graph and c > 2 be an integer. Then es(Gc) =
es(G)+1−extra(G).

Proof. Clearly, es(Gc) ≥ es(G). Let us study the two cases extra(G) = 1 and
extra(G) = 0 separately.

Let extra(G) = 1. Then it follows directly that es(Gc) ≥ es(G)+1−extra(G) =
es(G). Let us show that es(Gc) ≤ es(G)+1−extra(G) = es(G). We will do this by
turning any optimal edge strategy for G into an edge strategy for Gc using at most
the same number of searchers. We run the each search strategy of G on Gc. Since
at each step of the search at least one searcher is available to be slided between two
already occupied vertices, whenever the strategy of G clears a vertex v, we keep
the searcher on v, and we use the extra available searcher to clear all the vertices
of degree 1 adjacent to v, one by one. Thus we conclude that es(Gc) = es(G) =
es(G) + 1− extra(G) when extra(G) = 1.

Let extra(G) = 0 and es(G) = k. First we show that es(Gc) ≥ es(G) + 1 −
extra(G) = k + 1. We know that at least k searchers are necessary to clear Gc,
by the first sentence of the proof. So assume for a contradiction that es(Gc) = k.
Consider any optimal edge search strategy for Gc; let us study the last step before

5

the k’th searcher is used for the first time. To get rid of some simple cases, without
loss of generality we can use the k’th searcher to clear all edges whose both endpoints
are occupied by searchers. In addition, if a degree one vertex contains a searcher,
we can slide it to the single neighbor v of this vertex, and then use the k’th searcher
to clear all edges between v and its neighbors of degree 1. Hence, for each vertex u
of degree at least 2 containing a searcher, we can use the k’th searcher to clear all
edges between u and its neighbors of degree 1. Furthermore, if a vertex containing
a searcher is incident to only one contaminated edge, then we can slide its searcher
to the other endpoint of the contaminated edge, clearing the edge. After repeating
this for as long as possible, if some vertices are incident to only cleared edges, we
can remove their searcher and place it on an uncleared vertex. Hence we can assume
that there is a step in this search strategy where k − 1 searchers are placed on the
vertices of G, all edges between vertices of degree one and their neighbors containing
searchers are cleared, all edges containing searchers on both endpoints are cleared,
and Gc is not yet cleared since extra(G) = 0 and we have so far only slided the k’th
searcher between vertices of G occupied with searchers. At this point, every vertex
containing a searcher is incident to at least two contaminated edges of G. After
this point, we can clear at most one contaminated edge incident to some vertex
occupied by a searcher, by sliding the k’th searcher from the occupied endpoint
towards the endpoint w not occupied by a searcher. Note that w is not a degree one
vertex, and all edges between w and its neighbors of degree one are contaminated.
Consequently, from now on no searcher can be removed or slided without allowing
recontamination, and the search cannot continue successfully without increasing the
number of searchers. Thus es(Gc) ≥ k+1 = es(G)+1−extra(G). Let us now show
that es(Gc) ≤ es(G) + 1, that k + 1 searchers are enough to clear Gc. We construct
an optimal edge search strategy for Gc by following the steps of an optimal edge
search strategy for G. At each step where we place a searcher on a vertex v of G
we use the extra searcher to clear all the edges between v and vertices of degree 1.
Thus es(Gc) = es(G) + 1− extra(G) if extra(G) = 0. ¤

By Lemmas 2 and 3, the next lemma follows immediately. For the cases that
are not covered by this lemma, it is easy to check that es(I1 ⊗ I1) = es(I1 ⊗ I2) =
es(I2 ⊗ I2) = 1 and es(I2 ⊗Kk) = k + 1 for k ≥ 2.

Lemma 4 Let G and H be two arbitrary graphs with |V (G)| = n and |V (H)| = m,
such that the pair {G,H} is not one of the following pairs {I1, I1}, {I1, I2}, {I2, I2},
{I2,Kk}. Then es(G⊗H) = min{n+es(H)+1−extra(H), m+es(G)+1−extra(G)}.

Consequently, if we know how to compute extra(G) for a graph G then we can
compute the edge search number of the join of two graphs using the above lemma.

6

This might be a difficult task for general graphs, but here we will show that we can
compute extra(G) efficiently if G is a cograph.

Before we continue with this, we briefly mention that the disjoint union operation
on two arbitrary graphs is easy to handle with respect to edge search number and
the parameter extra. If G and H are two arbitrary disjoint graphs, then clearly
es(G ⊕ H) = max{es(G), es(H)}. Furthermore we have the following observation
on extra(G⊕H).

Lemma 5 Let G1 and G2 be two arbitrary graphs. Then
extra(G1 ⊕G2) = mini∈{1,2}{extra(Gi) | es(Gi) = es(G1 ⊕G2)}.

Proof. Without loss of generality let es(G1⊕G2) = es(G1). We have two possibili-
ties: either es(G2) < es(G1) or es(G2) = es(G1). For the first case, extra(G1⊕G2) =
extra(G1), regardless of extra(G2), since we can search G2 first and then move all
the searchers to G2. For the second case, the lemma claims that if extra(G1) = 0 or
extra(G2) = 0 then extra extra(G1 ⊕G2) = 0. This is easy to see, since regardless
of where we start the search, there will be a point of the search where all searchers
are used without the use of the sliding operation between two vertices occupied by
searchers. ¤

We continue by listing some simple graphs G with extra(G) = 0. For the graphs
covered by the next lemma, it is known that es(In) = 1, es(K2) = 1, es(K3) = 2, and
es(Kn) = n for n ≥ 4. Furthermore, es(Kn,m) = min{n,m}+1 when min{n,m} ≤ 2
and since (I2 ⊗ Kn) is an interval graph, es(I2 ⊗ Kn) = n + 1 for n ≥ 1, by the
results of [31, 18].

Observation 6 If G is one of the following graphs then extra(G) = 0: In, Kn with
n ≤ 3, Kn,m with min{n,m} ≤ 2, or (I2 ⊗Kn).

Proof. The optimal edge search strategies for these graphs are known, as listed
before the lemma, from previous results [2, 15]. Using these results and by the
definition of the parameter extra it follows immediately that extra(G) = 0 if G is
one of the following graphs: In,Kn, or Kn,m with min{n, m} < 3. If G = I2 ⊗Kn

then since G an interval graph, it follows from [31, 18] that es(G) = n+1. It follows
also that extra(G) = 0 since in every optimal edge search strategy for G, when the
maximum number of searchers are required, at least one edge uv is cleared by sliding
the searcher from u towards v when all adjacent edges to u are cleared except uv.
¤

Observation 7 If G has a universal vertex u, and the size of the largest connected
component of G−u is at most 2, then extra(G) = 0.

7

Proof. If all connected components of G−u are of size 1, then G = K1,n and covered
by the previous observation. Otherwise, a graph G that satisfies the premises of the
lemma consists of edges and triangles all sharing a common vertex u, and sharing
no other vertices. Such a graph is an interval graph, and it is known that it can be
cleared with 2 searchers: place one searcher on u, and clear every edge or triangle
attached at u by sliding the second searcher from u to the other vertices of the edge
or the triangle. Clearly extra(G) = 0. ¤

Notice that the above two observations, together with Lemma 5, handle the
extra parameter of all (and more) graphs that are not covered by Lemma 4.

We are now ready to show how to compute extra(G) when G is a cograph. This
will be explained algorithmically in the proof of the next lemma. For this we will
use the cotree as a data structure to store G. Note that due to the decomposition
rules on cographs explained in Section 2, we may assume that each interior node
of a cotree has exactly two children. As an initialization, note that a single vertex
is a special case of In, and hence for a single vertex u we define extra(u) = 0.
Consequently, in our algorithm every leaf l of the cotree of a cograph will have
extra(l) = 0 before we start the computations.

Lemma 8 Let G be a cograph. Then extra(G) can be computed in linear time.

Proof. Let G be a cograph and let T be its cotree. If G is one of the special
cographs covered by Observations 6 and 7 then extra(G) = 0. We assume now
we initialized all the subtrees corresponding to the special cases covered by these
observations. Let us consider now the first node in the cotree which corresponds to
a graph which is not one of those cases. If we are dealing with a 0-node then we can
compute the value for the parameter extra by Lemma 5. We will show now how
to compute extra for a 1-node. Let Tl and Tr be the the left subtree and the right
subtree of the 1-node considered and let Gl and Gr be the corresponding cographs
that have Tl and Tr as their cotrees, respectively.

We first consider the case when extra(Gl) = extra(Gr) = 0. Since we already
initialized all the special cases covered by Observations 6 and 7, and we are at
a join-node, we know that we not dealing with one of the cases not covered by
Lemma 4. Thus by Lemma 4 we have that es(Gl ⊗Gr) = min{|V (Gl)|+ es(Gr) +
1−extra(Gr), |V (Gr)|+es(Gl)+1−extra(Gl)} = min{|V (Gl)|+es(Gr)+1, |V (Gr)|+
es(Gl) + 1}. Let us assume without loss of generality that es(Gl ⊗Gr) = |V (Gl)|+
es(Gr) + 1. We will show now that there is an optimal edge search strategy for
Gl ⊗Gr using at every step that requires the maximum number of searchers in the
strategy the following operation: an edge is cleared by sliding a searcher from one
endpoint towards the other endpoint when both endpoints are occupied by searchers.

8

We place |V (Gl)| searchers on the vertices of Gl, and we use one more searcher to
clear all the edges inside Gl. At this point the only edges not cleared are the edges
of Gr and the edges between the vertices of Gr and the vertices of Gl. The following
step in the edge search strategy for Gl ⊗Gr is the same as the first step in the edge
search strategy for Gr. At each point when we place a new searcher on a vertex v
of Gr we use one searcher to clear the edges between v and Gl. This is possible to
do also when using the maximum number of searchers in Gr which is es(Gr). At
this point |V (Gl)| searchers are placed on the vertices of Gl and we have es(Gr)
searchers on some vertices of Gr. Since es(Gl⊗Gr) = |V (Gl)|+ es(Gr) + 1 we have
one more searcher available to clear the edges between Gl and Gr by sliding. This
is true for each step when using the largest number of searchers in Gr. Thus, by the
definition of extra we have extra(Gl ⊗Gr) = 1.

We consider now the case when extra(Gl) = 0 and extra(Gr) = 1. First we
consider the case when es(Gl ⊗ Gr) = min{|V (Gl)| + es(Gr), |V (Gr)| + es(Gl) +
1} = |V (Gl)| + es(Gr). We give a corresponding edge search strategy such that
extra(Gl ⊗Gr) = 1. We place as before |V (Gl)| searchers on the vertices of Gl and
use one more searcher to clear the edges inside Gl. Next steps are to imitate the
optimal edge search strategy of Gr. We know that extra(Gr) = 1 which means that
at every step when using es(Gr) searchers on Gr, one searcher is used only to slide
trough an edge uv whose both endpoints are occupied by two other searchers. Thus
we can use the same sliding searcher to clear the edges between u and the vertices
of Gl and the edges between v and the vertices of Gl. Thus extra(Gl ⊗ Gr) = 1.
Let assume now that es(Gl ⊗Gr) = min{|Gl|+ es(Gr), |Gr|+ es(Gl) + 1} = |Gr|+
es(Gl) + 1. We construct the desired edge search strategy in the following manner.
We place |Gr| searchers on the vertices of Gr. After that we construct the edge
search strategy similar to the first case consider when extra(Gl) = extra(Gr) = 0.
Thus extra(Gl ⊗Gr) = 1.

The last case we need to consider is extra(Gl) = extra(Gr) = 1. Then es(Gl ⊗
Gr) = min{|Gl|+es(Gr), |Gr|+es(Gl)}. This is similar to the case when extra(Gl) =
0 and extra(Gr) = 1 and es(Gl⊗Gr) = |Gl|+es(Gr). Thus we have extra(Gl⊗Gr) =
1 also in this situation.

All the previous cases can be checked in constant-time. For each node of the
cotree we compute the value of extra in constant-time using a bottom-up strategy.
Therefore, we can conclude that extra(G) can be computed in linear-time for a
cograph. ¤

In fact, a stronger result follows immediately by the proof of Lemma 8:

Corollary 9 If G is a connected cograph, and G is not one of the graphs covered
by Observations 6 and 7, then extra(G) = 1.

9

Theorem 10 Let G be a cograph. Then the edge search number of G can be com-
puted in linear time.

Proof. In order to compute the edge search number of a cograph G we do the
following. First we compute the cotree T of G in linear time. The next step is to
initialize all starting subtrees according to Observations 6 and 7. After that we use
a bottom-up strategy to compute the edge search number of G. For each 1-node we
compute the edge search number according to Lemma 4 and the parameter extra
according to Lemma 8. For each 0-node we compute the edge search number and
the parameter extra according to Lemma 5. Thus we have that the edge search
number of a cograph can be computed in linear time. ¤

4 Conclusions

We have shown how to compute the edge search number of cographs in linear time.
It remains an open problem whether the edge search number of permutation graphs
can be computed in polynomial time. Both answers to this questions would be
interesting. If it turns out that the edge search number for permutation graphs is
NP-hard, this would give the first graph class where node and mixed search number
are computable in polynomial time and the edge search number computation is
NP-hard.

Acknowledgment

The authors would like to thank Petr Golovach for useful discussions.

References

[1] S. Alpern and S. Gal, The theory of search games and rendezvous, International Series in
Operations Research & Management Science, 55, Kluwer Academic Publishers, Boston, MA,
2003.

[2] B. Alspach and D. Dyer and D. Hanson and B. Yang, Lower Bounds on Edge Searching,
Proceedings of ESCAPE 2007, Lecture Notes in Computer Science 4614, Springer, 2007,
pp. 516–527.

[3] D. Bienstock, Graph searching, path-width, tree-width and related problems (a survey), DI-
MACS Ser. in Discrete Mathematics and Theoretical Computer Science, 5 (1991), pp. 33–49.

[4] D. Bienstock and P. Seymour, Monotonicity in graph searching, J. Algorithms, 12 (1991),
pp. 239–245.

10

[5] H. L. Bodlaender, T. Kloks, and D. Kratsch, Treewidth and pathwidth of permutation
graphs, SIAM J. Disc. Math., 8 (1995), pp. 606–616.

[6] H. L. Bodlaender, T. Kloks, D. Kratsch and R. H. Möhring, Treewidth and Minimum
Fill-in on d-Trapezoid Graphs, J. Graph Algorithms Appl., 2 (1998).

[7] H. L. Bodlaender and R. H. Möhring, The pathwidth and treewidth of cographs, Proceed-
ings of SWAT 1990, Lecture Notes in Computer Science 447, Springer, 1990, pp. 301–310.

[8] K. S. Booth and G. S. Lueker, Testing for the consecutive ones property, interval graphs,
and graph planarity using pq-tree algorithms, J. Comp. Syst. Sc., 13 (1976), pp. 335–379.

[9] A. Brandstädt, V. B. Le, and J. P. Spinrad, Graph classes: a survey, Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 1999.

[10] H. Chou, M. Ko, C. Ho, and G. Chen, Node-searching problem on block graphs, Disc. Appl.
Math., 156 (2008), pp. 55–75.

[11] D. G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs,
Annals Discrete Math., 1 (1981), pp. 145–162.

[12] D. G. Corneil, Y. Perl, and L. K. Stewart. A linear recognition algorithm for cographs.
SIAM Journal on Computing 14, 1985, pp. 926–934.

[13] J. Ellis and M. Markov, Computing the vertex separation of unicyclic graphs, Inf. Comput.
192, 2004, pp. 123–161.

[14] F.V. Fomin and P. Fraigniaud and N. Nisse, Nondeterministic Graph Searching: From
Pathwidth to Treewidth, Algorithmica, 2008.

[15] F. Fomin, P. Heggernes, and R. Mihai, Mixed search number and linear-width of interval
and split graphs, Proceedings of WG 2007, Lecture Notes in Computer Science 4769, 2007,
pp. 304–315.

[16] F. Fomin and D. Thilikos, An annotated bibliography on guaranteed graph searching,
Theor. Comput. Sci. 399, 2008, pp. 236–245.

[17] P. A. Golovach, Extremal search problems on graphs, Ph.D Thesis, Leningrad, 1990.

[18] P. A. Golovach and N. N. Petrov, Some generalizations of the problem on the search
number of a graph, Vestn. St. Petersbg. Univ., Math. 28, 3 (1995), pp. 18–22 ; translation
from Vestn. St-Peterbg. Univ., Ser. I, Mat. Mekh. Astron. 1995, 3 (1995), pp. 21–27.

[19] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Math-
ematics, Vol 57), North-Holland, 2004.

[20] J. Gustedt, On the pathwidth of chordal graphs, Disc. Appl. Math., 45 (1993), pp. 233–248.

[21] M. Habib and C. Paul. A simple linear time algorithm for cograph recognition. Discrete
Applied Mathematics, 145:183–197, 2005.

[22] P. Heggernes, and R. Mihai, Mixed search number of permutation graphs, Proceedings of
FAW 2008, Lecture Notes in Computer Science 5059, 2008, pp. 196–207.

11

[23] L. M. Kirousis and C. H. Papadimitriou, Interval graphs and searching, Disc. Math., 55
(1985), pp. 181–184.

[24] M. Kirousis and C. H. Papadimitriou, Searching and pebbling, Theor. Comput. Sci., 47
(1986), pp. 205–218.

[25] T. Kloks, D. Kratsch, and J. Spinrad, On treewidth and minimum fill-in of asteroidal
triple-free graphs, Theor. Comp. Sc., 175 (1997), pp. 309–335.

[26] A. S. LaPaugh, Recontamination does not help to search a graph, J. ACM, 40 (1993), pp. 224–
245.

[27] F. Mazoit and N. Nisse, Monotonicity of non-deterministic graph searching, Theor. Comput.
Sci., 3, 399 (2008), pp. 169–178.

[28] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou,
The complexity of searching a graph, J. ACM, 35 (1988), pp. 18–44.

[29] D. Meister, Computing treewidth and minimum fill-in for permutation graphs in linear time,
Proceedings of WG 2005, Lecture Notes in Computer Science 3787, Springer, 2005, pp. 91–102.

[30] T. Parsons, Pursuit-evasion in a graph, in Theory and Applications of Graphs, Springer-
Verlag, 1976.

[31] S.-L. Peng, M.-T. Ko, C.-W. Ho, T.-s. Hsu, and C. Y. Tang, Graph searching on some
subclasses of chordal graphs, Algorithmica, 27 (2000), pp. 395–426.

[32] S.-L. Peng, C.-W. Ho, T.-s. Hsu, M.-T. Ko, and C. Y. Tang, Edge and node searching
problems on trees, Theor. Comput. Sci., 240 (2000), pp. 429–446.

[33] S.-L. Peng, Y.-C. Yang, On the Treewidth and Pathwidth of Biconvex Bipartite Graphs,
Proceedings of TAMC 2007, pp. 244–255.

[34] N. N. Petrov, A problem of pursuit in the absence of information on the pursued, Differ-
entsialnye Uravneniya, 18 (1982), pp. 1345–1352, 1468.

[35] K. Skodinis. Construction of linear tree-layouts which are optimal with respect to vertex
separation in linear time, J. Algorithms, 47 (2003), pp. 40–59.

[36] K. Suchan and I. Todinca, Pathwidth of circular-arc graphs, Proceedings of WG 2007,
Lecture Notes in Computer Science 4769, 2007, pp. 258–269.

[37] A. Takahashi, S. Ueno, and Y. Kajitani, Mixed searching and proper-path-width, Theor.
Comput. Sci., 137 (1995), pp. 253–268.

[38] B. Yang, R. Zhang, and Y. Cao, Searching Cycle-Disjoint Graphs, Proceedings of COCOA
2007, pp. 32–43.

12

