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Abstract

The Induced Subgraph Isomorphism problem on two input graphs G and H is to
decide whether G has an induced subgraph isomorphic to H. Already for the restricted case
where H is a complete graph the problem is NP-complete, as it is then equivalent to the
Clique problem. In a recent paper [10] Marx and Schlotter show that Induced Subgraph

Isomorphism is NP-complete when G and H are restricted to be interval graphs. They
also show that the problem is W [1]-hard with this restriction when parametrised by the
number of vertices in H. In this paper we show that when G is an interval graph and
H is a connected proper interval graph, the problem is solvable in polynomial time. As a
more general result, we show that when G is an interval graph and H is an arbitrary proper
interval graph, the problem is fixed parameter tractable when parametrised by the number of
connected components of H. To complement our results, we prove that the problem remains
NP-complete when G and H are both proper interval graphs and H is disconnected.

1 Introduction

Given two graphs G and H, where G has more vertices than H, the Induced Subgraph

Isomorphism (ISI) problem is to decide whether G has an induced subgraph isomorphic to
H. Equivalently, the question is whether we can delete vertices from G to obtain a graph
isomorphic to H. ISI is a generalisation of several well known NP-complete problems like
Clique, Independent Set, Longest induced path, and Graph Isomorphism, and it is
thus NP-complete, as well as W [1]-hard when parametrised by the number of vertices in H.

As the problem is applicable in a variety of important practical areas [4], it has been studied
with respect to polynomial-time solvability and fixed parameter tractability on restricted input
graphs. ISI is solvable in polynomial time when G and H are both trees [11] or 2-connected
outerplanar graphs [8], but it remains NP-complete when G is a tree and H is a forest [6],
when G and H are both cographs [3], or when G is a cubic planar graph and H is a path [6].
When parametrised by the number of vertices in H, the problem is known to be fixed parameter
tractable when G and H are planar [4] or have maximum degree bounded by a constant [2]. In
a very recent paper by Marx and Schlotter, ISI is studied on interval graphs. When both G and
H are interval graphs, the authors show that the problem is NP-complete and W [1]-hard when
parametrised by the number of vertices in H [10].
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Here, we show that ISI is solvable in polynomial time when G is an interval graph and H
is a connected proper interval graph. In fact, we give a more general result: when G is an
interval graph and H is an arbitrary proper interval graph, ISI is fixed parameter tractable
when parametrised by the number of connected components of H (and consequently also when
parametrised by the number of vertices in H). To indicate that these results are the best that
we can hope for, we show that ISI remains NP-complete when G and H are both proper interval
graphs and H is disconnected. Note that such a result does not follow from any previous NP-
completeness result, as the problems mentioned above (Clique, Independent Set, Longest

Induced Path, etc) are all solvable in polynomial time on proper interval graphs.
To achieve our polynomial-time algorithm, we give an intermediate algorithm for solving the

following problem in polynomial time: Given two connected interval graphs G and H with a
partial ordering of the vertices of each graph, is there an isomorphism between H and an induced
subgraph of G that respects the given partial orderings? This enables us to solve the problem
when H is a connected proper interval graph and no ordering for G is given, since proper interval
graphs have very specific such orderings. Our main result is obtained by showing that if H is
isomorphic to an induced subgraph G′ of G then the relative ordering of the vertices of G′ is of
a restricted type “fitting” the ordering of H, in any interval ordering for G.

Interval graphs form one of the best studied graph classes as they are used for modeling
problems in many different application areas, like biology (in particular DNA computations
and phylogeny), archaeology, and scheduling [7]. Proper interval graphs form an important
and natural subclass of interval graphs, and they are also known as unit interval graphs or
indifference graphs. Many NP-hard graph problems become solvable in polynomial time on
interval graphs and even more on proper interval graphs. An example related to our problem is
Graph Isomorphism which can be solved in linear time on interval graphs [1]. From this point
of view, the mentioned results of Marx and Schlotter and our hardness result are surprising.

Due to space restrictions, the proofs of Lemma 3.1 and Theorem 3.5 are omitted, the proof
of Lemma 3.3 is moved to the appendix, and all other proofs are shortened.

2 Definitions and notation

We consider simple finite undirected graphs. For a graph G = (V,E), V = V (G) is the vertex

set of G and E = E(G) is the edge set of G. For every edge uv ∈ E, vertices u and v are adjacent

or neighbours. The neighbourhood of a vertex u in G is NG(u) =def {v | uv ∈ E}, and the closed

neighbourhood of u is NG[u] =def NG(u) ∪ {u}. A set X ⊆ V is called clique of G if the vertices
in X are pairwise adjacent. A maximal clique is a clique that is not a proper subset of any other
clique. For U ⊆ V , the subgraph of G induced by U is denoted by G[U ] and it is the graph with
vertex set U and edge set equal to the set of edges uv ∈ E with u, v ∈ U . For every U ⊆ V ,
G′ = G[U ] is an induced subgraph of G. By G \X for X ⊆ V , we denote the graph G[V \X].

For two graphs G and H, G is isomorphic to H if there is a bijective mapping ϕ from V (G)
to V (H) such that for every vertex pair u, v of G, uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(H).
Mapping ϕ is called an isomorphism from G to H. If G has an induced subgraph G′ such
that G′ is isomorphic to H then we say that G has an induced subgraph isomorphic to H or,
equivalently, H is isomorphic to an induced subgraph of G. Let us formally define the problem
we are working on.

2



Induced Subgraph Isomorphism (ISI)
Input: Two graphs G and H.
Question: Does G have an induced subgraph that is isomorphic to H?

For a graph G, vertices u, v of G and an integer k ≥ 0, a u, v-path of length k is a se-
quence (u0, . . . , uk) of k + 1 distinct vertices of G such that uiui+1 ∈ E(G) for 0 ≤ i < k and
u0 = u and uk = v. A path (u0, . . . , uk) is chordless if uiuj /∈ E(G) for 0 ≤ i < i + 1 < j ≤ k.
A graph G is connected if there is a u, v-path in G for every vertex pair u, v of G. A connected

component of G is a maximal connected induced subgraph of G. The distance between two
vertices u and v in G is the smallest integer k such that G has a u, v-path of length k.

A graph is an interval graph if intervals of the real line can be assigned to its vertices such
that two vertices are adjacent if and only if their assigned intervals overlap. A clique path of
a graph G is an ordering 〈A1, . . . , Ak〉 of the maximal cliques of G that satisfies the following
for every vertex x of G: if 1 ≤ p < q < r ≤ k and x ∈ Ap ∩ Ar then x ∈ Aq. A graph is
an interval graph if and only if it has a clique path [5]. A clique path can be constructed in
linear time [5]. Note that an interval graph can have many different clique paths. An proper

interval graph is an interval graph whose vertices can be assigned intervals such that no interval
is properly contained in any other interval. A claw is a graph that is isomorphic to K1,3. A
graph is claw-free if it does not have a claw as an induced subgraph. Proper interval graphs are
exactly the claw-free interval graphs [13].

A vertex ordering for a graph G is a linear ordering σ = 〈u1, . . . , un〉 of the vertices of G.
For two vertices ui, uj of G in σ, we write ui 4σ uj if i ≤ j. If additionally i 6= j then we
write ui ≺σ uj . A vertex ordering σ for G = (V,E) is called interval ordering if for every vertex
triple u, v, w of G, u ≺σ v ≺σ w and uw ∈ E imply vw ∈ E. A graph is an interval graph if and
only if it admits an interval ordering [12]. A vertex ordering σ for G is called proper interval

ordering if for every vertex triple u, v, w of G, u ≺σ v ≺σ w and uw ∈ E imply uv, vw ∈ E. A
graph is a proper interval graph if and only if it admits a proper interval ordering [9]. Interval
orderings and proper interval orderings can be computed in linear time, if they exist.

3 Polynomial-time solvable cases of Induced Subgraph Isomor-

phism on interval graphs

We show that when G is an interval graph and H is a connected proper interval graph, ISI is
solvable in polynomial time. From our intermediate results to reach this algorithm, it will follow
that ISI is fixed-parameter tractable, parametrised by the number of connected components of
H, when G is an interval graph and H is an arbitrary proper interval graph.

To obtain this result, we start by giving an intermediate result which is interesting on its
own. In the first subsection we study the following problem: given two interval graphs G and H
with clique paths 〈A1, . . . , Ak〉 and 〈B1, . . . , Bl〉 for G and H, respectively, decide whether there
is an isomorphism from H to an induced subgraph of G that preserves the order of the maximal
cliques given by the clique paths. We show that this problem is solvable in polynomial time.

3.1 Induced Subgraph Isomorphism on ordered interval graphs

We start by showing that any isomorphism between an interval graph and an induced subgraph
of another interval graph must map maximal cliques of the two graphs to each other.
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Lemma 3.1. Let G and H be interval graphs with clique paths 〈A1, . . . , Ak〉 and 〈B1, . . . , Bl〉,
respectively. If there is an isomorphism ϕ from H to an induced subgraph of G then there is a

mapping ψ : {1, . . . , l} → {1, . . . , k} such that ϕ(Bl) ⊆ Aψ(l) and ϕ(Bi \Bi+1) ⊆ Aψ(i) \Aψ(i+1)

for every 1 ≤ i < l and ψ(i) 6= ψ(j) for every 1 ≤ i < j ≤ l.

This subsection considers isomorphisms that require ψ(1) < · · · < ψ(l) for function ψ of
Lemma 3.1. We formalise this notion in the following way. Let G and H be graphs and let σ
and τ be vertex orderings for respectively G and H. We say that H is (σ, τ)-isomorphic to an
induced subgraph G′ of G if there exists an isomorphism ϕ from H to G′ such that ϕ(u) ≺σ ϕ(v)
for every vertex pair u, v of H with u ≺τ v.

An interval graph G = (V,E) may have many interval orderings. An interval ordering σ for
G is a preference interval ordering if additionally the following condition is satisfied for every
vertex triple u, v, w of G: if u ≺σ v ≺σ w and uw ∈ E and uv 6∈ E then there is x ∈ V
such that w ≺σ x and wx ∈ E and vx 6∈ E. (Informally, a preference interval ordering is a
right endpoint ordering for an interval model where ties are broken by a left endpoint ordering.)
Every interval graph has a preference interval ordering, and such an ordering can be computed
in linear time. An interval graph can have many preference interval orderings. We need to relate
preference interval orderings to clique paths and to (arbitrary) interval orderings. Let G be an
interval graph with clique path 〈A1, . . . , Ak〉. A preference interval ordering τ for G related to

〈A1, . . . , Ak〉 satisfies for every vertex pair u, v of G and every 1 ≤ i < k that u ∈ Ai \ Ai+1

and v ∈ Ai+1 ∪ · · · ∪ Ak implies u ≺τ v. Note that such an ordering always exists. Let σ be
an interval ordering for G. A preference interval ordering τ for (G, σ) satisfies for every vertex
pair u, v of G that uv 6∈ E and u ≺σ v implies u ≺τ v. It is important to see that also such an
ordering always exists and it is also obtainable from a given clique path.

The first algorithm that we consider is called LocalOrderingInducedSubgraph, LOIS

for short, and presented in Figure 1. This algorithm solves a restricted version of ISI on interval
graphs, namely it requires the same number of maximal cliques for the two input graphs and
additionally checks for ordered isomorphisms only.

Lemma 3.2. Let G and H be interval graphs with the same number of maximal cliques. Let σ
and τ be preference interval orderings for respectively G and H. Algorithm LOIS on this input

computes a (σ, τ)-isomorphism from H to an induced subgraph of G, if it exists.

Proof. Let σ = 〈x1, . . . , xn〉 and τ = 〈y1, . . . , yr〉. We consider rounds of the while loop of
the main procedure. Denote by aei the value of ai of the algorithm at the end of the eth round
of the main while loop. It is not difficult to see that ae1 < · · · < aer for every e ≥ 0. Assume
that Algorithm LOIS does not reject, and let round f be the last round of the main while

loop. Then, H is (σ, τ)-isomorphic to G[{x
af1
, . . . , x

afr
}], so that ϕ : V (H) → V (G), yi 7→ x

afi
is

a desired isomorphism. We show that Algorithm LOIS accepts if a desired isomorphism exists.
Let 〈A1, . . . , Ak〉 and 〈B1, . . . , Bk〉 be the clique paths for respectively G and H that correspond
to respectively σ and τ . Let Xk =def Ak and Xi =def Ai \Ai+1 for every 1 ≤ i < k.

Assume that there are integers c1, . . . , cr satisfying 1 ≤ c1 < · · · < cr ≤ n such that H
is (σ, τ)-isomorphic to G[{xc1 , . . . , xcr}]. It follows from the definition that ci ≤ a0

i for all
1 ≤ i ≤ r. We consider round e+ 1 and assume the claim be true for round e. There is a vertex
pair yp, yq of H such that ypyq ∈ E(H) and xaepxaeq 6∈ E(G), or vice versa. We assume p < q.
Due to the algorithm, q is largest possible such that such a vertex pair exists. We distinguish
between the two possible cases. Let ypyq 6∈ E(H) and xaepxaeq ∈ E(G). Then, Subroutine push
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Algorithm LocalOrderingInducedSubgraph (LOIS)
Input Graphs G and H with vertex orderings σ = 〈x1, . . . , xn〉 and τ = 〈y1, . . . , yr〉, respectively.
Output An isomorphism ϕ from an induced subgraph G′ to H such that for all vertex pairs u, v of G′,

u ≺σ v if and only if u ≺τ v, if such an isomorphism exists.

begin

for i = r downto 1 do let ai = n− r + i end for;

while H is not (σ, τ)-isomorphic to G[{xa1 , . . . , xar}] do

let yi, yj be a vertex pair of H where i < j and j is largest possible
such that yiyj 6∈ E(H) ⇔ xai

xaj
∈ E(G);

if yiyj 6∈ E(H) then push(i) else push(j) end if

end while;

return a1, . . . , ar and accept

end.

Subroutine push(b)
begin

set ab = ab − 1;
while ab = ab−1 and b ≥ 2 do set b = b− 1; set ab = ab − 1 end while;
if a1 = 0 then reject end if

end.

Figure 1: Algorithm LOIS.

is called with index p. There is an index t where 1 ≤ t ≤ p such that ae+1
i = aei for all

1 ≤ i < t and all p < i ≤ r and ae+1
i = aei − 1 for all t ≤ i ≤ p. Suppose that there is

1 ≤ d ≤ r such that ae+1
d < cd, which would contradict the claim. According to the assumption

about ae1, . . . , a
e
r, it follows that t ≤ d ≤ p. It holds that ae+1

i = aei−1 for all t < i ≤ p.

Furthermore, it follows that cd = aed = ae+1
d +1. The definition of Subroutine push implies that

cp = aep = ae+1
p + 1. Thus, cq < ae+1

q . The properties of preference interval orderings show,
since xcp ≺σ xcq ≺σ xae+1

q
, that there is a vertex x of G with xae+1

q
≺σ x and xcqx 6∈ E(G) and

xae+1
q
x ∈ E(G). Due to the choice of q as largest possible, it holds for every q < j ≤ r that

ypyj ∈ E(H) ⇔ xcqxaej ∈ E(G) ⇔ xaeqxaej ∈ E(G). Now, the important observation to make is:
for i, j such that xcq ∈ Xi and xaeq ∈ Xj , it holds that i < j. This, however, is not possible. As
the other case, let ypyq ∈ E(H) and xaepxaeq 6∈ E(G). If there is 1 ≤ i ≤ r such that xae+1

i
< ci

then cq = ae+1
q + 1 = aeq. Since xaepxcq 6∈ E(G), the properties of interval orderings imply that

zxcq 6∈ E(G) for every x1 4σ z 4σ xaep , in particular xcpxcq 6∈ E(G), since cp ≤ aep. This yields
a contradiction.

We extend the above problem to interval graphs with different numbers of maximal cliques.
We apply a variant of Algorithm LOIS as a subroutine. The main difficulty is to determine the
correct selection of maximal cliques of G. Our algorithm is called InducedIntervalSubgraph,
IIS for short, and it is given in Figure 2. It applies as a subroutine Algorithm LOIS∗; this
algorithm is described in the next paragraph.

Algorithm LOIS∗ mainly works as Algorithm LOIS given in Figure 1. As an additional
input, there is a lower bound on the value of ai for each vertex of H. The return value of LOIS∗

is a vertex or a special symbol instead of the values of a1, . . . , ar. During the initialization or the
execution of Subroutine push, there may be an ai that becomes smaller than the corresponding
given lower bound. If such a lower bound violation occurs during the initialization step, let m be
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Algorithm InducedIntervalSubgraph (IIS)
Input An interval graph G with clique path 〈A1, . . . , Ak〉,

an interval graph H with clique path 〈B1, . . . , Bl〉.
Output accept if H is isomorphic to an induced subgraph of G under the extra conditions given in Lemma 3.3.

begin

let τ be preference interval ordering for H related to 〈B1, . . . , Bl〉;
let ψ(0) = 0; let ψ(1) = 0; let m = 1; let Bl+1 = ∅;

loop

initialize(m);
let G′ = G[Aψ(1) ∪ · · · ∪Aψ(l)]; let σ be preference interval ordering for G′ related to 〈Aψ(1), . . . , Aψ(l)〉;
for i = 1 to l do

for each x ∈ Bi \Bi+1 do λ(x) = |Aψ(1) ∪ · · · ∪Aψ(i−1)| + 1 end for

end for;

set y = LOIS
∗(G′, H;σ, τ ;λ);

if y is a vertex of H then set m such that y ∈ Bm \Bm+1 else set m = 0 end if

while m > 0;
accept

end.

Subroutine initialize(s)
begin

for i = 1 to s do

let p be smallest such that p > ψ(i− 1) and p > ψ(s);
if p does not exist then reject end if;
set ψ(i) = p

end for

end.

Figure 2: Algorithm IIS.

the largest integer such that am is smaller than its corresponding lower bound. The algorithm
stops and returns vertex ym. Otherwise, the initialization step is executed successfully, and a
lower bound violation can occur only during the execution of Subroutine push. Let yi, yj with
i < j be the (earliest) vertex pair of H for which a problem was encountered. If Subroutine push

was called with i as parameter then the algorithm returns yj , if push was called with j as
parameter then the algorithm returns yi. If no lower bound condition violation ever happens,
which means that Algorithm LOIS∗ accepts, then the algorithm returns a special symbol. Note
that LOIS already checks for a lower bound violation, namely it checks whether a1 < 1 at the
end of push. So, it is clear that if Algorithm LOIS would reject then Algorithm LOIS∗ will not
return the special symbol.

Lemma 3.3. Let G and H be interval graphs with A = 〈A1, . . . , Ak〉 and B = 〈B1, . . . , Bl〉
clique paths for respectively G and H. Algorithm InducedIntervalSubgraph on this input

accepts if and only if there are integers s1, . . . , sl satisfying 1 ≤ s1 < · · · < sl ≤ k such that H is

(σ, τ)-isomorphic to an induced subgraph of G[As1 ∪ · · · ∪ Asl ] where σ is a preference interval

ordering related to 〈As1 , . . . , Asl〉 and τ is a preference interval ordering related to B.

We determine the running time of IIS. The running time is mainly determined by the
number of executions of the main loop of IIS and the running time of a single execution of
LOIS∗. Let graph G have n vertices. The main loop is executed at most n2 times. Each
single loop execution, including the re-initialization, requires O(n2) time plus the time for an
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execution of LOIS∗. The running time of this procedure is of order the running time of LOIS.
The main while loop is executed at most n2 times. A single loop execution requires O(n2) time
for checking the isomorphism condition and finding a new vertex pair. This sums up to a total
running time of O(n6) for IIS.

3.2 Finding induced proper interval subgraphs of interval graphs

In the previous subsection, we gave an algorithm that, given interval graphs G and H, decides
whetherH is isomorphic to an induced subgraph ofG where an additional ordering condition had
to be satisfied. This additional ordering condition seems to be necessary to obtain a polynomial-
time algorithm when both G and H are interval graphs, as without the ordering condition the
problem is NP-complete by the results of Marx and Schlotter [10].

In this section, we show that Induced Subgraph Isomorphism is polynomial-time solv-
able if G is an interval graph and H is a connected proper interval graph. We will simply apply
Algorithm IIS for deciding the question. Part of the input for this algorithm are clique paths.
Our decision problem can be solved by trying all possible combinations of clique paths. Interval
graphs can have many clique paths, which would result in a worst-case exponential-time algo-
rithm. Connected proper interval graphs, however, have at most two clique paths [13]. For our
algorithm, it will be of high importance that the clique path for G can be chosen arbitrarily.

Theorem 3.4. Given an interval graph G and a connected proper interval graph H, it can be

decided in O(n6) time whether G has an induced subgraph isomorphic to H.

Proof. Let G be an interval graph, and let H be a connected proper interval graph. If H is
isomorphic to some induced subgraph of G then there is a connected component C such that H
is isomorphic to some induced subgraph of C. We therefore apply the below described algorithm
to each connected component C of G. Let A = 〈A1, . . . , Ak〉 and B = 〈B1, . . . , Bl〉 be clique
paths for respectively C and H. Denote by BR the reverse of B. Assume that H is isomorphic
to an induced subgraph of C via isomorphism ϕ. Then, the restriction of A to the vertices that
are mapped to by ϕ correspond to B or BR. This correspondence translates into the condition
of Lemma 3.3 about the existence of an isomorphism from H to an induced subgraph of C.
Therefore, it can be shown that H is isomorphic to an induced subgraph of C if and only if
Algorithm IIS accepts on input (C,H; A ,B) or on input (C,H; A ,BR). The correctness of
this statement strongly depends on the sketched relationship between A and B. The algorithm
for G accepts if IIS accepted for some connected component C; otherwise, it rejects.

For complementing the result of Theorem 3.4, we consider the case when input graph H
disconnected. It can be shown that any isomorphism from H to an induced subgraph of given
graph G maps the vertices of connected components consecutively with respect to any interval
ordering for G. With this result and the algorithm of Theorem 3.4, the induced subgraph isomor-
phism problem can be solved in polynomial time when the order of the connected components
of H is fixed with respect to an interval ordering for G. This implies the following result.

Theorem 3.5. Given an interval graph G on n vertices and a proper interval graph H with

r connected components, it can be decided in O(r! · rn6 log n) time whether G has an induced

subgraph isomorphic to H.

Hence, when G is an interval graph and H is a proper interval graph, ISI is fixed-parameter
tractable when parametrised by the number of connected components of H.
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4 Induced Subgraph Isomorphism is NP-complete on proper

interval graphs

In this section, we will show that the algorithms obtained in the previous section can be con-
sidered optimal: If the order of the connected components of H is not fixed then the problem
becomes NP-complete already when bothG andH are proper interval graphs andG is connected.
We will obtain the completeness result by a reduction from a variant of the Hamiltonian Path

problem.

Theorem 4.1 ([14]). The Fixed Hamiltonian Path problem, given a graph G and a vertex

pair u, v of G, to decide whether G has a u, v-path that is Hamiltonian, is NP-complete.

Let G be a graph and let u, v be a vertex pair of G. We will construct a graph pair (F,H)
such that F and H are proper interval graphs and H is isomorphic to an induced subgraph of F
if and only if there is a u, v-path in G that is Hamiltonian. Let u1, . . . , un be the vertices of G.
Without loss of generality, we will assume u1 = u and un = v. The main idea of the construction
is that a u, v-path of G that is Hamiltonian is a sequence of n− 1 edges where consecutive pairs
are adjacent. Our two graphs will have the following tasks:

– F provides a list of all edges of G and a means for checking whether n− 1 selected edges
form a sequence of the desired type

– H provides a mechanism for selecting n− 1 edges of G.

We begin with the construction of graph F . The graph is composed of subgraphs as shown in
Figure 3. The figure shows two graphs, where the upper one is a graph type. The graph type
has a complete graph on six vertices on its left end and a complete graph on seven vertices on
its right end. The two complete graphs are joined by a graph that is a sequence of n triangles,
then a chordless path between the vertices c and d and then another sequence of n triangles.
The graphs of the depicted type differ from each other just in the length of the path between c
and d. For an integer l with 1 − n ≤ l ≤ n− 1, let Ml be the graph of the depicted graph type
where the path between c and d has length (8n3 + 2) + (n + l − 1)(2n + 5). By Nl, we denote
the induced subgraph of Ml that is obtained by deleting two vertices of minimum degree from
each of the two complete graphs. So, Nl has a complete graph on four vertices at its left end,
then a sequence of n triangles, a chordless path, another sequence of n triangles and finally a
complete graph on five vertices. Now, let i, j be an integer pair where 1 ≤ i, j ≤ n and i 6= j.
We define Fi,j and Hi,j as the following graphs:

Fi,j =def Mj−i \
(

{a1, . . . , an, b1, . . . , bn} \ {ai, bj}
)

Hi,j =def Nj−i \
(

{a1, . . . , an, b1, . . . , bn} \ {ai, bj}
)

.

This means that the two complete graphs of Fi,j and Hi,j are connected by a long path that
contains only two triangles, namely the ones formed with vertex ai and with vertex bj .

We consider the second (lower) graph in Figure 3; denote it by Q. We define an induced
subgraph of Q for every vertex of G. Let 1 ≤ i ≤ n:

Qi =def Q \
(

{a1, . . . , an, b1, . . . , bn} \ {ai, bi}
)

.

We compound the graphs Q1, . . . , Qn to blocks, where we define three of them:
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a1 a2 an

c

bnb1

d

b2

p

q

b2 bn

d

a2 an1ab1

c z

Figure 3: Depicted on the upper part is a graph type, where vertices c and d are connected by
a chordless path of arbitrary length. The graph type is used for the construction of graphs F
and H. The lower part of the figure depicts a graph, that we call Q in the construction of F .

a) middle block

join Qi and Qi+1 by adding the edge between vertex d of Qi and vertex c of Qi+1, 1 ≤ i < n

b) start block

obtained from middle block by deleting all (remaining) vertices a2, . . . , an, b2, . . . , bn in
Q2, . . . , Qn

c) end block

obtained from middle block by deleting all (remaining) vertices a1, . . . , an−1, b1, . . . , bn−1

in Q1, . . . , Qn−1.

Let B1 and Bn be respectively a start and an end block, and let B2, . . . , Bn−1 be n − 2 copies
of the middle block. We denote by cml , zml , dml the vertices c, z, d, respectively, of Qm in
block Bl. Let P = P8n3+1 be a chordless path on 8n3 + 1 vertices. One vertex of degree 1 of P
is called start vertex, the other one is called end vertex. Obtain F ∗ from B1, . . . , Bn and n − 1
copies P1, . . . , Pn−1 of P first as the disjoint union of B1, . . . , Bn and P1, . . . , Pn−1 and second
adding the edge between vertex dni and the start vertex of Pi and the edge between the end
vertex of Pi and vertex c1i+1 for all 1 ≤ i < n. For later arguments, it is important to observe
that F ∗ is constructed from a long chordless path (with vertices c11 and dnn as start and end
vertex) by adding vertices, that are adjacent to exactly two adjacent vertices on the path.

We are ready for constructing graph F : F is the disjoint union of F ∗ and Fi,j , Fj,i for every
edge uiuj ∈ E(G). Note that the number of connected components of F is 1 + 2|E(G)|, since
every edge of G is related to two connected components of F .

We continue with the construction of graph H. We define two new graphs, S and T :

s) S has a complete graph on six vertices that is connected to a sequence of n triangles; S
is the induced subgraph of the upper graph type depicted in Figure 3 from the complete
graph on the left hand side to vertex c

t) T has a complete graph on seven vertices that is connected to a sequence of n triangles; T
is the induced subgraph of the upper graph type depicted in Figure 3 from the complete
graph on the right hand side to vertex d.
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For each 1 ≤ i ≤ n, we define Si and Ti as follows:

Si =def S \
(

{a1, . . . , an} \ {ai}
)

and Ti =def T \
(

{b1, . . . , bn} \ {bi}
)

.

With theses definitions, H is the disjoint union of S1, . . . , Sn−1 and T2, . . . , Tn and Hi,j , Hj,i for
every uiuj ∈ E(G). Note that the number of connected components of H is 2(n− 1) + 2|E(G)|.

Lemma 4.2. G has a u, v-path that is Hamiltonian if and only if H is isomorphic to an induced

subgraph of F .

Proof. Due to space restrictions, we only show one direction of the claim. Let R be the chord-
less c11, d

n
n-path in F ∗. Assume that H is isomorphic to an induced subgraph of F ; let ϕ be such

an isomorphism. Since R contains less than 8n4 vertices, there are at most n − 1 pairs (i, j)
such that ϕ maps vertices of Hi,j to vertices of F ∗. Let J be the set of these pairs (i, j).
Consider S1, . . . , Sn−1, T2, . . . , Tn of H. Each of these graphs contains a complete graph on six
vertices, and the largest clique of F ∗ has size 5. So, for each X ∈ {S1, . . . , Sn−1, T2, . . . , Tn},
there is a pair i, j such that ϕ maps the vertices of X to vertices of Fi,j . There is no pair i′, j′

such that Hi′,j′ is mapped to Fi,j , since one of the two large cliques of Fi,j is already occu-
pied by vertices of X. Since every Fi,j contains exactly two large cliques, at most two graphs
from {S1, . . . , Sn−1, T2, . . . , Tn} can be mapped to the same Fi,j . By the upper bound on the
cardinality of J , there exist 2|E(G)| − (n − 1) pairs (i′, j′) such that Hi′,j′ is mapped to Fi,j .
Thus, n− 1 pairs remain for components S1, . . . , Sn−1, T2, . . . , Tn of H. Since T2, . . . , Tn require
a complete graph on seven vertices each, the n − 1 graphs are mapped to pairwise different
connected components of F , and therefore, also S1, . . . , Sn−1 are mapped to pairwise different
connected components of F .

Denote by V (R) the set of vertices on R. Let ≺ be the canonical ordering over V (R) where
c11 ≺ dnn. Let (i, j) ∈ J . Assume that ϕ does not map q of Hi,j to a vertex on R. Since ϕ(q)
belongs to a clique of size 5 of F ∗ and since every clique of F ∗ has size at most 5, a true twin
of q is mapped to a vertex on R. Swapping the mapping for these two vertices results in an
isomorphism from H to an induced subgraph of F that maps q to a vertex on R. It is not
difficult to see that all vertices on the p, q-path of Hi,j except for p must be mapped to a vertex
on R by ϕ. If p is not mapped to a vertex from V (R) but a true twin of p is then we apply
the same swapping operation and conclude that we can assume for ϕ that all vertices of the
p, q-path are mapped to vertices from V (R). Otherwise, p is mapped to a vertex from a clique
of size 5 in F ∗, and by the structure of Q, all neighbours of p must be mapped to vertices of
the same clique of size 5. It can be shown that this is not possible. We conclude that ϕ(p) is a
neighbour of a z-vertex in a maximal clique of size 4 and ϕ(q) is a neighbour of a z-vertex in a
maximal clique of size 5 and that ϕ(p) ≺ ϕ(q).

It follows from the above result that no vertex of H is mapped to any vertex x of F ∗ with
c11 4 x 4 z1

1 or znn 4 x 4 dnn. Let p1, . . . , pn−1 and q1, . . . , qn−1 be the p- and q-vertices of the
Hi,j with (i, j) ∈ J where ϕ(p1) ≺ · · · ≺ ϕ(pn−1) and ϕ(q1) ≺ · · · ≺ ϕ(qn−1). With the above
results, it holds that z1

1 ≺ ϕ(p1) ≺ ϕ(q1) ≺ ϕ(p2) ≺ · · · ≺ ϕ(qn−1) ≺ znn . Remember that there
is a vertex z for every 1 ≤ i ≤ n− 2 such that ϕ(qi) ≺ z ≺ ϕ(pi+1). We determine the distance
between ϕ(p1) and ϕ(qn−1). For this, we need to consider the pairs in J . Due to the structure
of S1, . . . , Sn−1, T2, . . . , Tn, it follows that

{i : (i, j) ∈ J } = {1, . . . , n− 1} and {j : (i, j) ∈ J } = {2, . . . , n} .
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Then,
∑

(i,j)∈J j− i = n−1. For every 1 ≤ i ≤ n, the distance between ϕ(pi) and ϕ(qi) is equal
to the distance between pi and qi, which sums up to

(n− 1)(8n3 + n(2n+ 5) − 1) + (n− 1)(2n+ 5) = 8n4 − 6n3 + 5n2 − 3n− 4 .

Since ϕ(qi) and ϕ(pi+1) are at distance at least 2, it follows for the distance between ϕ(p1) and
ϕ(qn−1):

(8n4 − 6n3 + 5n2 − 3n− 4) + 2(n− 2) = 8n4 − 6n3 + 5n2 − n− 8 .

Since the distances between c11 and ϕ(p1) and between ϕ(qn−1) and dnn are equal and at least
n+ 3, it follows that the distance between ϕ(p1) and ϕ(qn−1) is at most

(8n4 − 6n3 + 5n2 + n− 2) − 2(n+ 3) = 8n4 − 6n3 + 5n2 − n− 8 ,

where the first number is the distance between c11 and dnn. With the above calculated lower
bound on the distance between ϕ(p1) and ϕ(qn−1), we conclude that the two bounds match.
Furthermore, the distance between ϕ(qi) and ϕ(pi+1) for every 1 ≤ i ≤ n − 2 is exactly 2;
in particular, qi and pi+1 are neighbours of a z-vertex. Let (si, ti) be the pair in J such
that pi, qi are the vertices of Hsi,ti . Let 1 ≤ i ≤ n − 1 and let zml be the vertex between
ϕ(qi) and ϕ(pi+1). It holds that zml belongs to the copy of Qm in block l. So, due to the
definition of Qm, it contains vertices am and bm and it does not contain any of the vertices from
{a1, . . . , an, b1, . . . , bn}\{am, bm}. It follows from the definition of Hsi,ti and Hsi+1,ti+1 that Hsi,ti

contains bm and Hsi+1,ti+1 contains am, and this means that ti = si+1. Since the start block
contains only a1, b1 in Q1 and since the end block contains only an, bn in Qn, it follows that s1 = 1
and tn−1 = n. Due to the construction of H, G contains the edges u1ut1 , us2ut2 , . . . , usn−1un,
which means that G contains a u1, un-path that is Hamiltonian.

Theorem 4.3. Induced Subgraph Isomorphism is NP-complete when both input graphs are

proper interval.

Proof. NP-completeness of the problem follows from the NP-completeness of Fixed Hamilto-

nian Path due to Theorem 4.1 and the result of Lemma 4.2. Note that all constructed graphs
are indeed proper interval graphs, since they are claw-free interval graphs. Furthermore, the
defined graphs can be constructed in polynomial time.

As a final remark, we want to point out that we can make F connected without changing more
of the construction of F and H. We would modify F by connecting the connected components
of F by chordless paths of length 8n3 +2n(2n+5) = 8n3 +4n2 +10n. Thus, ISI is NP-complete
even when input graph G is connected proper interval.

5 Conclusion

Concluding from our results, we can summarise the knowledge on the tractability of Induced

Subgraph Isomorphism when input graph G is an interval graph as follows:

• If H is interval, it is NP-complete and W [1]-hard ([10]).

• If H is proper interval, it is NP-complete and fixed parameter tractable (this paper).

• If H is connected proper interval, it is polynomial-time solvable (this paper).
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We would like to conclude with a couple of questions:

• What is the computational complexity of ISI when G is a chordal graph and H is a
connected proper interval graph?

• For which subclasses C of proper interval graphs does ISI become polynomial-time solvable
when G is interval and H is disconnected and belongs to C ?
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Appendix

Proof of Lemma 3.3. Let σ be a preference interval ordering related to A , and let τ be a
preference interval ordering related to B. Let G′ be an induced subgraph of G. Let σ′′ be the
restriction of σ to the vertices of G′, and let σ′ be a preference interval ordering for (G′, σ′′).
Assume that H is (σ′, τ)-isomorphic to G′. We apply Lemma 3.1 and obtain that there is a
mapping ψ : {1, . . . , l} → {1, . . . , k} such that ϕ(Bl) ⊆ Aψ(l) and ϕ(Bi \Bi+1) ⊆ Aψ(i) \Aψ(i+1)

for every 1 ≤ i < l and ψ(1) < · · · < ψ(l). The former properties follow from the result of
the lemma, the latter property follows from the restriction to (σ′, τ)-isomorphisms. Note also
that this directly implies the correctness of the definition of the lower bounds λ. The task is
to determine ψ. For our algorithm, it will be of importance to note that for any choice of
ψ, G[Aψ(1) ∪ · · · ∪ Aψ(l)] is an interval graph with clique path 〈Aψ(1), . . . , Aψ(l)〉. In particular,
G[Aψ(1)∪· · ·∪Aψ(l)] has exactly l maximal cliques. The work of our algorithm can informally be
described as follows: determine a set of l maximal cliques of G, check whether H is isomorphic
to some induced subgraph, and if not, choose another set of l maximal cliques of G.

For the correctness proof, we consider the two cases. First, let ψ be any increasing mapping
from {1, . . . , l} to {1, . . . , k}, let G′ = G[Aψ(1) ∪ · · · ∪ Aψ(l)], let σ′ be a preference interval
ordering related to 〈Aψ(1), . . . , Aψ(l)〉 and let λ be the lower bound function. If LOIS∗ on
input (G′, H;σ′, τ ;λ) returns the special symbol then, due to the definition of the algorithm, no
vertex of H violates the lower bound condition during the execution of Algorithm LOIS∗, and
thus, H is (σ′, τ)-isomorphic to some induced subgraph of G′ due to Lemma 3.2. It is important
to note that Algorithm LOIS∗ and the lemma are applicable, since H and G′ have the same
number of maximal cliques. This completes one direction of the correctness proof.

For the other direction of the correctness proof, we have to show that our algorithm finds
an isomorphism of the desired form if there exists one. So, let there be integers c1, . . . , cl
satisfying 1 ≤ c1 < · · · < cl ≤ k such that H is (σ′, τ)-isomorphic to some induced subgraph
of G′ = G[Ac1 ∪ · · · ∪ Acl ] where σ′ is a preference interval ordering related to 〈Ac1 , . . . , Acl〉.
Denote by ψe(i) the value of ψ(i) at the end of round e ≥ 1 of the loop of the main procedure.
It is not difficult to see that ψe(1) < · · · < ψe(l) for every e ≥ 1. Due to the initialization step,
it is clear that ψ1(i) ≤ ci for every 1 ≤ i ≤ l. Now, consider an arbitrary round e + 1 of the
loop of the main procedure, and assume that ψe(i) ≤ ci for every 1 ≤ i ≤ l. Suppose that there
is 1 ≤ i ≤ l such that ci < ψe+1(i). Since the algorithm did not terminate after round e of
the loop, LOIS∗ did not return the special symbol, but a vertex y of H. Let m be such that
y ∈ Bm \ Bm+1. From the definition of Subroutine initialize, it follows that cm < ψe+1(m),
and therefore, ψe(m) = cm. We have to distinguish between the two cases, why y was returned.
If LOIS∗ failed already during the initialization step then Aψe(m) \ Aψe(m+1) does not contain
enough vertices to accommodate the vertices from Bm \Bm+1. This contradicts the arguments
of the first paragraph of the proof. So, LOIS∗ fails during a push operation. Let u, v be the
vertex pair of H for which the push operation in LOIS∗ was called. Remember that u = y or
v = y. Let ϕ be as before calling push in LOIS∗. Due to the condition of the main while loop
of LOIS∗, it holds that uv ∈ E(H) if and only if ϕ(u)ϕ(v) 6∈ E(G′). We assume u ≺τ v. Let
b and b′ be such that ϕ(u) ∈ Aψe(b) \ Aψe(b+1) and ϕ(v) ∈ Aψe(b′) \ Aψe(b′+1). We distinguish
between the two cases where the index of u or v was the parameter of push. As the first case,
assume that uv 6∈ E(H). Then, push was called with the index of u as parameter, and thus,
y = v and m is such that v ∈ Bm \Bm+1. This means that ψe(b′) = cm. It is the fact that ϕ(u)
is “rightmost possible” in τ , which also means, it is “rightmost possible” in Aψe(b) \ Aψe(b+1).
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Since ϕ(u) and ϕ(v) are adjacent in G, ϕ(v) is adjacent to every vertex in Aψe(b) ∪ · · · ∪Acm , in
particular, ϕ(v) is adjacent to every vertex in Acb , which yields a contradiction.

As the second case, assume that uv ∈ E(H). Then, push was called with the index of v as
parameter, and thus, y = u and m is such that u ∈ Bm \ Bm+1. This means that ψe(b) = cm
and ϕ(v) is “leftmost possible” in Aψe(b′) \Aψe(b′+1). And since ϕ(v) is not adjacent to ϕ(u) in
G, ϕ(v) is not adjacent to any vertex in (A1 ∪ · · · ∪ Aψe(b)) \ Aψe(b+1). Since ψe(b′) ≤ cb′ , this
yields a contradiction.

Since we have shown contradictions in all cases, it follows that the algorithm indeed finds a
correct set of l maximal cliques of G to satisfy the claim. This completes the proof.
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