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Abstract
We provide an implementation of the Data Encryption Standard

highly optimized for the Intel Pentium processor.
Our implementation improves DES encryption speed by more

than 7.9% versus the best known previous result on the Pentium.
Key setup speed is improved by more than 19%. This is achieved
without increasing the size of lookup tables; a total of 4 kilobytes of
lookup tables are used by our implementation.
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Chapter 1

Introduction

Since its acceptance as a standard by the National Bureau of Standards in 1977,
a lot of e�ort has been spent on optimizing implementations of the Data En-
cryption Standard (DES) [1]. This thesis provides one more contribution to this
e�ort, detailing an assembly language implementation of the DES speci�cally
optimized for the Intel Pentium processor.

We start by giving an introduction to how the DES works, followed by an
introduction to the architecture of the Pentium. Then we present the details of
the di�erent components of the DES, and how to make them fast in software,
given the speci�c strengths and weaknesses of the Pentium.

Introduced in 1993, the Pentium is a member of the popular 'x86' family
of processors, and it was the �rst member of the family having the ability to
execute more than one instruction per clock cycle. Its number of registers (the
fastest kind of storage available) is very limited, and there are a lot of limitations
to consider when attempting to produce an optimal program for this processor.

We have chosen to use assembly language for our implementation. This way
we are able to take advantage of all available integer registers and special features
of the processor. We are then also able to explicitly schedule all instructions in
the encryption loop for maximum speed.





Chapter 1. Introduction





Chapter 2

The Data Encryption

Algorithm

This chapter provides an overview of the encryption and key setup algorithms
of the Data Encryption Standard. Details are left for the more detailed analysis
in Chapter 4.

2.1 Encryption

DES encrypts data in blocks of 64 bits. It has three components; the initial
permutation (IP), the round function shown in Figure 2.1, and the inverse of
IP, also known as the �nal permutation (FP). The round function is applied 16
times, each time with a di�erent 48-bit round key.

R i−1L i−1

R iL i

iKf

+

Figure 2.1: DES round function

The structure of the cipher, known as a Feistel structure, is shown in Figure
2.2. The '+' operation used is bitwise addition modulo 2, the 'xor' operation.
Note the lack of a left/right swap after the last round. Combined with revers-
ing the round key sequence, this allows the same algorithm to be applied for
decryption.
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Chapter 2. The Data Encryption Algorithm

The `f ' function of Figure 2.3 is where the bulk of the work is done. First
the 32-bit Ri−1 is expanded to 48 bits by making two copies of half its bits.
Then this value is xor'ed with the round key Ki. The result is split into 8 6-bit
values and fed into 8 di�erent S-boxes. Each S-box maps a 6-bit input to a 4-bit
output. These outputs are concatenated, and then these 32 bits are permuted
by the permutation function P.

Initial Permutation

 f

K 1

 f

K 16

 f

K 2..15

 Final Permutation

Output

L0 R 0

R16 L 16

L15 R 15

L1 R 1

Input

Figure 2.2: Structure of DES encryption

2.2 Key Setup

DES keys have 56 key bits and 8 parity bits. The parity bits will be ignored by
our implementation. The `Permuted choice 1' (PC-1) transform drops the parity
bits and permutes the rest. Each round key is then generated by one application
of the cyclic left shift (LSi) and `Permuted choice 2' (PC-2) as shown in Figure
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2.2. Key Setup

+

E

Ri−1 Ki

1 2 3 4 5 6 7 8S S S S S S SS

P

Figure 2.3: DES f function

2.4.
The PC-2 transform is similar to PC-1 in that it picks and permutes 48 out

of 56 bits. The LSi function cyclically shifts each half of its input bits 1 or 2
positions left depending on the round number.
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PC−2

PC−2

PC−2

K

K

K

LS LS

LS LS

LS LS

LS LS

1616

2 2

11

0 0

1 1

22

16 16

33

16

2

1

DC

DC

DC

DC

PC−1

K

Figure 2.4: DES key setup
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Chapter 3

The Pentium Processor

For the purpose of describing our implementation of the DEA speci�cally opti-
mized for the Pentium, this section is devoted to a somewhat simpli�ed overview
of the processor, with more details on aspects relevant to the implementation
of the DES.

3.1 Registers

Since the 80386, x86 processors have had 8 `general-purpose' 32-bit registers.
Four of these registers provide special access to their lower half, both as one
16-bit register, and as two 8-bit registers. Accessing 16-bit registers requires
a pre�x, and incurs a 1-cycle penalty in 32-bit mode, but access to the 8-bit
registers has no penalty on Pentium (`Classic' or `P5') processors. Hence the 8-
bit registers provide a fast alternative to the sequence of instructions that would
otherwise be used to read individual bytes within a word. Note that writing to
a partial register does not alter the rest of the full register.

The stack pointer (ESP) register, although counted among the general-
purpose registers, should not be used for other purposes. That leaves us 7
registers for computations, with 8-bit partial registers in four of them.

AH

BH

CH

DH

AL

BL

CL

DL

BP

SI

DI

SP

AX

BX

CX

DX

16−bit 32−bit

EAX

EBX

ECX

EDX

0781531 16

ESI

EDI

ESP

EBP

Figure 3.1: Pentium register names
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Chapter 3. The Pentium Processor

3.2 Caches

The Pentium has two internal �rst-level (L1) 8-kilobyte caches, one for instruc-
tions and one for data. Cache line length is 32 bytes, and cache lines in the data
cache are spread across 8 banks with 4 bytes in each bank. The data cache sup-
ports two simultaneous accesses, but only to di�erent banks. Load latency on
a cache hit is just 1 clock cycle. Unaligned accesses (accessing two neighboring
banks in one operation) are at least 3 cycles slower, but are also easily avoided.

The L1 caches are 2-way set associative, meaning that every location in
memory maps to a set of 2 lines in the cache. There are 128 such sets. When-
ever the processor performs a load operation, it �rst looks for the data in the
corresponding set. If the data is not there, the least recently used of the two
lines is replaced with the line from o�-chip memory (L2 cache or actual RAM)
containing the requested data.

Level 2 cache for the Pentium is external to the chip, and has a much longer
latency (access time) than level 1. The minimum penalty for an L1 cache miss
is 4 clock cycles. We therefore do our best to keep all the data we need in L1
cache during encryption.

When writing to an uncached address, the Pentium does not load the cor-
responding cache line into L1, but instead writes directly to L2 or RAM. We
will use this to avoid removing existing contents from the cache. When we want
writes to go to the cache, we will �rst load from their cache lines.

3.3 Pipelining

The Pentium divides instruction execution in two pipelines, called U and V,
and �ve pipeline stages. The stages are prefetch (PF), Decode 1 (D1), Decode
2 (D2), Execute (EX), and Writeback (WB). Instructions are always executed
in program order, unlike most newer members of the x86 family.

WB EX D2 D1

WB EX D2 D1

 Buffer External bus

 Buffer External bus

 PF

V−pipe

U pipe
Write

Write

Figure 3.2: Pentium pipeline

Prefetch (PF)

This stage takes care of loading instructions from cache or memory. Since the
Pentium has separate code and data caches, prefetch from the instruction cache
does not con�ict with load and store instructions.
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3.3. Pipelining

Prefetching reads memory sequentially until interrupted by branch (jump)
instructions. Branches are predicted taken or not based on their previous his-
tory.

We do not need a thorough analysis of the prediction algorithm for this
implementation, but observe that simple patterns are correctly predicted until
they are broken. A thorough explanation of branch prediction can be found in
Agner Fog's excellent optimization guide [3].

Prefetching is able to continue past a correctly predicted branch instruction,
continuously feeding instructions to the next stage.

Decode 1 (D1)

Here two parallel decoders attempt to decode two instructions and pass them
on to the next stage. There are a number of limitations on which instructions
may be executed in parallel. Pairability of the instructions we have used to
implement the DES is presented in Section 3.4. When a pair of instructions
have been selected for simultaneous execution, they pass through the pipeline
in lockstep. Each stage may only contain one instruction pair, and they may
only pass from one stage to the next when they are both ready to do so.

Decode 2 (D2)

At this stage memory addresses are calculated. Addresses are generally of the
form 2na+ b+ c, where a and b are registers, c is a constant, and n is 0, 1, 2, or
3. a is called the index register, b is the base register, and c is the displacement.
a and b may be the same register.

Addresses are calculated `for free', provided the operands are ready when
the instruction reaches the D2 stage. Otherwise the instruction will stall in this
stage until operands are ready, usually one clock cycle. This is called an Address
Generation Interlock (AGI) stall.

Execute (EX)

The execute stage performs both memory access and ALU operations. If an
instruction speci�es both kinds, its parts are executed in successive cycles in
this stage, stalling instructions in earlier stages of the pipeline.

Writeback (WB)

This is the �nal stage, where instruction results are commited to processor state.

Write bu�ers

There is one write bu�er connected to each pipe, allowing write instructions to
complete in one cycle, even when the referenced memory is not contained in the
L1 cache. Only one write miss may be bu�ered per pipeline, meaning that a
write instruction following a write miss in the same pipe will have to wait (it
stalls the pipeline) until the preceding write operation is completed.





Chapter 3. The Pentium Processor

Abbreviation Operand type
r8 8-bit register
r32 32-bit register
m32 reference to a 32-bit value in memory
imm8 8-bit immediate (constant value)
imm32 32-bit immediate

Table 3.1: Instruction operand types

3.4 Instructions

Tables 3.4 through 3.6 list the instructions used to implement the DES. Abbre-
viations are explained in tables 3.1 and 3.2. Note that `Intel syntax' has been
used, with the target (output) register as �rst operand to instructions.

U U pipe only
V V pipe only
UV any pipe
NP not pairable

Table 3.2: Instruction pairability abbreviations

Instruction pairing is limited both by the pairability of consecutive instruc-
tions and by dependencies between them. An instruction may not be issued
to the V pipe in parallel with another one in the U pipe if it reads or writes a
register written to by the U pipe instruction. There are only a few exceptions to
this rule, some of which have been used in this implementation. They are listed
in Table 3.3. Jcc is a conditional jump, where `cc' is replaced by a condition
code.

Condition codes refer to speci�c (combinations of) bits in the �ags register,
like e.g. the zero �ag, which is set if the result of an arithmetic operation is
zero. We will only be using the zero �ag in this implementation, to check for
a remaining block count of zero. So the conditional jumps we will be using are
`jz' (jump if zero) and `jnz' (jump if not zero).

U V
test jcc
push push
pop pop

Table 3.3: Special instruction pairings

Some instructions have pre�x bytes, and require an extra cycle in the D1
stage per pre�x. These instructions are also not pairable. There is but one
exception; the conditional near (32-bit displacement) jump has a pre�x, however
this incurs no pre�x penalty, and it is pairable in the V pipe.

Note that all instructions in Table 3.4 are simple (not e.g. the load-execute
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3.4. Instructions

operation operands explanation pairability
mov r32, m32 Load UV
mov r32, r32 Copy UV
mov r8, r8 Copy (partial) UV
and r32, imm32 Bitwise and UV
xor r32, r32 Bitwise xor UV
shl/shr r32, imm8 Shift left/right U
rol/ror r32, 1 Rotate left/right U
Table 3.4: Instructions used by the encryption core

kind of instructions) and pairable. Provided any memory needed is in L1 cache,
it is possible to execute a pair of these instructions each cycle.

operation operands explanation pairability
rol r32, imm8 Rotate left NP
ror r32, imm8 Rotate right NP
mov m32, r32 Store UV
push r32 Push register to stack UV
pop r32 Pop register from stack UV
inc r32 Increment UV
dec r32 Decrement UV
lea r32, m32 Load e�ective address UV
xor r32, imm8 Bitwise xor UV
add r32, imm32 Add UV
add r32, imm8 Add UV
test r32, r32 And (sets �ags only) UV
jz m32 Jump if zero V
jnz m32 Jump if not zero V
ret Return from function call NP
Table 3.5: Additional instructions used by the encryption function

The lea instruction (load e�ective address) uses the D2 pipeline stage to
calculate an address, and then stores that address in its target register. No
memory access is performed. This instruction can be used to perform a multiway
add (constant + register + scaled register) in combination with a copy (the
target register is freely chosen).

Only the U pipe is able to execute shift and rotate instructions, and multi-bit
rotate instructions are not pairable. This limits our freedom in scheduling these
instructions. Some places we will replace 2-bit rotates with two 1-bit rotates,
since this allows us to run other instructions in the V pipe.

Two `xor r32,m32' instructions may be paired and execute e�ciently in par-
allel, provided they don't access the same cache bank. Their combined execution
time is 2 cycles. When paired with a simple instruction, the execution time is
still 2 cycles. This is called an imperfect pair.

All instructions used here are compatible with the 80486 and later x86 pro-
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Chapter 3. The Pentium Processor

operation operands explanation pairability comment
bswap r32 Reverse byte order NP pre�x
and r32, imm8 Bitwise and UV
and r8, imm8 Bitwise and UV
xor r8, r8 Bitwise xor UV
shl r8, imm8 Shift left U
xor r32, m32 Bitwise xor UV 2 cycles

Table 3.6: Additional instructions used by the key setup core

cessors. It is also possible to replace the bswap instruction, gaining compatibility
with the 80386.
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Chapter 4

Implementing the DEA

4.1 Bit Ordering

The permutations employed by the cipher are described using bit numbers. The
numbering used in the standards documents is enumerating the bits from left
to right, starting at 1. When displayed as a matrix, row major order is used.
This is best illustrated by the identity transform shown in Table 4.1.

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64

Table 4.1: Bit numbers

The Pentium processor reads its memory using the opposite byte (row) order,
giving the bit number matrix shown in Table 4.2. We have here divided the
matrix in upper and lower halves. On the Pentium we need one 32-bit register
to store each half, and hence swapping the halves amounts to swapping the roles
of those two registers.

4.2 Encryption

We now turn to a more detailed description of the various components of DES
encryption, with the resulting assembly language code performing them.

4.2.1 Initial and �nal permutations

The initial permutation of the DEA has a very simple structure, and can be
performed as a series of bit block swaps known as Hoey's Initial Permutation
Algorithm. This algorithm is shown in Table 4.4. Note that there is also an
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Chapter 4. Implementing the DEA

57 58 59 60 61 62 63 64
49 50 51 52 53 54 55 56
41 42 43 44 45 46 47 48
33 34 35 36 37 38 39 40
25 26 27 28 29 30 31 32
17 18 19 20 21 22 23 24
9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8

Table 4.2: Input/output bit ordering on Pentium

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

Table 4.3: Initial permutation

implicit swap of the upper and lower halves at the beginning. To optimize
the algorithm for Pentium, Richard Outerbridge's C code implementing the
algorithm was analyzed, providing a set of bit exchanges between the two halves
of the input block. It was then optimized a little further and implemented as
shown in Table 4.4. Though not the same implementation, the idea for how to
code each swap came from Eric Young's libdes. IP−1 is applied by performing
the swaps of IP in reverse order.

Table 4.5 shows the implementation of IP with adjacent rotate instructions
merged, as well as how they will be paired on the processor. In cycles 3,7,11,15
and 19, the one instruction listed is capable of running in either pipe. In cycle
21, the V pipe is available for the code following IP, i.e. the round function.

4.2.2 Round Function

The round function will be executed 16 times for each block encrypted. This
makes it extra important to optimize it as much as possible.

Expansion Function (E)
This function expands a 32-bit input value to a 48-bit output by duplicating half
of the bits, as shown in the table. Only the two center columns have unique bit
numbers. Note that the bits from the ends of the input (bits 1 and 32) appear
at both ends of the output value.

The structure of E is easy to spot, and is also possible to take advantage of
in the implementation, as is shown in Figure 4.1. Each half of the output can
be computed from the input simply by rotating the input left or right by 1 bit
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4.2. Encryption

rol esi, 4

mov eax, edi

xor edi, esi

and edi, 0xf0f0f0f0

xor esi, edi

xor edi, eax

ror esi, 4

rol esi, 16

mov eax, edi

xor edi, esi

and edi, 0xffff0000

xor esi, edi

xor edi, eax

ror esi, 16

rol esi, 2

mov eax, edi

xor edi, esi

and edi, 0xcccccccc

xor esi, edi

xor edi, eax

ror esi, 2

rol esi, 8

mov eax, edi

xor edi, esi

and edi, 0xff00ff00

xor esi, edi

xor edi, eax

ror esi, 8

rol esi, 1

mov eax, edi

xor edi, esi

and edi, 0xaaaaaaaa

xor esi, edi

xor edi, eax

ror esi, 1

Table 4.4: Decomposition of IP
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Chapter 4. Implementing the DEA

Cycle U pipe V pipe
1 rol esi, 4

2 mov eax, edi xor edi, esi

3 and edi, 0xf0f0f0f0

4 xor esi, edi xor edi, eax

5 rol esi, 12

6 mov eax, edi xor edi, esi

7 and edi, 0xffff0000

8 xor esi, edi xor edi, eax

9 ror esi, 14

10 mov eax, edi xor edi, esi

11 and edi, 0xcccccccc

12 xor esi, edi xor edi, eax

13 rol esi, 6

14 mov eax, edi xor edi, esi

15 and edi, 0xff00ff00

16 xor esi, edi xor edi, eax

17 ror esi, 7

18 mov eax, edi xor edi, esi

19 and edi, 0xaaaaaaaa

20 xor esi, edi xor edi, eax

21 ror esi, 1

Table 4.5: DES initial permutation implementation

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Table 4.6: The expansion function E
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4.2. Encryption

and then zeroing the upper or lower bits of each byte, indicated with dark gray
shading.

The upper output word contains the rows that (after being xor'ed with the
round key) are input to odd-numbered s-boxes. The lower word contains inputs
for the even-numbered s-boxes. This requires some extra work in the key setup,
but reduces the work needed for encryption; E is actually reduced to only 4
instructions. These are all marked with an E in the note column of Table 4.9.

8 94 5 6 7

16 1712 13 14 15

24 2520 21 22 23

28 29 30 31 32 1

2 3

10 11

18 19

26 27

24 25 26 27 28 29

16 17 18 19 20 21

8 9 10 11 12 13

532 1 2 3 4 6 7

14 15

22 23

30 31
8 9 10 11 12 13

16 17 18 19 20 21

24 25 26 27 28 29

28 29 30 31 32 1

24 2520 21 22 23

16 1712 13 14 15

8 94 5 6 7

32 1 2 3 4 5

Figure 4.1: Structure of E

Key Mix
The next step after E is an xor with 48 key bits, implemented using two 32-bit
xor's. As noted above, the key setup function must place key bits so they �t
the structure of the encryption. The key mix instructions are marked with a K
in Table 4.9.

S-boxes and the Permutation Function (P)

16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9
19 13 30 6 22 11 4 25

Table 4.7: The permutation P

The S-boxes, being the non-linear components of DES, don't have easily
exploitable structures. Furthermore, the permutation P following the S-box
lookups has no obvious regular structure.

But then, we can combine an S-box with P in a single table lookup providing
32 output bits. That is, in one single load operation, we can both perform an
S-box lookup and position its bits according to P.

To ensure maximum speed of the table lookups, the tables must be small
enough to �t well inside L1 cache. We have 8 s-boxes with 64 (26) possible input
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Chapter 4. Implementing the DEA

values, and 32-bit (4 bytes) outputs. This is 2 kilobytes, which �ts very well
inside the Pentium's 8 kilobyte L1 data cache.

One alternative would be to combine s-boxes in pairs, and do one lookup for
each pair. Then we would have 4 s-boxes with 4096 (212) 4-byte elements per
table, or 64 kilobytes. Given the high latency of level 2 cache, this would be
ine�cient on the Pentium.

Implementing f

ror

ror

K odd

S5

S3

S1

S7

K even

S2

S4

S6

S8

R <<< 1

and

xor

and

xor

xor

f(R,K)<<<1

Figure 4.2: Structure of the DES f function

Figure 4.2 shows the structure of f in our implementation. Shaded boxes
represent unused bits. Note that Ri is rotated one bit left, allowing us to
complete one half of E earlier than the other, and start table lookups for the
even-numbered s-boxes. Since we need Ri rotated one bit right for the other
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4.2. Encryption

half, this also means we will now have to do a rotation two bits right. This
turned out to be necessary to do in two separate instructions, so we could pair
them with other instructions.

The output function also requires that the output halves from IP are rotated
one bit left, and IP−1 must rotate its inputs one bit right. We make IP sat-
isfy this requirement simply by changing the last instruction in Table 4.5 from
`ror esi, 1' to `rol edi, 1'.

The dependency graph constructed to aid in the scheduling of the round
function is shown in Figure 4.3. Apart from the shift instructions, you can
easily see the similarity between this and each half of the result in Figure 4.2.
`Movb' in the �gure corresponds to a `mov r8,r8' instruction.

and

shr

load

load load

load

xor

movb movb

movbmovb

(ror)

load

xor

Figure 4.3: Halfround dependency graph

To improve readability and ease debugging, the Pentium's registers have
been assigned �xed roles in the round function implementation. The assignment
chosen is shown in Table 4.8. This is but one of many possible choices; within
this function, ESI/EDI/EBP are interchangeable, as are EAX/EBX/ECX/EDX.
The only limitation is the need to match the choices made for IP/IP−1.

ESI R0, L1, R2, . . .
EDI L0, R1, L2, . . .
EAX even half calculations
EDX odd half calculations
CL S-box input value (rest of ECX zeroed)
BL S-box input value (rest of EBX zeroed)

EBP S-box output (memory load) bu�er
Table 4.8: Register roles in the round function

The code implementing the round function is shown in Table 4.9. We start
counting cycles at 0, since the single V-pipe instruction there will always be
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paired with the preceding instruction, whether following IP or the round func-
tion itself.

Cycle Pipe Odd half Even half
0 V mov eax, [Ki,even] K
1 U mov edx, [Ki,odd] K

V xor eax, R K
2 U xor edx, R K

V and eax,0x3f3f3f3f E
3 U mov bl, al

V mov cl, ah

4 U shr eax, 16

V and edx,0xf3f3f3f3 E
5 U ror edx, 1 E

V mov ebp, [S8+4*ebx]

6 U mov bl, al

V xor L, ebp

7 U ror edx, 1 E
V mov ebp, [S6+4*ecx]

8 U mov cl, ah

V xor L, ebp

9 U mov ebp, [S4+4*ebx]

V mov bl, dl

10 U xor L, ebp

V mov ebp, [S2+4*ecx]

11 U mov cl, dh

V xor L, ebp

12 U shr edx, 16

V mov ebp, [S7+ebx]

13 U xor L, ebp

V mov bl, dl

14 U mov ebp, [S5+ecx]

V mov cl, dh

15 U xor L, ebp

V mov ebp, [S3+ebx]

16 U xor L, ebp

V mov ebp, [S1+ecx]

17 U xor L, ebp

Table 4.9: DES round function implementation

4.3 Key Schedule

4.3.1 Permuted Choice 1 (PC-1)

PC-1 drops the parity bits (numbered 8, 16, . . . , 64) from the key, leaving only
the 56 `real' key bits. This function, like the IP, has a very regular structure,
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4.3. Key Schedule

EDX Ci (left half)
EAX Di (right half)
ECX Lookup index
EBX Lookup index

Table 4.10: Primary register roles in the key setup function

57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
Table 4.11: Permuted Choice 1

which is easy to see when we expand each half to 32 bits by adding 4 unused
bits at their ends (shown in Table 4.12). It is very similar to the input matrix
transposed, as is evident in our decomposition of this permutation, shown in
Figure 4.4.

57 49 41 33 25 17 9 1
58 50 42 34 26 18 10 2
59 51 43 35 27 19 11 3
60 52 44 36 - - - -
63 55 47 39 31 23 15 7
62 54 46 38 30 22 14 6
61 53 45 37 29 21 13 5
28 20 12 4 - - - -

Table 4.12: Permuted Choice 1, rearranged version

The �rst block swap is performed as shown in Table 4.13, using a deliberate
imbalance preparing for the next parts. Next, we have two parts where we swap
8 bits from each register with 8 other bits from the same register. Table 4.14
contains an example from the actual code, swapping blocks of 2x2 bits within
EAX using ECX as temporary storage. The previous imbalance is exploited by
performing each half of the second and third swaps out of sync by two cycles,
allowing us to easily schedule shift instructions for the U pipe.

The last part of our PC-1 contains a swap of two bytes, which is performed
by �rst shifting the lower half one byte `down' (8 bits right), then reversing its
byte order. The remaining part consists of simple operations on the lower bytes
of each half.
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Cycle U pipe V pipe
1 mov ecx, edx mov ebx, eax

2 shl ecx, 4 and eax, 0x0f0f0f0f

3 shr ebx, 4 and ecx, 0xf0f0f0f0

4 xor eax, ecx and edx, 0xf0f0f0f0

5 and ebx, 0x0f0f0f0f

6 xor edx, ebx

Table 4.13: PC-1, �rst swap

mov ecx, eax

shl ecx, 14

xor ecx, eax

and ecx, 0x33330000

xor eax, ecx

shr ecx, 14

xor eax, ecx

Table 4.14: PC-1, example of small swap

0

Figure 4.4: Decomposition of PC-1
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Cycle U pipe V pipe
1 mov ecx, edx mov ebx, eax

2 shl ecx, 4 and eax, 0x0f0f0f0f

3 shr ebx, 4 and ecx, 0xf0f0f0f0

4 xor eax, ecx and edx, 0xf0f0f0f0

5 mov ecx, eax and ebx, 0x0f0f0f0f

6 shl ecx, 14 xor edx, ebx

7 xor ecx, eax mov ebx, edx

8 shl ebx, 14 and ecx, 0x33330000

9 xor ebx, edx xor eax, ecx

10 shr ecx, 14 and ebx, 0x33330000

11 xor eax, ecx xor edx, ebx

12 shr ebx, 14 mov ecx, eax

13 shl ecx, 7 xor edx, ebx

14 xor ecx, eax mov ebx, edx

15 shl ebx, 7 and ecx, 0x55005500

16 xor ebx, edx xor eax, ecx

17 shr ecx, 7 and ebx, 0x55005500

18 xor eax, ecx xor edx, ebx

19 shr ebx, 7

20 shr eax, 8 xor edx, ebx

22 bswap eax

23 mov al, dl and dl, 0xf0

24 shl al, 4

Table 4.15: PC-1 implementation
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4.3.2 Left Shift (LSi)

LSi performs a cyclic left shift (a rotate) of each 28-bit half of the bits. The
shift count for LSi is 1 for i ∈ {1, 2, 9, 16}, otherwise 2. Figure 4.5 illustrates
the application of LS1 to one 28-bit half placed in a 32-bit register.

Observe that the lea instruction can perform a left shift by up to 3 bits
and write the result to a freely speci�ed register. That is, it can perform a
small left shift and keep the input register unaltered. We use this to make a
left-shifted copy of each input register, and then right-shifting the previously
unaltered inputs. We also remove unwanted bits from the shaded area. Last we
recombine the values. The code for this is given in Tables 4.16 and 4.17 for the
1 and 2-bit shifts.

Figure 4.5: LS1

Cycle U pipe V pipe
1 lea ecx, [eax+eax] lea ebx, [edx+edx]

2 shr edx, 27 and cl, 0xe0

3 shr eax, 27 and bl, 0xe0

4 xor edx, ebx xor eax, ecx

Table 4.16: Implementation of single left shift

Cycle U pipe V pipe
1 lea ecx, [4*eax] lea ebx, [4*edx]

2 shr edx, 26 and cl, 0xc0

3 shr eax, 26 and bl, 0xc0

4 xor edx, ebx xor eax, ecx

Table 4.17: Implementation of double left shift

Running LS1 directly after PC-1, there will be an AGI stall caused by the
lea instruction trying to read EAX before it has been modi�ed by the last
instruction of PC-1. We resolve this using the observing that the output from
PC-1 has all zeros in the shaded areas of the LS1 inputs. This allows us to use
the alternate function show in Table 4.18, with the new instructions highlighted.

4.3.3 Permuted Choice 2 (PC-2)

We can easily see that only numbers ≤ 28 are present in the upper half of PC-2,
and only numbers > 28 in the lower half. This implies that the upper (left) half
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Cycle U pipe V pipe
1 rol eax, 1 lea ebx, [edx+edx]

2 shr edx, 27 mov cl, al
3 shl al, 4 and bl, 0xe0

4 xor edx, ebx xor al, cl
Table 4.18: Alternate implementation of single left shift

of PC-2 only selects bits from the upper half, while the lower half only selects
from the lower half. In other words, the halves are independent of each other.

Attempts at �nding any further useful structure in this function have failed,
and it is therefore implemented using table lookups. The challenge is then to do
the table lookups e�ciently. This was achieved mainly by constructing a very
fast algorithm to rearrange the input bits.

5 24 7 16 6 10 20
18 - 12 3 15 23 1
9 19 2 - 14 22 11
- 13 4 - 17 21 8

47 31 27 48 35 41 -
46 28 - 39 32 25 44
- 37 34 43 29 36 38

45 33 26 42 - 30 40
Table 4.19: Permuted Choice 2 inverted

Table 4.19 shows PC-2 inverted. That is, the number in each bit position
tells where that bit in the input to PC-2 is placed in its output. Table 4.20
shows the inverted PC-2 table expanded with 4 empty positions at the end of
each half, corresponding to the shaded bits in Figure 4.5. We want to arrange
the bits of this table so that there are equally many (6) on each line, with no
spaces (dashes) between them. We also want the resulting rearrangement to
run as e�ciently as possible, since this will be the part of PC-2 preparing for
table lookups.

5 24 7 16 6 10 20 18
- 12 3 15 23 1 9 19
2 - 14 22 11 - 13 4
- 17 21 8 - - - -

47 31 27 48 35 41 - 46
28 - 39 32 25 44 - 37
34 43 29 36 38 45 33 26
42 - 30 40 - - - -
Table 4.20: PC-2 inverted, expanded

The solution we have constructed results in the permutation shown in 4.21.
The shu�ing is the top layer of arrows in Figure 4.6, and empty positions in
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the table correspond to shaded boxes at the top of the �gure.
5 24 7 16 6 10 - -
- 12 3 15 23 1 9 -
- - 14 22 11 19 13 4
2 17 21 8 20 18 - -
- - 47 31 27 48 35 41
- - 46 28 39 32 25 44
- - 37 34 43 29 36 38

45 33 26 42 30 40 - -
Table 4.21: PC-2 inverted, expanded, shu�ed

Our implementation of PC-2 can be divided in the three following parts, as
illustrated in Figure 4.6.
Bit reordering Distribute 24 of the 28 input bits in each half to contiguous

sets of 6 bits, one set in each byte. Bits are not moved from one half to
the other; we want the halves to stay independent to avoid doubling the
table size and number of lookups.

Table lookups Each lookup puts a set of bits in their intended positions,
except for two changes preparing for the next step; the two bytes in the
middle of each half are swapped, and we swap left and right halves of
the right half. That is, byte order 1234 is changed to 1324, and 5678 to
6857. The reason for doing this swap here is that it's only a change to
precomputed tables; there is no runtime cost.

Byte reordering The encryption core divides S-box lookups into one half
using odd-numbered round key bytes, and the other half using even-
numbered bytes. We must put the key bits in corresponding positions,
and we do this by swapping lower halves, and then rotate the right half.
The swapping is done as a series of simple instructions, since this is one
cycle faster than the single instruction accomplishing the same result.

The number of a byte in this context refers to the number of the S-box whose
input it will a�ect in the encryption function.

4.4 Looping

Now that we have all the highly optimized components of the DEA, we must
also consider how to combine them and do real encryption. Speci�cally, we must
be able to load inputs, store outputs, and decide when to stop encrypting. We
must also here ensure we do not waste even a single clock cycle.

As it turns out, we are actually able to add all of this, and still add only one
single clock cycle on top of the encryption time. This is achieved by utilizing
every free instruction slot in the IP and FP transforms for loading, storing and
counting blocks.

This also involves some complex register allocation in our FP implementa-
tion shown in Table 4.25 to ensure we have the registers we need for the loop
construct, shown in Table 4.26.





4.4. Looping

*1 *2 *4 *1 *4 *4 *2 *1

T1 T2 T3 T4 T5 T6 T7 T8

1 3 2 4 6 8 5 7

1 3 5 7 6 8 2 4

1 3 5 7 2 4 6 8

Figure 4.6: The structure of our PC-2 implementation

Cycle Pipe Left half Right half Note
1 U shr eax, 2

V mov ecx, edx

2 U shr ecx, 8

V mov ebx, edx

3 U shr ebx, 22

V and ecx, 0x00000180

4 U shl ch, 2

V mov esi, eax

5 U shr esi, 1

V and ebx, 0x0c

6 U and eax, 0x3f0f7e0c

V and esi, 0x003000f0

7 U and edx, 0xfc7e3b70

V xor eax, esi

8 U xor edx, ecx

V xor ecx, ecx

9 U xor bl, dl

V mov cl, al

Table 4.22: PC-2 implementation, bit reordering
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Cycle Pipe Left half Right half Note
10 U mov esi, [ebp+8*n] Preload
11 U mov esi, [T8+1*ecx]

V mov cl, ah

12 U shr eax, 16

V mov edi, [T4+1*ebx]

13 U xor esi, [T7+2*ecx] 2 cycles
V mov bl, dh

15 U shr edx, 16

V mov cl, al

16 U xor edi, [T3+4*ebx] 2 cycles
V mov bl, dl

18 U shr eax, 8

V mov ecx, [T6+4*ecx]

19 U shr edx, 8

V mov ebx, [T2+2*ebx]

20 U xor esi, ecx

V mov ecx, [T5+4*eax]

21 U xor edi, ebx

V mov ebx, [T1+1*edx]

22 U xor esi, ecx 6857
V xor edi, ebx 1324

Table 4.23: PC-2 implementation, preload & table lookups

Cycle Pipe Left half Right half Note
23 U mov ecx, esi

V xor esi, edi

24 U and esi, 0xffff

25 U xor edi, esi 1357
V xor esi, ecx 6824

26 U rol esi, 16 2468
27 U rol edi, 2

28 U mov [ebp+8*n], esi Store key
V mov [ebp+8*n+4], edi

Table 4.24: PC-2 implementation, byte reordering
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Cycle U pipe V pipe
1 ror esi, 1

2 mov eax, esi xor esi, edi

3 and esi, 0xaaaaaaaa

4 xor eax, esi xor esi, edi

5 rol esi, 7

6 mov edi, eax xor eax, esi

7 mov ebx, esi and eax, 0xff00ff00

8 xor ebx, eax xor edi, eax

9 ror ebx, 6

10 mov eax, edi xor edi, ebx

11 and edi, 0xcccccccc

12 xor ebx, edi xor eax, edi

13 rol ebx, 14

14 mov ebp, eax xor eax, ebx

15 and eax, 0xffff0000

16 xor ebx, eax xor eax, ebp

17 ror ebx, 12

18 mov edx, eax xor eax, ebx

19 and eax, 0xf0f0f0f0

20 xor ebx, eax xor eax, edx

21 ror ebx, 4

Table 4.25: Final Permutation implementation

Instruction Note
inc ecx increment block counter
mov edx, [esp+128] load input pointer
mov esi, [edx+8*(ecx-1)+4] load next input block
mov edi, [edx+8*(ecx-1)+0]
mov ebp, [esp+132] load output pointer
pop ecx load counter, paired with end of last round
test ecx, ecx
jnz near .loop
mov [ebp+8*(ecx-2)+0], eax store output
mov [ebp+8*(ecx-2)+4], ebx
xor ebx, ebx prepare for the round function
push ecx store counter
xor ecx, ecx

Table 4.26: The loop code
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The top block of instructions is merged with FP, while the bottom one is
merged with IP. The test and jnz instructions are paired and run in one clock
cycle.

The round keys are placed on the top of the stack ([esp] to [esp+124]) by the
initialization part of the encryption function. The input and output pointers are
placed at [esp+128] and [esp+132]. The block counter counts negative blocks,
a well known optimalization trick allowing us to use it for indexing the input
and output blocks. The input and output pointers are therefore also adjusted
to point one block past the end of the input and output arrays.
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Results

The best previous results we know for DES are those of Antoon Bosselaers [2],
encrypting at 340 cycles per block, and generating round keys in 686 cycles. His
code uses 2 kilobytes of lookup tables for each of encryption and key setup.

Encryption

When all program code and data are in L1 cache, our new DES encryption
runs at 315 cycles per block on Pentium (non-MMX). This includes both the
encryption itself and the surrounding loop. This is more than 7.9 % faster than
the speed achieved by Bosselaers.

Using Cipher Block Chaining (CBC) mode adds only 1 cycle per block when
encrypting. CBC decryption requires another 2 cycles to handle the initializa-
tion vector.

When encrypting data from memory (too big to �t in any cache) on a 120
MHz Pentium running Linux 2.4.19, in-place encryption runs at approximately
329.5 cycles per block. Encrypting from one array to another takes 333.5 cycles
per block. These numbers include operating system overhead.

Figure 5.1 shows timing results for ECB encryption. Samples were made
for block lengths a multiple of 8 DES blocks, up to 1024 (8 kilobytes). To
emphasize per-block timing, the best number of cycles for encrypting 4 blocks
is subtracted, and the resulting clock count is divided by 4 less than the block
count. The 4-block startup time was 1361 cycles.

Key setup

The key setup function runs in 576 cycles including function call. This is more
than 19% faster than the results of Bosselaers.

Using 4 kilobytes of tables, key setup can be done much faster (cf. Svend
Olaf Mikkelsen [8]). Yet it might turn out to be slower in real use, since if key
setup is seldom used, (larger parts of) its tables will be evicted from L1 cache,
and then larger tables have to be reloaded each time key setup is run. It will also
more easily remove the encryption tables from cache, reducing actual speed even
more. That being said, his approach is a much better one on newer processors
with larger L1 data cache (e.g. Pentium MMX/II/III, Duron, Athlon).
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Figure 5.1: In-place ECB encryption on Pentium

Newer processors

Preliminary optimizations for newer processors have also been done, with good
results. In our tests, DES encryption runs in approximately 240 cycles on the
AMD Duron (Spit�re core), 319 cycles on Intel's Pentium III, and 445 cycles on
their Pentium 4. These are all achieved with only minor modi�cations to our
implementation, namely the addition of prefetch instructions, and a modi�ed
round function schedule. Only the Pentium 4 requires major reworking of the
round function in order to run e�ciently, mostly due to its slow shift and rotate
instructions, and its implicit use of shift operations to access high 8-bit registers
(ah/bh/ch/dh).

Even without modi�cations, our implementation runs fast on these newer
processors: 295 cycles on the Duron, 327 on Pentium III, and 456 on Pentium
4. All these timings are for encrypting 4 kilobytes (512 blocks) within L1 cache
in ECB mode.

For a comparison, Eric Young reports DES CBC encryption at 4.35 · 107

bytes/second on an 1.6 GHz Athlon, and 7.771 ·106 bytes/second on a 333 MHz
Celeron (Pentium II) [9]. This translates to approximately 294 and 343 cycles,
respectively.
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Discussion

The Pentium is the only processor for which Antoon Bosselaers provides perfor-
mance and memory use �gures for his highly optimized assembly implementa-
tion. Although the original Pentium processor itself is no longer a very interest-
ing optimization target, our tailored implementation also turns out to perform
very well on more modern processors. Unlike its newer cousins, the Pentium is
also much easier to describe, and its performance is highly predictable.

The main part of our improvement comes from the construction of a round
function which is able to execute in only 17 cycles on the Pentium. This depends
on having enough (7) registers available, which we achieve by using the stack
for storing key data, thereby using the stack pointer as our round key pointer.
This in turn requires us to copy all round keys to the stack, incurring a startup
cost slightly bigger than twice the cycle count gained per block.

Since we are already copying all the round keys as part of the startup of our
encryption function, reversal of the keys for decryption is almost free. Hence we
don't need to generate or store the reversed set of round keys for decryption,
saving both on key setup time and memory.

We have also achieved perfect pairing of instructions - every single cycle, the
processor is executing either an unpairable instruction or a pair. The unpairable
instructions are all multibit rotates, and there are 5 of them in each of IP and
FP. In total, we have 620 instructions execute in only 315 cycles, for an average
of almost 1.97 instructions per cycle.

Just like the speed of encryption depends most on the speed of the round
function, key setup speed depends on e�cient implementation of LSi and PC-2.
LSi is quite simple, hence most of our e�ort on the key setup focused on PC-2.
This resulted in a very e�cient bit reordering algorithm, and combined with
e�cient algorithms and scheduling in the rest of the key setup, we achieve a
reduction of 110 cycles compared to Bosselaers.

As seen from the comparison with Eric Young's results, our implementation
is very competitive on newer processors, and is also a good starting point for
reoptimizing the algorithm for them.
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