
New Methods for
Cryptanalysis of Stream Ciphers

H̊avard Molland

The Selmer Centre
Department of Informatics

University of Bergen
Norway

18th May 2005





Acknowledgments
I would like to express my gratitude to several people for supporting me in com-
pleting this thesis.

Firstly, I would like to thank my supervisor professor Tor Helleseth for always
having his door open, for his supervising, encouragement and help in writing
this thesis. I also wish to thank him for creating a good and relaxed research
environment at the Selmer Centre.

Many thanks to Matthew Parker and H̊avard Raddum for proof reading and
great help in the writing process.

I also wish to thank John Erik Mathiassen who worked with me on Section 3
in our paper “Improved Fast Correlation Attack Using Low Rate Codes”, and for
coming up with the brilliant search algorithm in that section.

Thanks to professor Ed Dawson and the rest of the people at Information
Security Research Centre in Brisbane for letting me stay for a whole year in a
friendly environment. It has been a excellent year with many experiences to
remember.

Finally, my deepest gratitude to Elisabeth for all her support and kindness,
and for coming with me all the way to Australia for the last year of the Ph.D
program.





Introduction to the Thesis

H̊avard Molland

1 Background

The Vernam cipher [8], also known as one time pad, is remarkable simple in theory
and provably unconditionally secure, which means that it is impossible to break
given unlimited computation power. Let the keystream k = (k0, k1, . . . , kt, . . . )
be a truly random binary sequence known by the sender and receiver only. Then
the binary message (or plaintext) m is encrypted to the cipher text c by

ct = kt ⊕mt, (1)

where a⊕b is the binary xor operation equivalent to a+b mod 2. After encryption
the cipher text c is sent to the receiver, who decrypts the message by

mt = kt ⊕ ct. (2)

It is easy to give a simple and intuitive argument for why the cipher is secure.
If k is a truly random sequence, the probability for that mt equals ct is exactly 1

2

in the binary example. In addition, since each bit in k is independent of all the
other bits, knowing some bits in k will never reveal information about the rest
of the keystream. Therefore, regardless of what was previously known about the
plain text, knowing ct gives no extra information.

It is also possible to work with higher alphabets. The letters A,B,C,...,Z can
for example be encoded into numbers 0,1,2,...,25. Then k, m and c are streams
of letters and the encryption is done by ct = kt +mt mod 26. A similar argument
as above can be made to show that this is also unconditionally secure.

The problem with this scheme is that it is not very practical. The whole
security is based on that the keystream k, which must have the same length as
the message, is secret. In addition we can only use each keystream once. This is
easily shown by the following calculation: Let message one be ct = kt ⊕mt and
message two be c′t = kt⊕m′

t. The attacker can now add the two cipher texts and
get

ct ⊕ c′t = kt ⊕mt ⊕ kt ⊕m′
t = mt ⊕m′

t.

Since messages often contain much redundancy, we can retrieve mt and m′
t from

mt ⊕m′
t by, among others techniques, using frequency analysis.

This means that we must send a new keystream to the receiver for each new
message we want to transmit. Obviously, we cannot use encryption for this (in
that case we could just have sent the message using the encryption algorithm
in the first place). Therefore, the secret keystream must be sent using a courier,
making the key distribution difficult.



2 Introduction to the Thesis

Despite the fact that the one time pad is thought of as unpractical, a non
binary version of it was used by the Soviet Union in the 1940’s and 1950’s to
send home messages from the embassy in USA. The USA military stored these
messages and revealed that sometimes the same one time pad had been used to
encrypt more than one message. This allowed the Venona project[1], a highly
secret collaboration between USA and Great Britain that lasted for 40 years, to
decrypt a fair amount of the traffic. The execution of the couple Ethel Greenglass
and Julius Rosenberg was a direct result of this project.

1.1 Stream Ciphers

A solution to the key distribution problem is to use stream ciphers which try to
emulate the one time pad by expanding a short secret key into a long pseudo
random keystream z = (z0, z1, . . . ) which has as many of the properties of a truly
random stream as possible. This model is not unconditionally secure, since given
enough computer power, it is always possible to find the secret key by exhaustive
search. Thus, we have lost some of the security, but gained practicality.

Secure stream ciphers must produce keystreams that satisfy the following
basic but important properties:

– Good statistical properties. There exist many standard statistical tests
which can be used to check the statistical properties of a stream. It should
not be possible to use any of theses tests to distinguish the keystream from a
truly random stream.

– Confusion and diffusion. Confusion is to have complex dependency between
the keystream z and the secret key K. Diffusion ensures that a small change,
say one bit, in the key give a totally new keystream and cipher text.

– Guaranteed large period. It is important that the keystream has a guar-
anteed large period, so that it does not repeat itself during encryption. This
would be the same as using the same keystream twice, and would lead to
vulnerabilities similar to those described for the one time pad.

Some concrete properties that will help satisfying the requirements above are

– High degree of non-linearity. It should not be possible to find linear ap-
proximations that opens up for many different types of attacks.

– High algebraic degree. High algebraic degree in equations that involve
keybits. This ensures that the attacker cannot calculate the key from the
keystream by simply building up and solve an equation set.

– Balanced. The average number of 1’s and 0’s in the stream should be equal.
In addition, the average number of sub patterns of bits of different lengths
should also be equal.

– High linear complexity. The length of the shortest possible linear feedback
shift register that can produce the stream. It is important the linear complexity



Introduction to the Thesis 3

is high, so that we cannot substitute the generator with a relatively short linear
feedback shift register. The shift registers have weak security properties when
used alone (See Section 3.2).

The properties above are very important, but may not be sufficient. A cipher
can satisfy all the requirements and still be very weak since cryptanalysts typi-
cally develop new and previous unknown tests aiming the specific generator they
analyze.

At last, a property that is not directly about security, but has a strong influ-
ence on it:

– High efficiency. In most applications it is very important that the cipher is
fast and light, so that is does not slow down the communication, or does not
require expensive computer power.

In fact, to day it is relatively easy to design a secure but slow cipher. The hard
challenge is to design a cipher that has both maximum efficiency and strong
security.

1.2 Attacking Stream Ciphers

Cryptanalysis is the science of breaking encryption algorithms or finding weak-
nesses in them. A method that breaks an encryption algorithm is called an attack.
Although there have been a few cipher text only attacks on stream ciphers, see
for example [24], most cryptanalysts focus on known plain-/cipher text attacks,
where the attacker knows both the cipher text and some of the plain text. Assume
we are given some plaintext m = (m0, m1, . . . ,mN−1) and all of the cipher text c.
We can easily obtain parts of the corresponding keystream z by zt = mt⊕ct. When
this is done, we focus on the known parts of the keystream z = (z0, z1, . . . , zN−1)
to try to find the key.

There are different kinds of plain-/cipher text attacks on stream ciphers, where
the strongest one is the key recovery attack. Given parts of z, the objective is to
retrieve the secret key or the secret initialization state, see Section 2. Having the
key (or the initialization state), we can generate the unknown parts of z and
decrypt the rest of the message. We can always find the secret key by exhaustive
search, that is, we go through all the possible keys and stop when we find a
key that produces the correct keystream. However, the key size is usually large
enough to make such an attack computationally infeasible. A common technique
is to do the attack in several stages, and determine only a few key bits in each
stage. This is called the divide and conquer technique. The attack is an success if
the sum of the runtime complexities for all the stages is smaller than exhaustive
search of the whole key space.

A weaker attack is the distinguishing attack where the cryptanalyst tries to
distinguish z from a truly random bit stream. Although this is does not break



4 Introduction to the Thesis

the cipher in the normal sense of the word, it can actually be used to get knowl-
edge about the plain text in certain circumstances. Assume that the eavesdropper
knows that one out of n documents is going to be encrypted and sent over an
insecure channel. The eavesdropper already knows the content of all the docu-
ments, but he does not know which of the documents that has been sent. The
eavesdropper can now xor the documents one by one with the cipher text, and do
distinguishing tests on the resulting bit streams. When the correct document is
chosen, the resulting bitstream will be the keystream and the test will be positive.
Thus, the eavesdropper now know which of the documents that was sent.

To evaluate an attack properly, there are 4 main properties we need to con-
sider.

– The runtime complexity.
– The computer memory complexity.
– The number of keystream bits complexity.
– The probability for success

Some attacks may have low runtime complexity, but at the same time they may
use a vast amount of memory or keystream bits and have a low probability for
success. Therefore, when we compare different attacks we must compare all the
properties.

1.3 Overview Over the Thesis

In addition to the introduction paper, the thesis consists of five independent
papers, where four of them have been accepted by refereed publications and
conferences. The fifth paper is unpublished work which shows the status of our
most recent research. All the papers are about cryptanalysis, and we mainly
attack stream ciphers based on linear feedback shift registers. However, the two
last papers papers are cryptanalysis of sequences generated by a recently proposed
T-function generator.

Introduction. In this paper, we give a basic introduction to design and cryptanal-
ysis of LFSR based stream ciphers. We also give a brief introduction to the new
T-function generator. We stress that we mostly present the techniques which the
research in this thesis is based on, and it is not meant to be a complete survey
over all the ciphers and attacks that have been proposed.

Improved Fast Correlation Attack Using Low Rate Codes[21]. In this paper, we
present a faster method for calculating the metrics in some of the fast correlation
attacks. Instead of using relatively few strong parity check equations, we present
an algorithm that has low run time complexity by using many weak parity check
equations. We show both theoretically and by simulations that the algorithm is
efficient even when using billions of equations.



Introduction to the Thesis 5

Improved Linear Consistency Attack on Irregularly Clocked Keystream Genera-
tors[18]. In this paper, we present an improved linear consistency test (LCT)
attack on ciphers where one shift register is clocked by another. The basic idea
behind the attack is very simple but it has a very high run time complexity.
However, we present an algorithm the makes this attack very efficient compared
to previous LCT attacks.

An Improved Correlation Attack Against Irregularly Clocked and Filtered Key-
stream Generators[19]. This paper is an extension of the linear consistency attack,
where we attack a cipher where the LFSR stream is filtered through a Boolean
function in addition to the irregularly clocking. We show that the Boolean func-
tion is less secure than previously thought.

Linear Properties in the Klimov-Shamir T-function[20]. Recently Klimov and
Shamir presented a T-function for generating maximum length sequences. In this
paper, we prove that there exist linear properties in the sequences, and that the
properties can be used for cryptanalysis of the Klimov-Shamir T-functions.

Algebraic Structures over the Binaries for the Klimov-Shamir T-function. This
paper describes the status of our most recent and unpublished work. We show
how to generate the Boolean functions from each bit in the initialization state
to each bit in the sequence generated by the T-function. Using these functions,
we show several interesting properties of the T-function sequences. However, the
properties have not yet been proved.

2 The General Stream Cipher Model

The objective of stream ciphers is to expand a short key into a long and pseudo
random keystream which emulates the one time pad. A stream cipher consists
mainly of a keystream generator that generates the stream, and a mixing function,
usually the simple xor function, which mixes the keystream with the plaintext.

Let the secret key of the cipher be k. Using the denotation from [16], the
keystream generator consists of a finite state machine, which has an internal state
σt that is updated by a next-state function f . Next, the extraction function zt =
g(σt,k) takes the internal state σt at time t as input, and outputs the keystream
bit zt. The finite state machine is initialized with σ0, which is extracted from the
key k. Since a finite state machine has a limited number of different internal states,
it will always repeat itself after a limited number of iterations. This number is the
period of the cipher, and is the same as the maximum length of the keystream.
The keystream z is mixed with the plaintext m in the function ct = h(mt, zt).
Most stream ciphers are binary additive. See for example Figure 2, where the
keystream generator produces a binary keystream z, which is simply xored on
plain text. The encryption is more precisely given by ct = h(mt, zt) = zt ⊕mt.



6 Introduction to the Thesis

Fig. 1. The general synchronous stream cipher model

In the literature, stream ciphers are often divided in two main types, namely
self- synchronizing stream ciphers and synchronous stream ciphers. The model
above is the synchronous stream cipher, which means that both sender and re-
ceiver must be synchronized to be able to encrypt and decrypt properly. This can
be a problem when sending over a channel where bits may be deleted. If only one
bit is deleted, the positions of the following bits are changed, and the rest of the
message will be corrupted during the decryption. The result is that the whole
message has to be resent. One way to get around this is to send the message in
relatively small packages, and re-synchronize for every new package. On the other
hand, a self- synchronizing cipher takes the message as input to the keystream
generator, and uses the message text to synchronize itself, see [16] for details.
However, in this thesis we focus on the synchronous stream ciphers.

Another problem is (as with the one time pad) that a keystream can only
be used once. Therefore, we need a new key for every package, which leads to
problems with the key distribution. This problem can be fixed by mixing the
secret key with an initialization vector IV that is changed for every new message.
The mix σ0 = M(k, IV) between k and IV can then be used as an initialization
state for the cipher. The IV can be public or secret, and it changes following a
public known procedure that can be as simple as IV← IV+1. Since IV may be
public, it should not be possible to get any information about σ0 given IV only,
and the mixing function M(k, IV) must be very secure. Often the cipher itself,
or a smaller version of it, is involved in the mixing function. The function can
also work as a ’key expander’, which enable us to have bigger internal state than



Introduction to the Thesis 7

Fig. 2. The synchronous additive stream cipher using ct = h(mt, zt) = mt⊕ zt as
mixing function

key length. Having a big internal state is in most cases more secure, but requires
more computer power.

To summarize, the general synchronous stream cipher is formally described
by

σ0 = M(IV,k)

σt = f(σt−1,k)

zt = g(σt,k)

ct = h(mt, zt)

where decryption is done by mt = h−1(ct, zt), as shown in Figure 1.

3 Shift Register Based Stream Ciphers

3.1 Basic Properties of Linear Feedback Shift Registers

A very important requirement for stream ciphers is that its period is as large as
possible. Linear feedback shift registers (LFSRs) can easily be designed to produce
maximum length streams, with good statistical properties. They are also simple
to implement and fast in hardware. Due to this, the LFSRs have been popular
building blocks for stream ciphers. In this thesis we concentrate on bit based
LFSRs, although using larger alphabets is possible. LFSRs with larger alphabet
(also called word based LFSRs) produce more bits per iteration, and are therefore
much faster than the bit based LFSRs. Since speed is a crucial factor, recent
stream cipher designs tend to have word based LFSR, see for example [4,22].

A shift register contains l memory elements, each capable of storing q bits.
The elements are ordered in a table, and at each time unit the shift register is



8 Introduction to the Thesis

Fig. 3. The linear feedback shift register over the binaries

capable of shifting all the elements one step to the left. Before the shift, a subset
of the elements is summed and the sum is fed in to the shift register from the
right. The leftmost element before the shift is done is taken as the next element
in the sequence generated by the shift register.

There are several mathematical models to describe a binary linear feedback
shift register. The most intuitive one is the linear recursion model where u =(u0,
u1, . . . ) is the bit sequence generated by the linear recursion

ut+l = ut + g1ut+1 + · · ·+ gl−1ut+l−1 = ut +
l−1∑
i=1

giut+i mod 2, (3)

where ut and gi are in F2, and F2 is the finite field with two elements {0, 1}. We
see that ut+l is a sum of a subset of (ut, ut+1, . . . , ut+l−1), where the subset is given
by the constants (g0 = 1, g1, g2, . . . , gl−1). The positions ut+i where gi = 1 are also
called the tapping positions of the LFSR. The bits uI=(u0, u1, u2, . . . , ul−1) are
the initialization bits or the initialization state for the shift register.

We can also denote the LFSR as a generator polynomial,

g(x) = 1 + g1x + g2x
2 + · · ·+ gl−1x

l−1 + xl =
l−1∑
i=0

gix
i in F2[x], (4)

where g0 = gl = 1 and F2[x] means all polynomials of x with coefficients in F2.
Using this definition, we can define α by setting g(α) = 0, from which we get the
reduction rule αl = gl−1α

l−1 + gl−2α
l−2 + · · ·+ g1α +1. By multiplying both sides

by αt we get that

αt+l = gl−1α
t+l−1 + gl−2α

t+l−2 + · · ·+ g1α
t+1 + αt. (5)

Equation (5) clearly shows the connection between the linear recursion model (3)
and the polynomial model (4).

If r = 2l is the lowest r that gives αr = α, then the elements in the set
α1, . . . , α2l−1 are all distinct, the element α is a primitive element and g(x) is



Introduction to the Thesis 9

called a primitive polynomial. It follows that the shift register will produce a
sequence of maximum length 2l − 1 if and only if α is a primitive element. Using
the reduction rule (5), we can write all αt+l, t > 0, as sums of subsets of the
elements 1, α, α1, . . . , αl−1. Let hT

t = (h0,t, h1,t, . . . , hl−1,t) be the coefficients of αt

given by αt = h0,t +h1,tα+ · · ·+hl−1,tα
l−1. We regard (h0,h1, . . . ) as bit columns.

Let Il be the identity matrix of size l× l. We can now use α to construct an l×N
generator matrix G = [α0, α1, . . . , αN−1] for a stream of length N :

G = [Il |hl,hl+1,hl+2, . . . ,hN−1]

=


1 0 · · · 0 0 h0,l h0,l+1 · · · h0,N−1

0 1
. . . 0 0 h1,l h0,l+1 · · · h1,N−1

...
. . . . . . . . .

...
...

...
...

...

0 0
. . . 1 0 hl−2,l hl−2,l+1 · · · hl−2,N−1

0 0 · · · 0 1 hl−1,l hl−1,l+1 · · · hl−1,N−1

 .
(6)

The stream of length N is now generated by

u =uIG = [u0, u1, . . . , ul−1,u
I · hl , uI · hl+1 , . . . , uI · hN−1].

In Section 2.1 of our paper “Improved Fast Correlation Attack Using Low Rate
Codes” [21] in this thesis, we show an example of a small generator matrix.

3.2 Linear Properties and Weaknesses in LFSRs

Using the equation u = uIG, we can set up a set of linear equations that can be
used to calculate uI given only l bits from the LFSR stream. By multiplying uI

by G we get the following linear equation set for 0 ≤ t0 < t1 < · · · < tl−1 < N :

ut0 = h0,t0u0 + h1,t0u1 + · · ·+ hl−1,t0ul−1

ut1 = h0,t1u0 + h1,t1u1 + · · ·+ hl−1,t1ul−1 (7)
...

utl−1
= h0,tl−1

u0 + h1,tl−1
u1 + · · ·+ hl−1,tl−1

ul−1

Assume we know the bits ut0 , ut1 , . . . , utl−1
. If the equations in the set are linearly

independent, the set is easily solved using the Gaussian reduction algorithm which
has runtime complexity O(l3). If the set is not linearly independent, we can ex-
change some bits, put in the new equations, and try again until the equation set
is solved.

Even if the generator polynomial g(x) is not known, we can find the initial-
ization state using the Berlekamp Massey algorithm [13,2]. The algorithm needs
2l consecutive bits as input and it outputs g(x). Knowing g(x) we can calculate
uI using the method above. However, since the bits are consecutive, we can also



10 Introduction to the Thesis

simply use g(x) and Equation (3) to generate back to the initialization state by
reversing the recursion (3) to ut = ut+l + gl−1ut+l−1 + · · ·+ g1ut+1 mod 2.

This shows one of the main problems of using shift registers in stream ciphers.
In Section 3.3 we show some techniques that are often used to destroy the linearity
properties in the output of shift registers.

The weight of the generator polynomial g(x) is crucial for the security in many
stream ciphers, since many different types of attacks on LFSR based ciphers can
be done if g(x) has low weight, see Section 4.5. However, if we can find a multiple
of g(x) that has low weight, the attacks may still be possible. Assume there exists
a function a(x) that for some b(x) gives

a(x) = g(x) · b(x) = 1 + xi1 + xi2 + · · ·+ xiw−1 in F2[x], (8)

where w is the weight of the equation. This corresponds to the linear equation

ut + ut+i1 + ut+i2 + · · ·+ ut+iw−1 = 0 mod 2

that will hold over all bit streams generated by g(x). Since we have that

ut + ut+i1 + ut+i2 + · · ·+ ut+iw−1

= uIht + uIht+i1 + · · ·+ uIht+iw−1 (9)

= uI(ht + ht+i1 + · · ·+ ht+iw−1),

we will find this low weight multiple by searching for w columns, ht,ht+i1 ,ht+i2 ,
. . . ,ht+iw−1 , in G that xor to the all zero column (0, 0, . . . , 0)T for a chosen t. The
equation is cyclic and will hold for all t since Equation (9) will sum to zero for all
uI when ht + ht+i1 + · · · + ht+iw−1 = 0. For simplicity we often set t = 0, which
means that it is sufficient to find the w − 1 columns hi1 ,hi2 , . . . ,hiw−1 that gives

hi1 + hi2 + · · ·+ hiw−1 = h0 = (1, 0, . . . , 0)

3.3 Fixing the Linearity Property Problem in LFSRs

Due to the linear properties in the LFSRs, we must combine them with other
cryptographic primitives to be able to design a secure keystream generator. The
goal is to remove the linear properties in the bit streams generated by the LFSRs,
so that the streams satisfy all the requirements in Section 1.1. There are many
methods for removing the linear properties and in this thesis we attack ciphers
that use Boolean functions and irregularly clocking.

Boolean functions. In cryptography, a Boolean function is defined as a function
that takes n bits as input variables and outputs one bit. A simple but well known
function is the Geffe function [6]

f(x1, x2, x3) = x1 + x1x2 + x2x3 mod 2.



Introduction to the Thesis 11

Let f(x) be a Boolean function with x = x1, x2, . . . , xn as input variables. A
product of r distinct variables is called a r′th order product of the variables. All
Boolean functions can be written as sums of such products mod 2. When the
products are arranged in a specific order, the function is in the Algebraic Normal
Form (ANF) given by

f(x) = a0 + a1x1 + a2x2 + · · ·+ anxn + an+1x1x2

+an+2x1x3 + · · ·+ a2n−1x1x2 · · ·xn mod 2.

The ANF denotation can be represented by the table Tanf = (a0, a1, . . . , a2n−1).
The algebraic degree, also called the nonlinear order of the function, is the max-
imum order of the terms in the function. For the simple Geffe function, the ANF
table is Tanf = (0, 1, 0, 0, 1, 0, 1, 0), and it has algebraic degree 2.

Boolean functions can also be defined by a truth table Ttruth = (b0, b1, . . . ,
b2n−1), where bi is in F2. The truth table is a table of the output of f(x) given
the input x. Given a truth table for f(x), the output is calculated as

f(x) = Ttruth(x1 + x22 + x32
2 + · · ·+ xn2n−1).

The truth table for the Geffe function is Ttruth = (0, 0, 0, 1, 1, 1, 0, 1).
A Boolean function f(x) is balanced if Pr(f(x) = 0) = Pr(f(x) = 1) = 0.5.

Further on it is correlation immune (CI) if Pr(xi = f(x1, x2, . . . , xn)) = 0.5 for
all i, 1 ≤ i ≤ n. That is, the Boolean function is correlation immune if there is
no correlation between f(x) and any of the input bits. The Geffe generator is not
correlation immune since Pr(x3 = f(x1, x2, x3)) = Pr(x1 = f(x1, x2, x3)) = 0.75.
A function is resilient if it is both correlation immune and balanced.

A Boolean function is known to be m’th order correlation immune if there does
not exist any linear combination of k ≤m input bits that have a correlation with
the output of the function. That is, Pr(xj1 +xj2 + · · ·+xjk

= f(x1, x2, . . . , xn)) =
0.5 for 1 ≤ k ≤ m and 1 < j1, j2, . . . , jk ≤ n. If the function is balanced and has
m’th order correlation immunity, then it is m−resilient.

In the stream cipher literature, there are two main methods for combining
the Boolean function with LFSRs. The first method is to filter only one shift
register by taking n bits from positions in the internal state of the LFSR given
by j1, j2, . . . , jn at time t as input to the Boolean function. More precisely, the
keystream is generated by

zt = f(ut+j1 , ut+j2 , . . . , ut+jn).

The second method is to use n LFSRs, and take the output bits from each
LFSR at time t as input to the Boolean function. Each LFSRi generates a bit
stream ui = (ui

0, u
i
1, . . . ) and the keystream is generated by

zt = f(u1
t , u

2
t , . . . , u

n
t ).

Figure 4 is a graphical representation of the two methods.



12 Introduction to the Thesis

Fig. 4. The methods for combining LFSRs with a Boolean function f with n
inputs

Irregularly clocked LFSRs. Instead of filtering the LFSR stream through
a Boolean function, we can destroy the linear properties in the bit stream by
deleting or copying bits in an irregular way. This is called irregularly clocking.
Often this is done by letting a LFSRs produce a bit stream s that by some method
is turned into a clock control sequence of integers, c = (c0, c1, . . . , cN−1) where
0 ≤ ct, which is then used to clock a LFSRu.

Let t be the clock of the whole generator, and let v be the clock of LFSRs of
length ls. Let (sv, sv+1, . . . , sv+ls−1) be the inner state of LFSRs at time v. Then
we get the sequence c by

ct = D(sv, sv+1, . . . , sv+ls−1)

for some function D that takes the inner state of LFSRs as input and outputs an
integer ≥ 0. The generator is often synchronized with LFSRs, such that v = t. Let
the shift register LFSRu produce a bit stream u =(u0, u1, . . . ). Using the clock
control sequence we let the output of the generator be

zt = uk(t)

where k(t) =
∑t

i=0 ci. Thus, LFSRs controls the number of times that LFSRu is
clocked before the output is taken as keystream bit.

A typical example of the D function is the step-1/step-2 function where
D(st) = 1 + st. Another example is the well known shrinking generator where
the output uk of LFSRu is discarded if the output of LFSRs is sk = 0 and taken



Introduction to the Thesis 13

as output zt if sk = 1. Using our model this means that the clock sequence is
given by D(sk(t−1), sk(t−1)+1, . . . , sk(t−1)+ls−1) = y where the y − 1 is the number
of consecutive zeros from the entry sk(t−1) in the stream s, and k(−1) = 0. We
see that in this special case LFSRs and LFSRu are synchronized, that is v = k(t).

4 Cryptanalysis of Stream Ciphers Based on LFSRs

There are many different types of attacks on stream ciphers based on LFSRs.
To give some theoretical background, we will in this section go through some of
the attacks and cryptanalysis that are relevant to the attacks we present in this
thesis.

4.1 Using Coding Theory in Cryptanalysis

Many attacks on stream ciphers use coding theory to determine the properties
such as run time complexity and the probability for success. Here we give a basic
introduction to the area.

The binary symmetric channel. Let u = (u0, u1, . . . , ut, . . . ) be a sequence
that is sent through a channel C, and let z = (z0, z1, . . . , zt, . . . ) be the corre-
sponding sequence received on the other end of the channel. When bits are sent
through a Binary Symmetric Channel (BSC), there is a probability p for that
an error occur so that a transmitted 0 will be received as 1 or the other way
around, that is p = Pr(ut 6= zt). Hence, the BSC is a noisy channel where p is the
crossover probability, see Fig 5. The crossover probability is also often denoted

Fig. 5. The binary symmetric channel model

as p = 0.5 ± ε, where ε is called the bias. When ε > 0 we say that there is a
correlation 1− p between ut and zt.

Basic coding theory. Coding theory deals with the problem of how to reliably
transfer information over a noisy channel. Assume we have a sender that needs to
transmit some bits. Since the channel is noisy, errors may occur and the receiver
needs to correct those errors. Thus, we need an error correcting code. In an [n, k]



14 Introduction to the Thesis

block code C, the bits we want to transmit are divided into blocks of k bits and
encoded into blocks of n > k bits. This constellation is called a codeword, and
the code is defined by the set of 2k codewords of length n. Thus, each codeword
contains k bits of information (the actual information we want to transmit), and
n− k redundancy bits, which are used for error detection and correction. Each of
the 2k possible blocks of information corresponds to a codeword in C. For example
a very simple [3, 1] code C can be defined by the two codewords (0, 0, 0) , (1, 1, 1),
which represent the bits 0 and 1. Since each codeword contains only k bits of infor-
mation, the actual transmission rate is R = k

n
bits of information per transmitted

bit. The code above has the transmission rate R = 1/3. Hence, the transmission
is slowed down, but we are able to correct the errors that may occur as long as
the number of errors is not too large.

The Hamming distance H(x,y) is defined as the number of bits in the vectors
x and y that differ, for example H( (1, 1, 1) , (0, 0, 0) ) = 3. Let d be the minimum
Hamming distance between all codewords in a code. Let u be the transmitted
codeword, and z be the received codeword. Using a maximum likelihood decoding
algorithm, the receiver decodes the received codeword z to the codeword û in C
that has the lowest Hamming distance to z. For example in the code above, the
received codeword (0, 0, 1) will be decoded to (0, 0, 0) and not (1, 1, 1), and we
assume that a 0 was transmitted. We see that the code above is able to correct
1 error, with transmission rate R = 1/3. If more than bd/2c errors occur, the re-
ceived codeword will be closer to a wrong codeword in C. Hence, to prevent that
a received codeword is decoded wrongly and at the same time having fast com-
munication, the objective of a good code is to have as great minimum Hamming
distance d as possible with as high transmission rate as possible.

The channel capacity C(p) of the BSC is a measurement for the maximum
data rate that can be transmitted over the channel without errors. When the
channel capacity is 0, it is not possible to send information over the channel at
all. When the channel capacity is 1 no errors will occur, and we do not need
coding. The channel capacity for the BSC is given by

C(p) = 1 + p log2 p + (1− p) log2(1− p), (10)

where p is the crossover probability in the channel. We have that C(0.5) = 0, and
C(0) = C(1) = 1, so the worst possible channel has p = 0.5. Let Pe(p) be the
probability that a received codeword is not decoded to the correct codeword, that
is Pe(p) = Pr(u 6= û). Recall that R = k/n. If the information that is transmitted
over the channel is random the Shannon’s Noisy Theorem [23] tells us that for

R < C(p) (11)

and for codeword length n large enough, there exist a code for any Pe(p) > 0.
Thus, as long as the code rate is lower than the channel capacity, it is possible to
construct an error correction code where Pe(p) approaches zero when n (and k)



Introduction to the Thesis 15

grows large. However, the theorem does not tell us how to construct such codes.
In cryptography, this upper bound for the transmission rate is used to evaluate
the success rates and runtime complexities of many types of attacks.

4.2 From Coding to Cryptanalysis

To be able to attack ciphers using coding theory, we must identify a coding system
in the cipher that gives low noise, and a fast decoding algorithm.This is usually
not easy, since the designers try (or at least should try) to design ciphers in such
a way that the coding model can not be used. Attacks that use the coding theory
model are called correlation attacks, since there is a correlation between the bits
that are send through the channel and the bits that are received at the other
end. The closer p is to 0.5, the harder it is to attack the cipher. Therefore, the
strength of these attacks are most often evaluated from how low complexity the
attacks have when p is as close to 0.5 as possible.

Fig. 6. The simple cipher viewed as a binary symmetric channel

4.3 Siegenthaler’s Correlation Attack

The first and most simple correlation attack on stream ciphers was presented by
Siegenthaler in [24]. The attack models most of the cipher as a black box, and is
therefore quite general and works against many different kinds of ciphers. We will
show how to attack the second cipher design in Figure 4 with the Geffe function
as the Boolean function. The main point is that the attack is divided in to several
stages, and we only have to do exhaustive search for the initialization state for
one of the LFSRs at each stage instead of searching the whole key space.

First we must try to describe the cipher in context of the binary symmetric
channel. Assume we have N bits of the keystream z =(z0, z, . . . , zN−1), and we
want to find the unknown initialization state uI = (u0, u1, . . . , ul−1) for LFSR1.



16 Introduction to the Thesis

The Geffe function has a correlation property Pr(x1 = f(x1, x2, x3)) = 0.75.
Using this, the shift registers LFSR2, LFSR3 and the Geffe function are perceived
as a binary symmetric channel with crossover probability p = Pr(zt 6= ut) =
1 − Pr(x1 = f(x1, x2, x3)) = 0.25 as showed in Figure 6. Let the key uI =
(u0, u1, . . . , ul−1) be the information bits in the coding model, and let u = uI ·G =
(u0, u1, u2, . . . , uN−1) be the corresponding codeword that is generated by LFSR1.
The matrix G is the generator matrix for the code. Following the BSC model we
let z be the received codeword. Thus, this is a [N, l] code with code rate R = l

N
.

The problem is now reduced to a pure decoding problem, and knowing z we can
recover uI using decoding techniques.

The attack algorithm is very simple. For all possible values of ûI we generate
the LFSRu stream û and test how many of the bits in z of length N that satisfy

zt = ût. (12)

The number of equal bits is called the metric for the guess ûI. This is equivalent
to letting the metric be number of equations that are satisfied in the following
set of parity check equations, which is a simple combination of Equation (12) and
the Equation set (7):

z0 ≈ û0

...

zl−1 ≈ ûl−1 (13)

zl ≈ h0,lû0 + h1,lû1 + · · ·+ hl−1,lûl−1

...

zN−1 ≈ h0,N−1û0 + h1,N−1û1 + · · ·+ hl−1,N−1ûl−1

We use ’≈’ to denote that when (û0, û1, . . . , ûl−1) is the correct guess for initial-
ization state, the equations hold with probability 1 − p. In that case the metric
will be approximately (1 − p)N > N

2
. When the guess û is wrong there will be

no correlation between û and z, and the metric will be approximately N
2
. Thus,

after we have gone through all the 2l possible values for ûI, the guess with the
highest metric is, with some probability, the correct initialization state uI. Hence,
the algorithm simply finds the ûI that produces the stream û which is most equal
to z. This is according to the maximum likelihood decoding method, where we
let u be the guess û that minimizes the Hamming distance H(û, z). The attack
is repeated for all the rest of the shift registers.

Evaluation of Siegenthaler’s attack. Since we have to make 2li guesses for each
LFSRi and for each guess we must go through and check Ni bits to attack LFSRi,
the total total runtime complexity for the attack is O

(∑n
i=1 2liNi

)
. This complex-

ity is in most cases much lower than the total exhaustive search which has runtime



Introduction to the Thesis 17

complexity O
(∏n

i=1 2li
)
. Hence, this is a classical example of the divide and con-

quer technique, since we can divide the attack into several stages, where we in
each stage only attack a small part of the cipher.

To find out how many bits we need for the attack to succeed we use coding
theory. Using the Formula (11) from the Shannon’s Noisy Theorem on the [N, l]
code as explained in Section 4.1, the attack will succeed with a certain probability
Pe(p) > 0 if N > l

C(p)
. Experimentation shows that the success rate for the attack

will be approximately Pe(p) = 0.5 if N = l
C(p)

, and will be close to 1 if

N ≥ 2l

C(p)
,

see [24].
Hence, the number of keystream bits needed to attack LFSRi is Ni = 2li

C(pi)
,

and the full complexity for the attack is O
(∑n

i=1
li2

li

C(pi)

)
. The full attack needs

N = max0<i≤n
2li

C(pi)
keystream bits and the memory complexity is also N .

For the cipher where the channel has crossover probability p = 0.25 and the
length of the LFSR is l = 40, we need approximately N = 2 · 40/C(0.25) = 424
keystream bits to succeed. The runtime for attacking the LFSR will be equivalent
to approximately N2l = 424 · 240 ≈ 248.7 bit checks.

4.4 Fast Correlation Attacks

Although the basic correlation attack on ciphers with many LFSRs is much faster
than exhaustive search, the runtime complexity is lower bounded by the lengths
of the LFSRs. In addition to that, the attack does not work against ciphers where
only one LFSR is filtered by a Boolean function, since guessing the LFSR is the
same as exhaustive search of the whole key space. The objective of fast correlation
attacks is to get a runtime complexity lower than the bound 2l set by the lengths
of the LFSRs.

A simple fast correlation attack. A natural extension of Siegenthaler’s corre-
lation attack is the simple fast correlation attack by Chepyzhov, Johansson and
Smeets[3]. In this attack the divide and conquer technique is taken even further.
By doing a simple transformation on the Equation set (13), it is possible to reduce
the number of bits we need to guess on in each stage of the attack.

For a chosen B, the transformation is simply to find w equations in the
Equation set (13) that when summed mod 2, the coefficients for (ul−B, ul−B+1,
. . . , ul−1) in the result are zero. Hence, we do not need to guess on those bits,
which speeds up the attack. More specific the transformation is to search for the
indexes i0, i1, . . . , iw in the equation set that give

(hi0 + hi1 + · · ·+ hiw−1) = (c0, c1, . . . , cB−1,

l−B︷ ︸︸ ︷
0, . . . , 0)T,



18 Introduction to the Thesis

where hi = (h0,i, h1,i, . . . , hl−1,i)
T and c0, . . . , cB−1 are arbitrary bits. Each such

sum gives one new equation of the form

zi0 + zi1 + · · ·+ ziw−1 ≈ c0u0 + c1u1 + · · ·+ cB−1uB−1. (14)

This is equivalent to finding w columns in the generator matrix G that xor to
zero in the l − B lowest bits. Finding m such equations, we get an equation set
of the following form

zi0,0 + · · ·+ zi0,w−1 ≈ c0,0u0 + c0,1u1 + · · ·+ c0,B−1uB−1

zi1,0 + · · ·+ zi1,w−1 ≈ c1,0u0 + c1,1u1 + · · ·+ c1,B−1uB−1 (15)

...

zim−1,0 + · · ·+ zim−1,w−1 ≈ cm−1,0u0 + cm−1,1u1 + · · ·+ cm−1,B−1uB−1

Let yj = zij,0
+ zij,1

+ · · ·+ zij,w−1
. We see that the Equation (13) set is reduced to

y0 ≈ c0,0u0 + c0,1u1 + · · ·+ c0,B−1uB−1

y1 ≈ c1,0u0 + c1,1u1 + · · ·+ c1,B−1uB−1 (16)
...

ym−1 ≈ cm−1,0u0 + cm−1,1u1 + · · ·+ cm−1,B−1uB−1.

From this point on, using y instead of z as input to the decoding algorithm,
the attack is similar to Siegenthaler’s attack. We test the equation set (16) on
all the 2B possible values for s =u0, u1, . . . , uB−1. When this is done, we choose
u0, . . . , uB−1 to be the guess that satisfy the most equations.

Evaluation of the simple fast correlation attack. Since the fast correlation attack
above can be looked upon as an extension of Siegenthaler’s attack, it can be
evaluated in a similar way. The main difference is that the channel is much worse,
since the crossover probability must be calculated differently by using the Piling
up lemma [14]. Let Pw be the channel noise, when w keystream bits are summed
to get parity check equations. The lemma deals with the probability Pr(a0 +a1 +
· · · + aw−1 = b0 + b1 + · · · + bw−1) for some correlated variables ai and bi. A
simplified version of the lemma is given by

Pw =
1

2
− 2w−1

∣∣∣∣12 − p

∣∣∣∣w ,

where Pw = Pr(a0 + a1 + · · ·+ aw−1 6= b0 + b1 + · · ·+ bw−1) when p = Pr(ai 6= bi).
Thus, 1−Pw is the probability that the parity check equation yt ≈ ct,0u0+ct,1u1+
· · ·+ct,B−1uB−1 holds. Even though this channel has much lower channel capacity
we gain in runtime complexity, since the codewords have fewer information bits
and are easier to decode.



Introduction to the Thesis 19

Using Shannon’s noisy theorem and substituting l with B and p with Pw, the
number of parity check equations needed for a successful attack with probability
close to 1 is now given by

m ≥ 2B

C(Pw)
. (17)

The runtime complexity is
O(2Bm)

instead of O(2lN) for determining some of the initialization state bits, where
m > N . However, since 2B � 2l, this attack is in most cases much faster than
Siegenthaler’s attack.

In Siegenthaler’s attack, the number of keystream bits are the same as the
number of parity check equations, since each keystream bit gives one parity check
equation. In this attack, the number of parity check equations are dependent how
many sums of columns in G we can find in the pre-processing that sum to zero
in the l − B lowest bits. This number is given by the the

(
N
w

)
combinations of

w columns in G of length N that exist multiplied by the probability 1/2l−B for
that each of those combinations are zero in the l − B lowest bit, see[10]. Thus,
the number of parity check equations we expect to find is

E(m) =

(
N
w

)
2l−B

. (18)

To have a successful attack, the number of keystream bits N must large enough

to satisfy
(N

w)
2l−B > 2B

C(Pw)
. Hence, it follows that the different parameters in the

attack much be chosen carefully.

Convolutional attack. The fast correlation attack via convolutional codes[9,10]
was actually presented before the attack above. However, mathematically the
convolutional attack can be perceived as a further extension of the simple fast
correlation attack. Since the Equation set (15) is cyclic we get that

yt,0 ≈ c0,0ut + c0,1ut+1 + · · ·+ c0,B−1ut+B−1 (19)
...

yt,m−1 ≈ cm−1,0ut + cm−1,1ut+1 + · · ·+ cm−1,B−1ut+B−1

where yt,j = zt+ij,0
+ zt+ij,1

+ · · ·+ zt+ij,w−1
. For each t, 0 ≤ t < T for a chosen

T , we let st = ût, ût+1, . . . , ût+B−1 go through all the 2B possible state values.
For each state we evaluate the Equation set (19) and let metrics,t be the number
of equations that hold for the given state st. The number of steps T should be
around 10B [9]. Now we have a 2B×T Trellis, where each of the 2B different states
at time t has a metrics,t assigned to it. Using the Viterbi algorithm [5,25], we can
now find the longest possible path (the path with the highest sum of metrics)



20 Introduction to the Thesis

trough the trellis, that is, we choose the path (s0, s1, . . . , sT−1) that maximizes
the sum metrics0,0 +metrics1,1 + · · ·+metricsT−1,T−1. The path corresponds to the
T first bits of the bit stream generated by the LFSR, and the attack is equivalent
to the decoding of a [m, 1, B] convolution code.

Evaluation. Let pe < T · 2−B and p = Pr(ut 6= zt). The attack has success with
probability 1− pe if the inequality

p ≤ 1

2
− 1

2

(
4ln2

m

) 1
2w

holds [10], and the runtime complexity for the attack is

O(2BmT ).

The attack seems from this formula to be slower than the simple fast correlation
attack, but since this attack uses less parity check equations the speed is approx-
imately the same. The downside of this attack is that it uses much memory, in
order of O(2BT ), to store the trellis. However, in the paper “Improved fast cor-
relation attack using low rate codes” we show in this thesis that by using some
algorithmic techniques and tuning the parameters properly, this attack becomes
both memory and runtime efficient.

4.5 Iterative Fast Correlation Attacks

Another class of fast correlation attacks is the iterative attacks. The iteration
attacks are generally not based on the block code model as above, and the focus is
not on guessing bits. Instead the decoding is done in several rounds or iterations
where the keystream is altered/corrected often using low weight parity check
equations. Hopefully the bit stream converges to the bit stream produced by the
LFSR in the cipher.

The first fast correlation attack. Even though the simple fast correlation
attack presented by Chepyzhov, Johansson and Smeets is a natural extension of
Siegenthaler’s correlation attack, it was far from being the first fast correlation
attack. The first fast correlation attack presented was quite different and was
presented by Meier and Staffelbach in 1988 in [15]. This attack works when the
generator polynomial g(x) for the LFSR has low weight.

Two techniques are used to turn g(x) into several parity check equations.
Assume g(x) has weight w, that is g(x) = 1+xi1 +· · ·+xiw−2 +xiw−1 , where iw−1 =
l. This corresponds to the linear equation ut+ut+i1 +ut+i2 +· · ·+ut+iw−2 +ut+iw−1 .
Since g(x)2 = (1 + g1x + g2x

2 + · · ·+ xl)2 = 1 + g1x
2 + g2x

4 + · · ·+ x2l in F2[x],
we get that ut +ut+2i1 + · · ·+ut+2iw−1 = 0. Thus, we get equations that hold over



Introduction to the Thesis 21

the bit stream u by repeatedly multiplying the indexes i1, . . . , iw−1 by 2. Hence,
we can from one equation build up the following equation set

ut + ut+i1 + ut+i2 + · · ·+ ut+iw−1 = 0

ut + ut+2i1 + ut+2i2 + · · ·+ ut+2iw−1 = 0 (20)

ut + ut+4i1 + ut+4i2 + · · ·+ ut+4iw−1 = 0
...

By displacing the equations we can from each of the equation in (20) get w new
parity check equations for the bit ut, iw−1 < t < N − iw−1.

ut + ut+i1 + ut+i2 + · · ·+ ut+iw−1 = 0

ut−i1 + ut + ut+i2−i1 + · · ·+ ut+iw−1−i1 = 0

...

ut−iw−1 + ut+i1−iw−1 + ut+i2−iw−1 + · · ·+ ut = 0

Combining these two techniques the total number of parity check equations we
get is approximately m ≈ w logl

N
2
. Note that all the equations can not be used

for all t, since some equations will exceed the end points 0 and N when t is low
or high.

The attack is as follows. Assume we have a keystream z of length N , where
p = Pr(ut 6= zt) 6= 0.5. By iterative decoding we want to retrieve the LFSR bit
stream u from z.

A threshold pthr is calculated, and each bit in z is given a probability pt for
being correct. The initial probability for all the bits are pt = 1− p. Then all the
equations in the set that lie within the end points 0 and N are tested on zt for
all t. Each bit zt is given a new probability pt for being correct, calculated from
the number of equations that hold, and the probabilities for the bits involved in
the equations. When this is done, all the bits zt that have a probabilities lower
that the threshold pthr are corrected to zt ← zt ⊕ 1 and the probabilities for
being correct are also recalculated to pt ← 1 − pt. Next, a new threshold pthr

is calculated and the whole process starts over. For each iteration we hopefully
get a bit stream that is closer to u and the probabilities pt for being correct get
closer to 1. This is done until all the equations in the set hold, which means that
we have retrieved the sequence u from z. We refer to [15] for the mathematical
details of this attack.

This attack only works when the generator polynomial has low weight, since
when it has high weight, the equations give much less information about each
bit. There are many variations of this attack, see among others [7,17], where the
methods for calculating pthr and pt vary. If g(x) has high weight, it is possible, as



22 Introduction to the Thesis

described in Section 3.2, to find multiples of g(x) that have low weight, and use
the multiples in the attack.

4.6 A Linear Consistency Attack on Irregularly Clocked Generators

To test if a bit stream u is produced by a given LFSR we can use a linear
consistency test as proposed by Zeng, Yang and Rao in [26]. The test is to build
up an equation set using u and the generator matrix G for the LFSR, as explained
in Section 3.2, and try to solve it using the Gaussian reduction algorithm. If the
set is solvable, the stream has passed the test and we assume that the stream was
produced by the LFSR.

This can be used to attack the model where a LFSRu of length lu is clocked
by a LFSRs of length ls. Assume we have a keystream z that is generated by the
model in Section 3.3. From this sequence we want to determine the initialization
states sI for LFSRs and uI for LFSRu.

The attack is as follows. We make a guess ŝI for the initialization state sI

for LFSRs and generate the corresponding clock control sequence ĉt. Using ĉt we
calculate k̂(t) =

∑t
i=0 ĉt for all t, 0 < t < lu. If the guess ŝI is correct we now

know where the bits zt would have been in u prior to the irregularly clocking,
since ûk̂(t) = zt. Let kt = k(t) and l = lu for simplicity. Using the method from
Section 3.2 we build the equation set

ûk0 = h0,k0u0 + h1,k0u1 + · · ·+ hl−1,k0ul−1

ûk1 = h0,k1u0 + h1,k1u1 + · · ·+ hl−1,k1ul−1

...

ûkl−1
= h0,kl−1

u0 + h1,kl−1
u1 + · · ·+ hl−1,kl−1

ul−1,

where u0, u1, . . . , ul−1 are the unknown variables. Next we try to solve the set
using the Gaussian reduction algorithm. If the set is solvable it will output uI

and we know that the guess ŝI was correct guess for sI. If it is not solvable, the
guess was wrong and we continue the search. Since the Gaussian algorithm has
complexity (l3u) and we have to go through all possible guesses for sI, the total
runtime complexity for the attack is O(2lsl3u).

In this thesis, in the paper “Improved Linear Consistency Attack on Irregu-
larly Clocked Keystream Generators” we present a linear consistency attack that
has runtime complexity O(2ls). Hence, the runtime complexity of this attack is
independent of the length of LFSRu.

5 A New Generator

One of the main reasons for using LFSRs as building blocks in stream ciphers is
that they are easy to implement, especially in hardware. However, such ciphers



Introduction to the Thesis 23

can be vulnerable to attacks due to the linear properties of the LFSRs. To prevent
attackers from using the weaknesses, new ciphers tends to combine the LFSRs
with more and more complex components. In addition, even smaller embedded
systems are getting relatively advanced with complex processors. This justifies the
search for new and fast methods that use the complex capacities of the modern
processors to generate nonlinear balanced sequences with maximum length.

A new method for generating maximum length sequences is to use T-functions.
Let y =f(x) be a function from n input bits to n output bits. Let x (and y)
be defined by the bit vector x = (xn−1, xn−2, . . . , x0) or by the equivalent x =
x0 +2x1 + · · ·+2n−1xn−1. The function f(x) is a triangular function (T-function)
if bit yj of the output y is only dependent on the bits (xj, xj−1, . . . , x0) in the
input.

5.1 The Klimov-Shamir T-function

In [12,11] Klimov and Shamir proposed a generator based on the T-function
f(x) = x2 ∨C + x that can be used to produce maximum length sequences. The
generator is word based and is given by

xi = x2
i−1 ∨C + xi−1 mod 2n,

where ∨ is the bitwise or operation, xi = xi,0 + 2xi,1 + · · · + 2n−1xi,n−1 and
C =C0 + 2C1 + · · ·+ 2n−1Cn−1 for xi,j and Cj in F2.

We can organize the sequence in an l times n matrix x =(x0,x1, . . . ,xl−1)
where l is the length of the sequence and n is the state length. Hence, the state
at time t is the t’th row in x. One of the major properties of the sequence is
that column j in x has period 2j+1 where the first row is j = 0. Hence, the least
significant bits have very low period and are insecure.

The generator uses both squaring and adding which are much more complex
than the basic ’and’,’or’, ’xor’ and ’shift’ operations often used in stream ciphers.
Modern processors perform these operations quickly, so the generator is fast in
software. However, some bits in the sequences produced by the generator have
weaknesses. Therefore, they must be used with care. Only a few of the bits from
internal state can be used, which slows down the bit rate of the generator.

Klimov and Shamir proposed a simple and experimental cipher in [11] to
demonstrate the strength of the T-function. Let the internal state of the generator
at time i be (xi,n−1, xi,n−2, . . . , xi,0). Let m be a chosen number for 0 < m < n.
Since the least significant bits have low period, the generator outputs only the
m most significant bits zi = (xi,n−1, . . . , xi,n−m) of xt as keystream bits. The bits
(xi,n−m−1, . . . , xi,1, xi,0) are kept secret. The secret key in this cipher is the n−m
least significant bits (x0,n−m−1, . . . , x0,1, x0,0) of the initialization state x0.



24 Introduction to the Thesis

5.2 Cryptanalysis of the Klimov-Shamir T-function

There have only been a few attacks on the Klimov-Shamir T-function, and they
are often focused on the low period of the least significant columns in x. In [11]
Klimov and Shamir presented an attack on the simple cipher described above.
Let (x0,x1, . . . ) be a sequence generated by the T-function with C = 5 and let
m = n/2. Assume that the m least significant bits in xi are zero for some i, that
is xi = (xi,n−1, xi,n−2, . . . , xi,n−m, 0, . . . , 0). Then x2

i = 0 mod 2n and we get that
xi+1 = x2

i ∨ 5 + xi = 5 + xi. Hence, xi and xi+1 become equal in the m most
significant bits. Further, if xi is zero in the least m significant bits, then the same
will be for xi+2m . This can be used to find such i that has 0 in the secret m least
significant bits of xi.

The attack is as follows. For all i < 2m test if zi = zi+1. If a such t is found,
then test if zi+k2m = zi+1+k2m for all k < T for some threshold T . If the test does
not hold, we continue the search. If the test holds for all k we stop the algorithm
and assumes that (xi,n−m−1, . . . ,xi,1,xi,0) is zero. We now know xi, and using an
algorithm from [11] we can generate the stream backward from xi and get x0.

References

1. Robert L. Benson. The Venona story. Published by National Security Agency at
http://www.nsa.gov/publications/publi00039.cfm.

2. Elwyn R. Berlekamp. Algebraic Coding Theory. McGraw-Hill Book Co., 1968.

3. V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm for fast correlation attacks on
stream ciphers. In Fast Software Encryption, FSE 2000, volume 1978 of Lecture Notes in Computer
Science, pages 181–195. Springer-Verlag, 2001.

4. Patrik Ekdahl and Thomas Johansson. A new version of the stream cipher snow. In SAC ’02:
Revised Papers from the 9th Annual International Workshop on Selected Areas in Cryptography,
Lecture Notes in Computer Science, pages 47–61. Springer-Verlag, 2003.

5. G. D. Forney. The viterbi algorithm. Proceedings of the IEEE, 61(3):268 – 278, March 1973.

6. P.R. Geffe. How to protect data with ciphers that are really hard to break. Electronics, -:99–101,
1973.

7. Jovan Golic, Mahmoud Salmasizadeh, Andrew Clark, Abdollah Khodkar, and Ed Dawson. Discrete
optimisation and fast correlation attacks. In Proceedings of Cryptography: Policy and Algorithms
Conference (CPAC ’95), volume 1029 of Lecture Notes in Computer Science, pages 186–200, 1995.

8. G.Vernam. Cipher printing telegraph system for secret wire and radio telegraphic communications.
Journal of American Institute of Electrical Engineers, (45):109–115, 1926.

9. Thomas Johansson and Fredrik Jönsson. Fast correlation attacks on stream ciphers via convo-
lutional codes. In Advances in Cryptology-EUROCRYPT’99, volume 1592 of Lecture Notes in
Computer Science, pages 347–362. Springer-Verlag, 1999.

10. Thomas Johansson and Fredrik Jönsson. Theoretical analysis of a correlation attack based on
convolutional codes. In Proceedings of 2000 IEEE International Symposium on Information Theory,
IEEE Trans. Comput., page 212, 2000.

11. Alexander Klimov and Adi Shamir. Cryptographic applications of T-functions. In SAC, 2003.

12. Alexander Klimov and Adi Shamir. A new class of invertible mappings. In Cryptographic Hardware
and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
470 – 483. Springer-Verlag, 2003.

13. J.L. Massey. Shift-register synthesis and BCH decoding. IEEE Transactions on Information
Theory, 15:122–127, Jan 1969.



Introduction to the Thesis 25

14. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology-
EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 386–397. Springer-
Verlag, 1994.

15. W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In Advances in Cryptology-
EUROCRYPT’88, volume 330 of Lecture Notes in Computer Science, pages 301–314. Springer-
Verlag, 1988.

16. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1997.

17. M. Mihaljevic and J. Golic. A fast iterative algorithm for a shift register initial state reconstruction
given the noisy output sequence. In Advances in Cryptology - AUSCRYPT’90, volume 453 of
Lecture Notes in Computer Science, pages 165–175. Springer-Verlag, 1990.

18. H̊avard Molland. Improved linear consistency attack on irregularly clocked keystream generators.
In Fast Software Encryption, FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages
109 – 126. Springer-Verlag, 2004.

19. H̊avard Molland and Tor Helleseth. An improved correlation attack against irregular clocked and
filtered keystream generators. In CRYPTO, volume 3152 of Lecture Notes in Computer Science,
pages 373–389. Springer-Verlag, 2004.

20. H̊avard Molland and Tor Helleseth. Linear properties in the Klimov-Shamir T-function. Submitted
to IEEE Transactions on Information Theory. Accepted for presentation at ISIT-2005, 2005.

21. H̊avard Molland, John Erik Mathiassen, and Tor Helleseth. Improved fast correlation attack using
low rate codes. In Cryptography and Coding, IMA 2003, volume 2898 of Lecture Notes in Computer
Science, pages 67–81. Springer-Verlag, 2003.

22. Gregory G. Rose. A stream cipher based on linear feedback over GF(28). In ACISP ’98: Proceed-
ings of the Third Australasian Conference on Information Security and Privacy, Lecture Notes in
Computer Science, pages 135–146. Springer-Verlag, 1998.

23. Claude E. Shannon. A mathematical theory of communication. Bell, 27:379–423, 623–656, 1948.
24. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. on

Computers, C-34:81–85, 1985.
25. Andrew J. Viterbi. Error bounds for convolutional codes and an asymtotically optimum decoding

algorithm. IEEE Transactions on Information Theory, 13(2):260 – 267, April 1967.
26. K. Zeng, C. Yang, and Y. Rao. On the linear consistency test (LCT) in cryptanalysis with ap-

plications. In Advances in Cryptology-CRYPTO ’89, number 435 in Lecture Notes in Computer
Science, pages 164–174. Springer-Verlag, 1990.





Improved Fast Correlation Attack Using Low

Rate Codes

H̊avard Molland, John Erik Mathiassen, Tor Helleseth

The Selmer Center??,
Dept. of Informatics,
University of Bergen

P.B. 7800 N-5020 BERGEN
Norway

Abstract. In this paper we present a new and improved correlation
attack based on maximum likelihood (ML) decoding. Previously the
code rate used for decoding has typically been around r = 1/214.
Our algorithm has low computational complexity and is able to use
code rates around r = 1/233. This way we get much more information
about the key bits. Furthermore, the run time for a successful attack
is reduced significantly and we need fewer keystream bits.

1 Introduction

Linear feedback shift registers, LFSRs, are popular building blocks for stream
ciphers, since they are easy to implement, easy to analyze, and they have nice
statistical properties. However, a linear shift register is not a cryptographic secure
function in itself. Assuming we know the connection points in the LFSRs, we just
need to know a few bits of the keystream to find the key bits, by using the linear
properties in the streams to set up an equation set that is easily solved.

To make such a cipher system more secure, it is possible to combine n LFSRs
with a nonlinear function f in such a way that linear complexity becomes very
high. Fig. 1 describes an example for this model. The keystream z = (z0, z1, . . . ,
zt, . . . , zN−1) is generated by zt = f(u1

t , u
2
t , . . . , u

n
t ) and the linearity in the bit

streams ui = (ui
0, u

i
1, . . . , u

i
t, . . . , u

i
N−1) from the n LFSRs is destroyed. The plain

text m of length N is then encrypted to cipher text c by ct = zt⊕mt, 0 ≤ t < N .
There exist different types of attacks on systems based on this scheme. The

type of attack we describe in this paper is the correlation attack. The attack
uses the fact that there often exist some correlations between the bits in some
of the shift register streams and the keystream z. This can be formulated as the
crossover probability p = P (ut 6= zt), where ut is the bit stream from a LFSR
that has a correlation with z. When p 6= 0.5, it is possible to do a correlation
attack. Thus, the model is to decode a LFSR stream that has been sent through
a binary symmetric channel (BSC) with crossover probability p.

?? This work was supported by the Norwegian Research Council under Grant 146874/420.



2 Improved Fast Correlation Attack Using Low Rate Codes

The simplest correlation attack[8] choses the shift register LFSRi that has a
correlation to the keystream bit z. Then the initialization bits ûI for the LFSR
are guessed and the bit stream û = (û0, û1, . . . , ûN−1) is generated. If for a chosen
threshold ptr there exists a correlation between the guessed bit stream û and z
such that P (ut 6= zt) < ptr < 0.5 for 0 ≤ t < N , it is assumed that the correct
initialization bits are found. This attack has a complexity of O(2li · N) which is
much better than O(2l1+l2+···+ln), the complexity for guessing the initialization
bits for all the LFSRs.

LFSR

LFSR

LFSR

u

zu

u

1

2

n

1

2

n

...
f

Fig. 1. An example of a stream cipher we are are able to attack using fast correla-
tion attacks. The linear feedback shift registers LFSRi of length li, for 1 ≤ i ≤ N ,
are sent through a nonlinear function f to generate the keystream z

The complexity for guessing all the bits in a given LFSRi can be too high.
To get around this, the fast correlation attack was developed[6,7] by Meier and
Staffelbach. This attack uses parity check equations and reconstructs u from z
using an iterative decoding algorithm. The attack works well when the polynomial
that defines the LFSRi has few taps, but fails when the polynomial has many taps.

In [2] Johansson and Jönsson presented a better attack that works for LFSRs
with many taps. Using a clever search algorithm, they find parity equations that
are suitable for convolutional codes. The decoding is done using the Viterbi al-
gorithm, which is maximum likelihood. This attack is briefly explained in Sect.
2.

In [9] David Wagner found a new algorithm to solve the generalized birthday
problem. In this paper we present an algorithm based on the same idea that finds
many equations suitable for correlation attacks. The problem with this algorithm
is that it finds many but weak equations, and previous attacks would not be very
effective since the code rate will be very low.

In this paper we present an improvement on the attacks based on ML de-
coding. While Johansson and Jönsson use few but strong equations, we go in the
opposite direction and use many and weak equations. We present a new algorithm
that is capable of performing an efficient ML decoding even when the code rate



Improved Fast Correlation Attack Using Low Rate Codes 3

is very low. This gives us much more information about the secret initialization
bits, and the run time complexity goes down considerably. For a crossover proba-
bility p = 0.47, polynomial of degree l = 60 and the number of known keystream
bits N = 100 · 106, our attack has complexity of order 239, while the previous
convolutional code attack[2,4] has complexity of order 248. See Table 2 in Sect. 5
for more simulation results compared to previous attacks.

The paper will be organized as follows. First we will give a brief description
of the systems we try to attack. In Sect. 2 we will describe the basic mathematics
and some important previous attacks. In Sect. 3 we describe an efficient method
for finding parity check equations, using the generalized birthday problem. In
Sect. 4 we present a new algorithm that is capable of using the huge number of
equations found by the method in Sect. 3.

2 Definitions and Previous Attacks

First we will define the basic mathematics for the correlation attacks in this paper.

2.1 The Generator Matrix

Let g(x) = 1 + gl−1x + gl−2x
2 + · · · + g1x

l−1 + xl be the primitive feedback
polynomial over F2 of degree l for a linear feedback register, LFSR, that gener-
ates the sequence u = (u0, u1, . . . , uN−1). The corresponding recurrence is ut =
g1ut−1 + g2ut−2 + · · ·+ gl−1ut−l+1 + ut−l. Let α be defined by g(α) = 0. From this
we get the reduction rule αl = g1α

l−1 + g2α
l−2 + · · · + gl−1α + 1. Then we can

define the generator matrix for sequence ut, 0 < t < N by the l ×N matrix

G = [α0α1α2 . . . αN−1]. (1)

For each i > l, using the reduction rule, αi can be written as αi = hi
l−1α

l−1 +
· · · + hi

2α
2 + hi

1α + hi
0. We see that every column i ≥ l is a combination of the

first l columns. Any column i in G can be represented by

gi = [hi
0, h

i
1, . . . , h

i
l−1]

T. (2)

Thus the sequence u with length N and initialization bits uI = (u0, u1, . . . , ul−1),
can be generated by

u = uIG.

The shift register is now turned into a (N, l) block code.

Example 1. Let g(x) = x4 + x3 + 1. Using the reduction rule we get α4 = α3 +
1, α5 = α(α3 + 1) = α4 + α = α3 + α + 1 and so on. We choose N = 10, and set
G = [α0α1 . . . α9]. The sequence u is generated by the 4× 10 matrix G like this,

u = uIG = [u0, u1, u2, u3]


1 0 0 0 1 1 1 1 0 1
0 1 0 0 0 1 1 1 1 0
0 0 1 0 0 0 1 1 1 1
0 0 0 1 1 1 1 0 1 0

 . (3)



4 Improved Fast Correlation Attack Using Low Rate Codes

The reason that we use a generator matrix, is that we easily can see from G which
initialization bits (u0, u1, . . . , ul−1) sum to ui for every 0 ≤ i < N by looking at
column i. For example the bit u9 (last column) in the example above is calculated
by u9 =u0 + u2, and it is independent of the initialization bits u1 and u3.

2.2 Equations

In [2] Johansson and Jönsson presented the following method for finding equations
that are usable for decoding.

Let u be a sequence generated by the generator polynomial g(x) with degree
l. If we can find w columns in the generator matrix G that summarize to zero in
the l −B last bits,

(gi0 + gi1 + . . . + giw−1)
T = (c0, c1, . . . , cB−1, 0, 0, . . . , 0︸ ︷︷ ︸

l−B

), (4)

for a given B, 0 < B ≤ l, and l ≤ i0, i1, . . . , iw−1 < N , we get an equation of the
form

c0u0 + c1u1 + · · ·+ cB−1uB−1 = ui0 + ui1 + · · ·+ uiw−1 . (5)

This can be seen by noting that column i in G shows which of the initialization
bits uI = (u0, u1, . . . , ul−1) that summarize to the bit ui in the sequence u. When
two columns i and j in G sum to zero in the last l−B entries (uB, uB+1, . . . , ul−1),
the sum ui + uj is independent of those bits. Then we can concentrate on finding
just the B first bit of uI . The equation (5) is cyclic and can therefore be written
as

c0ut + c1ut+1 + · · ·+ cB−1ut+B−1 = ut+i0 + ut+i1 + · · ·+ ut+iw−1 , (6)

for 0 ≤ t < N − iw−1.

Example 2. Let w = 2, and B = 1. If we examine the matrix G in equation (3),
we see that (g6 + g8)

T = (1, 1, 1, 1) + (0, 1, 1, 1) = (1, 0, 0, 0). From this we get
c0 = 1, i0 = 6 and i1 = 8 and the equation is u0 = u6 + u8. Because of the
cyclic structure we finally get ut = ut+6 + ut+8. This equation will hold for every
sequence that is generated with g(x) = x4 + x3 + 1 as feedback polynomial.

In section 3 we will go further into how the actual search for columns that sum
to zero in the last l −B bits can be done efficiently.

2.3 Principle for Decoding

In [1] Chepyzhov, Johansson and Smeets presented a simple maximum likelihood
algorithm that uses equations found in Sect. 2.2 for decoding. We will now briefly
describe this algorithm. First we take equation (5) and make the right side of the



Improved Fast Correlation Attack Using Low Rate Codes 5

equation point to the corresponding keystream bits z instead of u. From this we
get the following equation,

c0u0 + c1u1 + · · ·+ cB−1uB−1 ≈ zi0 + zi1 + · · ·+ ziw−1 . (7)

Let m be the number of equations found by the method in Sect. 2.2. Then we get
the equation set

c0,0u0 + c0,1u1 + . . . + c0,B−1uB−1 ≈ zi0,0 + zi0,1 + · · ·+ zi0,w−1

c1,0u0 + c1,1u1 + . . . + c1,B−1uB−1 ≈ zi1,0 + zi1,1 + · · ·+ zi1,w−1 . (8)

...

cm−1,0u0 + cm−1,1u1 + . . . + cm−1,B−1uB−1 ≈ zim−1,1 + zim−1,2 + · · ·+ zim−1,w−1

We use ′ ≈′ to notify that the equations only hold with a certain probability.
Here (u0, u1, . . . , uB−1) are the unknown secret bits we want to find and z is

the keystream. Remember that ut and zt are equal with a probability 1−p where
p = P (ut 6= zt). Thus, each equation in (8) will hold with a probability

Pw =
1

2
+ 2w−1(

1

2
− p)w, (9)

using the Piling up lemma[5]. Replace the bits (u0, u1, . . . , uB−1) in the set (8) with
a guess Û = (û0, û1, . . . , ûB−1). If (û0, û1, . . . , ûB−1) 6= (u0, u1, . . . , uB−1), (that
is, if one or more of the guessed bits are wrong) each equation will hold with a
probability P = 0.5. If the guess is right, each equation will hold with a probability
Pw > 0.5. We see that the (N, l) block-code is reduced to a (m, B) block-code,
and the decoding problem is to decode message blocks of length B that are sent
as codewords of length m through a channel with crossover probability 1− Pw.

The decoding can be done the following way. For all the 2B possible guesses
for Û = (û0, û1, . . . , ûB−1), test Û with all the equations in the set (8), and give
the guess one point for every equation in the set that holds. Afterward, assume
that (u0, u1, . . . , uB−1) = Û for the guess of Û that has the highest score. In this
way we get the first B bits of the secret initialization bits (u0, u1, . . . , ul−1). The
procedure can be repeated to find the rest of the bits (uB, uB+1, . . . , ul−1).

The complexity for this algorithm is

O(2B ·m) (10)

since we have to test m equations on the 2B different guesses of Û.

2.4 Fast Correlation via Convolutional Codes

In [2] Johansson and Jönsson showed how the equation set (8) can be used to
decode the keystream z via convolutional codes. The problem is formulated as



6 Improved Fast Correlation Attack Using Low Rate Codes

decoding of a (m, 1, B) convolutional code, and the decoding is done using the
Viterbi algorithm. This algorithm is optimal, but has relatively high usage of
memory. In convolutional codes the coding is done over T bits. Using the fact
that the equations are cyclic, the algorithm in Sect. 2.3 is used for calculating the
metrics for each state Û at time t, 0 ≤ t < T . The algorithm in Sect. 2.3 is actually
a special case of the fast correlation attack via convolutional code with T = 1.
When the metrics are calculated, we try to find the longest possible path through
the states 0 ≤ t < T . We see that the problem is transformed into finding the
longest path trough a 2B ×T trellis. The Viterbi algorithm is optimal for solving
this problem. We refer to [2] for details about the convolutional attacks.

2.5 Theoretical Analysis and Complexity

In [4] Johansson and Jönsson, presented a theoretical estimate of the success rate
for fast correlation attacks via convolutional codes.

For a given bit stream of length N generated by a shift register with feedback
polynomial g(x), the expected number of equations of type (5) is

E(m) =

(
N−T−l

w

)
2l−B

≈
(

N
w

)
2l−B

(11)

Let pe < l · 2−B and p = P (zt 6= ut). Then the convolutional attack described in
Sect. 2.4 has a success with probability 1− pe if

p ≤ 1

2
− 1

2

(
8ln2

m

) 1
2w

. (12)

The probability p is set by the stream cipher. The closer p is to 0.5, the more
equations are needed to fulfill (12). One way to find more equations is to increment
w, the number of bits on the right hand side of the equations. If we do this, each
equation we find gets weaker, see equation (9). However, although each equation
is weaker, we find so many of them that they together give more information
about the unknown key bits uI . The problem with this is, as shown below, that
the complexity of the attack also increases when we use many more equations. In
Sect. 4 we will describe a new method to solve this problem.

The complexity of the convolutional attack in [2,4] is O(2B · m · T ), since
we decode over T bits. This can be rewritten using equation (11) and noting

that m = 2B (N
w)
2l . Let o =

(N
w)
2l . In this way we see that the complexity can be

formulated as
O(22B · o · T ), (13)

The complexity for the simple attack in [1] is O(22B · o). Using this formulation,
we see that if we use all the equations for given w, N, B and l, the run time
complexity increases with a factor 4, when we increment B by one.



Improved Fast Correlation Attack Using Low Rate Codes 7

3 Methods for Finding Equations

In this section we will describe a fast method for finding many equations. The
method is in some ways similar to the solution of the generalized birthday problem
that Wagner presented in [9].

We have an equation of the form (5) if we find w columns in the generator
matrix G of length N that sum to zero in the last l − B positions. For w = 2
we sort the N columns from the generator matrix. Equal columns will then be
located next to each other. The complexity for this method is O(N log2 N).

3.1 A Basic Method for Finding Equations with w > 2

We will now describe a simple and well known algorithm for finding equations
when w > 2.

First we sort the columns in the l × N generator matrix G according to the
values in last l−B bits. Then we run through all possible sums of w−1 columns,
and search for columns in G that are equal to the sums in the last l − B bits.
The sum of these w columns is then zero in the l − B last bits. The complexity
of this algorithm will be O(Nw−1 log2 N).

This method is straightforward and seems good since we find all the equations.
The problem is when l−B becomes big, since it is less likely that the sum of the
combination of w − 1 columns matches a single column. The number of possible
different values in the l − B last bits are 2l−B. If we pick a random combination
of w − 1 columns we will have a probability less than Pm = N/2l−B of getting
a match from the sorted generator matrix. If N = 220, B = 15 and l = 40 then
Pm = 2−5, so on average each 32’th sum combination will give an equation. If
we increase the degree of the feedback polynomial to l = 60, the probability of
finding an equation for given w− 1 columns will be reduced to Pm = 2−25. Since
an equation with w = 4 is a very weak equation, we need millions of equations in
most cases.

Table 1. The table shows the percentage of the total number of equations we
need for a successful convolutional attack when N = 221, l = 60, w = 4 and
B = 20

p v

0,41 0.00068
0,43 0,0051
0,45 0,075%
0,47 4.5%



8 Improved Fast Correlation Attack Using Low Rate Codes

The method above finds all the equations, but in fact we do not need all the
equations for the attack to succeed. From (12) we get the equation

ms =
8 ln 2

(1− 2p)2w
,

where ms is the number of equations needed for success for a given crossover
probability p. Then v = ms

m
will give us the rate of the total number of equations

m needed for a successful attack. Table 1 shows different rates needed for different
attacks. The fact that we do not need all the equations indicates that we may
use a fast method to find a subset of them.

3.2 A Method for Finding All the Equations with w = 4

The method described here works in certain situations where the parameters are
small. The algorithm works as follows. In the first step we go through all the
possible sums of pairs gj0 , gj1 , of columns in G. These sums are stored in a
matrix G2 and the indexes of the two columns in G are also stored. In the second
step we sort the matrix G2 according to the last l − B bits. Then we search for
the columns in G2 that are equal in the last l − B bits. Let fj∗ = gi∗,0 + gi∗,1 be
the sums of pairs found in G. In this way we get weight 4 equations of the form:

(fj0 + fj1)
T = (gi0,0 + gi0,1 + gi1,0 + gi1,1)

T = (c0, c1, . . . , cB−1, 0, . . . , 0︸ ︷︷ ︸
l−B

) (14)

where the fj’s are columns in G2 and the gj’s are columns in G.
By this method we will find all the equations 3 times. The reason for this is

illustrated by the equation

gi0,0 + gi0,1 + gi1,0 + gi1,1 = 0⇐⇒ gi0,0 + gi0,1 = gi1,0 + gi1,1 .

Two other pairs giving the same equation is gi0,0 + gi1,1 = gi0,1 + gi1,0 and gi0,0 +
gi1,0 = gi0,1 +gi1,1 . This collisions are avoided if the pairing in the second step has
a restriction. All the indexes on the left side of the equation must all be less or
greater than the indexes on the right side. In this way 2

3
of the equations will be

thrown away, but the remaining 1
3

will represent all the equations. This method

will be impractical if N is big, since G2 will have a length of N2 =

(
N
2

)
.

3.3 A Fast Method for Finding a Subset of the Equations with
w = 4

Here we will solve the problem concerning memory requirement in the algorithm
presented above. Using this algorithm we are able to find all the equations, but
the number of possible sums in step one is far too many. If we can reduce the size
of G2, without reducing the number of equations significantly, we have succeeded.



Improved Fast Correlation Attack Using Low Rate Codes 9

Algorithm 1 The algorithm for finding a subset of all the equations with w = 4

Input: G, N , B2, B4 < B2, l.
Step 1:
sort the l ×N matrix G according to the last l −B2 bits.
For 0 ≤ i0, i1 < N find all pairs of columns gi0 and gi1 that sums to

fT = (gi0 + gi1)
T = (d0, d1, . . . , dB2−1, 0, . . . , 0︸ ︷︷ ︸

l−B2

)

Add f and the indexes i0, i1to the G2 matrix.

Step 2:
sort l ×N2 matrix G2 according to the last l −B4 bits.
For 0 ≤ j0, j1 < N2 find all pairs of columns fj0 and fj1 in G2 that sums to

(fj0 + fj1)
T = (c0, c1, . . . , cB4−1, 0, . . . , 0︸ ︷︷ ︸

l−B4

) = (gj0,0 + gj0,1 + gj1,0 + gj1,1)
T

where j∗,0 and j∗,1 are the indexes from G associated to fj∗ .
Add c0, c1, . . . , cB−1 and the indexes j0,0, j0,1, j1,0, j1,1 to F .

Return: F

The algorithm is divided into two steps. In step one we find a subset of all the
sums, where the pairing in step 2 only involves elements in that subset. The sum
of two columns that are unequal in the last bits will never be zero. Therefore, we
may look for sums of pairs in step 1 where we require a certain value in the last
l − B2 positions. Without loss of generality we require zeroes in the last l − B2

positions in G2.
Let B4 < B2 < l. First we sort the columns in G according to the last

l − B2 positions. Then we go through the matrix and find the pairs of columns
f = gi0 +gi1that sum to zero in the last l−B2 positions and store them in matrix
G2. The original positions of the columns in the sum are also stored. The size
of G2 is thereby reduced by a factor of 2l−B2 . In the second step we repeat the
algorithm using B4 on G2. We sort the matrix G2 according to the last l − B4

bits, in order to find pairs of columns from G2, where the sum is zero in the last
l − B4 bits. In this way we get weight 4 equations of the form (5). The pseudo
code for this is shown in Algorithm 1.

Algorithm 1 is a method which may keep the memory requirements sufficiently
low. From (11) we get the size N2 of G2,

N2 =

(
N
2

)
2l−B2

≈ N2

2l−B2+1
.



10 Improved Fast Correlation Attack Using Low Rate Codes

It is possible to run this algorithm several times to find even more equations.
Instead of keeping the last l − B2 bits zero in the first step, we may repeat this
algorithm requiring these bits having the fixed values (dB2 , dB2+1, . . . , dl) 6= 0. We
may choose to only vary the first two bits, and run the algorithm 22 times. Thus
we get four times as many equations compared to running it only once. The cost
is that we have to sort the matrices G and G2

Using Algorithm 1 some of the equations we get will be equal, called collisions.
If we use algorithm 1 repeatedly while changing r bits (we repeat 2r times), this
bound is

p(collision) < 2(B2+r)−l + 22(B2+r−l) < 2 · 2(B2+r−l) = 2(B2+r+1−l)

since B2 + r − l < 0. If we do not use repetitions we set r = 0. In practical
attacks, this probability will be very low, and the simulations show that this has
little impact on the decoding.

4 Fast Decoding using Quick Metric

In Sect. 3 we presented a fast method for finding a huge number of equations.
These equations can give us a lot of information about the initialization bits.
However, since there are so many of them, we get two new problems. It will take
too much memory to store all the equations, and the complexity will be too high
when we use them to calculate the metrics during decoding. Thus, we need an
efficient method for storing the equations, and an efficient method for using them.

The complexity for calculating the metrics by the method in Sect. 2.3, is
O(2B ·m), where m is the number of equations and B is the message block size of
the code. If m is very high, the decoding problem can be to complex. We reduce
the decoding complexity to O(22B +m) by the following two methods referred to
as Quick Metric.

4.1 A New and Efficient Method for Storing the Equations

Let m � 2B be the number of equations found using the method described in
Sect. 3 with B = B4. We get an equation set like (8). The main observation here
is that although there are m different equations, there exist only 2B different
versions of the left side of the equations. This means that many equations will
share the same left sides defined by (c0, c1, . . . , cB−1) when m� 2B. We can now
use counting sort to store the equations. Let E be an integer array of size 2B.
When an equation of the form (5) is found, we set

e = c0 + 2c1 + 22c2 + · · ·+ 2B−1cB−1. (15)

Then we count the equation by setting E(e)← E(e) + 1.



Improved Fast Correlation Attack Using Low Rate Codes 11

Algorithm 2 The algorithm for storing equations (first step)

Input: G, N , T , B,w and z.
For every i0, i1, . . . , iw−1, T ≤ i0, i1, . . . , iw−1 < N − T ,

If the columns gi0 ,gi1 , . . . ,giw−1 in G summarize to

(gi0 + gi1 + · · ·+ giw−1)
T = (c0, c1, . . . , cB−1, 1, 0, . . . , 0︸ ︷︷ ︸

l−B

)

Let e be the integer value of the bits (c0, c1, . . . , cB−1).
E(e)← E(e) + 1
For every t, 1 ≤ t ≤ T ,

Sum(e, t)← Sum(e, t) + (zt+i0 + zt+i1 + · · ·+ zt+iw−1 mod 2)

Return:The integer arrays Sum and E

At this point we have stored the left side of the equation. To store the right
side, we use another integer array, sum(), of size 2B. Then we calculate the binary
sum s = (zi0 + zi1 + · · ·+ ziw−1) mod 2 for the given (i0, i1, . . . , iw−1). Finally we
set Sum(e)← Sum(e) + s.

When the search for equations is finished, E(e) is the number of the equations
of type e that was found, and Sum(e) is the number of equations of type e that
sum to 1 on the right hand side for a given keystream z.

Algorithm 2 shows a pseudo code for this idea. Here the idea is expanded
so that it works with decoding via convolutional codes as presented in [2,4]. We
assume that the search methods in Algorithm 1 are used to find the w columns
that sum to zero in the last B bits. When decoding is done via convolutional
codes, the equations are cycled T times when we decode over T bits. This means
that we have to calculate Sum(e) for every 0 ≤ t < T , since the right side of (7)
is not cyclic itself. From this we get the 2-dimensional array Sum(e, t). One little
detail to make this work with convolutional codes, is that the bit cB in the sum
of the columns has to be 1. However, this has no impact on the complexity for
the algorithm.

4.2 A New and Efficient Method for Calculating the Metrics

Assume we have done the search for equations according to Sect. 3.3 and Algo-
rithm 2. After this preprocessing step, we have the two arrays E and sum. Let
me = E(e) be the number of equations found of type e. Now we can test me

equations on a guess Û in just one step instead of me .
Make a guess Û for uI . For every equation type e, do as follows: If the sum

c0û0 + c1û1 + · · ·+ cB−1ûB−1 corresponding to the equation type e (see equation
15) is 1, the number of the me = E(e) equations that hold is sum(e). The metric
for the guess Û is incremented with sum(e). If c0û0 + c1û1 + · · ·+ cB−1ûB−1 = 0,



12 Improved Fast Correlation Attack Using Low Rate Codes

Algorithm 3 Quick Metric algorithm (second step)

Input: state Û, time t, and the tables Sum and E .
metricÛ ← 0
For every e, 0 ≤ e < 2B

If equation e over state Û sums to 1,
metricÛ ← metricÛ + Sum(e, t)

Else
metricÛ ← metricÛ + (E(e)− Sum(e, t))

Return: metricÛ

the number of the me equations that hold is me − sum(e), and the metric is
incremented with me− sum(e). Algorithm 3 shows the pseudo code for this idea.

Now we have calculated the metric for one guess in just 2B steps instead of m >
2B steps. The complexity for this part of the attack is actually independent of the
amount of equations that are used, and the complexity for calculating the metrics
for all the 2B guesses is O(22B). The reason that the overall complexity is O(22B +
m), is that we have to go through all m equations once in the preprocessing, each
time we want to analyze a new keystream z. Using the search algorithm in Sect.
3, we can do some processing independently from z. However, in the end we have
to go through m equations and save the zi0 + zi1 + · · · + ziw−1 in the array sum
for each equation. This part of the search algorithm is almost linear in m.

4.3 Complexity and Properties

When we use Quick Metric, the decoding is done in two steps. The first step is
the building of the equation count matrix E. The second step is decoding using
the Viterbi algorithm with complexity O(T · 22B), because of Quick Metric. The
building of matrix E can be divided into 3 parts. First the sorting of G of length
N , then the sorting of G2 of length N2. Finally we have to go through the sorted
G2 and save all the equations in E. Thus, the total complexity for the first step
is O(N · log2 N +N2 · log2 N2 +T ·m). Since m has to be very high for our attack,
the complexity is most often dominated by T ·m, and the overall complexity for
the first step is O(T ·m).

It will vary which of the two steps that will dominate the complexity. Thus,
the total run time complexity for both step is given by

O(T ·m + T · 22B).

To have a success rate close to 1, the number of equations m and the convolutional
memory B should satisfy equation (12) where p and l is are set by the cipher
system. T must be high enough so that the algorithm converge to the right path



Improved Fast Correlation Attack Using Low Rate Codes 13

in the trellis. T ≈ l is enough for most cases. The complexity for the attack in

[4,2] is O(22B · o · T ), where o =
(N

w)
2l .

The first observation is that when we use Quick Metric, the computational
complexity for the Viterbi algorithm is independent from the number of equations
m that is used for decoding. The main difference from the attacks in [4,2] is that
we just have to go through all m equations once in the first step. In [4,2] they
have to go through all the m equations for every time they test one of the 2B

states. Thus, our algorithm has a big advantage when we choose to use more than
2B equations.

A drawback for our algorithm is that we have to do the first step every time
we want to decode a new stream generated by the same system. In [4,2], they
just have to do the preprocessing once for each cipher system. Therefor we have
to keep the complexity in the first step as low as possible. There is actual a trade
off between the two steps. When the first step takes long time, the second step
takes less time, and the other way around. This means that we have to choose
the parameters N , B and m carefully to get the best possible attack.

The next observation is that our algorithm is stronger for lower B, since we
can use many more equations. That means that we can attack a system using a
lower B than is possible with the attacks in [4,2]. Thus, the run time for given B,
w and m goes down considerably since B has a huge impact on the complexity.

5 Simulations

The evaluation of the attacks needs some explanation. The interesting parameters
of the cipher systems we attack, are the polynomial degree l and the crossover
probability p. Finally we are given a keystream of length N . We want for a
given high l to be able to decode a keystream z where the crossover probability
p = (ui 6= zi) is as near 0.5 as possible. Of course we want to use few keystream
bits and low run time complexity.

To be able to compare the different attacks, we compute the complexity for
decoding as the total number of times we have to test an equation on a guessed
state. The complexity for the pre-computation is computed as the number of
table lookups that have to be done during the search for equations. When we use
Quick Metric we have 2 steps, so the overall complexity is given by the sum of
the two steps.

See Table 2 for the simulation results. It is important to notice that we have
programmed and tested all the attacks in the table, and the results for p come
from these tests, not the theoretical estimate (12). For this purpose we used a
2.26 GHz Pentium IV with 1 gigabyte memory running on Linux. The algorithm
is fast in practice and even the biggest attack (p = 0.47) was done in just a few
hours including the search for equations.



14 Improved Fast Correlation Attack Using Low Rate Codes

Table 2. The tables show our attack compared to previous attacks. The generator
polynomial degree l for the LFSR is 60 for all the simulations. We set T = 60.
The * is a theoretical estimate using the success rate equation (12)

Improved convolutional code attack

B p N w
Total

decoding
runtime

14 0.43 15 · 106 4 235

10 0.43 100 · 106 4 231

16 0.47 100 · 106 4 239

11 0.43 40 · 106 4 230

Previous convolutional code attack[2]

B p N w
Decoding
runtime

20 0.43 100 · 106 2 238

18 0.37 600 · 103 3 237

25∗ 0.47 100 · 106 2 248

Previous attack through reconstruction
of linear polynomials [3]

B p N w Rounds n
Decoding
runtime

25 0.43 40 · 106 2 4 241.5

From the table we see that our attack is best when p is close to 0.5. For
p = 0.47 the run time of our attack is dominated by the pre-computation step
which is m · T ≈ 239. The parameters for this attack is B2 = 34, B = B4 = 16
and m = 233 which gives the code rate r = 2−33. If we use the method in [2,4],
the estimated run time is 248 parity checks.

Another attack from Johansson and Jönsson is the the fast correlation attack
through reconstruction of linear polynomials[3]. This attack has lower complexity
than fast correlation via convolutional codes and it uses less memory. We can
apply Quick Metric on the reconstruction algorithm, but unfortunately this will
not give a better result than using it on the convolutional code attack. The reason
for this is that in each round in the algorithm we would have to repeat the search
for equations. To keep B sufficient low, we would have to use many rounds. Thus,
the computational complexity for this would become too high.

However, when we use Quick Metric on the convolutional attack, the attack
achieves in most cases a much lower run time complexity than the attack in [3].
This is shown by the two attacks in Table 2 using N = 40 · 106.



Improved Fast Correlation Attack Using Low Rate Codes 15

6 Conclusion

We have presented a new method for calculating the metrics in fast correlation
attacks. This method enable us to handle the huge number of parity check equa-
tions we get when we use w = 4 and the method in Sect. 3. Earlier it has only
been possible to handle convolutional code rates down to around r = 1/214. Using
our method we have decoded convolutional codes with rates down to 1/232 in just
a few hours. Because of this we have done attacks on cipher systems with higher
crossover probability p than before.

An open problem is the search for equations with w = 3. We use w = 4 since
there exists a fast method for finding those equations. However, the equations
with w = 4 are weak, and this gives the first step high complexity. A good
solution would be to use w = 3, with a fast search algorithm.

References

1. V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm for fast correlation attacks on
stream ciphers. In Fast Software Encryption, FSE 2000, volume 1978 of Lecture Notes in Computer
Science, pages 181–195. Springer-Verlag, 2001.

2. Thomas Johansson and Fredrik Jönsson. Fast correlation attacks on stream ciphers via convolutional
codes. In Advances in Cryptology-EUROCRYPT’99, volume 1592 of Lecture Notes in Computer
Science, pages 347–362. Springer-Verlag, 1999.

3. Thomas Johansson and Fredrik Jönsson. Fast correlation attacks through reconstruction of linear
polynomials. In Advances in Cryptology-CRYPTO’2000, volume 1880 of Lecture Notes in Computer
Science, pages 300–315. Springer-Verlag, 2000.

4. Thomas Johansson and Fredrik Jönsson. Theoretical analysis of a correlation attack based on
convolutional codes. In Proceedings of 2000 IEEE International Symposium on Information Theory,
IEEE Trans. Comput., page 212, 2000.

5. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology-
EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 386–397. Springer-
Verlag, 1994.

6. W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In Advances in Cryptology-
EUROCRYPT’88, volume 330 of Lecture Notes in Computer Science, pages 301–314. Springer-
Verlag, 1988.

7. Willi Meier and O. staffelbach. Fast correlation attacks on certain stream ciphers. Journal of
Cryptology, 1:159–176, 1989.

8. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. on
Computers, C-34:81–85, 1985.

9. David Wagner. A generalized birthday problem. In Advances in cryptology-CRYPTO’ 2002, volume
2442 of Lecture Notes in Computer Science, pages 288–303, 2002.





Improved Linear Consistency Attack on

Irregularly Clocked Keystream Generators

H̊avard Molland

The Selmer Center??,
Dept. of Informatics,
University of Bergen

P.B. 7800 N-5020 BERGEN
Norway

Abstract. In this paper we propose a new attack on a general model
for irregularly clocked keystream generators. The model consists of
two feedback shift registers of lengths l1 and l2, where the first shift
register produces a clock control sequence for the second. This model
can be used to describe among others the shrinking generator, the
step-1/step-2 generator and the stop and go generator. We prove that
the maximum complexity for attacking such a model is only O(2l1).

Keywords: Stream ciphers, irregularly clocked generators, linear con-
sistency test

1 Introduction

The objective in stream ciphers is to expand a short key into a long keystream z
that is difficult to distinguish from a truly random bit stream. It should not be
possible to reconstruct the short key from z. The message is then encrypted by
mod-2 additions with the keystream.

In this paper we analyze additive stream ciphers where the keystream is pro-
duced by an irregularly clocked linear feedback shift register (LFSR). This model
produces bit streams with high linear complexity, which is an important criteria
for pseudo random sequences.

The cipher model we attack is composed of two LFSRs, LFSRs of length ls
and LFSRu of length lu. LFSRs produces a bit stream s and LFSRu produces
a bit stream u. The bit stream s is sent through a function D(). Finally D()
outputs the clock control sequence of integers, c, which is used to clock LFSRu.
See Fig. 1 for an illustration, and Sec. 2.1 for a full description of the model. The
effect of the irregularly clocking is that u is irregularly decimated. The result
from the decimation is the keystream z. Thus, the positions of the bits in the
original stream u are altered and the linearity of the stream are destroyed. This
gives the keystream z high linear complexity.

?? This work was supported by the Norwegian Research Council under Grant 146874/420.



2 Linear Consistency Attack on Irregularly Clocked Keystream Generators

D

LFSR s

c

uLFSR u

s

z

Fig. 1. The general model for irregularly clocked keystream generators

There have been several previous attacks on this scheme. One popular method
is to use the constrained Levenshtein distance (CLD) (also called edit distance),
which is the number of deletions, insertions, or substitutions required to transform
one sequence into another. In [2,3] they find the optimal edit distance and present
efficient algorithms for its computation.

Another technique is to use the linear consistency test (LCT), see Handbook
of Cryptography (HAC) [5] and [9]. Here the ls clock control initialization bits are
guessed and used to restore the positions the keystream bits had in u. This gives
the guess u∗ = (. . . , ∗, zi, . . . , zj, . . . , ∗, . . . , zk, . . . , ∗, . . . ), where zi, zj, zk are some
keystream bits and the stars are the deleted bits. They now perform the LCT on
u∗, using the Gaussian algorithm on an equation set with lu unknowns derived
from LFSRu and u∗. If the equation set is consistent, the guess is outputted as
the correct initialization bits for LFSRs. The Gaussian algorithm will use about
2
3
l3u calculations and the total complexity for the attack is O(2ls · l3u).

In [1,10] and the recent paper [11] they guess only a few of the clock control
bits before they reject/accept the guess, using the Gaussian algorithm. If the
guessed bits pass the test, they do an exhaustive search on the remaining key
space.

It is hard to estimate the running time for the attacks in [1,10,2,3]. The
attack in [11] is estimated to have an upper bound complexity O(L3 · 2Lλ), where
λ = log A/(1 + log A), L = ls + lu and A is the number of different clocking
numbers from the D() function.

Most of the previous LCT attacks have in common that they try to find the
initialization bits for both LFSRs and LFSRu at once. We have a much more
simple and algorithmic approach to the problem. The resulting algorithm is deter-
ministic and has a lower and easily estimated running time which is independent
from the number of clock control behaviors A, and the length lu of LFSRu. We
will show that our attack has lower computational complexity than the previous
LCT attacks.

We also do a test similar to the LCT, but our test is much more efficient since
we are not using the Gaussian algorithm to reject or accept the initialization bits
for LFSRs. Our rejection test has constant complexity O(K), where K is only



Linear Consistency Attack on Irregularly Clocked Keystream Generators 3

2 parity check operations in average. Thus, the total complexity for the attack
becomes O(2ls).

The basic idea for the test is simple. From the generator polynomial gu(x) for
LFSRu we derive a low weight cyclic equation that will hold for all bitstreams
generated by LFSRu. In Appendix C.3 we describe a modified version of Wagners
general birthday algorithm [8] that finds the low weight cyclic equation. For each
guess of c we generate the guess u∗ for u. Then we try the cyclic equation at
a given number of entries in the u∗ stream. If the equation hold every time, we
can conclude that the bits are generated by LFSRu, and it is most likely that we
have the correct guess for c. If the guess is wrong we have to test the equation at
in average 2 entries before the guess is rejected. A naive implementation of this
algorithm will, as shown in Section 3.2, have complexity O(2ls · N) where N is
the length of the guess u∗. The reason for this is that we have to calculate a new
u∗ for each guess for c.

The real advantage in this paper is the new algorithm we present in Section
3.4. The algorithm is iterative and except for the first iteration it calculates each
guess u∗ using just a few operations. The idea is to go through the guesses for c
cyclically. This way we can reuse most of u∗ from one guess to another. In worst
case our attack needs 2ls iterations to succeed, and we have the complexity O(2ls).
Thus, by using the cyclic properties of feedback shift registers, we have got rid of
the l3u factor they have in the LCT attacks in [5,9,1,11]. In Section 4 we present
some simulations of the algorithm.

2 A General Model for Irregularly Clocked Generators

2.1 Description

We will first give a general description of irregularly clocked generators.

Let gu(x) be the feedback polynomial for the shift register LFSRu of length
lu, and let gs(x) be the feedback polynomial for a shift register LFSRs of length
ls. LFSRu is called the data generator, and LFSRs is called the clock control
generator.

From gs(x) we can calculate a clock control sequence c in the following way.
Let ct = D(sv, sv+1, . . . , sv+ls−1) ∈ {a1, a2, . . . , aA} , aj ≥ 0 be a function where
the input (sv, sv+1, . . . , sv+ls−1) is the inner state of LFSRs after v feedback shifts
and A is the number of values that ct can take. Let pj be the probability pj =
Prob(ct = aj). The way LFSRs is clocked is defined by the specific generator.
Often LFSRs and ct are synchronized, which means that v = t.

LFSRu produces the stream u = (u0, u1, . . . ) The clock ct decides how many
times LFSRu is clocked before the output bit from LFSRu is taken as keystream
bit zt. Thus, the keystream zt is produced by zt = uk(t), where k(t) is the total
sum of the clock at time t, that is k(t)← k(t− 1) + ct.



4 Linear Consistency Attack on Irregularly Clocked Keystream Generators

Let u = (u0, u1, . . . , uN−1) be the bit stream produced by the shift register
LFSRu. The resulting sequence will then be zt = uk(t), 1 < t < M . This gives
the following definition for the clocking of LFSRu.

Definition 1. Given bit stream u and clock control sequence c, let z = Q(c,u)
be the function that generates z of length M by

Q(c,u) : zt ← uk(t), 0 ≤ t < M

where k(t) =
∑t

j=0 cj − S, S ∈ {0, 1}

The parameter S only is for synchronization, and most often S = 1. Finally we
let sI = (s0, s1, . . . , sls−1) and uI = (u0, u1, . . . , ulu−1) be the initialization states
for LFSRs and LFSRu. Together, sI and uI defines the secret key for the given
cipher system.

If aj ≥ 1, 1 ≤ j ≤ A, the function Q(c,u) can be looked on as a deletion
channel with input u and output z. The deletion rate is

Pd = 1− 1∑A
j=1 pjaj

. (1)

Thus, given a stream z of length M , the expected length N of the stream u is

E(N) =
M

(1− Pd)
= M

A∑
j=1

pjaj. (2)

2.2 Some Examples for Clock Control Generators

The Step-1/Step-2 Generator. The clocking function is defined by Q(c,u) :
zt ← uk(t), 0 ≤ t < M, and D(st) = 1 + st. We see that the number of outputs
is A = 2, with probabilities pj = 1/2, 1 ≤ j ≤ 2. This gives Pd = 1− 1

1
2
+2 1

2

= 1
3
,

and E(N) = 3
2
M . Since this generator is simple, we will use it in the examples in

this paper.

Example 1. Assume we have an irregularly clock control stream cipher as defined
in Section 2.1, with gs(x) = x3 + x2 + 1. We let sI = (s0, s1, s2) = (1, 0, 1) and we
get c by ct = D(st):

c = (2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, . . . ).

Let gu(x) = x4 + x3 + 1 and LFSRu be initialized with uI = (1, 1, 0, 0). We get
the following bit stream

u = (1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1). (3)



Linear Consistency Attack on Irregularly Clocked Keystream Generators 5

Using c on u, the bits are discarded in this way,

u∗ = (∗, 1, 0, ∗, 1, 0, 0, ∗, 1, ∗, 1, ∗, 0, 1, ∗,
1, 1, 0, ∗, 1, ∗, 0, ∗, 1, 1, ∗, 1, 0, 1)

(4)

Finally the output bit from the cipher will be

z = Q(c,u) = (1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1). (5)

The LILI-128 Clock Control Generator. The clock control generator which
is one of the building blocks in the LILI-128 cipher [7] is similar to the step-
1/step-2 generator but c has a larger range. The generator is defined by Q(c,u) :
zt ← uk(t), 0 ≤ t < M, and ct = D(st+i1 , st+i2) = 1 + st+i1 + 2st+i2 . This gives
A = 4, pj = 1

4
, 1 ≤ j ≤ 4, and Pd = 1 − 1∑4

j=1
1
4
j

= 3
5
, and the length of u is

expected to be N = 5
2
M.

The Shrinking Generator. In the shrinking generator, the output bit uk from
LFSRu is outputted as keystream bit zt if the output sk from LFSRs equals one.
If sk = 0 then uk is discarded.

To be able to attack the generator with our algorithm we must have the
clock control sequence c. The clock control sequence for the shrinking generator
can be generated as follows. Let y − 1 be the number of consecutive zeros from
sv = 1, that is (sv, sv+1, . . . , sv+ls−1) = (1, 0, . . . , 0︸ ︷︷ ︸

y

, ∗, . . . , ∗). Then the clocking

function is defined as D(sv, sv+1, . . . , sv+ls−1) = y. It follows from the definition
of the shrinking generator that LFSRs and LFSRu are synchronized, so LFSRs

must be clocked ct times before the next bit is outputted. Thus, the clock control
sequence is ct = D(sk(t−1), sk(t−1)+1, . . . , sk(t−1)+ls−1), where k(t)← k(t−1)+ct for
each iteration and k(−1) = 0. Q(c,u) is the same as for the generators above. If
we analyze the clock control sequence, ct ∈ {1, 2, . . . , . . . , ls − 1}, where pj = 1/2j,
when ls is a large number (ls > 10). This gives A = ls−1, Pd = 1− 1∑ls

j=1
1

2j j
≈ 0.5

and E(N) = 2M , as intuitively expected.

3 A New Attack on Irregularly Clocked Generators

The idea behind the attack is to guess the clock control sequence c, and recon-
struct the original positions the keystream bits in z had in u using the reversed
function Q∗(c, z) defined below. From this we get a sequence û looking similar to
(4). When this is done, we test if û is a sequence that could have be generated by
LFSRu using some linear equations we know hold over any sequences generated
by LFSRu. If the test holds, we assume we have made the correct guess for c.
Knowing the correct c, we can use the Gaussian algorithm as described in [9] to
find the initialization bits for u.



6 Linear Consistency Attack on Irregularly Clocked Keystream Generators

3.1 The Basics

First we state a definition.

Definition 2. Given the clock control sequence c and keystream z, let the func-
tion u∗ = Q∗(c, z) be the (not complete) reverse of Q, defined as

Q∗(c, z) : u∗k(t) ← zt, 0 ≤ t < M,

where k(t) =
∑t

j=0 cj − S, and u∗k=* for the entries k in u∗ where u∗k is deleted.
When this occurs we say that u∗k is not defined.

The length of u∗ will be N∗ =
∑M−1

j=0 cj. Note that the only difference between this
definition and Definition 1, is that u and z have changed sides. Thus, Q∗(c, z)
is a reverse of the Q(c,u). But since some bits are deleted, the reverse is not
complete and we get the stream u∗. As seen in Example 1, we can reverse the
keystream (5) back to (4) but not completely back to the original stream (3),
since the deleted bits are not known.

The probability for a bit u∗k being defined is Prob(u∗k) = 1−Pd. This happens
when k = k(t) holds for for some t, 0 ≤ t < M . It follows that the sum δ =
u∗k + u∗k+j1

+ · · · + u∗k+jw−1
will be defined if and only if all of the bits in the sum

are defined. Thus, the sum δ will be defined for given k in u∗ with probability

Pdef = Prob(u∗k, u
∗
k+j1

, . . . , u∗k+jw−1
) = (1− Pd)

w =

(
1∑A

j=1 pjaj

)w

. (6)

3.2 Naive Attack

Using definition 2, we first present a naive high complexity attack. In the next
section we present a more advanced and low complexity version of the attack.

Let sI be the initial state for LFSRs, and let Lv(sI) be the inner state after
v feedback shifts. Without loss of generality we assume S = 1 and that LFSRs

is clocked once for each output ct. Thus, v = t and ct = D(Lt(sI)) is the output
from the clock generator after t feedback shifts.

We are given a keystream z of length M which is generated with z = Q(c,u).
Assume we have found an equation uk +uk+j1 + · · ·+uk+jw−1 = 0 that holds over
u. First we guess the initial state LFSRs and generates the corresponding guess
ĉ for c using the D() function. Using definition 2 we can calculate u∗ = Q∗(ĉ, z).
Then we try to find m (typically m = ls + 10, we add 10 to prevent false alarms)
entries in u∗ where the equation is defined. If the equation holds for every entry
it is defined, we assume we have found the correct guess for sI. If not, we make
a new guess and do the test again. The pseudo code for this algorithm is given
below.

Input The keystream z of length M



Linear Consistency Attack on Irregularly Clocked Keystream Generators 7

1. Preprocessing: Find an equation of low weight that holds over the stream u
of length N .

2. For all possible guesses ŝI do the following:
3. Generate the clock control sequence ĉ of length M by ct = D(Lt(ŝI)).
4. Generate û∗ of average length N = M

(1−Pd)
using û∗ = Q∗(ĉ, z).

5. Find m entries (k1, k2, . . . , km) in the stream û∗ where the equation is defined.
6. If the equation holds for all the m entries over û∗, then stop the search and

output the guess ŝI as the key for LFSRs.

The problem with this algorithm is that for each guess for ŝI, we have to generate
a new clock control stream of length M and generate û∗ = Q∗(ĉ, z) of length N .
In larger examples, N and M will be large numbers, say around 106. Since the
complexity is O(N · 2ls), the run time for this algorithm will in many cases be
worse than the algorithm in [9]. In the next session we present an idea that fixes
this problem.

3.3 Final Idea

The problem in the previous section was that we had to generate M bits of the
clock control stream for each guess for sI. This can be avoided if we go through
the guesses in a more natural way. We start by an initial guess ŝI = (0, 0, . . . , 1),
and let the i’th guess be the internal state of the LFSRs after i feedback shifts.

Let ci = (ci
0, c

i
1, . . . , c

i
M−1) be the i’th guess for the clock control sequence

defined by ci
t = D(Li+t(1, 0, . . . , 0)), 0 ≤ t < M . Let ui = Q∗(ci, z) be the

corresponding guess for u∗ of length Ni = ∑M−1
t=0 ci

t. We can now give an iterative
method for generating ui+1 from ui.

Lemma 1. We can transform ui into ui+1 = Q∗(ci+1, z) using the following
method: Delete the first ci

0 entries (∗, . . . , ∗, z0) in ui, append the ci+1
M−1 = ci

M

entries (∗, . . . , ∗, zM) at the end, and replace zt with zt−1 for 1 ≤ t ≤M .

Proof. See Appendix B.

Lemma 1 gives us a fast method for generating all possible guesses for u given a
keystream z. See Table 1 for an intuitive example of how the lemma works.
Next we prove a theorem that allows us to reuse the equation set defined for ui.

Theorem 1. If the sum

βui,k = uk + uk+k1 + · · ·+ uk+kw−1 = zt + zt+j1 + · · ·+ zt+jw−1 = γz,t

is defined over ui, then the sum

βui+1,k−ci
0

= zt−1 + zt+j1−1 + · · ·+ zt+jw−1−1 = γz,t−1

is defined over ui+1.



8 Linear Consistency Attack on Irregularly Clocked Keystream Generators

Proof. See Appendix B.

The main result from this theorem is that the equation set that is defined over ui

will still be defined over ui+1 if we shift the equations ci
0 entries to the left over

ui+1. This means that we can just shift the equations 1 entry to the left over z,
and we will have an sum that is defined for the guess ŝI = D(Li+1(1, 0, . . . , 0).
Thus, the theorem indicates that we can go around a lot of computations if we
let the i’th guess for the inner state of LFSRs be Li(1, 0, . . . , 0).

Table 1. Example of a walk through of the key. The bits in bold font show how
the pattern of defined bits in ui shifts to the left, while the actual key bits stay
relatively put. Also notice how the entries zi in the patterns are replaced with zi−1

after one iteration. For example the sub stream z7, z8, z9, ∗, z10 → z6, z7, z8, ∗, z9.
This means that if the sum z7 +z8 +z9 +z10 is defined for ci, then z6 +z7 +z8 +z9

will be defined for ci+1

Guessed clock sequence ci Resulting ’known’ bits of ui = Q∗(ci, z).

(2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2) (∗, z0, z1, z2, ∗, z3, ∗, z4, ∗, z5, z6, ∗, z7, z8, z9, ∗, z10)
(1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2) (z0, z1, ∗, z2, ∗, z3, ∗, z4, z5, ∗, z6, z7, z8, ∗, z9, ∗, z10)
(1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2) (z0, ∗, z1, ∗z2, ∗, z3, z4, ∗, z5, z6, z7, ∗, z8, ∗, z9, ∗, z10)
(2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1) (∗, z0, ∗, z1, ∗z2, z3, ∗, z4, z5, z6, ∗, z7, ∗, z8, ∗, z9, z10)
(2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2) (∗, z0, ∗z1, z2, ∗, z3, z4, z5, ∗, z6, ∗, z7, ∗, z8, z9, ∗, z10)

3.4 The Complete Attack

We will now present a new algorithm that makes use of the observations above.
We start by analyzing LFSRu (See Appendix C.3) to find an equation λ

λ : uk + uk+j1 + · · ·+ uk+jw−1 = 0

that holds over all u generated by LFSRu for any k ≥ 0. Let the first guess
for the initialization state for s be ŝI = (1, 0, 0, . . . , 0), generate c0 by c0

t =
D(Lt(1, 0, . . . , 0)), t < M , and u0 = Q∗(c, z). Next we try to find m places
(k1, k2, . . . , km) in u0 where the equation λ is defined. From this we get the equa-
tion set

u0
k1

+ u0
k1+j1

+ · · ·+ u0
k1+jw−1

= 0

u0
k2

+ u0
k2+j1

+ · · ·+ u0
k2+jw−1

= 0
...

...
u0

km
+ u0

km+j1
+ · · ·+ u0

km+jw−1
= 0

.



Linear Consistency Attack on Irregularly Clocked Keystream Generators 9

Since every ukx+jy in this equation set is defined in u0, we can replace ukx+jy with
the corresponding bit zt in the keystream z. Thus, u0 is a sequence of pointers to
z and we can write the equations over z as the equation set Ω :

zt1,1 + zt1,2 + · · ·+ zt1,w = 0
zt2,1 + zt2,2 + · · ·+ zt2,w = 0

...
...

ztm,1 + ztm,2 + · · ·+ ztm,w = 0

. (7)

We are now finished with the precomputation.
Next, we test the equation set to see if all the equations hold. If not, we

iterate using the algorithm below which outputs the correct sI. Knowing sI it is
easy to calculate uI = (u0, u1, . . . , ulu−1) using the Gaussian algorithm once on
an equation set derived from sI and LFSRu.

Input The keystream z of length M , the equation λ, the equation set Ω, the
pointer sequence u0, the states L0(1, 0, . . . , 0) and LM(1, 0, . . . , 0), Set i← 0

1. Calculate ci
0 = D(Li(1, 0, . . . , 0)), and ci+1

M−1 = ci
M = D(LM+i(1, 0, . . . , 0)).

2. Use lemma 1 to generate ui+1 = Q∗(ci+1, z) and lower all indexes in the
equation set Ω by one. Theorem 1 guarantees that the equations are defined
over ui+1.

3. If the first equation in Ω gets a negative index, then remove the equation from
Ω. Find a new index at the end of ui+1 where λ is defined, and add the new
equation over z to Ω.

4. If the current equation set Ω holds, stop the algorithm and output sI =
Li+1(1, 0, . . . , 0) as the initialization state for LFSRs.

5. If δ does not hold, we set i← i + 1 and go to step 1.

Note 1. To reach the desired complexity (2ls) a few details on the implementation
of the algorithm are needed. These details are given in Appendix A.

All changes during the iterations are done on ui and the equation set Ω. Thus,
each guess Li(1, 0, . . . , 0) for sI result in an unique equation set Ω. The z stream
is never altered.

Example 2. We continue on the generator in Example 1. We have found the
equation uk+uk+6+uk+8 = 0, which corresponds to the multiple h(x) = 1+x6+x8.
We have z of length 19, and want to find sI. The length of ui will be N ≈ 3

2
19 =

28.5. We set the first guess to sI
0 = (1, 0, 0). From this we generate the clock

control sequence using the function c0
t = D(Lt(1, 0, 0)), 0 ≤ t ≤ M − 1, and we

get

c0 = (2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2).



10 Linear Consistency Attack on Irregularly Clocked Keystream Generators

Then we spread out the z stream corresponding to c, that is u0 = Q∗(c0, z). From
this we get the sequence

u0 = (∗, z0, z1, z2, ∗, z3, ∗, z4, ∗, z5, z6, ∗, z7, z8, z9, ∗, z10,

∗, z11, ∗, z12, z13, ∗, z14, z15, z16, ∗, z17, ∗, z18).

We search through u0 to find 4 entries where the equation uk + uk+6 + uk+8 = 0
is defined. Since all the defined entries in u0 points to bits in the z stream, we
get the following set of equations Ω over z:

z0 + z4 + z5 = 0

z6 + z10 + z11 = 0

z7 + z11 + z12 = 0

z13 + z17 + z18 = 0

We test the equations to see if all the equations hold. If the set does not hold, we
continue as follows. We shift the LFSRs once, and it will have sI

1 = L1(1, 0, 0) =
(0, 0, 1) as inner state. We calculate c1

M−1 = c0
M = D(LM(1, 0, 0)). Then we use

Lemma 1 to calculate u1 from u0. That is, we delete the c0
0 = 2 entries (∗, z0),

append the (c1
18 = 2) entries (∗, z19) at the end, and at last replace the pointer zt

with zt−1 for 1 ≤ t ≤M . We get this guess for u:

u1 = (z0, z1, ∗, z2, ∗, z3, ∗, z4, z5, ∗, z6, z7, z8, ∗, z9,

∗, z10, ∗, z11, z12, ∗, z13, z14, z15, ∗, z16, ∗, z17, ∗, z18).

If an equation is defined for the entry t in z for the guess sI
0, it will now be defined

for the entry t − 1 in z for the guess sI
1 as guaranteed by Theorem 1. From this

Ω becomes:

z−1 + z3 + z4 = 0

z5 + z9 + z10 = 0

z6 + z10 + z11 = 0

z12 + z16 + z17 = 0

We remove the first equation from Ω since it has a negative index, and find a new
index at the end of u1 where λ is defined. We find the equation z13 +z17 +z18 = 0
and add it to Ω. We test the equations to see if all the equations hold. If the set
does not hold, we continue the algorithm.



Linear Consistency Attack on Irregularly Clocked Keystream Generators 11

3.5 Complexity and Properties

Precomputation If the generator polynomial gu(x) for LFSRu has sufficient
low weight, say ≤ 10, we can use it directly in our algorithm with w = weight(gu)
and h(x) = gu(x). In such a case we do not need much precomputation. The only
precomputation is to generate u0 of length N , where the length of N is calculated
below.

If gu(x) has too high weight we use a modified version of Wagners algorithm for
the generalized birthday problem [8] to find a multiple h(x)=a(x)g(x) of weight
w = 2r and degree lh. The multiple h(x) gives a new recursion of low weight.
The fast search algorithm is described in Appendix C.3. See Table 2 for some
multiples found by the algorithm.

Table 2. The table shows some weight 4 multiples of different polynomials found
using the algorithm in Appendix C.3. The algorithm used 1 hour and 15 minutes
to find the multiple of the degree 80 polynomial, mostly due to heavy use of hard
disk memory. The search for the multiple of the degree 60 polynomial took 14
seconds

g(x) h(x) = a(x)g(x)

x40 + x38 + x35 + x32 + x28 + x26 + x22 + x20 + x17 + x16+

x14 + x13 + x11 + x10 + x9 + x8 + x6 + x5 + x4 + x3 + 1

x24275 + x6116

+x1752 + 1

x60 + x58 + x56 + x52 + x51 + x50 + x49 + x48 + x47 + x46 + x44+

x41 + x40 + x39 + x36 + x29 + x28 + x27 + x26 + x25 + x23 + x21+

x20 + x19 + x16 + x15 + x11 + x10 + x9 + x4 + x2 + x + 1

x2464041 + x1580916

+x131400 + 1

x80 + x79 + x78 + x76 + x75 + x69 + x68 + x57 + x56 + x55 + x54 + x52 + x49+

x46 + x45 + x44 + x42 + x37 + x36 + x35 + x32 + x31 + x30 + x28 + x27 + x26+

x24 + x23 + x21 + x20 + x19 + x13 + x12 + x10 + x8 + x6 + x4 + x3 + 1

x312578783 + x309946371

+x210261449 + 1

When we have found a polynomial h(x) = 1+xj1 + · · ·+xjw−1 with jw−1 = lh,
the corresponding equation λ over u is uk +uk+j1 + · · ·+uk+jw−1 = 0. We want to
find m places in the stream u where λ is defined. From equation (6) we have that
an equation of weight w is defined at an random entry in u with a probability
Pdef = (1 − Pd)

w. Thus, we must test around m/(1 − Pd)
w entries to find m

equations over z. To be able to do this u must have length

N > lh +
m

(1− Pd)w
. (8)

To avoid false keys, we choose m > ls. From the expectation (2) of N we have
E(M) = N(1 − Pd) = (1 − Pd)lh + m

(1−Pd)w−1 , and we have proved the following
proposition:



12 Linear Consistency Attack on Irregularly Clocked Keystream Generators

Proposition 1. Let an equation over u be defined by h(x) of weight w and degree
lh. To get an equation set Ω of m > ls equations over z, the length of the z stream
must be

M > (1− Pd)lh +
m

(1− Pd)w−1
. (9)

where m ≈ ls + 10.

We see that the keystream length M is dependent of the degree lh of h(x) of weight
w = 2r. The degree lh is then again highly dependent on the search algorithm
we use to find h(x). When we use the search algorithm in Appendix C.3 with
the proposed parameters we show in the appendix that lh will be in order of

lu ≈ Tmem(lu, r) = 2
r+l
r+1 .

Decoding. If this algorithm is implemented properly (Appendix A) it will have
worst case complexity O(2ls) with a very little constant factor. In average the
number of iterations will be in the order of 2ls−1.

At each iteration i we shift the sliding window ci
0 to the right over ui. Then we

shift the equation set 1 to the left over z, and test it. If we have the wrong guess
for sI, each equation in the set will hold with a probability 1

2
. When we reach an

equation that does not hold we know that the guess for sI is wrong and we break
off the test. Thus, the average number of equations we have to evaluate per guess

is
limm→∞

∑m
j=1 j·2ls/2j

2ls = limm→∞
∑m

i=1 i/2i = 2. This gives an average constant
factor of 2 parity check tests for each of the 2ls guesses. Thus, the complexity is
O(2 · 2ls) = O(2ls)

Each time an equation gets a negative index, we must delete it and search
for a new equation at the end of ui. We expect to search through 1/(1− pd)

w−1

entries in ui to find a new equation. This is done every M−lu(1−pd)
m

iteration in
average, and will have little impact on the decoding complexity.

When we after i iterations have found the initialization bits for LFSRs, we
use the Gaussian algorithm on the linear equation set derived from LFSRu and
ui to find the initialization bits for LFSRu. This has complexity O(l3u) and will
have little effect on the overall complexity of the algorithm.

4 Simulations

We have done the attack on 4 small cipher systems, defined with clock control
generator polynomials of degree 25 and 26, and the data generator polynomials of
degree 40 and 60 from Table 2. The clock function D() is the LILI-clock function
as described in Section 2.2. Note that we only attack the irregularly clocking
building block in LILI and not the complete LILI-128 cipher. In LILI-128 the
stream is filtered through a Boolean function, and this is beyond the scope of this
paper.



Linear Consistency Attack on Irregularly Clocked Keystream Generators 13

Degree ls Degree lu Degree lh of Number Decoding Length
of gs(x) of gu(x) h(x) of Iterations time M of z

25 40 24275 225 9 sec. 10000

26 40 24275 226 18 sec 10000

25 60 2464041 225 9 sec 1000000

26 60 2464041 226 18 sec 1000000

Table 4. The attacks are done in C code on a 2.2 GHz Pentium IV running under
Linux. Note how the running time is exactly the same for lu = 40 and lu = 60.
We have set the number of equations to m = 35. The polynomials g(x) and h(x)
are from Table 2

We have used Proposition 1 and Equation (8) to calculate the length M of
z and length N of u (rounded up to nearest thousand and hundred thousand).
The number of parity check equations over z is set to m = 35 ≈ ls + 10. Recall
that the number of parity check equations does not effect the complexity. Table 4
shows how the running time of the attack is unchanged when the degree of gu(x)
gets larger. The impact from a larger lu is that we need longer keystream.

Normally we would stop the search when we have found the correct key. But
then the running time would be highly dependent on where the key is in the
key space. To avoid this we have gone trough the whole key space to be able to
compare the different attacks in the table. In a real attack the average running
time would be half the running times in Table 4. To compare with previous LCT
attacks, the Gaussian factor 2

3
l3u would be around 144000 for lu = 60, and around

42666 for ls = 40. In our attack the constant factor is only 2 in average. Thus, the
same attacks presented in Table 4 would take several hours or even days using
the previous LCT algorithm.

5 Conclusion

We have presented a new linear consistency attack with lower complexity than
previous on a general model for irregularly clocked stream ciphers. We have tested
the attack in software and confirmed that the attack has a very low running time



14 Linear Consistency Attack on Irregularly Clocked Keystream Generators

that follows the expected complexity O(2ls). Thus, the run time complexity is
independent of the degree lu of LFSRu.

Further on, if we modify the algorithm, it will work on systems where noise is
added on keystream z. Using much higher m and giving each guess sI a metric,
we can perform an correlation attack with complexity O(m ·2ls) on such systems.
Initial tests seem very promising and we will come back to this matter in future
work.

Acknowledgment

I would like to thank my supervisor prof. Tor Helleseth and Dr. Matthew Parker
for helpful discussions and for reading and helping me in improving this paper.

References

1. Jovan Dj. Golic. Cryptanalysis of three mutually clock-controlled stop/go shift registers. IEEE
Transactions in information Science, 46(3):525–533, 2000.

2. Jovan Dj. Golic and Miodrag J. Mihaljevic. A generalized correlation attack on a class of stream
ciphers based on the levenshtein distance. Journal of Cryptology, 3:201–212, 1991.

3. Jovan Dj. Golic and Slobodan V. Petrovic. A generalized correlation attack with a probabilistic
constrained edit distance. In Advances in Cryptology - EUROCRYPT ’92, volume 658 of Lecture
Notes in Computer Science, pages 472–476, 1993.

4. Thomas Johansson and Fredrik Jönsson. Fast correlation attacks on stream ciphers via convo-
lutional codes. In Advances in Cryptology-EUROCRYPT’99, volume 1592 of Lecture Notes in
Computer Science, pages 347–362. Springer-Verlag, 1999.

5. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,
1997.

6. H̊avard Molland, John Erik Mathiassen, and Tor Helleseth. Improved fast correlation attack using
low rate codes. In Cryptography and Coding, IMA 2003, volume 2898 of Lecture Notes in Computer
Science, pages 67–81. Springer-Verlag, 2003.

7. L. Simpson, E. Dawson, J. Golic, and W. Millan. LILI keystream generator. In SAC’2000, volume
2012 of Lecture Notes in Computer Science, pages 231–236. Springer-Verlag, 2002. Available at
http://www.isrc.qut.edu.au/lili.

8. David Wagner. A generalized birthday problem. In Advances in cryptology-CRYPTO’ 2002, volume
2442 of Lecture Notes in Computer Science, pages 288–303, 2002.

9. K. Zeng, C. Yang, and Y. Rao. On the linear consistency test (LCT) in cryptanalysis with ap-
plications. In Advances in Cryptology-CRYPTO ’89, number 435 in Lecture Notes in Computer
Science, pages 164–174. Springer-Verlag, 1990.

10. E. Zenner, M. Krause, and S. Lucks. Improved cryptanalysis of the self-shrinking generator. In
ACISP ’01, volume 2119 of Lecture Notes in Computer Science, pages 21–35, 2001.

11. Erik Zenner. On the efficiency of the clock control guessing attack. In ICISC 2002, volume 2587
of Lecture Notes in Computer Science, 2002.

Appendix

A Implementation Details

To reach the desired complexity O(2ls), the implementation of the algorithm needs
some tricky details:



Linear Consistency Attack on Irregularly Clocked Keystream Generators 15

1. In Lemma 1 we get ui+1 by among other things deleting the ci
0 first bits of ui.

This is done using the sliding window technique, which means that we move
the viewing to the right instead of shifting the whole sequence to the left.
This way the shifting can be done in just one operation. To avoid heavy use
of memory, we slide the window over an array of fixed length N , so that the
entries that become free at the beginning of the array are reused. Thus, the
left and right of the sliding window after i iterations will be

(left, right) = (i mod N, i + Ni mod N),

where N>Ni, for all i, 0 ≤ i < 2ls

2. In lemma 1 every reference zt+1 in u is replaced with zt for every 0 ≤ t ≤M ,
which would take M operations. If we skip the replacements we note that after
i iterations the entry zt in u will become zt+i. It is also important to notice that
when we write u = (. . . , z0, . . . , zt, . . . , zM , . . . ), the entries z0, . . . , zt, . . . , zM

are pointers from u to z. They are not the actual key bits. Thus, in the
implementation we do not replace zt with zt−1. However, when we after i
iterations in the search for equations find an equation ui

k + ui
k+j1

+ · · · +
ui

k+jw−1
= 0 that is defined, we replace the corresponding zt1 + zt2 + · · ·+ ztw

with zt1−i + zt2−i + · · ·+ ztw−i, to compensate.
3. We do not have to keep the whole clock control sequence ci in memory. We

only need the two clocks, ci
0 and ci+1

M−1, since they are used by lemma 1 to
generate ui+1.

B Proofs of Lemma 1 and Theorem 1

B.1 Proof of Lemma 1

Proof. Let ci be the clocking integer sequence for a given i, 0 ≤ i < 2ls . We
see that ci+1

t = ci
t+1, 0 ≤ t < M − 1, which means that pattern of the defined

bits in ui+1 are the same as the pattern in ui shifted ci
0 to the left. From this

we deduce the following for given 1 ≤ t ≤ M and k = ∑t−1
j=0c

i
j − 1: If ui

k = zt

for given k then ui+1
k−ci

0
= zt−1. If we delete the first ci

0 bits of ui and get u′ we

will have that if u′k = zt for given k, then ui+1
k = zt−1 for k = ∑t−1

j=0c
i+1
j − 1. If

we now replace every zt in u′ with zt−1 for 0 < t < M and get u′′ we see that
u′′k = ui+1

k , 0 ≤ k < Ni − ci
0. To finally transform u′′ into ui+1 we just have to

append the ci+1
M−1 entries (∗, . . . , zM−1) at the end of u

′′
.

B.2 Proof of Theorem 1

Proof. Let

ui = (. . . , z0︸︷︷︸
ci
0−1

, . . . , ∗, . . . , zt︸︷︷︸
k

, . . . , zt+j1︸︷︷︸
k+k1

, . . . , ∗, . . . , zt+jw−1︸ ︷︷ ︸
k+kw−1

, . . . , zM−1︸ ︷︷ ︸
Ni−1

)



16 Linear Consistency Attack on Irregularly Clocked Keystream Generators

be the stream of length Ni we get using ui = Q∗(ci, z). The notation means
that ui

ci
0−1

= z0, ui
k = zt, and ui

Ni−1 = zM−1. We see that the sum βui,k =

ui
k + ui

k+k1
+ · · ·+ ui

k+kw−1
is defined over ui. The corresponding sum over z will

be γz,t = zt + zt+j1 + · · · + zt+jw−1 . Then the clock control sequence we get from
ci+1
t = Li+1+t(1, 0, . . . , 0) will be

ci+1 = (ci
1, . . . , c

i
M−1, c

i+1
M−1) = (ci+1

0 , . . . , ci+1
M−1).

The main observation here is the following: We transform ui into ui+1 by deleting
the first ci

0 entries (∗, . . . , z0︸ ︷︷ ︸
ci
0

) in ui, appending (∗, . . . , ∗, zM︸ ︷︷ ︸
ci+1
M

) at the end, and then

replacing zt with zt−1 for 1 ≤ t ≤M , as explained in lemma 1. From this we get
the sequence

ui+1 = (. . . , z0︸︷︷︸
ci+1
0 −1

, . . . , ∗, . . . , zt−1︸︷︷︸
k−ci

0

, . . . , zt+j1−1︸ ︷︷ ︸
k+k1−ci

0

, . . . , ∗, . . . , zt+jw−1−1︸ ︷︷ ︸
k+kw−1−ci

0

, . . . , zM−1︸ ︷︷ ︸
Ni+1−1

).

(10)
We can easily see from (10) that the sum βui+1,k−ci

0
= uk−ci

0
+ uk+k1−ci

0
+ · · · +

ck+kw−1−ci
0

is defined since every entry in the sum is defined. The corresponding
sum over z is γz,t−1 = zt−1 + zt+j1−1 + · · ·+ zt+jw−1−1.

C Searching for Parity Check Equations

C.1 The Generator Matrix

Let g(x) = 1 + gl−1x + gl−2x
2 + · · · + g1x

l−1 + xl, gi ∈ F2, gl = g0 = 1 be
the primitive feedback polynomial of degree l for a shift register that generates
the sequence u = (u0, u1, . . . , uN−1). The corresponding recurrence is ut+l =
g1ut+l−1 + g2ut+l−2 + · · · + glut. Let α be defined by g(α) = 0. From this we get
the reduction rule αl = g1α

l−1 + g2α
l−2 + · · ·+ gl−1α + 1. Then we can define the

generator matrix for sequence ut,0 < t < N by the l ×N matrix

G = [α0α1α2 . . . αN−1]. (11)

For each i > l, using the reduction rule, αi can be written as αi = hi
l−1α

l−1 +
· · · + hi

2α
2 + hi

1α + hi
0. We see that every column i ≥ l is a combination of the

first l columns, and any column i in G can be represented by

gi = [hi
0, h

i
1, . . . , h

i
l−1]

T. (12)

Now the sequence u with length N and initialization state uI = (u0, u1, . . . , ul−1),
can be generated by

u = uIG.

The shift register is now turned in to a (N, l) block code.



Linear Consistency Attack on Irregularly Clocked Keystream Generators 17

C.2 Equations

Let u be a sequence generated by the generator polynomial g(x) with degree l.
It is well known that, if we can find w − 1 > 2 columns in the generator matrix
G, that sum to zero,

(g0 + gj1 + . . . + gjw−1)
T = (0, 0, . . . , 0), (13)

for l ≤ j1, . . . , jw−1 < N , we get an equation of the form

ut + ut+j1 + · · ·+ ut+jw−1 = 0. (14)

The equation (13) can be formulated as 1 + αj1 + · · · + αjw−1 = 0. Thus, if (13)
holds, the equation αt(1 + αj1 + · · ·+ αjw−1) = αt + αj1+t + · · ·+ αjw−1+t = 0 also
holds for 0 ≤ t < N − jw−1. From this we can conclude that the equation is cyclic
and can be written as

ut + ut+j1 + · · ·+ ut+jw−1 = 0, (15)

for 0 ≤ t < N − jw−1.
We can also use the indexes j1, j2, . . . , jw−1 to formulate the polynomial h(x) =

1 + xj1 + · · ·+ xjw−1 . If j0, j1, . . . , jw−1 is found using the method above, we will
have the relationship h(x) = g(x)a(x) for a polynomial a(x). Thus, h(x) is a
multiple of g(x).

C.3 Fast Method for Finding an Multiple Weight w = 2r

A previous and naive search algorithm for finding multiple h(x) of weight w and
degree <n is as follows. It corresponds to searching for w columns in G that sum
to zero mod 2.

First sort the generator matrix G corresponding to the l− 1 lowest bits, that
is, we ignore the first bit in the columns. From G we have that g0 = (1, 0, . . . , 0)T.
Next for every choice for the w − 2 columns j2, j2, . . . , jw−1 in G search for the
column gjw−1 in G that gives (1, 0, . . . , 0)T = gj1 + gj2 + · · · + gjw−1 . This al-
gorithm is not very efficient and has the complexity O(nw−2log2n). By using
hashing techniques we can get down to O(nw−2). However, we can do better if
we use the iterative method explained next. The algorithm is a modification of
the generalized birthday algorithm in [8] and the search for equation algorithm
in [6].

First we sort the n× l generator matrix G1 = G in respect to the l−B1 lowest
entries in the columns, for a proper number B1. The columns that are equal in
the lowest l − B1 bits, will now lie beside each other. If we sum them, the sum
will be zero in the lowest l−B1 bits. Next we go through the matrix and sum all
the columns that are equal in the l − B1 lowest entries, and store the sums in a
new matrix G2. If we find m1 sums, the matrix G2 will have size m1 × B1, since



18 Linear Consistency Attack on Irregularly Clocked Keystream Generators

the m1 sums we find will have 0 in the l − B1 lowest entries. For each column i
in G2 we also store the indexes of the two columns from G that where summed
to column i. Next we sort G2 in respect to the B1 − B2 lowest bits, and do the
same procedure over again and get a new matrix G3 of size m2 ×B2.

We repeat the procedure until we in round r set Br to be zero. After the
r’th round we will hopefully have found 2r columns in G that sum to the zero
column. According to Section C.2 we will now have found a multiple of g(x). This
algorithm is much faster than the naive algorithm, but it “misses” a lot possible
multiples and needs bigger matrix G.

Now we will present some new properties for this algorithm. The first round
of the algorithm is similar to the well known search algorithm in [4] for finding
equations of the type c0u0 + c1u1 + · · ·+ cB−1uB−1 = ui + uj. From this paper we
have that the expected number of equations m1 is given by m1 = n(n− 1)/2l−B1 .
When n is large we can approximate m1 by

E(m1) =
n2

2l−B1+1
. (16)

Since the algorithm is iterative we can use (16) over again for the next round and

we have E(m2) =
m2

1

2B1−B2+1 = N4

22l−B1−B2+3 . Generally for each round i we will have

E(mi) =
m2

r−1

2Bi−1−Bi+1
(17)

for B0 = l and m0 = N .
The iterative search algorithm has complexity O(

∑r−1
i=0 milog2mi) since we

have to sort the matrices G1, G2, . . . , Gr. Thus, the memory limits the algorithm,
not the run time complexity. Given an polynomial g(x) of degree l, we will now
present a bound for needed memory for finding a multiple h(x) of weight w = 2r.

Assume that we have a computer with Tmem memory units and that one
column in G1 takes up one memory unit. It will be natural to use a column G
of the maximum size Tmem × l. To use the memory most efficiently, we will try
find around mi = Tmem sums in each round i, that is Gi = Tmem · Bi−1. Thus,
we can set N = m1 = · · · = mr−1 = Tmem. We just need find one multiple, so
mr = 1. Setting these restriction we can now give an easy expression for how
much memory that is needed to find a multiple of weight w = 2r of g(x) of degree
l.

Theorem 2. Given a primitive polynomial g(x) of degree l, and r + 1 divides
r + l, the expected amount of memory needed to find a weight w = 2r multiple
h(x) of g(x) using the iterative search algorithm is

Tmem(lu, r) = 2
r+l
r+1 , (18)

with Bi = i + l − i r+l
r+1

, 1 ≤ i ≤ r − 1, Br = 0.



Linear Consistency Attack on Irregularly Clocked Keystream Generators 19

Proof. From equation (17) we have these formulas for m1, . . . ,mr:

m1 = n2

2l−B1+1 ,

m2 =
m2

1

2B1−B2+1 ,
...

mr =
m2

r−1

2Br−1−Br+1 .

We require that m1 = m2 = · · · = mr−1 = n = Tmem, and mr = 1. We solve
n = m1 = n2

2l−B1+1 , in respect to B1 and get

B1 = 1 + l − log2n. (19)

We use equation (17) and solve n = n2

2Bi−1+Bi+1 in respect to Bi and get

Bi = Bi−1 + 1− log2n. (20)

Using (20) together with B1, we get this expression for Bi :

Bi = i + l − ilog2n. (21)

Next we solve mr = 1, that is n2

2Br−1−Br+1 = 1. By solving in respect to n, putting

in (21) for i = r− 1 and setting Br = 0, we get n = 2
r+l
r+1 . The algorithm requires

that all the Bi’s are integers. This will only be the case when we can set n = 2x,
for some x. If we want the expression to be exact, we get the requirement that
r+l
r+1

must be an integer. Thus, r + 1 must divide r + l.

The theorem does not give a guarantee for finding an equation, it just say that
we are expected to find one. Thus, in practical searches we may use around twice
as many bits to assure success.





An Improved Correlation Attack Against

Irregularly Clocked and Filtered Keystream

Generators

H̊avard Molland and Tor Helleseth

The Selmer Center??

Institute for Informatics,
University of Bergen,

Norway

Abstract. In this paper we propose a new key recovery attack on
irregularly clocked keystream generators where the stream is filtered
by a nonlinear Boolean function. We show that the attack is much
more efficient than expected from previous analytic methods, and we
believe it improves all previous attacks on the cipher model.

Keywords: Correlation attack, Stream cipher, Boolean functions, ir-
regularly clocked shift registers.

1 Introduction

In this paper we present a new key recovery correlation attack on ciphers based on
an irregularly clocked linear feedback shift register (LFSR) filtered by a Boolean
function. The cipher model we attack is composed of two components, the clock
control generator and the data generator and is shown in Fig. 1.

– The data generator sub system consists of LFSRu of length lu and the nonlinear
multivariate Boolean function f , where the internal state of LFSRu is filtered
by the f function. The output from f is the bit stream v which has high linear
complexity.

– The clock control sub system consists of LFSRs of length ls where the output
from LFSRs is sent through the clock function D(). The output from D() is
the clock control sequence of integers, c, which is used to clock LFSRu.

The effect of the irregularly clocking is that v is irregularly decimated and the
positions of the bits in the stream are altered. The result from this decimation is
the keystream z. The secret key in this cipher is the (lu+ls) initialization bits for
LFSRu and LFSRs (Iu, Is).

?? This work was supported by the Norwegian Research Council.



2 Attack Against Irregularly Clocked and Filtered Keystream Generators

D

LFSR s

c

u
LFSR u

s

z=Q(c,v)

f

v
Q(c,v)

Fig. 1. The general cipher model we attack in this article

To attack this encryption scheme we need to know the positions the keystream
bits z had in the stream v before v was irregularly decimated. The previous
effective algorithms are not specially designed to attack irregularly clocked and
filtered generators. However, there exist effective attacks on the data generator
sub system[6,1,10,3,4]. To deal with the irregularly clocking, one of two techniques
are often used:

1. Do the attack on the data generator 2ls times[7]. The attack is done
one time for each guess for the 2ls possible initialization states for LFSRs. If
the attack on the sub system has complexity O(K) the full attack will have
complexity O(K · 2ls).

2. Ignore the clock control generator[3,14,4]. If the attack on the data gen-
erator subsystem needs M keystream bits, we can use the fact[14] that we
know the original v position of every 2ls − 1 bit in the keystream z. Thus, we
can only use every 2ls − 1 keystream bit in the attack, which means that we
need (2ls − 1) ·M keystream bits to succeed.

None of these techniques are optimal. The first one leads to large runtime com-
plexity, the second leads to the need for a large number of keystream bits.

Our attack is not designed to attack the data generator subsystem only, but
is especially aimed at irregularly clocked and filtered keystream generators as
one system. First we guess the initialization state Is for LFSRs. From this we
can reconstruct the positions the bits in z had in v. Using the iteration algo-
rithm from [11], this reconstruction is done using just a couple of operations
per guess, exploiting the cyclic redundancies in LFSRs. This method is fully ex-
plained in Section 4.3. This method gives the guess v∗ = (. . . , ∗, zi, . . . , zj, . . . , ∗,
. . . , zk, . . . , ∗, . . . ), where zi, zj, zk are some keystream bits and the stars are the
deleted bits. Then we test v∗ to see if it is likely that the stream is generated by
the data generator subsystem LFSRu and f. Hence, we only use a distinguisher
test on the the v∗ stream to decide if the guess for Is is correct. This is easier than
to actually decode the v∗ stream to find Iu, and then decide if we have found the
correct Is. When Is is determined, we can use one of the previous attacks on the
data generator sub system to determine Iu.

The distinguisher test is to evaluate a large number m of low weight par-
ity check equations on the bit stream v∗. All equations are derived from one



Attack Against Irregularly Clocked and Filtered Keystream Generators 3

multiple h(x) of weight 4 of the generator polynomial gu(x). Surprisingly this
test works much better than expected from previous evaluation methods. In pre-
vious correlation attacks, the Piling up lemma[9] is often used to calculate the
correlation[1,7,6] which the algorithm must decode. Since our algorithm only uses
a distinguisher on v∗ we can use a correlation property of the function f which
gives much higher correlation between v∗ and the keystream z. Hence, we need
fewer parity check equations. This correlation property exists even if the function
is correlation immune in the normal sense of the term.

Our attack has complexity O(2ls ·m), independently of the length of LFSRu.
A cipher based on the model we attack in this paper is LILI-128. To attack the
LILI-128 cipher our algorithm needs about 223 parity check equations. In LILI-
128, ls = 39. Thus, the runtime for our attack is 239+23 ≈ 262 parity checks, with
virtually no precomputation. We have implemented and tested the attack, and
it works on computers having under 300 MB of RAM, and needs only around
68 Mbyte of keystream data. The precomputation has low runtime complexity
and is negligible. When Is is found, we can use one of the previous algorithms to
attack the data generator sub system.

A comparable previous correlation attack by Johansson and Jönsson is pre-
sented in [7]. The runtime for the attack is equivalent to 271 parity checks and
the pre-computation is 279 table lookups. The keystream length is approximately
230. This attack uses the first technique to handle the irregularly clocking.

Recently new algebraic attacks have been proposed by Courtois and Meier[3,4].
This attack uses the second technique to handle the irregularly clocking in LILI-
128. Although the attack has an impressive runtime complexity 231 · C (an op-
timistic estimation for some unknown constant C), the attack needs about 260

keystream bits to succeed, which is unpractical.
There is also a time-memory trade-off attack against LILI-128 by Markku-

Juhani Olavi Saarinen[14]. This attack needs approximately 251.4 bits of computer
memory and 246 keystream bits. The runtime complexity is claimed to be 248 DES
operations, which is not easy to compare with our runtime complexity. However,
the high use of computer memory and keystream bits also makes this attack
unpractical.

2 A Correlation Property of Nonlinear Functions

Let V = F n
2 and let f be a balanced Boolean function from V to F2. We start

by analyzing the Boolean function f(x) for a correlation property that we will
use in the attack. A similar property is analyzed in [18] where they look at the
nonhomomorphicity of functions. In this paper we identify the probability

p = P (f(x1) + f(x2) + f(x3) + f(x4) = 0 | x1 + x2 + x3 + x4 = 0) (1)

which is crucial for the success rate of our attack.



4 Attack Against Irregularly Clocked and Filtered Keystream Generators

2.1 The Correlation Property

Let q = 2n and let a·b =
∑n

i=1 aibi denote the inner product of a = (a1, a2, . . . , an)
and b = (b1, b2, . . . , bn). Define the Walsh coefficients of f by

f̂(a) =
∑
x∈V

(−1)f(x)+a·x.

Lemma 1. Let f be a function from V = F n
2 to F2 and let xi ∈ F n

2 for i =
1, 2, 3, 4. Let q = 2n and let N denote the number of solutions of

x1 + x2 + x3 + x4 = 0 (2)

f(x1) + f(x2) + f(x3) + f(x4) = 0. (3)

Then

N =
q3

2
+

1

2q

∑
a∈V

f̂(a)4. (4)

Proof. Each term in the sum below gives a contribution 2q for each solution of
the system of equations, and zero otherwise. Therefore, we have

2qN =
∑

x1,x2,x3,x4∈V

(
∑
a∈V

(−1)a·(x1+x2+x3+x4))(
1∑

y=0

(−1)y(f(x1)+f(x2)+f(x3)+f(x4)))

=
∑
a∈V

1∑
y=0

∑
x1,x2,x3,x4∈V

(−1)yf(x1)+···+yf(x4)+a·x1+···+a·x4

=
∑
a∈V

1∑
y=0

(
∑
x∈V

(−1)yf(x)+a·x)4

= q4 +
∑
a∈V

f̂(a)4,

where the first term comes from the case y = 0 and a = 0, and the last term
from the case y = 1.

Corollary 1. If f(x) is a balanced function then the number of solutions N of
the system of equations above is,

N ≥ q3

2
+

q3

2(q − 1)
.

Proof. Since f(x) is balanced we obtain f̂(0) =
∑

x∈V (−1)f(x) = 0. It follows

from Parseval’s identity that the average value of f̂(a)2 is q2

q−1
. Hence, it follows

from the Cauchy-Schwartz inequality that
∑

a∈V f̂(a)4 ≥ (q − 1) q4

(q−1)2
, which

substituted in the lemma above gives the result.



Attack Against Irregularly Clocked and Filtered Keystream Generators 5

Corollary 2. The expected number of solutions N of the system of equations
above is,

E(N) =
q3

2
+

3q2 − 2q

2
.

Proof. An average estimate of N can be found as follows. When there exist two
equal vectors xi1 = xi2 in Equation (2), the two other vectors xi3 , xi4 will also
be equal. When this occurs it follows that the Equation (3) will sum to zero.
This gives the unbalance that causes the high correlation. Equation (2) implies
x4 = x1 + x2 + x3 Then there are q(q − 1)(q − 2) triples in x1,x2,x3 where all
the xi’s are distinct and there are therefore 3q2− 2q triples with one or two pairs
xi1 = xi2 . Using this fact and substituting Equation (2) into Equation (3), we
can write

2N =
∑

x1,x2,x3∈V

1∑
y=0

(−1)y(f(x1)+f(x2)+f(x3)+f(x1+x2+x3))

= q3 +
∑

x1,x2,x3∈V

(−1)f(x1)+f(x2)+f(x3)+f(x1+x2+x3)

= q3 + (3q2 − 2q) +
∑

x1,x2,x3 distinct∈V

(−1)f(x1)+f(x2)+f(x3)+f(x1+x2+x3).

Since for an arbitrary function f we can expect that f(x1), f(x2), f(x3), and
f(x1 + x2 + x3) take on all binary quadruples approximately equally often when
x1 6= x2 6= x3 6= x1, we expect in the average the last term to be 0. This implies
the result.

Corollary 3. Let f be an arbitrary balanced function, and let p denote the prob-
ability

p = Prob(f(x1) + f(x2) + f(x3) + f(x4) = 0 | x1 + x2 + x3 + x4 = 0),

then p is expected to be E(p) = 1
2

+ 3q−2
2q2 and its minimum is pmin ≥ 1

2
+ 1

2(q−1)
.

Proof. Since Equation (2) has q3 solutions, it follows from Corollary 1 that the

expected probability is equal to E(p) = E(N)
q3 = 1

2
+ 3q−2

2q2 . Further from Corollary

2 we obtain that the minimum is pmin ≥ ( q3

2
+ q3

2(q−1)
)/q3 = 1

2
+ 1

2(q−1)
.

Corollary 4. Given a specific balanced function f , the probability

p = Prob(f(x1) + f(x2) + f(x3) + f(x4) = 0 | x1 + x2 + x3 + x4 = 0),

is p = 1
2

+
∑

a∈V
f̂(a)4

2q4

Proof. Using the N from Lemma 1 we get p = N
q3 = 1

2
+

∑
a∈V f̂(a)4

2q4



6 Attack Against Irregularly Clocked and Filtered Keystream Generators

It is straightforward to extend Lemma 1 to compute the number of common
solutions of the two equations

x1 + x2 + · · ·+ xw = 0

f(x1) + f(x2) + · · ·+ f(xw) = 0.

and show that the corresponding probability

Prob(f(x1) + f(x2) + · · ·+ f(xw−1) = 0 | x1 + x2 + · · ·+ xw−1 = 0),

equals p = 1
2
+

∑
a∈V f̂(a)w

2qw , which reduces to the result of Corollary 4 when w = 4.
In the case w = 3, we can calculate the expected value of a balanced Boolean

function, with a given f(0), to be E(p) = 1
2
+ 3q−2

2q2 (−1)f(0). This implies that the
bias is the same for the case w = 3 as for w = 4. Similar arguments for equations
with w ≥ 5 show that these equations give too low correlation, which would lead
to a high runtime complexity for our attack. It turns out that for w = 3 the
attack needs much more keystream bits to succeed, see the Sections 4.1 and 5.2.
Since the correlation bias is exactly the same for w = 3 and w = 4 it is optimal
to use w = 4.

2.2 Analysis of Some Functions

In Table 1 we have analyzed some functions using Corollary 4. This correlation
is surprisingly high. Let papp = 0.53125 be the best linear approximation to the
LILI-128 function. Due to the design of the previous attacks[6,7,10] the channel
noise has been independent of the stream u generated by LFSRu. Thus, the
Piling up lemma [9], ppil = 1

2
+ 2w−1(1

2
− papp)

w, is used to evaluate the crossover
correlation 1−ppil which the algorithms must be able to decode. Using the Piling
up lemma for weight w = 4 equations, the correlation ppil for LILI-128 will be
ppil = 0.50000763. From Table 1 we have the correlation p = 0.501862. The

Table 1. The probability P (f(x1)+f(x2)+f(x3)+f(x4) = 0 | x1+x2+x3+x4 =
0) calculated for some given functions. E(p) is the expected correlation for given
q = 2n and p is the actual correlation for the given function

Function Number of Best linear E(p) p
inputs bits n approximation.

Geffe function 2 0.75 0.671875 0.625
LILI-128 10 0.53125 0.501464 0.501862
LILI-II 12 0.51367 0.500366 0.500190

reason for the higher correlation, is that our attack only uses a distinguisher on



Attack Against Irregularly Clocked and Filtered Keystream Generators 7

the data generator sub system, and not a complete decoder. Hence, in our key
recovery attack on the clock control system, we can use Corollary 4 from Section
2.1 to calculate the correlation. To test the corollary we generated 2000 random
and balanced Boolean tables for n = 10, and calculated the average correlation.
The result was that the average p was 0.501466 which is close to the theoretical
expected E(p) = 0.5001464.

3 A General Model

Here we define a general model for irregularly clocked and filtered stream ciphers,
and some well known properties for the model.

3.1 General Model

Let gu(x) and gs(x) be the feedback polynomials for the shift registers LFSRu

of length lu and LFSRs of length ls. We let Is = (s0, s1, . . . , sls−1) and Iu =
(u0, u1, . . . , ulu−1) be the initialization states for LFSRs and LFSRu. The initial-
ization states (Is, Iu) define the secret key for the given cipher system.

From gs(x) we can calculate a clock control sequence c in the following way.
Let ct = D(Lt

s(Is)) ∈ {a1, a2, . . . , aA} , aj ≥ 0, be a function where the input
Lt

s(Is) is the inner state of LFSRs after t feedback shifts and A is the number of
values that ct can take. Let pj be the probability pj = Prob(ct = aj).

LFSRu produces the stream u = (u0, u1, . . . ) which is filtered by f . The output
from f is vk = f(uk+i0 , uk+i1 , . . . , uk+in−1), or the equivalent vk = f(Lk

u(Iu)). The
clock ct decides how many times LFSRu is clocked before the output bit vk is
taken as keystream bit zt. Thus, the keystream zt is produced by zt = vk(t), where
k(t) is the total sum of the clock at time t, that is k(t)← k(t−1)+ ct. This gives
the following definition for the clocking of LFSRu.

Definition 1. Given bit stream v and clock control sequence c, let z = Q(c,v)
be the function that generates z of length M by

Q(c,v) : zt ← vk(t), 0 ≤ t < M

where k(t) =
∑t

j=0 cj − 1.

If aj ≥ 1, 1 ≤ j ≤ A, the function Q(c,v) can be considered as a deletion
channel with input v and output z. The deletion rate is

Pd = 1− 1∑A
j=1 pjaj

. (5)

The D() function described above can in this model be among others the shrinking
generator, the step-1/step-2 generator and the stop and go generator. Next we
define the (not complete) reverse of Definition 1.



8 Attack Against Irregularly Clocked and Filtered Keystream Generators

Definition 2. Given the clock control sequence c and keystream z, let the func-
tion v∗ = Q∗(c, z) be the (not complete) reverse of Q, defined as

Q∗(c, z) : v∗k(t) ← zt, 0 ≤ t < M,

where k(t) =
∑t

j=0 cj − 1, and vk = ∗ for the entries k in v∗ where v∗k is deleted.
When this occurs we say that v∗k is not defined.

The length of v∗ will be N∗ =
∑M−1

j=0 cj. Given a stream z of length M , the
expected length N of the stream v is

E(N) =
M

(1− Pd)
= M

A∑
j=1

pjaj. (6)

Note that the only difference between this definition and Definition 1, is that v
and z have switched sides. Thus, Q∗(c, z) is a reverse of Q(c,v). However, since
some bits are deleted, the reverse is not complete and we get the stream v∗.

The probability for a bit v∗k being defined is Prob(v∗k) = 1−Pd. This happens
when k = k(t) holds for some t, 0 ≤ t < M . It follows that the sum v∗k + v∗k+j1

+
· · · + v∗k+jw−1

will be defined if and only if all of the bits in the sum are defined.
Thus, the sum will be defined for given k in v∗ with probability

Pdef = (1− Pd)
w. (7)

4 The Attack

4.1 Equations of Weight 4

To succeed with our attack we need to find exactly one weight 4 equation

λu : uk + uk+j1 + uk+j2 + uk+j3 = 0 (8)

that holds over all u generated by LFSRu for k ≥ 0. This corresponds to finding a
multiple h(x) = a(x)gu(x) of weight 4. There exist several algorithms for finding
such a multiple, see among others [13,2,5,17,12].

In this paper we use the fast search algorithm in [12,11], which is a modified
version of the David Wagner’s generalized birthday algorithm[17]. If the stream
u has length N , this algorithm has runtime complexity O(N log N) and memory
complexity O(N), where N is of order 2lu/3 . The algorithm is effective in practice,
and we have succeeded in finding multiples of the generator polynomial of high
degree, see Section 6.3 for an example. We refer to Appendix C in [11] for the
details for this search algorithm.

Next, we let the input vector xk to the Boolean function f(x) be

xk = (uk+i0 , uk+i1 , . . . , uk+in−1), (9)



Attack Against Irregularly Clocked and Filtered Keystream Generators 9

where (i0, i1, . . . , in−1) defines the tapping positions from the internal state Lk
u(Iu)

of LFSRu after k feedback shifts. Substituting the vector (9) into the Equation
(8) we have that xk + xk+j1 + xk+j2 + xk+j3 = 0 always holds for k ≥ 0. Since
vk = f(xk) we have from Corollary 4 that the equation

λv : vk + vk+j1 + vk+j2 + vk+j3 ≈ 0, (10)

will hold for k ≥ 0 with probability p = 1
2

+
∑

a∈V f̂(a)4

2q4 .

Remark 1. In [8] the multiple of gu(x) of weight w = 3 is exploited to define an it-
erative decoding attack on regularly clocked LFSRs filtered by Boolean functions.
The constrained system

w−1∑
a=0

xk+ja = 0 (11)

zk+ja = f(xk+ja), 0 ≤ a < w

is analyzed. This system is similar to the one we use in this paper, but it is used
differently. Since there are limited solutions to this system, the a posteriori prob-
abilities for each of the input bits (uk+ja+i0 , uk+ja+i1 , . . . , uk+ja+in−1) in xk+ja can
be calculated. Then these probabilities are put into a Gallager like probabilistic
decoding algorithm(SOJA) which outputs Iu. However the correlation property
in Corollary 4 is neither identified or exploited in [8].

4.2 Naive Algorithm

Let Îs be a guess for the initialization state Is. Given the keystream z of length M ,
we generate ĉt = D(Lt

s(̂Is)), 0 ≤ t ≤M and v̂∗ = Q∗(ĉ, z) of length N ≈ ∑M−1
t=0 ĉi

t.
Then we test if v̂∗ is likely to have been generated by LFSRu using the following
method.

Find m entries in v̂∗ where the equation is defined. From this we get a set of
m equations. We test the m equations, and let the metric for the guess be the
number of equations that hold. When we have the correct guess for Is we expect
p ·m of the equations to hold, where p is calculated using Corollary 4. Thus, this
is a maximum likelihood decoding algorithm.

The runtime complexity for the attack will be of order 2ls · (m + N), since we
have to generate the bit stream v̂∗ of length N for each of the 2ls guesses. In a
real attack, N will be a large number and the naive algorithm will have very high
runtime complexity.

4.3 Some Observations

If we use the technique in the previous section the attack has the runtime of
order 2ls · (m + N). In [11, Sec. 3.3] two important observations were made that



10 Attack Against Irregularly Clocked and Filtered Keystream Generators

reduce the complexity down to 2ls · m. Since N � m, these observations will
speed up the attack considerably. We start with an initial guess I0

s = (1, 0, . . . , 0)
and let the i’th guess be the internal state of LFSRs after i feedback shifts, that
is Ii

s = Li
s(I

0
s ).

Let ci = (ci
0, c

i
1, . . . , c

i
M−1) be the i’th guess for the clock control sequence

defined by ci
t = D(Li+t

s (1, 0, . . . , 0)), 0 ≤ t < M . Let vi = Q∗(ci, z) be the
corresponding guess for v∗ of length Ni = ∑M−1

t=0 ci
t. We can now give an iterative

method for generating vi+1 from vi.

Lemma 2. We can transform vi into vi+1 = Q∗(ci+1, z) using the following
method: Delete the first ci

0 entries (∗, . . . , ∗, z0) in vi, append the ci+1
M−1 = ci

M

entries (∗, . . . , ∗, zM) at the end, and replace zt with zt−1 for 1 ≤ t ≤M .

Proof. See Appendix B.1 in [11].

Lemma 2 shows that we can generate each vi using just a few operations instead
of N operations, when implemented properly (See Appendix A.1 for the imple-
mentation details). This gives a fast method for generating all possible guesses
for v∗ given a keystream z. However, using this lemma we still have to search for
m entries in v∗ where the equations are defined. Since on average we must search
through 1/Pdef entries in v∗ per equation, we want to avoid this search. In the
next theorem we show how this can be done. The theorem proves that we can
reuse the equation set for vi in vi+1.

Theorem 1. If the sum

vk + vk+k1 + · · ·+ vk+kw−1 = zt + zt+j1 + · · ·+ zt+jw−1 = γz,t

is defined over vi, then the sum

vk−ci
0
+ · · ·+ vk+kw−1−ci

0
= zt−1 + zt+j1−1 + · · ·+ zt+jw−1−1 = γz,t−1

is defined over vi+1.

Proof. See Appendix B.2 in [11].

The main result from this theorem is that the equation set defined over vi will
be defined over vi+1 when we shift the equations ci

0 entries to the left over vi+1.
This means that we can just shift the equations one entry to the left over z, and
we will have a sum that is defined for the guess Îs = D(Li+1

s (1, 0, . . . , 0). Thus,
the theorem shows that we can avoid a lot of computations if we let the i’th guess
for the inner state of LFSRs be Li

s(1, 0, . . . , 0).

Remark 2. To use the lemma and theorem above we do not put the actual bit
values zt and restore them to the position k(t) in v∗ given by Q∗(c, z). Instead
we store the index zt (the pointer to the position t in z) in vk(t). This means that
v∗k(t) holds the position t, which the keystream bit zt have in z. However, when
we evaluate an equation we use the indexes to put in the actual bit values.



Attack Against Irregularly Clocked and Filtered Keystream Generators 11

4.4 An Efficient Algorithm

Assume we have found an equation λv : vk + vk+j1 + vk+j2 + vk+j3 ≈ 0. The
equation holds over v with probability p calculated using Corollary 4. Let the
first guess for the initialization state for s be I0

s = (1, 0, 0, . . . , 0), generate c0

by c0
t = D(Lt

s(1, 0, . . . , 0)), t < M , and v0 = Q∗(c0, z). Next we try to find m
entries (k1, k2, . . . , km) in v0 where the equation λv is defined. From this we get
the equation set

v0
k1

+ v0
k1+j1

+ v0
k1+j2

+ v0
k1+j3

≈ 0
v0

k2
+ v0

k2+j1
+ v0

k2+j2
+ v0

k2+j3
≈ 0

...
...

v0
km

+ v0
km+j1

+ v0
km+j2

+ v0
km+j3

≈ 0.

(12)

Since every vkx+jy in this equation set is defined in v0 and zt = vk(t), we can
replace vkx+jy with the corresponding bit ztx from the keystream z. Thus, v0 is a
sequence of pointers to z and we can write the equations over z as the equation
set Ω :

zt1,1 + zt1,2 + zt1,3 + zt1,4 ≈ 0
zt2,1 + zt2,2 + zt2,3 + zt2,4 ≈ 0

...
...

ztm,1 + ztm,2 + ztm,3 + ztm,4 ≈ 0.

(13)

We are now finished with the precomputation. Let metricbest be the number of
equations in Ω that hold. We iterate as follows:

Input The keystream z of length M , the equation λ, the equation set Ω, the
index sequence v0, the states L0(1, 0, . . . , 0) and LM(1, 0, . . . , 0), and let i← 0.

1. Calculate ci+1
M−1 = ci

M = D(LM+i
s (1, 0, . . . , 0)).

2. Use Lemma 2 to generate vi+1 = Q∗(ci+1, z) and lower all indexes in the
equation set Ω by one. Theorem 1 guarantees that the equations are defined
over vi+1.

3. If the first equation in Ω gets a negative index, then remove the equation from
Ω. Find a new index at the end of vi+1 where λ is defined, and add the new
equation over z to Ω.

4. Calculate metric as the number of equations in Ω that hold.
5. If metricbest > metric, set metricbest ← metric and Ii

s = Li
s(10, 0, . . . , 0).

6. Set i← i + 1 and go to step 1.
7. Output Ii

s as the initialization state for LFSRs.

Remark 3. The algorithm is presented this way to make it readable and to show
the basic idea. To reach the complexity O(2ls ·m) a few technical details on the
implementation of the algorithm are needed. These details are given in Appendix
A.



12 Attack Against Irregularly Clocked and Filtered Keystream Generators

5 Theoretical Properties

5.1 Success Formula

We can let an (unusual) encoder be defined by removing the Boolean function
from the cipher. Then we can use coding theory to evaluate the attack. Let the
initialization state Is for LFSRs define the information bits in such a system.

Let y = (y0, y1, . . . , yM−1) be the (not filtered) irregularly clocked stream from
LFSRu, that is y = Q(c,u) and ct = D(Lt

s(Is)). Then the bitstream y defines the
codeword that is sent over a noisy channel. Let the keystream z = Q(c,v) (the
filtered version of y) be the received codeword.

Assume we have the wrong guess for Is, then approximately m/2 of the equa-
tions in the set (13) will hold. Now assume we have have guessed the correct Is.
According to the observation in Section 2.1 the equations in the set (13) will hold
with probability p = 1

2
+

∑
a∈V f̂(a)4/2q4, independently of the initialization bits

Iu.
Let p define the channel ’noise’. The uncertainty is defined by H(p) = −p log2 p

− (1− p) log2(1− p), and the channel capacity is given by C(p) = 1−H(p). We
can approximate C(p) with C(p) ≈ 2(p − 1

2
)2/ ln 2. Following Shannon’s noisy

coding theorem we can set up this bound for success.

Proposition 1. The attack will succeed with probability > 1
2

if the number of
parity check equations m is

m > m0 =
ls

C(p)
≈ 0.347ls

(p− 1
2
)2

where p ≈ 1
2

+
∑

y∈V f̂(y)4/2q4 and q = 2n, where n is the number of input bits
in f(x).

When m is close to 2 ·m0 we expect the probability for success to be close to 1,
see [15]. The simulations of our algorithm show that if we set m = 2.1 ·m0 the
success rate is approximately 99%.

5.2 Keystream Length

If the generator polynomial gu(x) has weight w > 4, we must find a multiple h(x)
of gu(x) of weight 4 and a degree lh. We need at least the v stream to be of length
lh. In addition, to find m entries in v where the equation is defined v must at
least have length

N > lh + m/Pdef . (14)

From the expectation (6) of N we get E(M) = N(1−Pd) = (1−Pd)lh + m/(1−
Pd)

3, which proves the following proposition:



Attack Against Irregularly Clocked and Filtered Keystream Generators 13

Proposition 2. Let an equation over v be defined by h(x) of weight 4 and degree
lh. To obtain an equation set Ω of m equations over z, the length of the z stream
must be

M > (1− Pd)lh + m/(1− Pd)
3. (15)

The keystream length M depends on the number of equations m, the deletion
rate Pd and the degree lh of h(x) . The degree lh is then again highly dependent
on the search algorithm we use to find h(x). When we use the search algorithm
in [11,17] the degree lh of gh(x) will be of order lh = 2(2+lu)/3, which is close to
the theoretical expected degree 2lu/(w−1) [5] for w = 4.

5.3 Runtime Complexity

The runtime complexity for our attack is

O(2ls ·m) = O(
2ls · ls

(p− 1
2
)2

) (16)

parity check tests, where p is calculated using Corollary 4. Note that the runtime
is independent of the length lu of LFSRu.

5.4 Memory Complexity

If we implement the attack directly as described in Sections 4.3 and 4.4 the
algorithm will need around 32N+4∗32m bits of computer memory. The reason for
the 32N term is that vi = z0, ∗, ∗, z1, z2, . . . , ∗, zM−1 of length N is a sequence of
pointers of 32 bits. In appendix A.2 we show how we can store vi using N memory
bits without affecting the runtime complexity. The total amount of memory bytes
needed is then

N

8
+ 16m (17)

6 Simulations of the Attack

The LILI-128 cipher[16] is based on the general model we attack in this paper.
To be able to compare our attack with previous attacks, we have tested it on this
cipher.

6.1 The LILI-128 cipher

In the LILI cipher the clock control generator is defined by

gs(x) = x39 + x35 + x33 + x31 + x17 + x15 + x14 + x2 + 1,



14 Attack Against Irregularly Clocked and Filtered Keystream Generators

Table 2. We have tested the attack on the LILI-128 Boolean function with p =
0.501862. Note that the runtime for finding Is is independent of the length lu of
LFSRu, and the length M of the keystream. The attack on a full LFSRu of length
89 and reduced LFSRs of length 11 took 12 seconds

ls lu Keystream length M
Successes

out of 100
m Runtime 2ls · m

11 60 224,1 59 m0 6 sec. 231

11 60 225,1 100 2.2 · m0 13 sec. 232

11 40 224,0 51 m0 6 sec. 231

11 40 225,0 100 2.2 · m0 13 sec. 232

10 89 229 99 2.1 · m0 6 sec 232

11 89 229 99 2.1 · m0 12 sec 233

12 89 229 99 2.1 · m0 24 sec 234

and ct = D(st+12, st+20) = 1 + st+12 + 2st+20. The data generator sub system is

gu(x) = x89 + x83 + x80 + x55 + x53 + x42 + x39 + x + 1,

and vk = f(uk, uk+1, uk+3, uk+7, uk+12, uk+20, uk+30, uk+44, uk+65, uk+80), defined by
a Boolean table of size 1024. Further on we get Pd = 0.6, and Pdef = 0.0256 for
w = 4, and p = 0.501862. The number of keybits in the secret key (Is, Iu) is
39 + 89 = 128.

6.2 Simulations

We have done the simulations on some versions of the LILI-128 cipher with LFSRs
of different lengths to empirically verify the success formula in Section 5.1. Note
that we use the full size LFSRu from the LILI cipher in the three attacks in the
bottom of the table. For ls = 11 and p = 0.501862 we get m0 = 1.1 · 106.

We have implemented the attack in C code using the Intel icc compiler on a
Pentium IV processor. Using the full 32-bit capability and all the implementation
tricks explained in Appendix A our implementation uses only approximately 7
cycles per parity check test. Hence the algorithm works fast in practice and will
take 7 · 2lsm processor cycles.

See Table 2 for the simulations. Each attack is run 100 times, and the table
shows that the estimated success rate holds and that the algorithm is efficient.

6.3 A Complete Attack on LILI-128

Preprocessing. For the LILI cipher, we have found a multiple h(x) = a(x)gu(x)
which corresponds to the recursion ut+ut+139501803+ut+210123252+ut+1243366916 = 0



Attack Against Irregularly Clocked and Filtered Keystream Generators 15

and we have that

Prob(vt + vt+139501803 + vt+210123252 + vt+1243366916 = 0) = 0.501862. (18)

This precomputation took only 5 hours and 40 Gbyte hard disk space. We see
that lh = 1243366916.

Finding Is. We have p = 0.501862, and m0 = 39/C(0.501862) ≈ 3.9·106 ≈ 221.9.
To be almost sure to succeed we use m = 2.1m0 equations. Hence, the runtime
for attacking LILI-128 is

239 · 223 = 262

parity checks. Using our implementation this corresponds to 262 · 7 processor
cycles. Using Proposition 2 with Pd = 0.6 we need a keystream of length M ≈ 229.
The attack needs about 290 Mbyte of RAM. It can easily be parallelized and
distributed among processors with virtually no overhead, since there is no need
for communication between the processor, and no need for shared memory. If we
have 1024 Pentium IV 2.53 GHz processors, each having access to about 290 MB
of memory, the attack would take about 4.5 months using 68 Mbyte of keystream
data.

Finding Iu when Is is known. Our attack only finds the initialization bits Is

for LFSRs. It is possible to combine the Quick Metric from [12] with the previous
attack against LILI in [7] to find Iu when Is is given. Since this is not the scope
of this paper we will not go into details, and we refer to [7,12] for the exact
description. The preprocessing stage will have complexity of order 244.7 memory
lookups, and runtime complexity of order 242.5 parity checks. The complexity
for the method above is much lower than the complexity for finding Is and will
therefore have little effect on the overall runtime for a full attack.

7 Conclusion

We have proposed a new key recovery correlation attack on irregularly clocked
keystream generators where the stream is filtered by a nonlinear Boolean function.
Our attack uses a correlation property of Boolean functions, that gives higher
correlation than previous methods. Thus, we need fewer equations to succeed.
The property holds even if the function is correlation immune. Using this property
together with the iteration techniques from [11] we get a low runtime and low
memory complexity algorithm for attacking the model. The algorithm outputs
the initialization bits Is for LFSRs. Knowing Is there exist previous algorithms
which can determine Iu efficiently.



16 Attack Against Irregularly Clocked and Filtered Keystream Generators

Acknowledgment

We would like to thank Matthew Parker, John Erik Mathiassen and the anony-
mous referees for many helpful comments.

References

1. V. Chepyzhov, T. Johansson, and B. Smeets. A simple algorithm for fast correlation attacks on
stream ciphers. In Fast Software Encryption, FSE 2000, volume 1978 of Lecture Notes in Computer
Science, pages 181–195. Springer-Verlag, 2001.

2. Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation attacks: An algorithmic point of
view. In Advances in Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer
Science, pages 209–221. Springer-Verlag, 2002.

3. Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In Advances in
Cryptology-CRYPTO’ 2003, volume 2729 of Lecture Notes in Computer Science, pages 176–194,
2003.

4. Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear feedback. In
Advances in Cryptology - EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science,
pages 345–359, 2003.

5. J.D Golić. Computation of low-weight parity-check polynomials. Electronic Letters, october 1996.
32(21):1981-1982.

6. Thomas Johansson and Fredrik Jönsson. Theoretical analysis of a correlation attack based on
convolutional codes. In Proceedings of 2000 IEEE International Symposium on Information Theory,
IEEE Trans. Comput., page 212, 2000.

7. Fredrik Jönsson and Thomas Johansson. A fast correlation attack on LILI-128. In Inf. Process.
Lett. 81(3), pages 127–132, 2002.

8. Sabine Leveiller, Gilles Zémor, Philippe Guillot, and Joseph Boutros. A new cryptanalytic attack
for pn-generators filtered by a Boolean function. In Selected Areas in Cryptography: 9th Annual
International Workshop, SAC 2002, volume 2595 of Lecture Notes in Computer Science, pages
232–249. Springer-Verlag, 2003.

9. M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in Cryptology-
EUROCRYPT’93, volume 765 of Lecture Notes in Computer Science, pages 386–397. Springer-
Verlag, 1994.

10. W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. In Advances in Cryptology-
EUROCRYPT’88, volume 330 of Lecture Notes in Computer Science, pages 301–314. Springer-
Verlag, 1988.

11. H̊avard Molland. Improved linear consistency attack on irregularly clocked keystream generators.
In Fast Software Encryption, FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages
109 – 126. Springer-Verlag, 2004.

12. H̊avard Molland, John Erik Mathiassen, and Tor Helleseth. Improved fast correlation attack using
low rate codes. In Cryptography and Coding, IMA 2003, volume 2898 of Lecture Notes in Computer
Science, pages 67–81. Springer-Verlag, 2003.

13. W.T. Penzhorn and G.J Kuhn. Computation of low-weight parity checks for correlation attacks on
stream ciphers. In Cryptography and Coding, IMA 1995, volume 1025 of Lecture Notes in Computer
Science, pages 74–83. Springer-Verlag, 1995.

14. Markku-Juhani Olavi Saarinen. A time-memory tradeoff attack against LILI-128. In Fast Software
Encryption, FSE 2002, volume 2365 of Lecture Notes in Computer Science, pages 231–236, 2002.

15. T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. IEEE Trans. on
Computers, C-34:81–85, 1985.

16. L. Simpson, E. Dawson, J. Golic, and W. Millan. LILI keystream generator. In SAC’2000, volume
2012 of Lecture Notes in Computer Science, pages 231–236. Springer-Verlag, 2002. Available at
http://www.isrc.qut.edu.au/lili.

17. David Wagner. A generalized birthday problem. In Advances in cryptology-CRYPTO’ 2002, volume
2442 of Lecture Notes in Computer Science, pages 288–303, 2002.



Attack Against Irregularly Clocked and Filtered Keystream Generators 17

18. Xian-Mo Zhang and Yuliang Zheng. The nonhomomorphicity of Boolean functions. In Selected
Areas in Cryptography, SAC 98, volume 1556 of Lecture Notes in Computer Science, pages 280–295.
Springer-Verlag, 1998.

Appendix

A Implementation Details

To reach the runtime complexity O(2ls · m) and memory complexity down to
N + 128m bits, the implementation of the algorithm has some tricks. Since not
all of these tricks are obvious we give more detailed descriptions of them below.

A.1 Runtime Details

Sliding window In Lemma 2 we get vi+1 by among other things deleting the
ci
0 first bits of vi. This is done using the sliding window technique, which means

that we move the viewing to the right instead of shifting the whole sequence to
the left. This way the shifting can be done in just a couple of operations. To avoid
heavy use of memory, we slide the window over an array of fixed length N , so
that the entries that become free at the beginning of the array are reused. Thus,
the left and right indexes of the sliding window after i iterations will be

(left, right) = (i mod N, i + Ni mod N),

where N>Ni, for all i, 0 ≤ i < 2ls .
The same sliding window technique is also used on the equation set when

equations are deleted and added to the equation set.

Updating the indexes In Lemma 2 every pointer zt+1 in v∗ is replaced with zt

for every 0 ≤ t ≤M , which would take M operations. If we skip the replacements
we note that after i iterations the entry zt in v∗ will become zt+i. It is also
important to note that when we write v = (. . . , z0, . . . , zt, . . . , zM , . . . ), the entries
z0, . . . , zt, . . . , zM are pointers from v∗ to z. They are not the actual key bits. Thus,
in the implementation we do not replace zt with zt−1. However, when we after i
iterations in the search for equations find an equation vi

k+vi
k+j1

+· · ·+vi
k+jw−1

= 0
that is defined, we replace the corresponding equation zt1 + zt2 + · · · + ztw with
zt1−i + zt2−i + · · ·+ ztw−i, to compensate.

Reducing the memory access time When we test an equation we must use
pointers to pointers to the keystream. Then each equation test will have high
memory access time. We can reduce this significantly by testing the equations on
32 states simultaneously. This is possible since the next state Ii+1

s is tested by
shifting all the equations one entry to the left over z. We can now take the bits



18 Attack Against Irregularly Clocked and Filtered Keystream Generators

zta , zta+1, . . . , zta+31 for each of the term 1 < a ≤ 4 in the equations and put them
into 32 bit registers. Now we can test the states and add one to the metrics of
the states that satisfy the equation. This speeds up the runtime by a factor of
approximately 20.

A.2 Memory Details

Reducing the use of memory Instead of storing all the pointers, we set 1 in
vi where the bits are defined and 0 otherwise. When we search in vi to find entries
where the equation λv is defined, we keep track of where in z the four terms in λv

points to by counting the number of 1’s we pass during the search. This is done
for each of the 4 terms in the equation λv. This way we always know where in z
the given equation of vi points to. Using this trick the number of memory bits
needed during an attack is reduced from 32N + 128m bits to

N + 128m

Implementing this trick will not affect the runtime of the attack.



Linear Properties in the Klimov-Shamir

T-function

H̊avard Molland and Tor Helleseth

The Selmer Centre??

Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
H. Molland is currently a visiting Scholar at

Information Security Research Centre, Queensland University of Technology
GPO Box 2434, Brisbane, QLD 4001 Australia

Abstract. Linear equations have always been powerful tools in crypt-
analysis. In this paper we present a general linear equation in the bi-
nary alphabet of minimum weight 3 that holds for all state lengths
n and all shifts i of sequences generated by the T-function xi =
x2

i−1 ∨C + xi−1 mod 2n proposed by Klimov and Shamir. It is sur-
prising that these linear properties exist, and they indicate that the
T-functions are not as ’wild’ and non-algebraic as claimed by Klimov
and Shamir. We also use the equation to propose a simple algebraic
attack on cryptographic T-functions.

Key words: Stream cipher, sequences, T-function, linear property

1 Introduction

The objective of stream ciphers is to expand a short key into a long keystream
that is difficult to distinguish from a truly random stream. The encryption is
done by xoring the plaintext with the keystream, and it should not be possible
to reconstruct the key from the keystream.

In many years linear feedback shift registers, LFSRs, have been one of the
most important building blocks in keystream generators. The advantage with
LFSRs is that they can easily be designed to produce maximum length streams,
and they are fast and easy to implement in hardware. However, the LFSRs have
a lot of linear properties, which make them easy to cryptanalyze and break. To
make the LFSRs more secure they must be combined with other elements, such
as S-boxes or Boolean functions. This complicates and slows down the ciphers in
software.

Recently the T-function

xi = x2
i−1 ∨C + xi−1 mod 2n (1)

?? This work was supported by the Norwegian Research Council under Grant 146874/420.



2 Linear Properties in the Klimov-Shamir T-function

was proposed by Klimov and Shamir in [2,1], as a building block for stream
ciphers. The operation ∨ is the bitwise or operation, and xi is a natural number
for 0 ≤ xi < 2n. The authors claim that the generator is non-algebraic due to
the bitwise or operation. The sequence {x0,x1,x2, . . . } generated by (1) has a
single cycle of maximum length 2n, the sequence has high linear complexity, and
the generator is highly efficient in software. Thus, it may become an important
building block in future ciphers. In [3] Klimov and Shamir construct T-functions
of multiword states to get beyond the 32 or 64 bit limits in computers, making the
generator more practical. It is still important to analyze the simple single word
T-function, since it can be used as a building block in multiword T-functions.

Since the use of T-functions in cryptography are so recent, not much is known
about their cryptographic properties and strength. Therefore, it is important to
analyze every aspect of the generator. In this paper we present a linear equation
that holds over all sequences generated by the single word T-function (1). The
property indicates that the T-functions are not as non-algebraic as first claimed.
The equation is given by

xi,j + xi+2j−1,j + xi,j−1 + a2xi,1 + a1xi,0 + a0 = 0 mod 2

where xi,j is bit number j in the internal state xi of the generator at time i, and
the constants a0, a1, a2 are determined by the constant C in the generator (1).
We have implemented and carefully tested the results, and the tests confirm that
the equation is correct. The details can be found in Theorem 1 in Section 4.

We have organized the paper as follows; in Section 2 we give a brief overview of
T-functions, and we show some important previous known properties. In Section
3 we present four new properties, which are the building blocks for the proof
of the linear property we present in Section 4. In Section 4.2 we show how the
theorem works on the T-function with C = 5 and we present a new attack on
that generator.

2 Overview of T-functions

2.1 The Notation

Let xi,j ∈ F2, where F2 is the finite field with two elements. In this paper we let

xi = xi,n−12
n−1 + xi,n−22

n−2 + · · ·+ xi,j2
j + · · ·+ xi,12 + xi,0

be the internal state of the T-function at time i. We can view the inner state as an
integer xi, 0 ≤ xi < 2n, or as a table of bits xi = (xi,n−1, xi,n−2, . . . , xi,j, . . . , xi,0),
where xi,j is the bit number j in the inner state xi at time i. Similarly we let
C = Cn−12

n−1 + · · ·+ C22
2 + C12 + C0, for Cj ∈ F2.

The ∨ in c = a ∨ b mod 2n is the primitive bitwise or function between a
and b, where 0 ≤ a,b < 2n. We let the ⊕ in c = a ⊕ b notate the primitive xor



Linear Properties in the Klimov-Shamir T-function 3

Table 1. An example of the T-function xi = x2
i−1∨C+xi−1 mod 2n with n = 4,

C = (0, 1, 0, 1) = 5 and initialization state x0 = (0, 0, 0, 0) = 0

3 2 1 0
x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

0 0 0 0
0 1 0 1
0 0 1 |0
0 1 1 |1
1 1 |0 0
0 0 |0 1
0 1 |1 0
1 0 |1 1
1 |0 0 0
1 |1 0 1
1 |0 1 0
1 |1 1 1
0 |1 0 0
1 |0 0 1
1 |1 1 0
0 |1 1 1

operation between the bits a and b, or equivalent c = a + b mod 2. For simplicity
we will sometimes let

∑k−1
i=0 ai mod 2 be denoted by

⊕k−1
i=0 ai, where ai ∈ F2. We

arrange the sequence in an l× n matrix x, where l is the length of the sequence,
and n is the length of the inner state of the generator, as shown in Table 1. With
this arrangement the i’th row in x is the inner state of the generator at time i.

2.2 T-function Basics

Let xi = xi,n−12
n−1 + · · ·+ xi,22

2 + xi,12
1 + xi,0 be the n bit internal state of the

T-function. In [2,1] the n bit T-function is defined as a function f(xi) where the
j’th bit of output of yi = f(xi) is only dependent on the bits (j, j − 1, . . . , 1, 0)
in the n bit input xi, and independent of the bits (n − 1, n − 2, . . . , j + 1), for
0 ≤ j < n. They define a parameter function as a function yi = r(xi) where the
j’th bit in yi is only dependent on the bits (j−1, j−2, . . . , 1, 0) in xi. They show
that the function

xi = f(xi−1) = r(xi−1) + xi−1 mod 2n (2)

has a single cycle of maximum length 2n if r(xi) is an even parameter function.
We refer to [1] for the detailed description of even parameters. Further on they
show that when the bits 0 and 2 in C are 1, the function x2

i−1 ∨ C is an even



4 Linear Properties in the Klimov-Shamir T-function

parameter and that the function xi = x2
i−1 ∨C + xi−1 mod 2n has a single cycle

of maximum length.
Next we show some important properties of the T-functions.

1. Column j in x has period 2j+1. That is xi,j = xi+2j+1,j.
2. The effective period of column j is 2j, since xi,j = xi+2j ,j ⊕ 1 (See Corollary 1

in this paper).
3. If m < n the n-bit T-function ’contains’ all the m-bit T-functions. That is,

if we generate an n bit sequence x0,x1, . . . ,x2n−1 and an m bit sequence
y0,y1, . . . ,y2n−1 with x0 = y0 mod 2m, then xi = yi mod 2m, 0 ≤ i < 2n.

2.3 Another Proof for Single Cycle of Maximum Length

This result is also proved in both [1] and [2]. Here we give a different proof based
on [1,2], since we use these techniques in the new lemmas and theorems later in
the paper.

We will show by induction that the n bit T-function generates a sequence
with a single cycle of maximum length 2n if and only if C0 = 1 and C2 = 1. We
do this by proving that if the T-function with state length n = m generates a
sequence of maximum length 2m, then the sequence generated by the T-function
with state length n′ = m + 1 generates a sequence of maximum length 2m+1. It
is easy to check that the T-function has a maximum length 23 = 8 for the base
case n0 = 3.

As noted in [1] xi = x2
i−1 ∨C + xi−1 mod 2m = x2

i−1 ∨C + x2
i−2 ∨C + xi−2 =

x0 +
∑i−1

k=0 x2
k ∨ C. Assume x0 = 0 and let the induction hypothesis be that

xi mod 2m has one maximum cycle of length 2m. Note that bit m in the m+1 bit
function x2

i mod 2m+1 only depends on the bits 0, 1, . . . ,m−1 and is independent
of the bit m in xi. It follows that x2

i∨C mod 2m+1 = (xi mod 2m)2∨C mod 2m+1.
Since the sequence (x0 mod 2m, x1 mod 2m , . . . , x2m−1 mod 2m) has a single
cycle of length 2m, it is a permutation of (0, 1, . . . , 2m − 1) [1,2]. Thus, we can
write

x2m = x0 +
2m−1∑
k=0

x2
k ∨C mod 2m+1 (3)

=
2m−1∑
k=0

x2
k ∨C mod 2m+1

=
2m−1∑
k=0

k2 ∨C mod 2m+1.

The ∨C only gives the contribution 2j to the sum if and only if bit j in k2 is 0 and
bit j in C is 1. In the set {02, 12, . . . , k2, . . . , (2m − 1)2}, using the probabilities



Linear Properties in the Klimov-Shamir T-function 5

given in the maximum length Theorem in [2], the number of entries with bit
j ≤ m + 1 equal to zero is exactly

Dj =

{
2m−1(1 + 2−b

j
2c) m + 1 ≥ j ≥ 1

2m−1 j = 0
. (4)

Let C = C0 + 2C1 + 22C2 + · · ·+ 2m+1Cm+1. We can now substitute the ∨C (the
bitwise or C) with an algebraic expression.

2m−1∑
k=0

k2 ∨C (5)

=
2m−1∑
k=0

k2 +
m+1∑
j=0

CjDj2
j

=
2m−1∑
k=0

k2 + C02
m−1 + C12

m+1 +
m+1∑
j=2

Cj2
j2m−1(1 + 2−b

j
2c)

=
2m−1∑
k=0

k2 + C02
m−1 + C12

m+1 +
m+1∑
j=2

Cj2
j+m−1 +

m+1∑
j=2

Cj2
m−1+d j

2e. (6)

It is well known that
∑q

k=0 k2 = q3

3
+ q2

2
+ q

6
, for all q. For q = 2m − 1 it can be

proved that

2m−1∑
k=0

k2 = 2m−1 + 2m mod 2m+2 (7)

Using (4) we see that 22D2 = 2m+1 + 2m, and that 2jDj = 0 mod 2m+1, when
j > 2. Recall that x0 = 0. Using the formulas above we get

x2m = x0 +
2m−1∑
k=0

x2
k ∨C mod 2m+1

=
2m−1∑
k=0

k2 + C02
m−1 + C12

m+1 + C22
m+1 + C22

m

+

=0 mod 2m+1︷ ︸︸ ︷
m∑

j=3

Cj2
j+m−1 +

=0 mod 2m+1︷ ︸︸ ︷
m∑

j=3

Cj2
m−1+d j

2e mod 2m+1

= 2m−1 + 2m + C02
m−1 + C22

m mod 2m+1

= (1 + C0)2
m−1 + (1 + C2)2

m mod 2m+1.



6 Linear Properties in the Klimov-Shamir T-function

Recall that we now are looking at a T-function sequence with state length n′ =
m + 1, and that the results are based on that the n = m bit T-function sequence
has a single cycle of maximum length 2n. It is easy to check that the only possible
values of C0 and C2 that gives x2n′−1 = 2n′ mod 2n′ are C0 = 1 and C2 = 1. If
x2n′−1 = 2n′−1 6= x0 = 0 mod 2n′ , then the sequence xi has minimum length
2n′−1 + 1. But the only possible lengths are powers of 2[1], and the cycle can
not have period greater than 2n′ . Thus, we have proved by induction that the
n′ = m + 1 bit T-function sequence has one maximum length cycle of length 2n′ ,
if and only if C0 = 1 and C2 = 1 for x0 = 0. The bits C1, C3, . . . , Cn′−1′ can
be arbitrary bits. Most often these bits are set to zero so that C = 5. Since a
single maximum length cycle involves all possible internal states, the generator
will produce maximum length sequences for any x0.

Property 2 is a direct consequence of Theorem 2 in [1] and the proof above.
However the property does not seem to be recognized and discussed by Klimov
and Shamir in [1,2,3]. We use this property in several proofs in this paper, and
we believe it is so important that we state it in a Corollary.

Corollary 1. Let x be a sequence generated by xi = x2
i−1 ∨ C + xi−1 mod 2n,

with C0 = C2 = 1. Then xi,j = xi+2j ,j, ⊕ 1 for all i, j and x0.

Proof. It follows directly from the proof for maximum length single cycle. Let x
be the n bit T-function sequence with x0 = 0. Thus, as shown above, we know

that x2n−1 =
∑2n−1−1

k=0 x2
k ∨C = 2n−1 mod 2n. For an arbitrary x0 we get that

x2n−1 = x0 +
2n−1−1∑

k=0

x2
k ∨C mod 2n

= x0 + 2n−1 mod 2n

= x0,0 + x0,12 + · · ·+ x0,n−22
n−2 + (x0,n−1 + 1)2n−1 mod 2n.

Since the sequence for n contains all j bit T-function sequences for j < n, it
follows that the j’th bit of x2n−1 is given by xi,j = xi+2j ,j ⊕ 1.

We know that column j in x has period 2j+1. Using the lemma we see that
the second half of the full period column is just a complement of the first half. It
follows that the effective period of the n bit T-function is 2n−1 and not 2n.

3 Preliminary Properties

First we state some new properties that we need to prove the linear equation the-
orem in Section 4. We start by showing that the states xi and xi+2n−2 have an in-

teresting connection with the quadratic expression
∑2j−1−1

k=0 xi+k,0xi+k,j−1 mod 2.



Linear Properties in the Klimov-Shamir T-function 7

Lemma 1. Let x be a sequence generated by xi = x2
i−1 ∨C + xi−1 mod 2n, for

n ≥ 5. Let C0 = C2 = 1, and let the rest of the bits in C be arbitrary. Then

xi+2n−2 = xi + gi,n−1(x)2n−1 + 2n−2 mod 2n, (8)

where

gi,j(x) = C1 + C3 + C4 + (Cj + 1)
2j−1−1∑

k=0

xi+k,0xi+k,j−1 mod 2,

for j = n− 1.

Proof. Let the state length be n = m + 2, for an arbitrary m ≥ 3. Since
x2 mod 2m+2 is independent of bit m+1, we can write that x2

i = ((xi mod 2m)+
xi,m2m)2 mod 2m+2. Using the simple rule (A + B)2 = A2 + 2AB + B2 we get

2m−1∑
k=0

x2
k ∨C mod 2m+2

=
2m−1∑
k=0

(xk mod 2m + xk,m2m)2 ∨C mod 2m+2

=
2m−1∑
k=0

((xk mod 2m)2 + 2(xk mod 2m)xk,m2m +

=0 mod 2m+2︷ ︸︸ ︷
xk,m22m ) ∨C mod 2m+2

=
2m−1∑
k=0

((xk mod 2m)2 + (xk mod 2m)xk,m2m+1) ∨C mod 2m+2.

Since 2m+1
∑2m−1

k=0 (xk mod 2m)xk,m mod 2m+2 only gives contribution 2m+1 when∑2m−1
k=0 (xk mod 2m)xk,m is odd and zero otherwise, only the least significant bit

in xk counts. Thus, we can set

2m+1

2m−1∑
k=0

(xk mod 2m)xk,m mod 2m+2 = 2m+1

2m−1∑
k=0

xk,0xk,m mod 2m+2.

Now we get



8 Linear Properties in the Klimov-Shamir T-function

2m−1∑
k=0

x2
k ∨C mod 2m+2

=
2m−1∑
k=0

(
(xk mod 2m)2 + xk,0xk,m2m+1

)
∨C mod 2m+2 (9)

=
2m−1∑
k=0

(
(x2

k mod 2m) ∨ (C mod 2m+1)
)

(10)

+
2m−1∑
k=0

(xk,0xk,m2m+1 ∨ (2m+1Cm+1)) mod 2m+2.

The step from (9) to (10) requires some comments. Normally we cannot say
that a ∨ (c + d) = a ∨ c + a ∨ d mod 2m holds for all a,b, c. For example
1 ∨ (1 + 1) = 1 6= 0 = 1 ∨ 1 + 1 ∨ 1 mod 2. However the (m + 1)’th bit in
the sum

∑2m−1
k=0 (xk mod 2m)2 mod 2m+2 is always zero since Dm+1 = 0 mod 2,

and gives no contribution to the (m + 1)’th bit in (9). Furthermore the sum∑2m−1
k=0 xk,0xk,m2m+1 gives no contribution to the bits (0, 1, . . . ,m) in (9). Thus,

in each bit in the two sums the case is similar to
a0

a1
∨ (

b0

0
⊕ 0

d1
) =

a0 ∨ b0

a1 ∨ d1
, which

make the step possible.

Since C0 = C2 = 1 and according to the Equations (5) and (3), we can
substitute

∑2m−1
k=0 (xk mod 2m)2 ∨C with

2m−1∑
k=0

k2 ∨C =
2m−1∑
k=0

k2+2m−1+2m+(1+C1+C3+C4)2
m+1 mod 2m+2. (11)

Next, if Cm+1 = 1 then
∑2m−1

k=0 (xk,0xk,m2m+1 ∨ (Cm+12
m+1)) =

∑2m−1
k=0 2m+1 =

0 mod 2m+1. If Cm+1 = 0, we get that 2m+1
∑2m−1

k=0 (xk,0xk,m ∨ (Cm+12
m+1)) =∑2m−1

k=0 xk,0xk,m2m+1. Thus, we have that

2m−1∑
k=0

(xk,0xk,m2m+1 ∨ (Cm+12
m+1)) (12)

= (Cm+1 + 1)2m+1

2m−1∑
k=0

xk,0xk,m mod 2m+2.



Linear Properties in the Klimov-Shamir T-function 9

Using (11) and (12) in (10) we get

2m−1∑
k=0

x2
k ∨C mod 2m+2

=
2m−1∑
k=0

k2 + (Cm+1 + 1)2m+1

2m−1∑
k=0

xk,0xk,m + 2m−1

+2m + (1 + C1 + C3 + C4)2
m+1 mod 2m+2.

Using (7) we get

= (Cn+1 + 1)2m+1

2m−1∑
k=0

xk,0xk,m + 2m + 2m−1 + 2m−1

+2m + (1 + C1 + C3 + C4)2
m+1 mod 2m+2

= 2m+1(Cm+1 + 1)
2m−1∑
k=0

xk,0xk,m

+2m + (C1 + C3 + C4)2
m+1 mod 2m+2.

At last we have that

x2m = x0 +
2m−1∑
k=0

x2
k ∨C mod 2m+2

= x0+2m+(C1+ C3+ C4+(Cm+1+ 1)
2m−1∑
k=0

xk,0xk,m )2m+1 mod 2m+2. (13)

Since (13) holds for all x0, it will hold for all shifts i of the sequence, and we get

xi+2m = xi + 2m + gi,m+1(x)2m+1 mod 2m+2

which gives

xi+2n−2 = xi + 2n−2 + gi,n−1(x)2n−1 mod 2n,

when j = n− 1 and

gi,j(x) = C1 + C3 + C4 + (Cj + 1)
2j−1−1∑

k=0

xi+k,0xi+k,j−1.

This completes the proof.



10 Linear Properties in the Klimov-Shamir T-function

The previous lemma gives an interesting connection between the states xi and
xi+2n−2 . However, we are more interested in connections between the bits in the
sequence.

Lemma 2. Let n ≥ 5 and C0 = C2 = 1. Let x be the stream generated by xi =
x2

i−1∨C+xi−1 mod 2n, for any initialization state x0 and any C1, C3, C4, . . . , Cn−1.
Then

xi+2j−1,j + xi,j = xi,j−1 + gi,j(x) mod 2, 4 ≤ j ≤ n− 1,

where

gi,j(x) = C1 + C3 + C4 + (Cj + 1)
2j−1−1∑

k=0

xk+i,0xk+i,j−1 mod 2

Proof. From Lemma 1 we have that

x2n−2 = x0 + g0,n−1(x)2n−1 + 2n−2 mod 2n,

where g0,n−1(x) = (C1 + C3 + C4 + (Cn−1 + 1)
∑2n−2−1

k=0 xk,0xk,n−2) mod 2. We
rewrite x0 to the equivalent

x0 = (x0 mod 2n−2) + x0,n−22
n−2 + x0,n−12

n−1 mod 2n,

and we get

x2n−2 = (x0 mod 2n−2) + x0,n−22
n−2 (14)

+x0,n−12
n−1 + g0,n−1(x)2n−1

+2n−2 mod 2n

= (x0 mod 2n−2) + (x0,n−2 + 1)2n−2 (15)

+(g0,n−1(x) + x0,n−1)2
n−1 mod 2n.

When x0,n−2 = 1 we get (x0,n−2 + 1)2n−2 = 2 · 2n−2 = 2n−1, which adds 1 to the
coefficient for 2n−1, and the resulting coefficient (x0,n−2 +1) for 2n−2 will be zero.
Therefore, we get

x2n−2 = (x0 mod 2n−2) + (x0,n−2 ⊕ 1)2n−2

+(g0,n−1(x) + x0,n−2 + x0,n−1)2
n−1 mod 2n.

This gives

x2n−2,n−1 = g0,n−1(x) + x0,n−2 + x0,n−1 mod 2. (16)

Here we have stated the lemma for bit number j = n− 1. Since the sequence xi

mod 2n contains all the sub sequences xi mod 2m, 0 ≤ m < n, it will hold for all
bits j, 4 ≤ j < n, and we get the lemma by substituting n− 1 with j.



Linear Properties in the Klimov-Shamir T-function 11

Let Bi,j(x) be defined by Bi,j(x) =
⊕2j−1

k=0 xi+k,0xi+k,j. In the next lemma we
show that the sequence given by (B0,j(x), B1,j(x), . . . , Bi,j(x), . . . ), for all j, is a
shift of the second column (x0,1, x1,1, . . . , xi,1, . . . ) in x. This observation indicates

that we can replace
⊕2j−1−1

k=0 xk+i,0xk+i,j−1 in gi,j(x) with xi,1.

Lemma 3. For any initialization state x0, state length n ≥ 5 and C0 = C2 = 1,
let x be the stream generated by xi = x2

i−1 ∨ C + xi−1 mod 2n. Let Bi,j(x) be

defined by Bi,j(x) =
⊕2j−1

k=0 xi+k,0xi+k,j. Then the bit stream

(B0,j(x), B1,j(x), . . . , Bi,j(x), . . . )

has a period of 4 and is a cyclic shift of the bit stream (x0,1, x1,1, . . . ) = (. . . ,
0, 0, 1, 1, 0, 0, . . . ) which also has period 4.

Proof. Let y be the T-function sequence (y0,y1, . . . ) with initialization state
y0 = 0. Since the sequence has full period we have y2n−2+k,0 = yk,0, and from
Corollary 1 we have y2j+i,j = yi,j ⊕ 1. This gives the following calculations,

Bi+1,j(y) =
2j+i⊕

k=1+i

yk,0yk,j

=
2j+i−1⊕
k=1+i

yk,0yk,j ⊕
yi,0︷ ︸︸ ︷

y2j+i,0 ·
yi,j⊕1︷ ︸︸ ︷
y2j+i,j

=
2j+i−1⊕
k=1+i

yk,0yk,j ⊕ yi,0(yi,j ⊕ 1)

= yi,0yi,j ⊕
2j+i−1⊕
k=1+i

(yk,0yk,j) ⊕ yi,0

= Bi,j(y)⊕ yi,0.

Since yi,0 ⊕ yi+1,0 = 1 for all i, we get that

Bi+2,j(y) = Bi+1,j(y)⊕ yi+1,0

= Bi,j(y)⊕ yi,0 ⊕ yi+1,0

= Bi,j(y)⊕ 1.

We see that we can generate the sequence

( B0,j(y) , B1,j(y) , B2,j(y), . . . )



12 Linear Properties in the Klimov-Shamir T-function

by Bi+2,j(y) = Bi,j(y)⊕1, and with initialization ( B0,j(y) , B1,j(y) ) = ( B0,j(y),
B0,j(y)) since y0,0 = 0. Thus, Bi,j(y), i ≥ 0 will generate a cyclic shift of the
bitstream

(. . . , 0, 0, 1, 1, 0, 0, 1, 1, . . . )

of period 4 which is a cyclic shift of (x0,1, x1,1, x2,1, . . . ) for all x0.

Next we show that for a given initialization state x0, the quadratic expression
will be the same for all j ≥ 4, that is Bi,j(x) = Bi,j−1(x), 4 ≤ j < n.

Lemma 4. For any initialization state x0, state length n ≥ 5 and C0 = C2 = 1,
let x be the stream generated by xi = x2

i−1 ∨C + xi−1 mod 2n. Then

Bi,j(x) = Bi,j−1(x), for all i, for 4 ≤ j < n.

Proof. Let j = n− 1. Since xk,0 = xk+2n−2,0, we rewrite the quadratic expression
to

B0,n−1(x) =
2n−1−1⊕

k=0

xk,0xk,n−1

=
2n−2−1⊕

k=0

xk,0xk,n−1 ⊕
2n−2−1⊕

k=0

xk+2n−2,0xk+2n−2,n−1

=
2n−2−1⊕

k=0

xk,0(xk,n−1 ⊕ xk+2n−2,n−1).

Now using Lemma 2 for j = n − 1 and i = k, we get xk,n−1 ⊕ xk+2n−2,n−1 =
xk,n−2 ⊕ gk,n−1(x) and

B0,n−1(x) =
2n−2−1⊕

k=0

xk,0(xk,n−1 ⊕ xk+2n−2,n−1)

=
2n−2−1⊕

k=0

xk,0(xk,n−2 ⊕ gk,n−1(x))

=
2n−2−1⊕

k=0

xk,0xk,n−2 ⊕
2n−2−1⊕

k=0

xk,0gk,n−1(x)

We show in Appendix B that
⊕2n−2−1

k=0 xk,0gk,n−1(x) = 0, n ≥ 5. Since this hold
for all initialization states x0, we have that Bi,n−1(x) = Bi,n−2(x). Finally, since
the sequence xk mod 2n contains all sequences mod 2m, m ≤ n, we get the lemma
by substituting n− 1 with j.



Linear Properties in the Klimov-Shamir T-function 13

4 The Main Results

4.1 The Linear Equation

We proved in the previous section that the bits xi,j, xi+2j−1,j and xi,j−1 have
an interesting connection with the quadratic expression Bi,j−1(x). We proved
in Lemma 3 that the sequence generated by Bi,j−1(x), for all i ≥ 0 is just a cyclic
shift of the bit sequence xi,1, for all i ≥ 0. We show in the next theorem that the
shift (depending on the value of C) is given by adding xi,0 and a constant term
a0. Thus, we can replace the quadratic expression Bi,j−1(x) by a simple linear
combination of xi,0 and xi,1. This gives main result in this paper.

Theorem 1. Let n ≥ 5, let x be the stream generated by xi = x2
i−1 ∨ C +

xi−1 mod 2n, let C0 = C2 = 1 and let C1, C3, C4, . . . , Cn−1 be arbitrary bits. Then
the linear equation

xi,j + xi+2j−1,j + xi,j−1 + a2xi,1 + a1xi,0 + a0 = 0 mod 2,

always holds for all i when 4 ≤ j < n, where a0 = C3Cj + Cj + C1 + C4 + 1,
a1 = C1(Cj + 1) and a2 = Cj + 1.

Proof. Let (y0,y1, . . . ) be the sequence generated by the T-function (1) with
initialization state y0 = 0. We can easily check that column 1 of y, that is
(y0,1, y1,1, . . . ), can be generated by yi+2,1 = yi,1⊕1, with initialization (y0,1, y1,1) =
(0, C1). Let Bi,j be defined as in Lemma 3. Recall from the lemma that Bi,j(y)
can be generated by Bi+2,j(y) = Bi,j(y)⊕1, with initialization (Bi,0(y), Bi,0(y)).
By adding the two bitstreams Bi,n−1(y) and yi,1 we get

Bi,n−1(y)⊕ yi,1 = B0,n−1(y)⊕ C1yi,0 (17)

which gives

Bi,n−1(y)⊕ yi,1 ⊕ C1yi,0 = B0,n−1(y), for all i.

Since x is a cyclic shift of y we know there exists an i such that yi = x0, and we
get

B0,n−1(x)⊕ x0,1 ⊕ C1x0,0 = B0,n−1(y).

This gives

B0,n−1(x) = B0,n−1(y)⊕ x0,1 ⊕ C1x0,0, (18)

and finally using (18) with Lemma 2 for j = n− 1 we get

x2n−2,n−1 ⊕ x0,n−1 = g0,n−1(x)⊕ x0,n−2, (19)



14 Linear Properties in the Klimov-Shamir T-function

where

g0,n−1(x) = C1 ⊕ C3 ⊕ C4 ⊕ (Cn−1 ⊕ 1)
2n−2−1⊕

k=0

xk,0xk,n−2

= C1 ⊕ C3 ⊕ C4 ⊕ (Cn−1 ⊕ 1)B0,n−2(x)

= C1 ⊕ C3 ⊕ C4 ⊕ (Cn−1 ⊕ 1)(B0,n−2(y)⊕ x0,1 ⊕ C1x0,0).

Assume Cn−1 = 0 and recall that y0 = 0, which gives y0,n−2 = 0, y0,n−1 = 0, y0,1 =
0 and, y0,0 = 0. Then from (19) we get

y2n−2,n−1 = g0,n−1(y) = B0,n−2(y)⊕ y0,1 ⊕ y0,0C1 ⊕ C1 ⊕ C3 ⊕ C4

and therefore

B0,n−2(y) = y2n−2,n−1 ⊕ C1 ⊕ C3 ⊕ C4. (20)

Lemma 4 says that Bi,n(x) = Bi,n−1(x) for all n > 3. Thus, we will get B0,n−1(y)
with Cn−1 = 0 for all n ≥ 5 by calculating B0,3(y). We show in Appendix A that
y8,4 = C1 ⊕ 1, when y0 = 0. Since Cn−1 = C4 = 0, we get from (20) that

B0,3(y) = y8,4 ⊕ C1 ⊕ C3 = 1⊕ C3.

When Cn−1 = 1, B0,n−2(y) has no impact on g0,n−1(x) and we get g0,n−1(x) =
C1 ⊕ C3 ⊕ C4. Thus, for Cn−1 ∈ {0, 1}

g0,n−1(x) = C1 ⊕ C3 ⊕ C4 ⊕ (Cn−1 ⊕ 1)(1⊕ C3 ⊕ x0,1 ⊕ C1x0,0)

= C1 ⊕ C4 ⊕ Cn−1 ⊕ Cn−1C3 ⊕ 1

⊕(Cn−1C1 ⊕ C1)x0,0 ⊕ (Cn−1 ⊕ 1)x0,1.

Since the sequence xi mod 2n contains all sequences generated by the m-bit
functions xi mod 2m for m < n, we substitute n− 1 with j, 4 ≤ j < n and we let
a0 = C1 ⊕ C4 ⊕ Cj ⊕ CjC3 ⊕ 1, a1 = CjC1 ⊕ C1 and a2 = Cj ⊕ 1. Now g0,j(x) in
Lemma 2 is given by

g0,j(x) = a0 + a1x0,0 + a2x0,1 mod 2.

Because the sequence is cyclic and since the equation holds for all initialization
states x0, the equation will hold for all shifts i of the sequence x. By this we get

xi,j + xi+2j−1,j + xi,j−1 + a2xi,1 + a1xi,0 + a0 = 0 mod 2,

for all i and 4 ≤ j < n. This completes the proof.



Linear Properties in the Klimov-Shamir T-function 15

4.2 Applications of Theorem 1

The equation for C = 5. For a secure generator we want C to have as low
Hamming weight as possible. The reason is simple; when a bit Cj = 1 in C we also
know that bit j in the expression x2

i ∨C is 1. Thus, the higher Hamming weight
C has, the more we know about the output of x2

i ∨C. In the worst case scenario
C = 2n−1 = (1, 1, 1, 1, . . . , 1) and we get that x2

i ∨(2n−1) = 2n−1 mod 2n for all
xi. The resulting T-function (1) is actually equivalent to the very insecure function
xi=xi−1− 1 mod 2n. The most interesting value for cryptographic applications is
C = 5, since that is the lowest possible Hamming weight C can have and still give
a maximum length cycle. Therefore, we will in this section analyze the T-function
with C = 5.

Corollary 2. Let n ≥ 4 and let xi be the stream generated by xi = x2
i−1 ∨ 5 +

xi−1 mod 2n. Then the following linear equation

xi,j + xi+2j−1,j + xi,j−1 + xi,1 + 1 = 0 mod 2, (21)

holds for all i ≥ 0 and 3 ≤ j < n.

Proof. This follows directly from Theorem 1 with C = 5 and n ≥ 5. It is easy to
test that the lemma also holds for j = 3 for all i.

The theoretical cipher based on T-functions. The T-function is meant as
a basic building block for ciphers and is not meant to be a cipher on its own.
However, to show the cryptographically strength of the T-functions, Klimov and
Shamir proposed a theoretical cipher in [3] using only a single T-function.

Let (x0,x1, . . . ) be a sequence generated by the T-function xi = x2
i−1 ∨ 5 +

xi−1 mod 2n. Let the m most significant bits (xi,n−1, xi,n−2, . . . , xi,n−m) from each
xi be output as keystream words. The bits (xi,n−m−1, xi,n−m−2, . . . , xi,0) are secret,
and K = (x0,n−m−1, x0,n−m−2, . . . , x0,0) is the secret key of size l = n−m.

If we know the whole xi, we can use an algorithm from [1] to generate backward
from xi to x0. In a known plaintext attack we assume that we know the bits
(xi,n−1, xi,n−2, . . . , xi,n−m), for 0 ≤ i < L, where L is the length of the known
keystream. Thus, the knowledge of (xi,l−1, . . . , xi,0) for any i < L will give xi

and the key K. The objective for a cryptanalyst is therefore to determine the
unknown bits (xi,l−1, xi,l−2, . . . , xi,0) for some i < L.

An attack on the theoretical cipher using the linear equation. Assume we
have a cipher described as above, with C = 5, state length n and a secret key K
of length l, and assume we know L = 2l + 1 m words (xi,n−1, xi,n−2, . . . , xi,n−m,)
of the keystream. Recall that l = n − m. The keystream will then have a full
period of 2n, and we know the bits xi,l xi,l+1 for 0 ≤ i ≤ L. Now we can simply
use Corollary 2 to calculate x0,1 and x1,1 by xi,1 = xi,l+1 + xi+2l,l+1 + xi,l + 1 mod



16 Linear Properties in the Klimov-Shamir T-function

2, for 0 ≤ i ≤ 1. Knowing x0,1 and x1,1 we easily get x0,0 by x0,0 = x0,1 ⊕ x1,1,
and we can generate xi,0 and xi,1 for all i ≥ 0. Since we also know xi,l we can
use Corollary 2 to calculate x0,l−1 by x0,l−1 = x0,l + x2l−1,l + x0,1 + 1 mod 2. Now
we know 3 of the secret key bits using calculations that actually can be done by
hand. However the attack is theoretical since we need a vast amount of keystream
data.

We can continue to use this technique to calculate (x0,l−2,x0,l−3, . . . , x0,2). Un-
fortunately the amount of work doubles for each new bit we try to calculate since
we need two bits of column j in x to get one bit in column j − 1. Therefore, the
total work to find all the l keybits will be O(2l), which is the same as exhaustive
search.

We can get around this by only calculating the bits (x0,l−1, x0,l−2, . . . , x0,l−bl/2c)
which will have runtime O(2l/2). Since there is no guessing involved in this algo-
rithm, we now know these bits. Next we can simply do an exhaustive search for
the rest of the bits with runtime O(2l/2). The total runtime for this attack will

then be O(2l/2) + O(2l/2) = O(
√

2l).

Attacks on future ciphers. The cipher above is not very practical since normal
computers can not efficiently square more than 32 or in some cases 64 bits. There-
fore, the T-function must be used together with other building blocks, or several
T-functions may be combined. The linear equations we have proposed in this pa-
per may be more powerful or use less keystream bits, if applied on ciphers where
the sequence generated by the T-functions has been filtered or combined by other
functions. Especially, if for efficiency, the lower bits are not discarded. Traces of
linearity have a tendency to survive the filtering of nonlinear functions. Thus, the
property may be used to construct distinguishing attacks, guess and determining
attacks, or even correlation attacks on such ciphers. If there are traces of some of
the less significant bits after the filtering, these attacks may be powerful and use
relatively few bits from the keystream.

5 Summary

We have found a general linear equation over F2 that always holds over all se-
quences generated by the T-function xi = x2

i−1∨C+xi−1 mod 2n. It is important
to analyze every aspect of the generator, since it may become an important build-
ing block in the design of stream ciphers. The linear property indicates that there
are more structures in the sequences than claimed by Klimov and Shamir. We
have shown how the equation can be used to attack and reconstruct the initial-
ization state of the sequence, if parts of the sequence are known. Further on, the
equation may be used as a mathematical tool to prove new weaknesses in the
generator in the future.



Linear Properties in the Klimov-Shamir T-function 17

References

1. Alexander Klimov and Adi Shamir. Cryptographic applications of T-functions. In SAC, 2003.
2. Alexander Klimov and Adi Shamir. A new class of invertible mappings. In Cryptographic Hardware

and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
470 – 483. Springer-Verlag, 2003.

3. Alexander Klimov and Adi Shamir. New cryptographic primitives based on multiword T-functions.
In Fast Software Encryption, FSE 2004, volume 3017 of Lecture Notes in Computer Science, pages
1 – 15. Springer-Verlag, 2004.

A Proof of y8,4 = C1 ⊕ 1 when C4 = 0 and y0 = 0

We have that C4 = 0 and recall that C2 and C0 is always set to 1. Thus, in this
setting C = (0, C3, 1, C1, 1) = 5 + C32

3 + C12 can only have the 4 values 5,7,13
and 15. We will prove that y8,4 = C1 ⊕ 1, by simply generate y8 = y8,42

4 + · · ·+
y8,12 + y8,0 with yi = y2

i−1 ∨ 5 + yi−1, y0 = 0, for C ∈ {5, 7, 13, 15}. It is easy to
see from the table

C C3 C1 y8,4

5 0 0 1
7 0 1 0
13 1 0 1
15 1 1 0

that y8,4 = C1 ⊕ 1.

B Proof of
∑2n−2−1

k=0 xk,0gk,n−1(x) = 0 mod 2

We know that gk,n−1(x) = C1 + C3 + C4 + (Cj + 1)Bi,n−2(x). Since xk,0, 0 ≤ k <

2n−2 has even number of ones and zeros we have that
∑2n−2−1

k=0 xk,0(C1+C3+C4) =
0 mod 2.

If Cj = 1, then gk,n−1(x) = C1 + C3 + C4 ∈ {0, 1} and we get that

2n−2−1∑
k=0

xk,0gk,n−1(x) = 0

mod 2. If Cj = 0 then

2n−2−1∑
k=0

xk,0gk,n−1(x) =
2n−2−1∑

k=0

xk,0Bk,n−2(x) mod 2.



18 Linear Properties in the Klimov-Shamir T-function

From Lemma 3 we have that Bk,n−2(x) is a cyclic shift of (1, 1, 0, 0, 1, 1, 0, 0, . . . )
of period 4 and we know that xk,0 is a cyclic shift of (0, 1, 0, 1, . . . ) of period 2. It
follows that xk,0Bk,n−2(x) has period 4 and

2n−2−1∑
k=0

xk,0Bk,n−2(x) = 2n−4

3∑
k=0

xk,0Bk,n−2(x) = 0 mod 2,

n ≥ 5, since 2xy mod 2 = 0 for all y and x ≥ 1.



Algebraic Structures over the Binaries for the

Klimov-Shamir T-function

H̊avard Molland

The Selmer Centre??

Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
H. Molland is currently a visiting Scholar at

Information Security Research Centre, Queensland University of Technology
GPO Box 2434, Brisbane, QLD 4001 Australia

Abstract. Recently the Klimov and Shamir proposed a T-function
that can be used to generate word based sequences of maximum length.
They claim the function is non-algebraic due to the non-arithmetic“or”
operation. In this, paper we present a simple algorithm that constructs
the multivariate functions gi,j(x0) for all bits j in the word at time i in
the sequence generated by the Klimov-Shamir T-function. The func-
tions give the complete algebraic structure of the sequences for given
state length n. By analyzing these functions, we have found several
important properties of the T-function sequence, which we conjecture
hold for all n. The problems of proving the claimed properties are open
and should be objectives for further research.

1 Introduction

A triangular function (T-function) y =f(x) is a function where the j′th least
significant bit yj in the output y is only dependent on the bits xj, xj−1, . . . , x0 in
the input. The sequence generator

xi = x2
i−1 ∨C + xi−1 mod 2n (1)

based on the T-function f(x) = x2 ∨ C + x mod 2n was recently proposed by
Klimov and Shamir in [3,2]. The operation ∨ is the bitwise “or” operation, xi is a
natural number for 0 ≤ xi < 2n, and n is the number of bits in the internal state
of the generator. If C ≡ 5, 7 mod 8, the word based sequence {x0,x1,x2, . . . }
generated by (1) has a single cycle of maximum length 2n, the sequence has high
linear complexity, and the generator is efficient in software when properly imple-
mented. The authors claim that the generator is non-algebraic due to the bitwise
“or”operation. Thus, it may become an important building block in future stream
ciphers, where the objective is to produce long and pseudo random sequences. In
Table 1 on the following page we have generated the sequence for n = 4 and
initialization state x0 = 0.

?? This work was supported by the Norwegian Research Council under Grant 146874/420.



2 Algebraic Structures over the Binaries for the Klimov-Shamir T-function

Table 1. An example of the sequence generated by the T-function xi = x2
i−1 ∨

C + xi−1 mod 2n with n = 4, C = (0, 1, 0, 1) = 5 and initialization state x0 =
(0, 0, 0, 0) = 0

3 2 1 0

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

0 0 0 0
0 1 0 1
0 0 1 |0
0 1 1 |1
1 1 |0 0
0 0 |0 1
0 1 |1 0
1 0 |1 1
1 |0 0 0
1 |1 0 1
1 |0 1 0
1 |1 1 1
0 |1 0 0
1 |0 0 1
1 |1 1 0
0 |1 1 1

In much of the previous analysis of the T-function generator, the internal
state xi has been treated as a number mod 2n. The “or” operation ∨ can be
perceived as a non-arithmetic operation over the natural numbers. However, it is
a highly arithmetic operation over the binaries, since a∨ b = a · b + a + b mod 2.
In this paper we view xi solely as a vector (xi,n−1, xi,n−2, . . . , xi,0) where xi =
xi,0 + 2xi,1 + 22xi,2 + · · · + 2n−1xi,n−1 and xi,j is in {0, 1}. This way we get that
a ∨ b = (an−1bn−1 + an−1 + bn−1, . . . , a0b0 + a0 + b0).

The objective for this paper is to generate and analyze the multivariate func-
tions xi,j = gi,j(x0) from the initialization state x0 = (x0,n−1, x0,n−2, . . . , x0,0) to
each bit xi,j in the sequence. An algorithm that generates gi,j(x0) for all i and j
is a powerful tool for analyzing the structure of the sequences. For bit streams
generated by linear feedback shift registers, the linear functions for the bits are
given by the generator matrix G, such that the sequence u can be generated by
u = uIG where uI is the initialization state. To get the multivariate functions
over the binary variables for the Klimov-Shamir T-function, we must calculate
x2∨C+x mod 2n by finding the multivariate functions for each bit in the outputs
of the square, “or” and plus operations when the input is represented by a binary
vector.

By analyzing these functions, we have identified several interesting and useful
properties. However, we have not yet proved them, which should be the objective
for further research. We summarize the main results in the following conjectures:

1. The equation

xi+2j−2 = xi,0xi,1 + xi,1xi,j−2 + xi,1xi,j−1 + xi,j−2xi,j−1 + xi,j−2 + xi,j−1 + xi,j



Algebraic Structures over the Binaries for the Klimov-Shamir T-function 3

of algebraic degree 2 holds for the bits 0 ≤ j < n for all sequences generated
by the T-function (1) with constant C = 5.

2. It follows directly from property 1 that the autocorrelation Pr(xi,j =xi+2j−2,j)
= 0.375 holds. We have tested this autocorrelation for all j < 32, which gives
evidence for that property 1 holds for all j.

3. We also show other autocorrelations which indicates other structures in the
sequence.

4. When can arranging the functions in a form similar to the algebraic normal
form (ANF), and let row number i in a 2j+1×(2j +1) matrix be the coefficients
for the functions for bits in column j at time i in the sequence (see the tables
5 and 6 in Appendix B). Using this arrangement we identify several cyclic and
recursive properties for the terms in the functions.

2 Generating the Multivariate Functions

Let x = (xn−1, xn−2, . . . , x0), y = (yn−1, yn−2, . . . , y0) and y = f(x) = x2 ∨C + x
mod 2n. Let yj = gj(x) be the Boolean function from x to bit number j in the
output y such that y = ( gn−1(x), gn−2(x), . . . , g0(x) ). We will now present a
simple algorithm that outputs the function gj(x) for all j < n.

First we calculate d = x2 mod 2n where d = (dn−1, dn−2, . . . , d0). This is
shown in Figure 1 where the rows are summed mod 2n. Recall that this involves

x0xn−1 · · · · · · · · · x0x1 x0

x1xn−2 · · · · · · x1 x1x0

x2xn−3 · · · x2x1 x2x0
...

xn−1x0

+
= dn−1 · · · · · · · · · d1 d0

Fig. 1. Squaring mod 2n

carry bits which also must be calculated. The algorithm for this is of course trivial
when we know the hard values for xn−1, . . . , x1, x0. However, we want the exact
algebraic expression for all the sequence bits. Therefore, we must calculate the
multivariate expression for each bit in the output s of the operation s = a + b
mod 2n over the binaries as shown in Figure 2.

It is easy to see that the carry bit cj equals 1 if the integer sum cj−1+aj−1+bj−1

equals 2 or 3. Thus, the carry bits are given by cj = (cj−1&aj−1) ∨ (cj−1&bj−1) ∨
(aj−1&bj−1) where the binary “or” operation ∨ can be expressed algebraically as



4 Algebraic Structures over the Binaries for the Klimov-Shamir T-function

an−1 . . . a2 a1 a0

+ bn−1 . . . b2 b1 b0

= sn−1 · · · s2 s1 s0

⇒

cn−1 . . . c2 c1 0
an−1 . . . a2 a1 a0

⊕ bn−1 . . . b2 b1 b0

= sn−1 · · · s2 s1 s0

Fig. 2. Adding mod 2n

a∨ b = a · b⊕ a⊕ b, and the binary “and” operation & is given by multiplication,
that is a&b = a · b. Using this expression we get that

cj = (cj−1aj−1) ∨ (cj−1bj−1) ∨ (aj−1bj−1)

= (aj−1bj−1cj−1 ⊕ aj−1cj−1 ⊕ bj−1cj−1) ∨ aj−1bj−1

= aj−1bj−1cj−1 ⊕ aj−1bj−1cj−1 ⊕ aj−1cj−1 ⊕ bj−1cj−1 ⊕ aj−1bj−1

= cj−1aj−1 ⊕ cj−1bj−1 ⊕ aj−1bj−1

We see that each bit j in the result s now can be expressed by sj = aj ⊕ bj ⊕ cj

where cj = cj−1aj−1 ⊕ cj−1bj−1 ⊕ aj−1bj−1 and c0 = 0.
Let Ri be the temporary results during the calculation, and let ri be the row

number i in Fig 1. Starting with R0 = r0, we calculate x2 by Ri ← Ri−1 + ri,
for all 1 ≤ i < n, where “+” is done using the method above. If we in each step
keep the algebraic expressions instead of putting in any hard values, the entry j
in the result vector R = Rn−1 will be a function from x to bit j in x2 mod 2n.

Table 2. Using this algorithm for n = 5 and C = (0, 1, 0, 1) = 5 we get the follow-
ing result for the first 3 elements (x0,x1,x2, . . . ) in the sequence. For simplicity
we let the initialization state (x0,4, x0,3, . . . , x0,0) be denoted as (x4, x3, . . . , x0)

x0 x1 x2 · · · x16

x0 x0 + 1 x0 · · · x0

x1 x0 + x1 x1 + 1

x2 x0x1 + x2 + 1 x1 + x2 · · · x2

x3 x0x1x2 + x0x2 + x2 + x3 x1x2 + x0 + x1 + x2 + x3 · · · x3

x4
x0x1x2x3 + x0x1x2 + x0x2x3 + x0x1

+x0x2 + x1x2 + x0x3 + x2x3 + x2 + x4

x0x1x2 + x1x2x3 + x1x2 + x0x3

+x1x3 + x2x3 + x1 + x3 + x4
· · · x4

Next we must “or” the temporary result for R = x2 with the constant C. This
is simply done by letting Rj ← Cj ∨ Rj = Cj · Rj ⊕ Cj ⊕ Rj for j, 0 ≤ j < n,
where Rj and Cj are the bit number j in R and C. We often use hard values



Algebraic Structures over the Binaries for the Klimov-Shamir T-function 5

for C, for example C = 5, which is done by simply setting Rj to the hard value
Rj = 1 if and only if Cj = 1, and unchanged when Cj = 0.

Next we add x to the result by R ← R + x where “+” is done by using
the method above. Setting x0 = x and x1 = R we have an algebraic expression
for the two first elements in the sequence (x0,x1, . . . ). To calculate the whole
sequence, we repeat the algorithm using the algebraic expressions for xi−1 as
input to calculate xi.

Finally we let xi,j = gi,j(x0) be defined as the multivariate function from
x0 to xi,j. In Table 2 we show the functions for x0,x1,x2 and x16 for n = 4,
where x0 = (xn−1, xn−2, . . . , x0) for simplicity. We can for example see see that
x2,3 = g2,3(x0) = x1x2 + x0 + x1 + x2 + x3. The algorithm is shown in Algorithm
1 in Appendix A, where it is programmed in Magma[1].

3 Observed Properties

By analyzing the functions gi,j(x0) from the initialization bits to each bit in the
sequence, we have found several interesting properties.

3.1 Algebraic Structures and Autocorrelations

The linear equation xi+2j−1,j = xi,j + xi,j−1 + a2xi,1 + a1xi,0 + a0 mod 2 where
a0, a1, a2 are determined by the constant C, was proved in [4] to hold for all
sequences generated by the T-function (1) and all C. Using Algorithm 1, this
equation is easily confirmed, and we can find other similar equations. In Table 3

Table 3. The equation with algebraic degree 2 seems to hold for all i and j

j x2j−2,j

5 x8,5 = x0x1 + x1x3 + x1x4 + x3x4 + x3 + x4 + x5

6 x16,6 = x0x1 + x1x4 + x1x5 + x4x5 + x4 + x5 + x6

7 x32,7 = x0x1 + x1x5 + x1x6 + x5x6 + x5 + x6 + x7

8 x64,8 = x0x1 + x1x6 + x1x7 + x6x7 + x6 + x7 + x8

9 x128,9 = x0x1 + x1x7 + x1x8 + x7x8 + x7 + x8 + x9

we have generated the functions for x8,5, x16,6, x32,7, x64,8 and x128,9 for C = 5.
The table shows that xi+2j−2,j seems to be determined by a quadratic equation
with a distinct pattern. We have not yet proved the property, so we define it in
the following conjecture.

Conjecture 1. Let (x0,x1, . . . ) be a sequence generated by the T-function (1), for
n ≥ 6 and C = 5. Then



6 Algebraic Structures over the Binaries for the Klimov-Shamir T-function

xi+2j−2,j + xi,j = xi,0xi,1+ xi,1xi,j−2+ xi,1xi,j−1+ xi,j−2xi,j−1+ xi,j−2+ xi,j−1 (2)

holds for all i and 5 ≤ j<n.

By generating a similar table for xi+2j−3,j we get the following conjecture.

Conjecture 2. Let (x0,x1, . . . ) be a sequence generated by the T-function (1), for
n ≥ 7 and C = 5. Then

xi+2j−3,j + xi,j = xi,0xi,1xi,j−3xi,j−2 + xi,0xi,1xi,j−1 + xi,1xi,j−3xi,j−1

+xi,1xi,j−2xi,j−1 + xi,j−3xi,j−2xi,j−1 + xi,0xi,2

+xi,j−3xi,j−1 + xi,j−2xi,j−1 + xi,2 + 1

holds for 7 ≤ j < n.
Assuming that conjecture 1 is true, we can prove that there is an autocorre-

lation between certain bits in the sequence. We have tested Corollary 1 for all j
up to 31 which gives further evidence for that Conjecture 1 is correct.

Corollary 1. If Conjecture 1 holds, then the sequence (x0,x1, . . . ) for C = 5 has
an autocorrelation given by P (xi,j = xi+2j−2,j) = 0.375

Proof. From Conjecture 1, we assume that xi+2j−2,j + xi,j = xi,0xi,1 + xi,1xi,j−2 +
xi,1xi,j−1 + xi,j−2xi,j−1 + xi,j−2 + xi,j−1 holds. Assume xi,1 = 0 and recall that
a∨b = ab+a+b, which is zero only when a = b = 0. We see that xi+2j−2,j +xi,j =
xi,j−2xi,j−1+xi,j−2+xi,j−1 = xi,j−2∨xi,j−1, and since Pr(xi,j−2 = 0) = Pr(xi,j−1 =
0) = 1

2
we get Pr(xi+2j−2,j + xi,j = 0|xi,1 = 0) = Pr(xi,j−2 = 0) · Pr(xi,j−1 = 0) =

0.25.
Next we assume xi,1 = 1 which gives xi+2j−2,j + xi,j = xi,0 + xi,j−2xi,j−1. Since

xi,0, xi,j−2 and xi,j−1 have evenly distributions of zero and ones it is easy to see that
Pr(xi+2j−2,j + xi,j = 0|xi,1 = 1) = 0.5. At last we have that P (xi,j = xi+2j−2,j) =
1
2
Pr(xi+2j−2,j + xi,j = 0|xi,1 = 1) + 1

2
Pr(xi+2j−2,j + xi,j = 0|xi,1 = 0) = 0.375. ♦

Since the functions for xi,j and xi+2j−k,j become very complex when j > 10 and
k > 2, it is difficult to see any structure when j and k become large. However,
we can use the autocorrelation to show evidence for that there are probably
other algebraic functions similar to Equation (2) (probably with higher algebraic
degrees) that hold for xi+2j−k,j when k > 2.

In table 4 we have tested the autocorrelation for different distances 2j−k, k > 2.
Since the autocorrelation Pr(xi,j + xi+2j−k,j = 0) converges to a specific value as
j increments for a fixed k, it indicates that xi,j + xi+2j−k,j is based on the same
function for all j as long as j is greater than some threshold. Thus, for a given
k we can generate the function for the threshold j = t where the autocorrelation
starts to converge, and then use the autocorrelation to show that the functions
probably are equal for j > t.



Algebraic Structures over the Binaries for the Klimov-Shamir T-function 7

Table 4. The probability Pr(xi,j = xi+2j−k,j) for j < 32 and 1 < k < 9

k 2 3 4 5 6 7 8
j
9 0.375 0.5 0.578 0.523 0.477 0.512 0.511
10 0.375 0.5 0.578 0.523 0.557 0.539 0.482
11 0.375 0.5 0.578 0.523 0.449 0.492 0.482
12 0.375 0.5 0.578 0.523 0.447 0.470 0.495
13 0.375 0.5 0.578 0.523 0.447 0.470 0.511
14 0.375 0.5 0.578 0.523 0.447 0.469 0.489
15 0.375 0.5 0.578 0.523 0.447 0.469 0.489
16 0.375 0.5 0.578 0.523 0.447 0.469 0.490
17 0.375 0.5 0.578 0.523 0.447 0.469 0.490
...

...
...

...
...

...
...

...
31 0.375 0.5 0.578 0.524 0.447 0.469 0.490

3.2 The Term Tables for gi,j(x)

Let gj(x) as defined in Section 2 be arranged in a special algebraic form given by

gj(x) = xj +
2j−1∑
k=0

akx
k0
0 xk1

1 · · ·x
kj−1

j−1 ,

where (kj−1, kj−2, . . . , k0) is the binary representation for k, that is k = k0+k12+
k22

2 + · · ·+ kj−12
j−1. The expanded version of gj(x) will then be of the form

gj(x) = a0 +a1x0 +a2x1 +a3x0x1 +a4x2 +a5x0x2 +a6x1x2 +a7x0x1x2 (3)

+a8x3+ . . .+a15x0x1x2x3+a16x4+ · · ·+a2j−1x0x1 · · ·xj−1 +xj.

Let (x0,x1, . . . ) be the sequence generated by the T-function (1). Let xi,j =
gi,j(x0) be the function from the initialization state x0 to bit j in xi arranged in the
special algebraic form showed above. Let the table Tj be given by the coefficients
for the functions gi,j(x0), for fixed j and 0 ≤ i < 2j+1, see the tables 5 and 6 in
Appendix B. We can read out of the table T3 that x6,3 = x0 + x1 + x1x2 + x3,
where for simplicity (x0, x1, x2, x3) = (x0,0, x0,1, x0,2, x0,3) is the initialization state
for the sequence.

These tables give us an interesting insight in how the dependency between
the internal state and the initialization state evolve during the generation of the
sequence. The coefficient tables for the cryptographic secure functions gi,j(x) for
different i and j should look random and independent. However, the tables T2,
T3, T4 and T5 show that this is not the case for the T-function (1).



8 Algebraic Structures over the Binaries for the Klimov-Shamir T-function

The first observation is the cyclic property, which we can summarize in the
following conjecture.

Conjecture 3. Let (x0,x1, . . . ) be the sequence generated by the T-function (1).
Let ai,k be the coefficient for term number k in gi,j(x0). Then the a0,k, a1,k, . . . ,

ai,k, . . . , a2j−1,k has period 21+blog2(2j−k)c.

This is easily seen from the tables T2, T3,T4 and T5 in Appendix B, where the
end of the first period of each column is marked with an underline.

Conjecture 4. The 2j−1 rightmost columns in Tj are equal to the 2j−1 rightmost
columns in Tj+1.

These conjectures indicate that there are strong patterns in the evolvement of Tj

when j grows.

4 Conclusions and Future Research

We have studied the algebraic structure over the binary variables in the sequences
generated by the Klimov-Shamir T-function (1). We have shown that the T-
function (1) is highly arithmetic when we view the internal state as a vector over
the binaries. We have identified several important properties that can be used to
get better insight in how the sequences evolve. The autocorrelation properties can
be used in distinguishing attacks or may even be used in key recovery attacks.
In addition, the autocorrelation shows that there probably are strong algebraic
structures in the sequences that hold for all bits j. A better understanding of the
term tables Tj may help us in finding other linear properties similar to the one
in [4].

Future research should be done on proving the conjectures we have stated in
this paper and on have how to make use of them. The patterns and structures
in the term tables Tj should also be studied further along with general algebraic
properties of the T-function.

References

1. Computational Algebra Group, School of Mathematics and Statistics, University of Sydney,
”http://magma.maths.usyd.edu.au/magma/”. The Magma Computational Algebra System.

2. Alexander Klimov and Adi Shamir. Cryptographic applications of T-functions. In SAC, 2003.
3. Alexander Klimov and Adi Shamir. A new class of invertible mappings. In Cryptographic Hardware

and Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in Computer Science, pages
470 – 483. Springer-Verlag, 2003.

4. H̊avard Molland and Tor Helleseth. Linear properties in the Klimov-Shamir T-function. Submitted
to IEEE Transactions on Information Theory. Accepted for presentation at ISIT-2005, 2005.



Algebraic Structures over the Binaries for the Klimov-Shamir T-function 9

A The Algorithm

We have implemented the algorithm in the mathematical programming language
Magma [1]. Note that in Magma, the entries in vectors have indexes from 1
and not 0, which means that x0 is represented by x[1]. The inputs to the pro-
cedure Tfunction(x,n,C) in Algorithm 1, are the size n of the internal states,
the vector xi−1 = (gi−1,n−1(x), gi−1,n−2(x), . . . , gi−1,0(x)), and C = (Cn−1, Cn−2,
. . . , C3, 1, C1, 1). The procedure returns xi = (gi,n−1(x), gi,n−2(x), . . . , gi,0(x). In
Algorithm 2 we show how to declare the variables and how to call the procedure
properly in such a way that the algorithm works as intended.

Algorithm 1 The algorithm for generating the multivariate function for each bit
in xt+1 given the n functions for the bits in xt

Tfunction:=function(x,n,C)

/*

Defines the function Tfunction(x,n,C)

x: table of the n input functions

C: binary vector for the constant n: length of vectors

output: ’Result’ is the vector of the n multivariate

functions for x2 ∨C + x mod 2n

*/

//calculate Result← x2 mod 2n

result:=[x[j]*x[1]:j in [1..n]]; //The first row

for j:=1 to n-1 do

addrow:=[0:t in [0..(i-1)]];

addrow cat:=[x[t]*x[j+1]:t in [1..n-j]];

result:=BinaryAlgebraAdd(result,addrow,n);

end for;

//Calculate Result← Result ∨C mod 2n

for j:=1 to n do

result[j]:=result[j]*C[j]+result[j]+C[j];

end for;

//Calculate Result← Result + x mod 2n

result:=BinaryAlgebraAdd(result,x,n);

//Return Result =x2 ∨C + x mod 2n

return result;

end function;

BinaryAlgebraAdd:=function(a,b,n)

/*

Defines the function BinaryAlgebraAdd(a,b,n)

a,b : vectors for the terms, n: length of vectors

output: ’Sum’ is the table of n multivariate functions,

one for each bit in the sum of a + b mod 2n

*/

carry:=0;

sum:=a;

for j:=1 to n do

sum[j]:=carry+a[j]+b[j];

carry:=carry*b[j]+carry*a[j]+b[j]*a[j];

end for;

return sum;

end function;



10 Algebraic Structures over the Binaries for the Klimov-Shamir T-function

Algorithm 2 The code for using Algorithm 1.
n:=5;

length:=32;

//Necessary for defining F2 in Magma

P:=PolynomialRing(GF(2),2*n,"grevlex");

u:=quo<P|[$.i^2+$.i:i in [1..2*n]]>;

V:=["x" cat IntegerToString(i) cat "" :i in [1..n]];

V:=V cat ["c" cat IntegerToString(i) cat "" :i in [1..n]];

AssignNames(~u,V);

//Declare x and C
x:=[u.i:i in [1..n]]; //Declare x[1]...x[n] as variables i F2

C:=[u.(n+i):i in [1..n]]; //Declare C[1]...C[n] as variables i F2

T=[x]; //Declare T where T[1]=x

C[3]:=1;C[1]:=1; //set the bits 0,2 in C to 1

/*

For hard values, set C:=[*,*,...*,1,*,1] of length n
where * are chosen variables in {0,1};

*/

//Generate and store the sequence in T

for i:=1 to length do

print i, x;

x:=Tfunction(x,n,C);

T[i+1]:=x;

end for;



Algebraic Structures over the Binaries for the Klimov-Shamir T-function 11

B The Term Tables

Table 5. The terms in the multivariate equation for 0 ≤ i < 2j for the bit
sequence in column j = 2, 3, 4 for C = 5

T2,
for gi,2(x)

0 1 2 3 4

i 1 x
0

x
1

x
0
x

1
x

2

0 0 0 0 0 1
1 1 0 0 1 1
2 0 0 1 0 1
3 1 1 1 1 1
4 1 0 0 0 1
5 0 0 0 1 1
6 1 0 1 0 1
7 0 1 1 1 1

T3, for gi,3(x)
0 1 2 3 4 5 6 7 8

i 1 x
0

x
1

x
0
x

1

x
2

x
0
x

2

x
1
x

2

x
0
x

1
x

2

x
3

0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 1 1 0 1 1
2 0 1 1 0 1 0 1 0 1
3 0 1 0 1 0 0 1 1 1
4 1 0 1 0 1 0 0 0 1
5 0 1 1 1 0 1 0 1 1
6 0 1 1 0 0 0 1 0 1
7 1 1 0 0 1 0 1 1 1
8 1 0 0 0 0 0 0 0 1
9 1 0 0 0 1 1 0 1 1
10 1 1 1 0 1 0 1 0 1
11 1 1 0 1 0 0 1 1 1
12 0 0 1 0 1 0 0 0 1
13 1 1 1 1 0 1 0 1 1
14 1 1 1 0 0 0 1 0 1
15 0 1 0 0 1 0 1 1 1

T4, for gi,4(x)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i 1 x
0

x
1

x
0
x

1

x
2

x
0
x

2

x
1
x

2

x
0
x

1
x

2

x
3

x
0
x

3

x
1
x

3

x
0
x

1
x

3

x
2
x

3

x
0
x

2
x

3

x
1
x

2
x

3

x
0
x

1
x

2
x

3

x
4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1

2 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1

3 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 1

4 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1

5 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1

6 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1

7 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1

8 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

9 1 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1

10 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1

11 0 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1

12 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1

13 0 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1

14 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1

15 0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1

16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

17 1 0 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1

18 1 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1

19 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 1

20 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1

21 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1

22 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1

23 0 1 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1

24 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

25 0 1 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1

26 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1

27 1 0 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1

28 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1

29 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1

30 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1

31 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1



12 Algebraic Structures over the Binaries for the Klimov-Shamir T-function

Table 6. The terms in the multivariate equation for 0 ≤ i < 32 for the bit
sequence in column j = 5

T5, for gi,5(x)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

i 1 x
0

x
1

x
0
x
1

x
2

x
0
x
2

x
1
x
2

x
0
x
1
x
2

x
3

x
0
x
3

x
1
x
3

x
0
x
1
x
3

x
2
x
3

x
0
x
2
x
3

x
1
x
2
x
3

x
0
x
1
x
2
x
3

x
4

x
0
x
4

x
1
x
4

x
0
x
1
x
4

x
2
x
4

x
0
x
2
x
4

x
1
x
2
x
4

x
0
x
1
x
2
x
4

x
3
x
4

x
0
x
3
x
4

x
1
x
3
x
4

x
0
x
1
x
3
x
4

x
2
x
3
x
4

x
0
x
2
x
3
x
4

x
1
x
2
x
3
x
4

x
0
x
1
x
2
x
3
x
4

x
5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1

2 1 0 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1

3 1 0 1 0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1 1

4 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1

5 1 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1

6 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1

7 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1

8 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

9 0 0 1 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1

10 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1

11 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1

12 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 1 1 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1

13 0 1 0 1 0 1 1 0 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1

14 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1

15 1 1 1 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1

16 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

17 1 1 1 1 1 0 0 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1

18 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 0 1

19 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1 0 0 1 0 0 1 1 1

20 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 0 0 1

21 1 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 1 1 1 0 0 0 1 1 0 1 0 1 1

22 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 1

23 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 1 0 1 1 1

24 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1

25 0 0 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 1 0 0 1 1 0 1 1

26 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1

27 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 1 0 0 1 1 1

28 1 0 1 0 1 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1

29 1 0 1 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 1

30 1 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 0 1

31 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

63 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1






	cover
	0-introduction
	1-article
	2-article
	3-article
	4-article
	5-article

