The HMC Algorithm with Overrelaxation and Adaptive–Step Discretization Numerical Experiments with Gaussian Targets

M. Alfaki, S. Subbey, and D. Haugland

Thiele Conference

July 17, 2008

Background

Aim of Talk The Hamiltonian Monte Carlo (HMC) Algorithm Improving Performance of HMC Algorithm Numerical Experiments & Results

Bayes Theorem MCMC Algorithms

Talk Outline

(日) (四) (三) (三)

Bayes Theorem MCMC Algorithms

Bayes Theorem

- Given model– $m(\mathbf{C})$: $\mathbf{C} \in \mathcal{R}^k$, and data \mathcal{O}
- Bayes Theorem: Prior belief \times Likelihood \rightarrow Posterior

$$\frac{p(m)p(\mathcal{O}|m)}{\left[\int_{\mathcal{R}^k} p(\mathcal{O}|m)p(m)dm\right]} = p(m|\mathcal{O}).$$
 (1)

Posterior pdf used in inference, e.g., expectation of J: (J)

$$\langle J \rangle = \int_{\mathcal{R}^k} J(m) p(m|\mathcal{O}) dm = \frac{1}{n} \sum_{j=1}^n \frac{J(m_j) p(m_j|\mathcal{O})}{h(m_j)}, \quad (2)$$
$$\approx \frac{1}{n} \sum_{j=1}^n J(m_j), \text{ for } h(m_j) \approx p(m_j|\mathcal{O}). \quad (3)$$

Background

Aim of Talk The Hamiltonian Monte Carlo (HMC) Algorithm Improving Performance of HMC Algorithm Numerical Experiments & Results

Bayes Theorem MCMC Algorithms

Talk Outline

Background Bayes Theorem MCMC Algorithms Practical Implementation Improving Phase–Space Sampling Improvement Strategies The improved HMC algorithm

(日) (四) (三) (三)

MCMC Algorithms

Bayes Theorem MCMC Algorithms

- Avoid calculating (intractable) integral $\int_{\mathcal{R}^k} p(\mathcal{O}|m)p(m)dm$.
- Generate ensemble of models, $m_1, m_2, \ldots, m_n | m_j \equiv m(\mathbf{C}_j)$
- Such that distribution of $\{m_j\}_{j=1}^n \sim h(m)$
- $h(m) \approx p(m|\mathcal{O}) \Rightarrow \langle J \rangle$ is an average over m_1, m_2, \ldots, m_n
- A popular implementation Metropolis–Hastings algorithm
- Some example drawbacks:
 - Iong burn–in time
 - slow convergence (especially in high dimensions)
- Recent developments attempt to address drawbacks

(日)

Present

- The Hamiltonian Monte Carlo (HMC) Algorithm
 - A variant Monte Carlo algorithm
 - Incorporates gradient information in distribution space
- Investigated strategies for improving performance
- Numerical experimental results

Practical Implementation

Algorithm Description–I

- Type of Markov Chain Algorithm
 - Combines advantages of Hamiltonian dynamics & Metropolis MC
 - Incorporates gradients in dynamic trajectories

Given vector of parameters $\mathbf{C} \in \mathcal{R}^k$,

- Augment with conjugate momentum vector $\mathbf{P} \in \mathcal{R}^k$
- Introduce function $\mathcal{H}(\mathbf{C}, \mathbf{P})$, on phase–space (\mathbf{C}, \mathbf{P}) .
- $\mathcal{H}(\mathbf{C}, \mathbf{P}) \equiv$ Hamiltonian function (Classical dynamics)

$$\mathcal{H}(\mathbf{C}, \mathbf{P}) = V(\mathbf{C}) + K(\mathbf{P}), \tag{4}$$

$$V(\mathbf{C}) = -\log \pi(\mathbf{C}), \quad K(\mathbf{P}) = \frac{1}{2} |\mathbf{P}|^2.$$
(5)

V, K, $\pi(\mathbf{C}) \equiv \mathsf{Pot.}$ & Kinetic energies, Target distribution

Practical Implementation

Algorithm Description-II

• If V(C) induces a Boltzmann distribution over C

$$p(\mathbf{C}) = \frac{e^{-V(\mathbf{C})}}{\int_{\mathcal{R}^n} e^{-V(\mathbf{C})} d\mathbf{C}}$$
(6)

• $\mathcal{H}(\mathbf{C}, \mathbf{P})$ induces a similar distribution on (\mathbf{C}, \mathbf{P}) ,

$$p(\mathbf{C}, \mathbf{P}) = \frac{e^{-\mathcal{H}(\mathbf{C}, \mathbf{P})}}{\int_{\mathcal{R}^n} \int_{\mathcal{R}^n} e^{-\mathcal{H}(\mathbf{C}, \mathbf{P})} d\mathbf{C} d\mathbf{P}} = p(\mathbf{C})p(\mathbf{P}), \quad (7)$$
$$p(\mathbf{P}) = (2\pi)^{-n/2} e^{(-\frac{1}{2}|\mathbf{P}|^2)}. \quad (8)$$

- Simulate ergodic Markov chain with stationary distrib. ~ (7)
- Estimate (J) use values of C from successive Markov chain states with marginal distribution given by (6)

Practical Implementation

Algorithm Description-III

Stochastic Transition

• Draw random variable $\mathbf{P} \sim p(\mathbf{P}) = (2\pi)^{-n/2} e^{(-\frac{1}{2}|\mathbf{P}|^2)}$

- Oynamic Transition
 - New pair of $(\mathbf{C}, \mathbf{P}) \sim p(\mathbf{C}, \mathbf{P})$, starting from current \mathbf{C} ,
 - Sample regions of constant $\mathcal H$ without bias
 - Ensures ergodicity of the Markov chain
- Dynamic transitions–governed by Hamiltonian equations

$$\frac{d\mathbf{C}}{d\tau} = +\frac{\partial\mathcal{H}}{\partial\mathbf{P}} = \mathbf{P}, \quad \frac{d\mathbf{P}}{d\tau} = -\frac{\partial\mathcal{H}}{\partial\mathbf{C}} = -\nabla V(\mathbf{C}). \tag{9}$$

- Hamiltonian dynamic transitions satisfy
 - Time reversibility (invariance under $\tau \rightarrow -\tau$, $\mathbf{P} \rightarrow -\mathbf{P}$),
 - Conservation of energy $(\mathcal{H}(\mathbf{C}, \mathbf{P})$ invariant with $\tau)$
 - Liouville's theorem (conservation of phase-space volume).

Talk Outline

Background Baves Theor

- MCMC Algorithms
- 2 Aim of Talk
- The Hamiltonian Monte Carlo (HMC) Algorithm
 Practical Implementation

Improving Performance of HMC Algorithm
 Improving Phase–Space Sampling
 Improvement Strategies

Numerical Experiments & Results
 The improved HMC algorithm

(日)

Practical Implementation

Practical Implementation

Leapfrog HMC

- Choose chain length N & leapfrog steps L
- Simulate Hamiltonian dynamics with finite step size, *e*.

$$\mathbf{P}(\tau + \frac{\epsilon}{2}) = \mathbf{P}(\tau) - \frac{\epsilon}{2} \nabla V(\mathbf{C}(\tau)), \tag{10}$$

$$\mathbf{C}(\tau + \epsilon) = \mathbf{C}(\tau) + \epsilon \mathbf{P}(\tau + \frac{\epsilon}{2}), \tag{11}$$

$$\mathbf{P}(\tau + \epsilon) = \mathbf{P}(\tau + \frac{\epsilon}{2}) - \frac{\epsilon}{2} \nabla V(\mathbf{C}(\tau + \epsilon)).$$
(12)

- Transition is volume-preserving and time-reversible
- Finite ϵ does not keep \mathcal{H} constant \rightarrow systematic error
- Elimate systematic error using a Metropolis rule

Practical Implementation

The Algorithm–Example Implementation

Algorithm

```
Initialize C<sup>(0)</sup>
for i = 1 to N - 1
           Sample u \sim U_{[0,1]} and P^* \sim N(0,I)
           C_0 = C^{(i)} and P_0 = P^* + \frac{\varepsilon}{2} \nabla V(C_0)
           For l = 1 to L
                      P_1 = P_{1-1} - \frac{\epsilon}{2} \nabla V(C_1)
                      C_1 = C_{1-1} + \epsilon P_{1-1}
                      P_1 = P_{1-1} - \frac{\varepsilon}{2} \nabla V(C_1)
           end For
           dH = H(C_L, P_L) - H(C^{(i)}, P^*)
           if u < \min\{1, \exp(-dH)\}
                      (C^{(i+1)}, P^{(i+1)}) = (C_{I}, P_{I})
           else
                      (C^{(i+1)}, P^{(i+1)}) = (C^{(i)}, P^{(i)})
end for
return C = [C^{(1)}, C^{(2)}, ..., C^{(N-1)}]
```


(日)

The Hamiltonian Monte Carlo (HMC) Algorithm

Practical Implementation

Issues with Implementation

• Given a chain of length N, the choices of $L \& \epsilon$ are decisive.

< D > < B > < E > < E</p>

Improving Phase–Space Sampling Improvement Strategies

Talk Outline

MCMC Algorithms Practical Implementation Improving Performance of HMC Algorithm 4 Improving Phase–Space Sampling The improved HMC algorithm

(日)

Improving Phase–Space Sampling Improvement Strategies

Effect of Gibbs Sampling

- Momentum variable *P* ∼ Gibbs sampler → random walks
 - Could lead to sub-optimal sampling of phase-space
 - Doubling on movement leads to extra cost- CPU time

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm

Improving Phase–Space Sampling Improvement Strategies

Effect of Constant Step-size

- For usual implementations, *c* is constant
 - Inefficient when trajectory dynamics vary in different phase-space regions
 - Leads to extra cost– CPU time

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm

Improving Phase–Space Sampling Improvement Strategies

Talk Outline

MCMC Algorithms Practical Implementation Improving Performance of HMC Algorithm 4 Improvement Strategies The improved HMC algorithm

(日)

Improving Phase–Space Sampling Improvement Strategies

Investigate Two Approaches

- Proposal 1: Suppressing random Walk in Gibbs sampling
 Ordered over-relaxation (R. Neal)
- Proposal 2: Using a variable step-size for dynamics
 - Investigate a Runge-Kutta type integrator (simplectic)

Improving Phase–Space Sampling Improvement Strategies

Applying over-relaxation to P-Over-rel. HMC (OHMC)

Improving Phase–Space Sampling Improvement Strategies

Variable Step–Size HMC Algorithm (SVHMC)

Explicit variable step-size using a Runge-Kutta scheme

Adaptive Störmer-Verlet

For l = 1 : L - steps

$$\begin{split} C_{l+\frac{1}{2}} &= C_l + \frac{\epsilon}{2\rho_l} P_{l+\frac{1}{2}}, \\ P_{l+\frac{1}{2}} &= P_l - \frac{\epsilon}{2\rho_l} \nabla V(C_l), \\ \rho_{l+1} + \rho_l &= 2U(C_{l+\frac{1}{2}}, P_{l+\frac{1}{2}}), \\ P_{l+1} &= P_{l+\frac{1}{2}} - \frac{\epsilon}{2\rho_{l+1}} \nabla V(C_{l+1}) \\ C_{l+1} &= C_{l+\frac{1}{2}} + \frac{\epsilon}{2\rho_{n+1}} P_{l+\frac{1}{2}}. \end{split}$$

Adaptive Step-size

Adaptive Störmer–Verlet

- Adaptive ϵ reduces ΔH .
- Parameter ϵ depends on $U(C,P) = \sqrt{\|\nabla V(C)\|^2 + P^T [\nabla^2 V(C)]^2 P}$
- Observed ~ theoretical acceptance rates
- ρ_o is a fictive parameter

Improving Phase–Space Sampling Improvement Strategies

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm

Example results from the improved HMC algorithm

• • • • • • • • • • •

→ ∃ →

Numerical Experiments

 Gaussian targets with uncorrelated covariates in 64 & 128D

$$\pi(\mathbf{C}) = \frac{1}{(2\pi)^{\frac{D}{2}} \det(\Sigma)^{\frac{1}{2}}} \exp\left(-\frac{1}{2}\mathbf{C}^{T}\Sigma^{-1}\mathbf{C}\right).$$
(13)

- Compare HMC, SVHMC & OSVHMC algorithms based on
 - Degree of chain autocorrelation
 - Effective number of samples in a given chain
 - Variance of sample means, $\overline{\mathbf{C}}$, of a finite chain
 - Convergence rates/ratio
 - Dimensionless efficiency,

Example results from the improved HMC algorithm

Evaluation Criteria

Suppose $\{c_i\}_{i=1}^N$ is chain generated by algorithm.

Degree of correlation criteria

- Autocorrelation function $\rho(l) = \frac{Cov(x_i, x_{i+l})}{Var(x_i)}$
- Integrated autocorrelation time $\tau_{int} = \frac{1}{2} + \sum_{t=1}^{\infty} \rho(t)$
- Effective sample size $N_{eff} = N / (2\tau_{int})$
- Spectral analysis criteria
 - Compute $\tilde{P}_j = |\tilde{C}(\kappa)^* \tilde{C}(\kappa)|, \ \tilde{C}(\kappa) = \mathsf{DFT}(c)$
 - Fit template $P(\kappa) = P_0 \frac{(\kappa^*/\kappa)^{\alpha}}{(\kappa^*/\kappa)^{\alpha}+1}$ to \tilde{P}_j
 - α , P(0) & κ^* parameters to be estimated
 - The sample mean variance $\sigma_{\bar{x}}^2 \approx P(\kappa = 0)/N$
 - Convergence ratio $r = \sigma_{\bar{x}}^2 / \sigma_0^2$

• The dimensionless efficiency $E = \lim_{N \to \infty} \frac{\sigma_0^2/N}{\sigma^2(N)}$

Example results from the improved HMC algorithm

Evaluation criteria – Geometric Illustration

The Hamiltonian Monte Carlo (HMC) Algorithm

Talk Outline

Example results from the improved HMC algorithm

Bayes Theorem MCMC Algorithms

- 2 Aim of Talk
- The Hamiltonian Monte Carlo (HMC) Algorithm
 Practical Implementation
- Improving Performance of HMC Algorithm
 Improving Phase–Space Sampling
 Improvement Strategies
- 5 Numerical Experiments & Results
 - The improved HMC algorithm

(日)

Example results from the improved HMC algorithm

Comparing OHMC vs HMC

Gaussian Target $\pi(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}x^T \Sigma^{-1} x\right)$ $\Sigma = I$

Results (n=64, N=2000)						
	OHMC	HMC	Ideal			
Accept. rate	0.99	0.99	1			
P(0)	1.35	1.51	1			
κ*	1.65	1.45				
CPU time[sec]	561.22	557.38				
Ε	0.74	0.66	1			
r	6.7 <i>e</i> − 4	7.6 <i>e</i> − 4	< 0.01			
$ au_{int}$	1.63	1.85	0.5			
N _{eff}	614	542	2000			

M. Alfaki, S. Subbey, and D. Haugland

The Hamiltonian Monte Carlo (HMC) Algorithm

Example results from the improved HMC algorithm

Comparing SVHMC vs HMC

Numerical Results (n=128 N=2000)

	SVHMC	HMC	Ideal
Accept. rate	0.92	0.98	1
P(0)	1.09	3.13	1
κ^*	3.15	1.55	
CPU time[sec]	1568.01	1117.78	
Ε	0.92	0.67	1
r	5.6 <i>e</i> – 4	7.4e - 4	< 0.01
$ au_{int}$	0.86	1.80	0.5
N _{eff}	1167	554	2000

Graphical Illustration

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm

Example results from the improved HMC algorithm

Comparing OSVHMC vs SVHMC

Numerical Results (n=64, N=2000)						
	OSVHMC	SVHMC	Ideal			
Accept. rate	0.92	0.94	1			
P(0)	1.02	1.11	1			
κ^*	4.15	3.19				
CPU time[sec]	639.58	669.40				
E	0.98	0.90	1			
r	5.1 <i>e</i> − 4	5.6 <i>e</i> – 4	< 0.01			
$ au_{int}$	0.71	0.94	0.5			
N _{eff}	1400	1059	2000			

Graphical Illustration

Example results from the improved HMC algorithm

Summary and Conclusion

• Over-relaxation in the Gibbs sampling improves dimensionless efficiency by a factor $\sim 12\%$.

 $\frac{E_{OHMC}}{E_{HMC}} \approx 1.2$

2 Using Störmer–Verlet discretization outperforms the leapfrog HMC by having $\sim 50\%$ more effective sample size

 The hybrid– OSVHMC (over-relaxing the momentum & Adaptive ε) outperform the SVHMC

