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Bayes Theorem

Given model–m(C) : C ∈ Rk, and data O
Bayes Theorem: Prior belief × Likelihood→ Posterior

p(m)p(O|m)[∫
Rk p(O|m)p(m)dm

] = p(m|O). (1)

Posterior pdf used in inference, e.g., expectation of J: 〈J〉

〈J〉 =
∫
Rk

J(m)p(m|O)dm =
1
n

n

∑
j=1

J(mj)p(mj|O)
h(mj)

, (2)

≈ 1
n

n

∑
j=1

J(mj), for h(mj) ≈ p(mj|O). (3)
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MCMC Algorithms

Avoid calculating (intractable) integral
∫
Rk p(O|m)p(m)dm.

Generate ensemble of models, m1, m2, . . . , mn|mj ≡ m(Cj)
Such that distribution of {mj}n

j=1 ∼ h(m)

h(m) ≈ p(m|O)⇒ 〈J〉 is an average over m1, m2, . . . , mn

A popular implementation – Metropolis–Hastings algorithm
Some example drawbacks:

long burn–in time
slow convergence (especially in high dimensions)

Recent developments attempt to address drawbacks
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Aim of Talk

Present
The Hamiltonian Monte Carlo (HMC) Algorithm

A variant Monte Carlo algorithm
Incorporates gradient information in distribution space

Investigated strategies for improving performance
Numerical experimental results
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Algorithm Description–I

Type of Markov Chain Algorithm
Combines advantages of Hamiltonian dynamics &
Metropolis MC
Incorporates gradients in dynamic trajectories

Given vector of parameters C ∈ Rk,
Augment with conjugate momentum vector P ∈ Rk

Introduce function H(C, P), on phase–space (C, P).
H(C, P) ≡ Hamiltonian function (Classical dynamics)

H(C, P) = V(C) + K(P), (4)

V(C) = − log π(C), K(P) =
1
2
|P|2. (5)

V , K, π(C) ≡ Pot. & Kinetic energies, Target distribution
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Algorithm Description–II

If V(C) induces a Boltzmann distribution over C

p(C) =
e−V(C)∫

Rn e−V(C)dC
(6)

H(C, P) induces a similar distribution on (C, P),

p(C, P) =
e−H(C,P)∫

Rn

∫
Rn e−H(C,P)dCdP

= p(C)p(P), (7)

p(P) = (2π)−n/2e(− 1
2 |P|2). (8)

Simulate ergodic Markov chain with stationary distrib. ∼ (7)
Estimate 〈J〉– use values of C from successive Markov
chain states with marginal distribution given by (6)

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm



Background
Aim of Talk

The Hamiltonian Monte Carlo (HMC) Algorithm
Improving Performance of HMC Algorithm

Numerical Experiments & Results

Practical Implementation

Algorithm Description–III

Stochastic Transition
Draw random variable P ∼ p(P) = (2π)−n/2e(− 1

2 |P|2)

Dynamic Transition
New pair of (C, P) ∼ p(C, P), starting from current C,
Sample regions of constant H without bias

Ensures ergodicity of the Markov chain

Dynamic transitions–governed by Hamiltonian equations

dC
dτ

= +
∂H
∂P

= P,
dP
dτ

= −∂H
∂C

= −∇V(C). (9)

Hamiltonian dynamic transitions satisfy
Time reversibility (invariance under τ → −τ, P→ −P),
Conservation of energy (H(C, P) invariant with τ)
Liouville’s theorem (conservation of phase–space volume).
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Leapfrog HMC

Choose chain length N & leapfrog steps L

Simulate Hamiltonian dynamics with finite step size, ε.

P(τ +
ε

2
) = P(τ)− ε

2
∇V(C(τ)), (10)

C(τ + ε) = C(τ) + εP(τ +
ε

2
), (11)

P(τ + ε) = P(τ +
ε

2
)− ε

2
∇V(C(τ + ε)). (12)

Transition is volume–preserving and time–reversible
Finite ε does not keep H constant→ systematic error
Elimate systematic error using a Metropolis rule
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The Algorithm–Example Implementation

Algorithm
Initialize C(0)

for i = 1 to N− 1
Sample u ∼ U[0,1] and P∗ ∼ N(0,I)
C0 = C(i) and P0 = P∗+ ε

2∇V(C0)
For l = 1 to L

Pl = Pl−1− ε
2∇V(Cl)

Cl = Cl−1+εPl−1
Pl = Pl−1− ε

2∇V(Cl)
end For
dH = H(CL,PL)− H(C(i),P∗)
if u < min{1,exp(−dH)}

(C(i+1),P(i+1)) = (CL,PL)
else

(C(i+1),P(i+1)) = (C(i),P(i))
end for

return C = [C(1),C(2), ...,C(N−1)]

Example
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Issues with Implementation

Given a chain of length N, the choices of L & ε are decisive.

Example
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(a) ε = 0.025, L = 20 (b) ε = 0.1, L = 20 (c) ε = 1.9, L = 30

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm



Background
Aim of Talk

The Hamiltonian Monte Carlo (HMC) Algorithm
Improving Performance of HMC Algorithm

Numerical Experiments & Results

Improving Phase–Space Sampling
Improvement Strategies

Talk Outline

1 Background
Bayes Theorem
MCMC Algorithms

2 Aim of Talk

3 The Hamiltonian Monte Carlo (HMC) Algorithm
Practical Implementation

4 Improving Performance of HMC Algorithm
Improving Phase–Space Sampling
Improvement Strategies

5 Numerical Experiments & Results
The improved HMC algorithm

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm



Background
Aim of Talk

The Hamiltonian Monte Carlo (HMC) Algorithm
Improving Performance of HMC Algorithm

Numerical Experiments & Results

Improving Phase–Space Sampling
Improvement Strategies

Effect of Gibbs Sampling

Momentum variable P ∼ Gibbs sampler→ random walks
Could lead to sub–optimal sampling of phase-space
Doubling on movement leads to extra cost– CPU time

Illustration

C
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Effect of Constant Step–size

For usual implementations, ε is constant
Inefficient when trajectory dynamics vary in different
phase–space regions
Leads to extra cost– CPU time

Example

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

c
j

f j

 

 

π(C)

−4 −3 −2 −1 0 1 2 3 4
0

50

100

150

200

c
j

f j

 

 

π(C)

5 10 15 20 25 30 35 40 45 50

10
−1

j

ε
j

(a) Constant ε = 0.1, L = 30 (b) Variable ε, L = 30 (c) Variable εj

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm



Background
Aim of Talk

The Hamiltonian Monte Carlo (HMC) Algorithm
Improving Performance of HMC Algorithm

Numerical Experiments & Results

Improving Phase–Space Sampling
Improvement Strategies

Talk Outline

1 Background
Bayes Theorem
MCMC Algorithms

2 Aim of Talk

3 The Hamiltonian Monte Carlo (HMC) Algorithm
Practical Implementation

4 Improving Performance of HMC Algorithm
Improving Phase–Space Sampling
Improvement Strategies

5 Numerical Experiments & Results
The improved HMC algorithm

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm



Background
Aim of Talk

The Hamiltonian Monte Carlo (HMC) Algorithm
Improving Performance of HMC Algorithm

Numerical Experiments & Results

Improving Phase–Space Sampling
Improvement Strategies

Investigate Two Approaches

Proposal 1: Suppressing random Walk in Gibbs sampling
Ordered over-relaxation (R. Neal)

Proposal 2: Using a variable step–size for dynamics
Investigate a Runge–Kutta type integrator (simplectic)
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Applying over–relaxation to P– Over-rel. HMC (OHMC)

Ordered over-relaxation
To over–relax Rn 3 P ∼ N (P; 0, I)
For i = 1 : n

Generated K values from
N (qi|{qj}i 6=j).

Order K values and the odd value Pi.
q(0)

i ≤ · · · ≤ q(r)
i = Pi ≤ · · · ≤ q(K)

i

Set P′i = q(K−r)
i .

End for

Example
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Variable Step–Size HMC Algorithm (SVHMC)

Explicit variable step–size using a Runge–Kutta scheme

Adaptive Störmer–Verlet
For l = 1 : L− steps

Cl+ 1
2

= Cl +
ε

2ρl
Pl+ 1

2
,

Pl+ 1
2

= Pl −
ε

2ρl
∇V(Cl),

ρl+1 + ρl = 2U(Cl+ 1
2
, Pl+ 1

2
),

Pl+1 = Pl+ 1
2
− ε

2ρl+1
∇V(Cl+1),

Cl+1 = Cl+ 1
2
+

ε

2ρn+1
Pl+ 1

2
.

End For
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Adaptive Step–size

Adaptive Störmer–Verlet
Adaptive ε reduces ∆H.
Parameter ε depends on
U(C, P) =√
‖∇V(C)‖2 + PT [∇2V(C)]2P

Observed ∼ theoretical
acceptance rates
ρo is a fictive parameter

Example
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Example results from the improved HMC algorithm

Numerical Experiments

Gaussian targets with uncorrelated covariates in 64 &
128D

π(C) =
1

(2π)
D
2 det(Σ)

1
2

exp
(
−1

2
CT Σ−1C

)
. (13)

Compare HMC, SVHMC & OSVHMC algorithms based on
Degree of chain autocorrelation
Effective number of samples in a given chain
Variance of sample means, C, of a finite chain
Convergence rates/ratio
Dimensionless efficiency,

M. Alfaki, S. Subbey, and D. Haugland The Hamiltonian Monte Carlo (HMC) Algorithm



Background
Aim of Talk

The Hamiltonian Monte Carlo (HMC) Algorithm
Improving Performance of HMC Algorithm

Numerical Experiments & Results

Example results from the improved HMC algorithm

Evaluation Criteria

Suppose {ci}N
i=1 is chain generated by algorithm.

1 Degree of correlation criteria
Autocorrelation function ρ(l) = Cov(xi,xi+l)

Var(xi)

Integrated autocorrelation time τint = 1
2 + ∑∞

t=1 ρ(t)
Effective sample size Neff = N/(2τint)

2 Spectral analysis criteria
Compute P̃j = |C̃(κ)∗C̃(κ)|, C̃(κ) = DFT(c)
Fit template P(κ) = P0

(κ∗/κ)α

(κ∗/κ)α+1 to P̃j

α, P(0) & κ∗ – parameters to be estimated

The sample mean variance σ2
x̄ ≈ P(κ = 0)/N

Convergence ratio r = σ2
x̄ /σ2

0

The dimensionless efficiency E = limN→∞
σ2

0 /N
σ2

x̄ (N)
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Evaluation criteria – Geometric Illustration

Degree of correlation
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Comparing OHMC vs HMC

Gaussian Target

π(x) = 1
(2π)n/2|Σ|1/2 exp

(
− 1

2 xT Σ−1x
)

Σ = I

Results (n=64, N=2000)
OHMC HMC Ideal

Accept. rate 0.99 0.99 1
P(0) 1.35 1.51 1
κ∗ 1.65 1.45
CPU time[sec] 561.22 557.38
E 0.74 0.66 1
r 6.7e− 4 7.6e− 4 < 0.01
τint 1.63 1.85 0.5
Neff 614 542 2000

Graphical Illustration
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Comparing SVHMC vs HMC

Numerical Results (n=128 N=2000)
SVHMC HMC Ideal

Accept. rate 0.92 0.98 1
P(0) 1.09 3.13 1
κ∗ 3.15 1.55
CPU time[sec] 1568.01 1117.78
E 0.92 0.67 1
r 5.6e− 4 7.4e− 4 < 0.01
τint 0.86 1.80 0.5
Neff 1167 554 2000

Graphical Illustration
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Comparing OSVHMC vs SVHMC

Numerical Results (n=64, N=2000)
OSVHMC SVHMC Ideal

Accept. rate 0.92 0.94 1
P(0) 1.02 1.11 1
κ∗ 4.15 3.19
CPU time[sec] 639.58 669.40
E 0.98 0.90 1
r 5.1e− 4 5.6e− 4 < 0.01
τint 0.71 0.94 0.5
Neff 1400 1059 2000

Graphical Illustration
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Summary and Conclusion

1 Over-relaxation in the Gibbs sampling improves
dimensionless efficiency by a factor ∼ 12%.

EOHMC

EHMC
≈ 1.2

.2 Using Störmer–Verlet discretization outperforms the
leapfrog HMC by having ∼ 50% more effective sample size

NSV
eff

Nleapfrog
eff

≈ 2.0

3 The hybrid– OSVHMC (over-relaxing the momentum &
Adaptive ε) outperform the SVHMC
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