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Well posedness

Hadamard postulates: Given the operator A: M ¥ D. The
problem of solving for x 2 M, given the datad 2 D,

A(x) =d+d

is well posed if:

@ Existence: foreach d, 9x, st A(x) =d
@ uniqueness: if A(xXD) = AX?) D x(D = x3,
© stability: A 1is continuous.

Otherwise it is ill posed .
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Deterministic Approach to Solve IP

© Least Square Estimate Find the best model that minimize
the miss t, i.e. norm of the residual d  A(X).

xs=agminkd AX)k?.
x2M

If the problem is ill posed, LS produces large and
unreasonable models.
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Deterministic Approach to Solve IP

© Least Square Estimate Find the best model that minimize
the miss t, i.e. norm of the residual d  A(X).
xs=agminkd AX)k?.
x2M
If the problem is ill posed, LS produces large and
unreasonable models.
@ Regularization Methods impose stability on an ill posed

problem by incorporating prior information.
Tikhonov regularization:

Xa = agminkd  A(X)k? + akP(x)k?, a > 0.
m2M

The penalty functional P express the prior information.
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Statistical Approach to Solve IP

Why statistical inversion?

© The general theory obtained when using a probabilistic
point view.

How statistical inversion?
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Why statistical inversion?

© The general theory obtained when using a probabilistic
point view.

@ Limited number of data.
@ Experimental uncertainties.

© We can add Prior information.
How statistical inversion?

© We deal with x, d, and d as random variables.
@ Express the solution as probability distribution.

@ Asking question such as whatis Pr(x, 30) is nota
problem.
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