October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

Publishers’ page



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

Publishers’ page



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

Publishers’ page

iii



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

Publishers’ page

iv



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

Contents

The History of Logic 1
A Logic — patterns of reasoning . . . . . .. . ... ... ... 2
A.1 Reductio ad absurdum . . . ... ... ... ... .. 2

A2 Aristotle . . . . ... 3

A.3 Other patterns and later developments . . .. .. .. 8

B Logic — a language about something . . ... ... ... ... 9

B.1 Early semantic observations and problems. . . . . .. 10
B.2 The Scholastic theory of supposition . . . . .. .. .. 11
B.3 Intension vs. extension . . . . ... ... ... .. .. 11
B.4 Modalities . . . ... ... ... . ... .. 12
C Logic — a symbolic language . . . . . ... . ... ... .... 14
C.1 The “universally characteristic language” . . . .. .. 15
C.2 Calculusof reason . . . .. ... ... .. ... .... 15
D 19th and 20th Century — mathematization of logic . . . . .. 17
D.1 GeorgeBoole. . . . . . ... ... 18
D.2 Gottlob Frege . . . . .. ... ... ... ... ... 22
D3 Set theory . . . ... ... ... ... 25
D.4 20th century logic . . . . .. ... ... ... ... 27
E Modern Symbolic Logic. . . . . . ... ... ... ... .... 30
E.1 Formal logical systems: syntax. . . . . . .. ... ... 31
E.2 Formal semantics . . . ... .. ... ......... 34
E.3 Computability and Decidability . . ... ... .. .. 37
F Summary . . . . . .. .. 41
The Greek alphabet . . . . .. .. ... ... ... .. 43



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

vi Introduction to Logic

Acknowledgments

Several lecturers have been using preliminary versions of this text and con-
tributed valuable comments and corrections to its present, final form. I
want to specifically thank Tore Langholm, Valentinas Kriau¢iukas and Uwe
Wolter.

The first part, on the history of logic, is to a high degree a compilation
of various internet resources. I gratefully acknowledge the use of much de-
tailed information from Encyclopedia Britannica (www.britannica.com),
Wikipedia (en.wikipedia.org), Leibnitiana (www.gwleibniz.com), Stan-
ford Encyclopedia (plato.stanford.edu), and apologize the owners of
other sources which I might have inadverently left out. The arrangement,
development and conclusions of this part, however, reflect only the author’s
views and should not be attributed to other sources.



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

The history of logic 1

The History of Logic

Once upon a time, sitting on a rock in Egypt, Parmenides invented logic.
Such a legend might have appealed to people believing in a (rather small)
set of well-defined rules constituting the logic. This belief had permeated
the main-stream thinking at least until the beginning of the 20th century.
But even if this medieval story appears now implausible, it reflects the fact
that Parmenides was the first philosopher who did not merely propose a
vision of reality but who also supported it by an extended argument. He
is reported to have had a Pythagorean teacher and, perhaps, his use of
argument was inspired by the importance attached to mathematics in the
Pythagorean tradition. Still, he never systematically formulated principles
of argumentation and using arguments is not the same as studying them.

“Logical thinking” may be associated roughly with something like cor-
rect reasoning and the study of logic begins with the attempts to formulate
the principles govering such reasoning. Now, correctness amounts to confor-
mance to some prescribed rules. Identification of such rules, and the ways
of verifying conformance to them, begins with Aristotle in the 5th century
BC. He defined his logical discourse — a syllogism — as one “in which, certain
things being stated something other than what is stated follows of necessity
from their being so.” This intuition of necessary — unavoidable or mechan-
ical — consequences, embodying the ideal of correctness, both lies at the
origin of the discipline of logic and has since been the main force driving its
development until the 20th century. However, in a quite interesting turn,
its concluding chapter (or rather: the chapter at which we will conclude
its description) did not establish any consensus about the mechanisms of
the human thinking and the necessities founding its correctness. Instead, it
provided a precise counterpart of the Aristotelian definition of a process in
which, certain things being given, some other follow as their unavoidable,
mechanical consequences. This is known as Turing machine and its physical
realization is computer.

We will sketch logic’s development along the three, intimately connected
axes which reflect its three main domains.

(1) The foremost seems to be the study of correct arguments, their mean-
ing. Meaning, however, seems often very vague. One tries to capture it
more precisely in order to formulate the rules for construction of cor-
rect arguments and for their manipulation which, given some correct
arguments, allows one to arrive at new ones.
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(2) In order to construct precise and valid forms of arguments one has to
determine their “building blocks”. One has to identify the basic terms,
their kinds and means of combination.

(3) Finally, there is the question of how to represent these patterns. Al-
though apparently of secondary importance, it is the answer to this
question which puts purely symbolic manipulation in the focus. It can
be considered the beginning of modern mathematical logic which led
to the development of the devices for symbolic manipulation known as
computers.

The first three sections sketch the development along the respective lines
until Renaissance beginning, however, with the second point, Section A,
following with the first, Section B, and concluding with the third, Section
C. Then, Section D indicates the development in the modern era, with
particular emphasis on the last two centuries. Section E sketches the basic
aspects of modern mathematical logic and its relations to computers.

A. Logic — patterns of reasoning

A.1. Reductio ad absurdum

If Parmenides was only implicitly aware of the general rules underlying his
arguments, the same perhaps is not true for his disciple Zeno of Elea (5th
century BC). Parmenides taught that there is no real change in the world
and that all things remain, eventually, the same one being. In the defense of
this heavily criticized thesis, Zeno designed a series of ingenious arguments,
known under the name “Zeno’s paradoxes”, which demonstrated that the
contrary assumption must lead to absurdity. Some of the most known is
the story of

Achilles and tortoise competing in a race

Tortoise, being a slower runner, starts some time t before Achilles.
In this time t, the tortoise will go some way w, towards the goal.
Now Achilles starts running but in order to catch up with the tor-
toise he has to first run the way wy which will take him some time
t1 (less than t). In this time, tortoise will again walk some dis-
tance wo away from the point wy and closer to the goal. Then
again, Achilles must first run the way ws in order to catch the tor-
toise which, in the same time to, will walk some distance ws away.
In short, Achilles will never catch the tortoise, which is obviously
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absurd. Roughly, this means that the thesis that the two are really
changing their positions cannot be true.

It was only in the 19th century that mathematicians captured and expressed
precisely what was wrong with this way of thinking. This, however, does not
concern us as much as the fact that the same form of reasoning was applied
by Zeno in many other stories: assuming a thesis 7', he analyzed it arriving
at a conclusion C; but C turns out to be absurd — therefore T' cannot be
true. This pattern has been given the name “reductio ad absurdum” and
is still frequently used in both informal and formal arguments.

A.2. Aristotle

Various ways of arguing in political and philosophical debates were ad-
vanced by various thinkers. Sophists, often discredited by the “serious”
philosophers, certainly deserve the credit for promoting the idea of a cor-
rect argument, irrespectively of its subject matter and goal. Horrified by
the immorality of sophists’ arguing, Plato attempted to combat them by
plunging into ethical and metaphysical discussions and claiming that these
indeed had a strong methodological logic — the logic of discourse, “dialec-
tic”. In terms of development of modern logic there is, however, close to
nothing one can learn from that. The formulation of the principles for cor-
rect reasoning culminated in ancient Greece with Plato’s pupil Aristotle’s
(384-322 BC) teaching of categorical forms and syllogisms.

A.2.1. Categorical forms

Most of Aristotle’s logic was concerned with specific kinds of judgments,
later called “categorical propositions”, consisting of five building blocks:

(1) usually a quantifier (“every”, “some”, or “no”),

(2) a subject,

(3) a copula (“is”),

(4) perhaps a negation (“not”), and

(5) a predicate.
Subject, copula and predicate were mandatory, the remaining two elements
were optional. Propositions analyzable in this way fall into one of the
following forms:
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quantifier ‘ subject ‘ copula‘ (4) ‘ predicate

Every A is B : Universal affirmative

Every A is not | B : Universal negative

Some A is B : Particular affirmative

Some A is not | B : Particular negative
A is B : Singular affirmative
A is not | B : Singular negative

In the singular judgements A stands for an individual, e.g. “Socrates is
(not) a man.” These two forms gained much less importance than the
rest since in most contexts they can be seen as special cases of 3 and 4,
respectively.

A.2.2. Conversions

Sometimes Aristotle adopted alternative but equivalent formulations. In-
stead of 1, one could say “B belongs to every A” or “B is predicated of
every A” and instead of 2, one might say “No A is B”:

Aristotle formulated several such rules, later known as the theory of
conversion. To convert a proposition in this sense is to interchange its sub-
ject and predicate. Aristotle observed that propositions of forms 3 and 2
can be validly converted in this way: if “some A is B”, then also “some B
is A”, and if “no A is B”, then also “no B is A”. In later terminology, such
propositions were said to be converted simply (simpliciter). But proposi-
tions of form 1 cannot be converted in this way; if “every A is an B”, it
does not follow that “every B is a A”. It does follow, however, that “some
B is a A”. Such propositions, which can be converted by interchanging
their subjects and predicates and, in addition, also replacing the universal
quantifier “all” by the existential quantifier “some”, were later said to be
converted accidentally (per accidens). Propositions of form 4 cannot be
converted at all; from the fact that some animal is not a dog, it does not
follow that some dog is not an animal. Aristotle used these laws of conver-
sion to reduce other syllogisms to syllogisms in the first figure, as described
below.

Conversions represent the first form of formal manipulation. They pro-
vide the rules for:

replacing occurrence of one (categorical) form of a statement by
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another — without affecting the proposition!

What does “affecting the proposition” mean is another subtle matter. The
whole point of such a manipulation is that one changes the concrete ap-
pearance of a sentence, without changing its value. The intuition might
have been that they essentially mean the same and are interchangeable. In
a more abstract, and later formulation, one would say that “not to affect
a proposition” is “not to change its truth value” — either both are false or
both are true.

Two statements are equivalent if they have the same truth value.

This wasn’t exactly the point of Aristotle’s but we may ascribe him a lot of
intuition in this direction. From now on, this will be a constantly recurring
theme in logic. Looking at propositions as thus determining a truth value
gives rise to some questions (and severe problems, as we will see.) Since we
allow using some “placeholders” — variables — a proposition need not have
a unique truth value. “All A are B” depends on what we substitute for A
and B. In general, a proposition P may be:

(1) atautology — P is always true, no matter what we choose to substitute
for the “placeholders”; (e.g., “All A are A”. In particular, a proposition
without any “placeholders”, e.g., “all animals are animals”, may be a
tautology.)

(2) a contradiction — P is never true (e.g., “no A is A”);

(3) contingent — P is sometimes true and sometimes false; (“all A are B” is
true, for instance, if we substitute “animals” for both A and B, while
it is false if we substitute “birds” for A and “pigeons” for B).

A.2.3. Syllogisms

Aristotelian logic is best known for the theory of syllogisms which had
remained practically unchanged and unchallenged for approximately 2000
years. In Prior Analytics, Aristotle defined a syllogism as a

discourse in which, certain things being stated something other than
what is stated follows of necessity from their being so.

In spite of this very general definition, in practice he confined the term to
arguments with only two premises and a single conclusion, each of which
is a categorical proposition. The subject and predicate of the conclusion
each occur in one of the premises, together with a third term (the middle)
that is found in both premises but not in the conclusion. A syllogism thus
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argues that because S(ubject) and P(redicate) are related in certain ways
to some M (iddle) term in the premises, they are related in a certain way
to one another in the conclusion.

The predicate of the conclusion is called the major term, and the premise
in which it occurs is called the major premise. The subject of the conclusion
is called the minor term and the premise in which it occurs is called the
minor premise. This way of describing major and minor terms conforms to
Aristotle’s actual practice but was proposed as a definition only by the 6th
century Greek commentator John Philoponus.

Aristotle distinguished three different “figures” of syllogisms, according
to how the middle is related to the other two terms in the premises. He only
mentioned the fourth possibility which was counted as a separate figure
by later logicians. If one wants to prove syllogistically that S(ubject) is
P(redicate), one finds a term M (iddle) such that the argument can fit into
one of the following figures:

(I) “M is P” and “S is M” — hence “S is P”, or
(II) “Pis M” and “S is M” — hence “S is P”, or
(III) “M is P” and “M is S” —hence “S is P”, or
(IV) “Pis M” and “M is S” — hence “S is P”.

Each of these figures can come in various “moods”, i.e., each categori-
cal form can come with various quantifiers, yielding a large taxonomy of
possible syllogisms. Since the Middle Ages, one has used the following
abbreviations for the concerned quantifiers:

A : universal affirmative : all, every

E : universal negative : no
I : particular affirmative : some
O : particular negative : some is not, not every

The following is an example of a syllogism of figure I with the mood A-I-I.
“Marshal” is here the middle term and “politician” the major term.

A: Every marshal is a politician.
I.  Some soldiers are marshals. (A1)
I.  Some soldiers are politicians.

The table below gives examples of syllogisms of all four figures with different
moods. M is the middle term, P the major one and S the minor one.
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figure I: [Mis P] [S is M] [Sis P]
A-I1 | Every [Mis P]  Some [S is M] Some [S is P] | Darii
A-A-A | Every [Mis P] Every [S is M] Every [S is P] | Barbara
figure II: [P is M] [S is M] [S is P]
E-A-E No [P is M] Every [S is M] No [Sis P] | Cesare
figure III: [M is P] [M is S] [S is P]
A-A-1 | Every [Mis P] Every [M is S] Some [S is P] | Darapti
A-A-A | Every [Mis P] Every [M is S] Every [Sis P] | —
figure IV: [P is M] [M is S] [S is P]
E-A-O No [Pis M] Every [MisS] Some [S isnot P] | Fesapo

Four quantifiers, distributed arbitrarily among the three statements of a
syllogism, give 64 different syllogisms of each figure and the total of 256
distinct syllogisms. Aristotle identified 19 among them which were uni-
versally correct or, as we would say today, valid. Validity of an argument
means here that

no matter what concrete terms are substituted for the variables
(P, M,S), if the premises are true then also the conclusion is guar-
anteed to be true.

For instance, the 5 examples above, with the special names in the last col-
umn, are valid. The names, given by the medieval scholars to the valid
syllogisms, contained exactly three vowels identifying the mood. (The
mnemonic aid did not extend further: Celarent and Cesare identify the
same mood, so one had to simply remember that the former refers to figure
I and the latter to figure II.)

Figure ITT with mood A-A-A does not yield a valid syllogism. To see
this, we find a counterexample. Substituting women for M, female for P
and human for S, the premises hold while the conclusion states that every
human is female. Similarly, a counterexample can be found to every invalid
syllogism.

Note that a correct application of a valid syllogism does not guarantee
truth of the conclusion. (A.1) is such an application, but the conclusion
need not be true. It may namely happen that a correct application uses a
false assumption, for instance, in a country where the marshal title is not

prelim



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

8 Introduction to Logic

used in the military. In such cases the conclusion may accidentally happen
to be true but no guarantees about that can be given. We see again that
the main idea is truth preservation in the reasoning process. An obvious,
yet nonetheless crucially important, assumption is:

The contradiction principle

For any proposition P it is never the case that both P and not-P
are true.

This principle seemed (and to many still seems) intuitively obvious and
irrefutable — if it were violated, there would be little point in construct-
ing any “truth preserving” arguments. Although most logicians accept it,
its status has been questioned and various logics, which do not obey this
principle, have been proposed.

A.3. Other patterns and later developments

Aristotle’s syllogisms dominated logic until late Middle Ages. A lot of
variations were invented, as well as ways of reducing some valid patterns
to others (as in A.2.2). The claim that

all valid arguments can be obtained by conversion and, possibly,
reductio ad absurdum from the three (four?) figures

has been challenged and discussed ad nauseum.

Early developments (already in Aristotle) attempted to extend the syl-
logisms to modalities, i.e., by considering instead of the categorical forms
as above, the propositions of the form “it is possible/necessary that some
A are B”. Early followers of Aristotle in the 4th/3th BC (Theophrastus of
Eresus, Diodorus Cronus, the school of Megarians with Euclid) elaborated
on the modal syllogisms and introduced another form of a proposition, the
conditional

if (A is B) then (C is D).

These were further developed by Stoics who also made another significant
step. One of great inventions of Aristotle were variables — the use of letters
for arbitrary objects or terms. Now, instead of considering only patterns
of terms where such variables are placeholders for objects, Stoics started to
investigate logic with patterns of propositions. In such patterns, variables
would stand for propositions instead of terms. For instance,
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from two propositions: “the first” and “the second”, new propo-
sitions can be formed, e.g., “the first or the second”, “if the first
then the second”, etc.

The terms “the first”, “the second” were used by Stoics as variables instead
of single letters. The truth of such compound propositions may be deter-
mined from the truth of their constituents. We thus get new patterns of
arguments. The Stoics gave the following list of five patterns

(i) If 1 then 2; but 1; therefore 2.
(ii) If 1 then 2; but not 2; therefore not 1.
(iii) Not both 1 and 2; but 1; therefore not 2. (A.2)
(iv) Either 1 or 2; but 1; therefore not 2.
(v) Either 1 or 2; but not 2; therefore 1.

Chrysippus, 3th BC, derived many other schemata and Stoics claimed
(wrongly, as it seems) that all valid arguments could be derived from these
patterns. At the time, this approach seemed quite different from the Aris-
totelian and a lot of time went on discussions which is the right one. Stoic’s
propositional patterns had fallen into oblivion for a long time, but they re-
emerged as the basic tools of modern propositional logic. Medieval logic
had been dominated by Aristotelian syllogisms, but its elaboratations did
not contribute significantly to the theory of formal reasoning. However,
Scholasticism developed very sophisticated semantic theories, which are
addressed in the following section.

B. Logic — a language about something

The pattern of a valid argument is the first and through the centuries
fundamental issue in the study of logic. But there were (and are) a lot of
related issues. For instance, the two statements

(1) “all horses are animals”, and
(2) “all birds can fly”

are not exactly of the same form. More precisely, this depends on what
a form is. The first says that one class (horses) is included in another
(animals), while the second that all members of a class (birds) have some
property (can fly). Is this grammatical difference essential or not? Or else,
can it be covered by one and the same pattern or not? Can we replace
a noun by an adjective in a valid pattern and still obtain a valid pattern
or not? In fact, the first categorical form subsumes both above sentences,
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i.e., from the point of view of the logic of syllogisms, they are considered
as having the same form.

Such questions indicate that forms of statements and patterns of rea-
soning require further analysis of “what can be plugged where” which, in
turn, depends on which words or phrases can be considered as “having
similar function”, perhaps even as “having the same meaning”. What are
the objects referred to by various kinds of words? What are the objects
referred to by the propositions?

B.1. Early semantic observations and problems

Certain teachings of the sophists and rhetoricians are significant for the
early history of (this aspect of) logic. For example, Prodicus (5th BC) ap-
pears to have maintained that no two words can mean exactly the same
thing. Accordingly, he devoted much attention to carefully distinguishing
and defining the meanings of apparent synonyms, including many ethical
terms. On the other hand, Protagoras (5ht BC) is reported to have been
the first to distinguish different kinds of sentences — questions, answers,
prayers, and injunctions. Further logical development addressed primarily
propositions, “answers”, of which categorical propositions of Aristotle’s are
the outstanding example. The categorical forms gave a highly sophisticated
and very general schema for classifying various terms (possibly, with dif-
ferent grammatical status) as basic building blocks of arguments, i.e., as
potential subjects or predicates.

Since logic studies statements, their form as well as patterns in which
they enter valid arguments, one of the basic questions concerns the meaning
of a proposition. As we indicated earlier, two propositions can be considered
equivalent if they have the same truth value. This suggests another law,
beside the contradiction principle, namely

The law of excluded middle

Each proposition P is either true or false.

There is surprisingly much to say against this apparently simple claim.
There are modal statements (see B.4) which do not seem to have any definite
truth value. Among many early counterexamples, there is the most famous
one, which appeared in its usual version in the 4th century BC, and which
is still disturbing and discussed by modern logicians:

The liar paradox

The sentence “This sentence is false” does not seem to have any
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content — it is false if and only if it is true!

Such paradoxes indicated the need for closer analysis of fundamental no-
tions of the logical enterprise.

B.2. The Scholastic theory of supposition

The character and meaning of various “building blocks” of a logical lan-
guage were thoroughly investigated by the Scholastics. The theory of sup-
position was meant to answer the question:

To what does a given occurrence of a term refer in a given propo-
sition?

Roughly, one distinguished three modes of supposition/reference:

(1) personal: In the sentence “Every horse is an animal”, the term “horse”
refers to individual horses.

(2) simple: In the sentence “Horse is a species”, the term “horse” refers
to a universal (the concept ‘horse’).

(3) material: In the sentence “Horse is a monosyllable”, the term “horse”
refers to the spoken or written word.

The distinction between (1) and (2) reflects the fundamental duality of in-
dividuals and universals which had been one of the most debated issues
in Scholasticism. The third point, apparently of little significance, marks
an important development, namely, the increasing attention paid to the
language and its mere syntax, which slowly becomes the object of study.
Medieval writers did not know the quotation marks and the above dis-
tinction allowed one to write, e.g., the example sentence (3) as “ Horse
taken in the material supposition is a monosyllable.” Cumbersome as this
may appear to an untrained reader, it did make the formulations highly
unambiguous.

B.3. Intension vs. extension

Besides the supposition theory and its variants, the logicians of the 14th
century developed a sophisticated theory of connotation. The term “black”
does not merely denote all black things — it also connotes the quality, black-
ness, which all such things possess. Connotation is also called “intension”
— saying “black” I intend blackness. Denotation is closer to “extension”
— the collection of all the objects referred to by the term “black”. This
has become one of the central distinctions in the later development of logic
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and in the discussions about the entities referred to by words. Variants
of this distinction recur in most later theories, sometimes as if they were
innovations. For instance, Frege opposes Sinn (sense, concept) to Bedeu-
tung (reference), viewing both as constituting the meaning of a term. De
Saussure distinguishes the signified (concept) from the referent (thing), and
contrasts both with the signifier (sign). These later variants repeat the me-
dieval understanding of a term which can be represented as follows:

term
iy WO
intension extension

can be ascribed to

The crux of many problems is that different intensions may refer to (denote)
the same extension. The “Morning Star” and the “Evening Star” have
different intensions and for centuries were considered to refer to two different
stars. As it turned out, these are actually two appearances of one and the
same planet Venus. The two terms have the same extension and the insight
into this identity is a true discovery, completely different from the empty
tautology that “Venus is Venus”.

Logic, trying to capture correctness of reasoning and conceptual con-
structions, might be expected to address the conceptual corner of the above
triangle, the connotations or intensions. Indeed, this has been the predom-
inant attitude and many attempts have been made to design a “universal
language of thought” in which one could speak directly about the concepts
and their interrelations. Unfortunately, the concept of concept is not obvi-
ous at all and such attempts never reached any universal consensus. One
had to wait until a more tractable way of speaking of and modeling concepts
become available. The emergence of modern mathematical logic coincides
with the successful coupling of logical language with the precise statement
of its meaning in terms of extension. Modern logic still has branches of
intensional logic, but its main tools are of extensional nature.

B.4. Modalities

In chapter 9 of De Interpretatione, Aristotle discusses the assertion
There will be a sea battle tomorrow.

The problem is that, at the moment when it is made, it does not seem to
have any definite truth value — whether it is true or false will become clear
tomorrow but until then it is possible that it will be the one as well the other.
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This is another example (besides the liar paradox) indicating that adopt-
ing the principle of excluded middle, i.e., considering every proposition as
having always only one of two possible truth values, may be insufficient.

Besides studying the syllogisms, medieval logicians, having developed
the theory of supposition, incorporated into it modal factors. As neces-
sity and possibility are the two basic modalities, their logical investigations
reflected and augmented the underlying theological and ethical disputes
about God’s omnipotence and human freedom. The most important devel-
opments in modal logic occurred in the face of such questions as:

(1) whether statements about future contingent events are now true or false
(the question originating from Aristotle),

(2) whether humans can know in advance future contingent events, and

(3) whether God can know such events.

One might distinguish the first probelm, as ontological, from the two latter,
which appear epistemological, but in all three cases logical modality is
linked with time. Thus, for instance, Peter Aureoli (12th/13th century)
held that if something is B (for some predicate B) but could be not-B, i.e.,
is not necessarily B, then it might change, in the course of time, from being
B to being not-B.

As in the case of categorical propositions, important issues here could
hardly be settled before one had a clearer idea concerning the kinds of
objects or states of affairs modalities are supposed to describe. In the late
13th century, the link between time and modality was severed by Duns
Scotus who proposed a notion of possibility based purely on the notion
of semantic consistency. “Possible” means here logically possible, that is,
not involving contradiction. This conception was radically new and had
a tremendous influence all the way down to the 20th century. Shortly
afterward, Ockham developed an influential theory of modality and time
which reconciled the claim that every proposition is either true or false
with the claim that certain propositions about the future are genuinely
contingent.

Duns Scotus’ ideas were revived in the 20th century, starting with the
work of Jan Lukasiewicz who, pondering over Aristotle’s assertion about
tomorrow’s sea battle, introduced 3-valued logic — a proposition may be
true, or false, or else it may have a third, “undetermined” truth value.
Also the “possible worlds” semantics of modalities, introduced by 19 years
old Saul Kripke in 1959 (reflecting some ideas of Leibniz and reformulating
some insights of Tarski and Jénsson), was based on Scotus’ combination of
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modality with consistency. Today, modal and many-valued logics form a
dynamic and prolific field, applied and developed equally by philosophers,
mathematicians and computer scientists.

C. Logic — a symbolic language

Logic’s preoccupation with concepts and reasoning begun gradually to
put more and more severe demands on the appropriate and precise repre-
sentation of the used terms. We saw that syllogisms used fixed forms of
categorical statements with variables — A, B, etc. — representing arbitrary
terms (or objects). Use of variables was indisputable contribution of Aristo-
tle to the logical, and more generally mathematical notation. We also saw
that Stoics introduced analogous variables standing for propositions. Such
notational tricks facilitated more concise, more general and more precise
statement of various logical facts.

Following the Scholastic discussions of connotation vs. denotation, logi-
cians of the 16th century felt the increased need for a more general logical
language. One of the goals was the development of an ideal logical language
that would naturally express ideal thought and be more precise than natu-
ral language. An important motivation underlying such attempts was the
idea of manipulation, in fact, symbolic or even mechanical manipulation of
arguments represented in such a language. Aristotelian logic had seen itself
as a tool for training “natural” abilities at reasoning. Now one would like
to develop methods of thinking that would accelerate or improve human
thought or even allow its replacement by mechanical devices.

Among the initial attempts was the work of Spanish soldier, priest and
mystic Ramon Lull (1235-1315) who tried to symbolize concepts and de-
rive propositions from various combinations of possibilities. He designed
sophisticated mechanisms, known as “Lullian circles”, where simple facts,
noted on the circumferences of various discs, could be combined by ap-
propriately rotating the discs, providing answers to theological questions.
The work of some of his followers, Juan Vives (1492-1540) and Johann Al-
sted (1588-1683) represents perhaps the first systematic effort at a logical
symbolism.

Some philosophical ideas in this direction occurred in 17th century
within Port-Royal — a group of anticlerical Jansenists located in Port-Royal
outside Paris, whose most prominent member was Blaise Pascal (1623-
1662). Elaborating on the Scholastical distinction between intension, or
comprehension, and extension, Pascal introduced the distinction between
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real and nominal definitions. Real definitions aim at capturing the actual
concept; they are descriptive and state the essential properties. Nominal
definitions merely stipulate the conventions by which a linguistic term is to
be used, referring to specific items. (“Man is a rational animal.” attempts
to give a real definition of the concept ‘man’, capturing man’s essence.
“By monoid we understand a set with a unary operation.” is a nominal
definition which only stipulates the use of a particular word “monoid” for
a given concept.) The distinction “nominal” vs. “real” goes back to the
discussions of the 14th century between the nominalism and realism with
respect to the nature of universals. But Port-Royal’s distinction, accompa-
nied by the emphasis put on usefulness of nominal definitions (in particular,
in mathematics), resonated in wide circles, signaling a new step on the line
marked earlier by the material supposition of the Scholastic theory — the
use of language becomes more and more conscious and explicit. Although
the Port-Royal logic itself contained no symbolism, the philosophical foun-
dation for using symbols by nominal definitions was nevertheless laid.

C.1. The “universally characteristic language”

The goal of a universal language had already been suggested by Descartes
(1596-1650) — firstly, as a uniform method for any scientific inquiry and
then, for mathematics, as a “universal mathematics”. It had also been
discussed extensively by the English philologist George Dalgarno (c. 1626-
87) and, for mathematical language and communication, by the French
algebraist Francois Viete (1540-1603). But it was Gottfried Leibniz (1646-
1716), who gave this idea the most precise and systematic expression. His
“lingua characteristica universalis” was an ideal that would, first, notation-
ally represent concepts by displaying the more basic concepts of which they
were composed, and second, represent (in the manner of graphs or pictures,
“iconically”) the concept in a way that could be easily grasped by readers,
no matter what their native tongue. Leibniz studied and was impressed by
the method of the Egyptians and Chinese in using picturelike expressions
for concepts. Although we no longer use his notation, many items captured
by it re-appear two centuries later in logical texts.

C.2. Calculus of reason

Universal language seems a necessary precondition for another goal which
Leibniz proposed for logic. A “calculus of reason” (calculus ratiocinator),
based on appropriate symbolism, would
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involve explicit manipulations of the symbols according to estab-
lished rules by which either new truths could be discovered or pro-
posed conclusions could be checked to see if they could indeed be
derived from the premises.

Reasoning could then take place in the way large sums are done — mechan-
ically or algorithmically — and thus not be subject to individual mistakes
and failures of ingenuity. Such derivations could be checked by others or
performed by machines, a possibility that Leibniz seriously contemplated.
Leibniz’ suggestion that machines could be constructed to draw valid infer-
ences or to check the deductions of others was followed up in the 19th cen-
tury by Charles Babbage, William Stanley Jevons, Charles Sanders Peirce
and his student Allan Marquand.

The symbolic calculus that Leibniz devised was motivated by his view
that most concepts were composite: they were collections or conjunctions
of other more basic concepts. Symbols (letters, lines, or circles) were then
used to stand for concepts and their relationships. This resulted in what
is intensional rather than an extensional logic — one whose terms stand for
properties or concepts rather than for the things having these properties.
Leibniz’ basic notion of the truth of a judgment was that

the concepts making up the predicate are “included in” the concept
of the subject.

For instance, the judgment ‘A zebra is striped and a mammal.” is true
because the concepts forming the predicate ‘striped-and-mammal’ are “in-
cluded in” the concept (all possible predicates) of the subject ‘zebra’.

What Leibniz symbolized as AocoB, or what we would write today as
A = B, was that all the concepts making up concept A also are contained
in concept B, and vice versa.

Leibniz used two further notions to expand the basic logical calculus.
In his notation, A ® BooC indicates that the concepts in A together with
those in B wholly constitute those in C. Today, we might write this as
A+B=Cor AV B = (C —if we keep in mind that A, B, and C stood for
concepts or properties, not for individual things nor sets thereof. Leibniz
also used the juxtaposition of terms in the following way: ABooC, which
we might write as A X B = C or AA B = (C, signifies in his system that all
the concepts in both A and B wholly constitute the concept C.

A universal affirmative judgment, such as “Every A is B,” becomes in
Leibniz’ notation AcoAB. This equation states that the concepts included
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in the concepts of both A and B are the same as those in A.

The syllogism Barbara:
Every A is B; every B is C; so every A is C,
becomes the sequence of equations: AccAB; BooB(C; so AcAC.

Notice that this conclusion can be derived from the premises by two simple
algebraic substitutions and the associativity of logical multiplication.

1. A < AB Every A is B

2. B © BC Every B is C'
(1+2) Aoo ABC

(1) AocoAC | therefore: Every AisC

(C.1)

As many early symbolic logics, including many developed in the 19th cen-
tury, Leibniz’ system had difficulties with negative and particular state-
ments (A.2.1). The treatment of propositional logic was limited and did
not include any formalisation of relations nor of quantified statements. Only
later Leibniz became keenly aware of the importance of relations and re-
lational inferences. Although Leibniz might seem to deserve the credit for
great originality in his symbolic logic — especially in his equational, alge-
braic logic — such insights were relatively common to mathematicians of the
17th and 18th centuries who had a knowledge of traditional syllogistic logic.
For instance, in 1685 Jakob Bernoulli published a pamphlet on the paral-
lels of logic and algebra and gave some algebraic renderings of categorical
statements. Later symbolic works of Lambert, Ploucquet, Euler, and even
Boole — all apparently uninfluenced by Leibniz and Bernoulli — suggest the
extent to which these ideas were apparent to the best mathematical minds
of the day.

D. 19th and 20th Century — mathematization of logic

Leibniz’ system and calculus mark the appearance of a formalized, symbolic

language which is prone to mathematical manipulation. A bit ironically,
emergence of mathematical logic marks also this logic’s divorce, or at least
separation, from philosophy. Of course, the discussions of logic have contin-
ued both among logicians and philosophers but from now on these groups
form two increasingly distinct camps. Not all questions of philosophical
logic are important for mathematicians and most of results of mathemati-
cal logic have rather technical character which is not always of interest for
philosophers.



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

18 Introduction to Logic

In this short presentation we have to ignore some developments which
did take place between 17th and 19th century. It was only in the 19th
century that the substantial contributions were made which created modern
logic. Perhaps the most important among those in the first half of the
19th century, was the work of George Boole (1815-1864), based on purely
extensional interpretation. It was a real break-through in the old dispute
intensional vs. extensional. It did not settle the issue once and for all — for
instance Frege, “the father of first-order logic” was still in favor of concepts
and intensions; and in modern logic there is still a branch of intensional
logic. However, Boole’s approach was so convincingly precise and intuitive
that it was later taken up and become the basis of modern — extensional or
set theoretical — semantics.

D.1. George Boole

Although various symbolic or extensional systems appeared earlier, Boole
formulated the first logic which was both symbolic and extensional. Most
significantly, it survived the test of time and is today known to every student
of mathematics as well as of computer science or of analytical philosophy
as the propositional logic (earlier also as logic or algebra of classes). Boole
published two major works, The Mathematical Analysis of Logic in 1847
and An Investigation of the Laws of Thought in 1854. It was the first of
these two works that had the deeper impact. It arose from two streams
of influence: the English logic-textbook tradition and the rapid growth
of sophisticated algebraic arguments in the early 19th century. German
Carl Freidrich Gauss, Norwegian Niels Henrik Abel, French Evariste Galois
and, in Britain, Duncan Gregory and George Peacock, were major figures
in this theoretical appreciation of algebra at that time. Such conceptions
gradually evolved into abstract algebras of quaternions and vectors, into
linear algebra, Galois theory and Boolean algebra, itself.

Boole used variables — capital letters — for the extensions of terms, to
which he referred as classes of “things”. This extensional perspective made
the Boolean algebra a very intuitive and simple structure which, at the
same time, captured many essential intuitions. The universal class — called
“the Universe” — was represented by the numeral “1”, and the empty class
by “0”. The juxtaposition of terms (for example, “AB”) created a term
referring to the intersection of two classes. The addition sign signified the
non-overlapping union; that is, “A+ B” referred to the entities in A or in B;
in cases where the extensions of terms A and B overlapped, the expression
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was “undefined.” For designating a proper subclass of a class A, Boole used
the notation “vA”. Finally, he used subtraction to indicate the removing
of terms from classes. For example, “1 — A” indicates what one would
obtain by removing the elements of A from the universal class — that is, the
complement of A (relative to the universe, 1).

Boole offered a systematic, but not rigorously axiomatic, presentation.
His basic equations included:

1A=A 0A=0
0+1=1 A+0=A4A
AA=A (idempotency)
A(BC) = (AB)C (associativity)
AB = BA A+B=B+A (commutativity)
AB+C)=AB+ AC A+ (BC)=(A+ B)(A+C) (distributivity)

A universal affirmative judgment, such as “All A’s are B’s,” can be written
using the proper subclass notation as A = vB. But Boole could write it also
in two other ways: A = AB (as did Leibniz) or A(1 — B) = 0. These two
interpretations greately facilitate derivation of syllogisms, as well as other
propositional laws, by algebraic substitution. Assuming the distributivity
A(B —C) = AB — AC, they are in fact equivalent:

AB=A assumption
0=A-AB -AB
0= A(1 - B) distributivity

The derivation in the opposite direction (from 0 = A(1 — B) to A = AB)
follows by repeating the steps in the opposite order with adding, instead of
subtracting, AB to both sides in the middle. In words, the fact that all A’s
are B’s and that there are no A’s which are not B’s are equivalent ways
of stating the same, which equivalence could be included among Aristotle’s
conversions, A.2.2. Derivations become now explicitly controlled by the
applied axioms. For instance, derivation (C.1) becomes

A=AB assumption
B = BC assumption
A = A(BC) substitution BC for B (D.1)

= (AB)C associativity
= AC substitution A for AB

In contrast to earlier symbolisms, Boole’s was extensively developed, ex-
ploring a large number of equations and techniques. It was convincingly
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applied to the interpretation of propositional logic — with terms standing
for occasions or times rather than for concrete individual things. Seen in
historical perspective, it was a remarkably smooth introduction of the new
“algebraic” perspective which dominated most of the subsequent develop-
ment. The Mathematical Analysis of Logic begins with a slogan that could
serve as the motto of abstract algebra, as well as of much of formal logic:

the wvalidity of the processes of analysis does not depend upon the
interpretation of the symbols which are employed, but solely upon
the laws of combination.

D.1.1. Further developments of Boole’s algebra; de Morgan

Boole’s approach was very appealing and quickly taken up by others. In
the 1860s Peirce and Jevons proposed to replace Boole’s “+” with a simple
inclusive union: the expression “A + B” was to be interpreted as the class
of things in A, in B, or in both. This results in accepting the equation
“l+1 = 17, which is not true of the natural numbers. Although Boole
accepted other laws which do not hold in the algebra of numbers (e.g.,
the idempotency of multiplication 42 = A), one might conjecture that his
interpretation of + as disjoint union tried to avoid also 1 +1 = 1.

At least equally important figure of British logic in the 19th century as
Boole was Augustus de Morgan (1806-1871). Unlike most logicians in the
United Kingdom, including Boole, de Morgan knew both the medieval logic
and semantics, as well as the Continental, Leibnizian symbolic tradition of
Lambert, Ploucquet, and Gergonne. His erudition and work left several
lasting traces in the development of logic.

In the paper published in 1846 in the Cambrdige Philosophical Trans-
actions, De Morgan introduced the enormously influential notion of

a possibly arbitrary and stipulated “universe of discourse”.

It replaced Boole’s original — and metaphysically a bit suspect — universe
of “all things”, and has become an integral part of the logical semantics.
The notion of a stipulated “universe of discourse” means that, instead of
talking about “The Universe”, one can choose this universe depending on
the context. “1” may sometimes stand for “the universe of all animals”,
and in other contexts for a two-element set, say “the true” and “the false”.
In the former case, the derivation (D.1) of A = AC from A = AB; B = BC
represents the classical syllogism “All A’s are B’s; all B’s are C'’s; therefore
all A’s are C’s”. In the latter case, the equations of Boolean algebra yield



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

The history of logic 21

the laws of propositional logic where “A + B” is taken to mean disjunction
“A or B”, and juxtaposition “AB” conjunction “A and B”. With this
reading, the derivation (D.1) represents another reading of the syllogism,
namely: “If A implies B and B implies C, then A implies C”.

Negation of A is simply its complement 1 — A, and is obviously relative
to the actual universe. (It is often written as A.) De Morgan is known to
all the students of elementary logic primarily through the de Morgan laws:

AB=A+B
AB=A+B.

and dually

Using these laws, as well as some additional, easy facts, like BB = 0, B=
B, we can derive the following reformulation of the reductio ad absurdum
“If every A is B then every not-B is not-A”:

A=AB
A—AB=0 —AB
A(1-B)=0 distributivity over —
AB =0 B=1-B
A+B=1 deMorgan
B(A+B)=B | B
(B)(A)+ BB =B distributivity
(B)(A)+0=B | BB=0
(B)(A)=B | A+0=A

Le., if “Every A is B”, A = AB, than “every not-B is not-A”, B = (B)(A).
Or: if “A implies B” then “if B is false (absurd) then so is A”.

A series of essays and papers on logic by de Morgan had been published
from 1846 to 1862 under the title On the Syllogism. (The title indicates his
devotion to the philosophical tradition of logic and reluctance to turn it into
a mere branch of mathematics). The papers from 1850s are of considerable
significance, containing the first extensive discussion of quantified relations
since late medieval logic and Jung’s massive Logica hamburgensis of 1638.

Boole’s elegant theory had one serious defect, namely, its inability to
deal with relational inferences. De Morgan’s first significant contribution
to this field was made independently and almost simultaneously with the
publication of Boole’s first major work. In 1847 de Morgan published his
Formal Logic; or, the Calculus of Inference, Necessary and Probable. Al-
though his symbolic system was clumsy and did not show the appreciation
of abstract algebra that Boole’s did, it gave a treatment of relational ar-
guments which was later refined by himself and others. His paper from
1859, On Syllogism IV and the Logic of Relations, started the sustained



October 19, 2010 12:7 World Scientific Book - 9in x 6in prelim

22 Introduction to Logic

interest in the study of relations and their properties. De Morgan observed
here that all valid syllogisms could be justified by the copula ‘is’ being a
transitive and convertible (as he calls what today would be named “sym-
metric”) relation, i.e., one for which A ~ B and B ~ C implies A ~ C
and, whenever A ~ B then also B ~ A. Sometimes the mere transitivity
suffices. The syllogism Barbara is valid for every transitive relation, e.g., if
A is greater than B and B is greater than C' then A is greater than C. In
some other cases, also symmetry is needed as, for instance, to verify Cesare
of figure II. It says that: if P # M and S ~ M then S # P. For assuming
otherwise, if S ~ P then also P ~ S by symmetry which, together with
S ~ M, implies by transitivity that P ~ M.

De Morgan made the point, taken up later by Peirce and implicitly
endorsed by Frege, that relational inferences are not just one type reasoning
among others but are the core of mathematical and deductive inference and
of all scientific reasoning. Consequently (though not correctly, but in the
right spirit) one often attributes to de Morgan the observation that all of
Aristotelian logic was helpless to show the validity of the inference,

All horses are animals; therefore,

every head of a horse is the head of an animal. (D-2)

This limitation concerns likewise propositional logic of Boole and his fol-
lowers. From today’s perspective, this can be seen more as the limitation
of language, which does not provide means for expressing predication. Its
appropriate (and significant) extension allows to incorporate analysis of
relational arguments. Such an extension, which initially seemed to be a
distinct, if not directly opposite approach, was proposed by the German
Gottlob Frege, and is today known as first-order predicate logic.

D.2. Gottlob Frege

In 1879 the young Gottlob Frege (1848-1925) published perhaps the most
influential book on symbolic logic in the 19th century, Begriffsschrift (“Con-
ceptual Notation”) — the title taken from Trendelenburg’s translation of
Leibniz’ notion of a characteristic language. Frege gives here a rigorous
presentation of the role and use of quantifiers and predicates. Frege was
apparently familiar with Trendelenburg’s discussion of Leibniz but was oth-
erwise ignorant of the history of logic. He might have had a passing famil-
iarity with the works of Boole and Lambert, but his book shows no trace of
the influence of Boole and little trace of the older German tradition of sym-
bolic logic. Being a mathematician whose speciality, like Boole’s, had been
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calculus, he was well aware of the importance of functions. These form the
basis of his notation for predicates and he does not seem to have been aware
of the work of de Morgan and Peirce on relations or of older medieval treat-
ments. Contemporary mathematical reviews of his work criticized him for
his failure to acknowledge these earlier developments, while reviews written
by philosophers chided him for various sins against reigning idealist concep-
tions. Also Frege’s logical notation was idiosyncratic and problematically
two-dimensional, making his work hardly accessible and little read. Frege
ignored the critiques of his notation and continued to publish all his later
works using it, including his — also little-read — magnum opus, Grundgesetze
der Arithmetik (1893-1903; “The Basic Laws of Arithmetic”).

Although notationally cumbersome, Frege’s system contained precise
and adequate (in the sense, “adopted later”) treatment of several basic
notions. The universal affirmative “All A’s are B’s” meant for Frege that
the concept A implies the concept B, or that to be A implies also to be
B. Moreover, this applies to arbitrary z which happens to be A. Thus the
statement becomes: “Vz : A(z) — B(z)”, where the quantifier Vz means
“for all ” and the arrow “—” denotes implication. The analysis of this,
and one other statement, can be represented as follows:

Every horse is an animal =
Every £  which is a horse is an animal
Every z if it is a horse then it is an animal

Yz : H(z) - A(z)

Some animals are  horses =

Some 2’s which are animals are  horses
Some z’s are animals and are horses
dz : A(z) A H(z)
This was not the way Frege would write it but this was the way he would put

it and think of it. The Barbara syllogism will be written today in first-order
logic following exactly Frege’s analysis, though not his notation, as:

((Vw:A(x) — B(z)) A (Vz : B(x) —>C(x))) — (Vo : A(z) = C(g)).

It can be read as: “If every z which is A is also B, and every = which is
B is also C; then every z which is A is also C.” Judgments concerning
individuals can be obtained from the universal ones by substitution. For
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instance:
Hugo is Hugo is
a horse; and Every horse is an animal; So: an animal. (D3)
H(Hugo) A (Vo : H(v) = A(v)) '

H(Hugo) — A(Hugo) —  A(Hugo)

The relational arguments, like (D.2) about horse-heads and animal-heads,
can be derived after we have represented the involved statements as follows:

y is a head of some horse =

there is a horse and y is its head
there is an x  which is a horse and y is the head of z
dz - H(z) A Hd(y,z)

y is a head of some animal =
Az : A(x) A Hd(y,x)

Now, the argument (D.2) will be given the form as in the first line and
(very informal) treatement as in the following ones:

Vo(H(v) = A(v)) — Vy(EIm(H(a:) A Hd(y,z)) — 3z(A(z) A Hd(y,z)))

assume horses are animals and take an arbitrary y, e.g., a :
Vo(H(v) = A(v)) — I (H(m) A Hd(a,ac)) - az(A(z) A Hd(a,z))
assume horses are animals and that there is a horse A whose head is a :
Yu(H(v) = A(v)) — H(h) N Hd(a,h) — 3z (A(z) A Hd(a,z)

but if horses are animals then h is an animal by (D.3),
so A(h) A Hd(a,h)

According to the last line, a is an animal-head and since a was an arbitrary
horse-head, the claim follows.

In his first writings after the Begriffsschrift, Frege defended his own
system and attacked bitterly Boolean methods, remaining apparently igno-
rant of the improvements by Peirce, Jevons, Schréder, and others. His main
complaint against Booleans was the artificiality of their notation based on
numerals and their failure to develop a notation for logical analysis alone.

In 1884 Frege published Die Grundlagen der Arithmetik (“The Foun-
dations of Arithmetic”) and then several important papers on a series of
mathematical and logical topics. After 1879 he developed his position that

(D.4)

all of mathematics could be derived from basic logical laws — a
position later known as logicism in the philosophy of mathematics.
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This view paralleled similar ideas about the reducibility of mathematics to
set theory from roughly the same time. But Frege insisted on keeping them
distinct and always stressed that his was an intensional logic of concepts, not
of extensions and classes. His views are often marked by hostility to British
extensional logic, like that of Boole, and to the general English-speaking
tendencies toward nominalism and empiricism, represented by figures like
John Stuart Mill. In Britain, on the other hand, Frege’s work was much ad-
mired by Bertrand Russell who promoted Frege’s logicist research program
— first in the Introduction to Mathematical Logic (1903), and then with Al-
fred North Whitehead, in Principia Mathematica (1910-13). Still, Russell
did not use Frege’s notation and his development of relations and functions
was much closer to Schréder’s and Peirce’s than to Frege’s. Frege’s hostility
to British tradition did not prevent him from acknowledging the fundamen-
tal importance of Russell’s paradox, which Russell communicated to him
in a letter in 1902. The paradox seemed to Frege a shattering blow to his
goal of founding mathematics and science in an intensional logic and he
expressed his worries in an appendix, hastily added to the second volume
of Die Grundgesetze der Arithmetik, 1903, which was in press as Russell’s
letter arrived.

It did not take long before also other mathematicians and logicians
started to admire Frege’s care and rigour. His derivations were so scrupu-
lous and precise that, although he did not formulate his theories axiomat-
ically, he is sometimes regarded as a founder of the modern, axiomatic
tradition in logic. His works had an enormous impact on the mathemat-
ical and philosophical logicians of the 20th century, especially, after their
translation into English in the 1960s.

D.3. Set theory

As we have seen, the extensional view of concepts began gradually winning
the stage with the advances of Boolean algebra. Set theory, founded by Ger-
man Georg Cantor (1845-1918), addresses collections — of numbers, points
and, in general, of arbitrary elements, also of other collections — and is thus
genuinely extensional. Besides this difference from the traditional logic,
oriented more towards the intensional pole of the opposition, the initial
development of set theory was completely separate from logic. But already
in the first half of the 20th century, symbolic logic developed primarily in
interaction with the extensional principles of set theory. Eventually, even
Frege’s analyses merged with the set theoretical approach to the semantics
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of logical formalism.

Booleans had used the notion of a set or a class, but hardly developed
tools for dealing with actually infinite classes. The conception of actual
infinities, as opposed to merely potential, unlimited possibilities, was ac-
cording to Aristotle a contradiction and most medieval philosophers shared
this view. It was challenged in Renaissance, e.g., by Galileo, and then also
by Leibniz. The problem had troubled 19th century mathematicians, like
Carl Friedrich Gauss and the Bohemian priest Bernhard Bolzano, who de-
voted his Paradozien des Unendlichen (1851; “Paradoxes of the Infinite”)
to the difficulties posed by infinities. De Morgan and Peirce had given
technically correct characterizations of infinite domains but these were not
especially useful and went unnoticed in the German mathematical world.
And the decisive development found place in this world.

Infinity — as the “infinitely small”, infinitesimal (coming from the in-
finitesimus which, in the Modern Latin of the 17th century, referred to the
“infinite-th” element in a series) — entered the mathematical landscape with
the integral and derivative calculus, introduced independently by Leibniz
and Newton in the 1660s. Infinitesimals have been often severely criticized
(e.g., by bishop Berkeley, as the “ghosts of departed quantities”) and only in
the late 19th century obtained solid mathematical foundations in the work
of the French baron Augustin-Louis Cauchy and German Karl Weierstrafi.
Building now on their discussions of the foundations of the infinitesimals,
Germans Georg Cantor and Richard Dedekind developed methods for deal-
ing with the infinite sets of the integers and points on the real number line.
First Dedekind and then Cantor used Bolzano’s technique of measuring
sets by one-to-one mappings. Defining two sets to be “equinumerous” iff
they are in one-to-one correspondence,! Dedekind gave in Was sind und
was sollen die Zahlen? (1888; “What Are and Should Be the Numbers?”)
a precise definition of an infinite set:

A set is infinite if and only if the whole set can be put into one-to-
one correspondence with its proper subset.

This looks like a contradiction because, as long as we think of finite sets,
it indeed is. But take the set of all natural numbers, N = {0,1,2,3,4,...}
and remove from it 0 getting Ny = {1,2, 3,4...}. The functions f: Ny - N,
given by f(z) = x —1, and f1 : N —» N;, given by fi(z) = z + 1, are
mutually inverse and establish a one-to-one correspondence between N and

IThe abbreviation “iff” stands for two-ways implication “if and only if”.
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its proper subset Nj .

A set A is said to be “countable” iff it is equinumerous with N. One of
the main results of Cantor was demonstration that there are uncountable
infinite sets, in fact, sets “arbitrarily infinite”. (For instance, the set R of
real numbers was shown by Cantor to be “genuinely larger” than N.)

Cantor developed the basic outlines of a set theory, especially in his
treatment of infinite sets and the real number line. But he did not worry
much about rigorous foundations for such a theory nor about the precise
conditions governing the concept of a set and the formation of sets. In
particular, he did not give any axioms of set theory. The initial attempts
to formulate explicitly precise principles, not to mention rigorous axioma-
tizations, of set theory faced serious difficulties posed by the paradoxes of
Russell and the Italian mathematician Cesare Burali-Forti (1897). Some
passages in Cantor’s writings suggest that he was aware of the potential
problems, but he did not addressed them in a mathematical manner and,
consequently, did not propose any technically satisfactory way of solving
them. They were first overcome in the rigorous, axiomatic set theory —
initially, by Ernst Zermelo in 1908, and in its final version of Ernst Zermelo
and Abraham Fraenkel in 1922.

D.4. 20th century logic

The first half of the 20th century was the most active period in the history
of logic. The late 19th century work of Frege, Peano and Cantor, as well
as Peirce’s and Schréder’s extensions of Boole’s insights, had broken new
ground and established new international communication channels. A new
alliance — between logic and mathematics — emerged, gathering various lines
of the late 19th century’s development. Common to them was the effort to
use symbolic techniques, sometimes called “mathematical” and sometimes
“formal”. Logic became increasingly mathematical in two senses. On the
one hand, it attempted to use symbolic methods that had come to dominate
mathematics, addressing the questions about

(1) the applications of the axiomatic method,

(2) a consistent theory of properties/relations (or sets),

(3) a logic of quantification.

On the other hand, it served analysis and understanding of mathematics,
becoming a tool in

(4) defining mathematical concepts,
(5) precisely characterizing mathematical systems, and
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(6) describing the nature of mathematical proof.

This later role of logic — as a meta-mathematical and eventually founda-
tional tool — followed Frege’s logicism and dictated much of the development
in the first decades of the 20th century.

D.4.1. Logicism

An outgrowth of the theory of Russell and Whitehead, and of most mod-
ern set theories, was a stronger articulation of logicism, according to which
mathematical operations and objects are really purely logical constructions,
(D.4). Consequently, the question what exactly pure logic is and whether,
for example, set theory is really logic in a narrow sense has received in-
creased attention. There seems little doubt that set theory is not only i.e.,
as a formal theory of properties. Cantorian set theory engenders a large
number of transfinite sets, i.e., nonphysical, nonperceived abstract objects.
For this reason it has been regarded — by some as suspiciously, by others
as endearingly — Platonistic. Others, such as Quine, have pragmatically
endorsed set theory as a convenient — perhaps the only — way of organizing
the whole world around us, especially if this world contains some elements
of transfinite mathematics. It is, however, thanks to these infinite entities
that, today, set theory as a foundation for various (or even all) mathemat-
ical disciplines is rather incontroversial. Mathematical theorems can, at
least in principle, be formulated and proven in the language of set theory.

But the first decades of the 20th century displayed a strong finitist Zeit-
geist, comparable to the traditional scepticism against actual infinities, and
embodied now in various criticisms of transfinite set theory. Already Kro-
necker in 19th century, opposing Weierstrafl and Cantor, declared that God
made only integers, while everything else — in particular, of infinitary char-
acter — is the work of man. The same spirit, if not technical development,
was represented by the constructivism (known as intuitionism) of Dutch
Brouwer and Heyting, or by formalism searching for a finitary represen-
tation of mathematics in Hilbert’s program, named so after the German
mathematician David Hilbert (1862-1943). This program asked for an ax-
iomatization of the whole of mathematics as a logical theory in order to
prove formally that it is consistent. Even for those researchers who did not
endorse the logicist program, logic’s goal was closely allied with techniques
and goals in mathematics, such as giving an account of formal systems
or of the ideal nature of nonempirical proof and demonstration. Interest
in the logicist and formalist program stimulated much activity in the first
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decades of the 20th century. It waned, however, after Austrian Kurt Godel
demonstrated in 1931 that logic could not provide a foundation for mathe-
matics nor a complete account of its formal systems that had been sought.
Godel proved namely a mathematical theorem which interpreted in natural
language says something like:

Godel’s (first) incompleteness theorem

Any logical theory, satisfying reasonable and rather weak condi-
tions, cannot be consistent and, at the same time, prove all its
logical consequences.

Thus mathematics can not be reduced to a provably complete and consis-
tent logical theory. An interesting fact is that the proof of this theorem
constructs a sentence analogous to the liar paradox. Go&del showed that
in any formal theory satisfying his conditions, one can write the sentence
“I am not provable in this theory”, which cannot be provable unless the
theory is inconsistent.

In spite of this negative result, logic has remained closely allied with
mathematical foundations and principles. In particular, it has become a
mathematical discipline. Traditionally, its task has been understanding
of valid arguments of all sorts, in particular, those formulated in natu-
ral language. It had developed the tools needed for describing concepts,
propositions, and arguments and — especially, as the “logical patterns” or
“forms” — for assessing argument’s quality. During the first decades of the
20th century, logic become gradually more and more occupied with the his-
torically somewhat foreign role of analyzing arguments in only one field,
mathematics. The philosophical and linguistic task of developing tools for
analyzing arguments in some natural language, or else for analyzing propo-
sitions as they are actually (and perhaps necessarily) conceived by humans,
was almost completely lost. This task was, to some extent, taken over by
analytical philosophers and by scattered efforts attempting to reduce basic
principles of other disciplines — such as physics, biology, and even music —
to axioms, usually, in set theory or first-order logic. But even if they might
have shown that it could be done, at least in principle, they were not very
enlightening: one does not better or more usefully understand a bacteria,
an atom or an animal by being told that it is a certain set or a (model of)
certain axiomatic theory. Thus, such efforts, at their zenith in the 1950s
and ’60s, had virtually disappeared in the ’70s. Logic has become a formal
discipline with its relations to natural, human reasoning seriously severed.
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Instead, it found multiple applications in the field which originated from
the same motivations and had been germinating underneath the develop-
ments of logic — the field of purely formal manipulations and mechanical
reasoning, arising from the same finitist Zeitgeist of the first half of the
20th century: computer science. Its emergence from and dependence on
logic will become even clearer after we have described the basic elements of
modern, formal logic.

E. Modern Symbolic Logic

Already Aristotle and Euclid were aware of the notion of a rigorous logical

theory, in the sense of a — possibly axiomatic — specification of its theorems.
Then, in the 19th century, the crises in geometry could be credited with
renewing the attention for very careful presentations of these theories and
other aspects of formal systems.

Euclid designed his Elements around 10 axioms and postulates which
one could not resist accepting as obvious (e.g., “an interval can be prolonged
indefinitely”, “all right angles are equal”). From the assumption of their
truth, he deduced some 465 theorems. The famous postulate of the parallels
was

The fifth postulate

If a straight line falling on two straight lines makes the interior
angles on the same side less than the two rTight angles, the two
straight lines, if produced indefinitely, meet on that side on which
the angles are less than the two right angles.

This postulate, even if reformulated, was somehow less intuitive and more
complicated than others. Through hundreds of years mathematicians had
unsuccessfully attempted to derive it from the others until, in the 19th
century, they started to reach the conclusion that it must be independent
from the rest. This meant that one might as well drop it! That was done
independently by the Russian Nicolai Lobachevsky in 1829 and the Hungar-
ian Janos Bolayi in 1832. (Gauss, too, considered this move, but he never
published his ideas on this subject.) What was left was a new aziomatic
system. The big question about what this subset of axioms possibly de-
scribed was answered by Lobachevsky and Bolayi who created its models,
which satisfied all the axioms except the fifth — the first non-Euclidean ge-
ometries. This first exercise in what in the 20th century became “model
theory”, can be considered the beginning of modern axiomatic approach.
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For the discovery of non-Euclidean geometries unveiled the importance of
admitting the possibility of manipulating the axioms which, perhaps, are
not given by God and intuition but may be chosen with some freedom.

E.1. Formal logical systems: syntax.

Although set theory and the type theory of Russell and Whitehead were
considered to be logic for the purposes of the logicist program, a narrower
sense of logic re-emerged in the mid-20th century as what is usually called
the “underlying logic” of these systems. It does not make any existential
assumptions (as to what kinds of mathematical objects do or do not ex-
ist) and concerns only rules for propositional connectives, quantifiers, and
nonspecific terms for individuals and predicates. (An interesting issue is
whether the privileged relation of identity, denoted “=", is a part of logic:
most researchers have assumed that it is.) In the early 20th century and
especially after Alfred Tarski’s (1901-1983) work in the 1920s and ’30s, a
formal logical system was regarded as being composed of three parts, all of
which could be rigorously described:

(1) the syntax (or notation);

(2) the rules of inference (or the patterns of reasoning);

(3) the semantics (or the meaning of the syntactic symbols).

One of the fundamental contributions of Tarski was his analysis of the
concept of ‘truth’ which, in the above three-fold setting is given a precise
treatement as a particular

relation between syntax (linguistic expressions) and semantics (the
world).

The Euclidean, and then non-Euclidean geometry were, as a matter of
fact, built as axiomatic-deductive systems (point 2). The other two aspects
of a formal system identified by Tarski were present too, but much less
emphasized: notation was very informal, relying often on drawings; the
semantics was rather intuitive and obvious. Tarski’s work initiated rigorous
study of all three aspects.

E.1.1. The language

First, there is the notation:

the rules of formation for terms and for well-formed formulas in
the logical system.
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A formal language is simply a set of words (well formed formulae, wif),
that is, strings over some given alphabet (set of symbols) and is typically
specified by the rules of formation. For instance:

o the alphabet ¥ = {0, A, —,—,(,)}
o the rules for forming words of the language L:

- 0,A€elL
— if A,B € L then also —A€ L and (A — B) € L.

This specification allows us to conclude that, for instance, A, —0O, (A —
—0), —(O - —A) all belong to L, while OA, () or O — do not.

Previously, notation was often a haphazard affair in which it was un-
clear what could be formulated or asserted in a logical theory and whether
expressions were finite or were schemata standing for infinitely long wifs.
Now, the theory of notation itself became subject to exacting treatment,
starting with the theory of strings of Tarski, and the work of the American
Alonzo Church. Issues that arose out of notational questions include de-
finability of one wif by another (addressed in Beth’s and Craig’s theorems,
and in other results), creativity, and replaceability, as well as the expres-
sive power and complexity of different logical languages (gathered, e.g., in
Chomsky hierarchy).

E.1.2. Reasoning system

The second part of a logical system consists of

the azioms and rules of inference, or other ways of identifying what
counts as a theorem.

This is what is usually meant by the logical “theory” proper: a (typically
recursive) description of the theorems of the theory, including axioms and
every wif derivable from axioms by admitted rules. Using the language L,
one migh, for instance, define the following theory T':

Azioms: 4) O

it) (A — -0)

m) (A—-——A)
w) (——A— A)

Upper case letters denote variables for which we can substitute ar-
bitrary formulae of our language L.
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(A-B); (B—=C()

Rules: R1) @50
(A—-B); A
R2) ——F——
R3) (A—-B); —B
—-A

We can now perform symbolic derivations, starting with axioms and ap-
plying the rules, so that correctness can be checked mechanically. For

instance:
iii i
R2 @O—»--0 ™ i
R3 O (A —-0) iii (E.1)
Ay (A - ——=A)
A R2
Thus, — — —A is a theorem of our theory, and so is —/\ which is obtained

by the (left) subderivation ending with the application of rule R3.

A formal description of a language, together with a specification of a
theory’s theorems (derivable propositions), are often called the “syntax”
of the theory. This may be somewhat misleading when compared to the
practice in linguistics, which would limit syntax to the narrower issue of
grammaticality. The term “calculus” is sometimes chosen to emphasize the
purely syntactic, uninterpreted nature of reasoning system.

E.1.3. Semantics

The last component of a logical system is the semantics for such a theory
and language, a specification of

what the terms of a theory refer to, and how the basic operations
and connectives are to be interpreted in o domain of discourse,
including truth conditions for the formulae in this domain.

Consider, as an example the rule R1 from the theory 7" above. It is merely
a “piece of text” and its symbols allow almost unlimited interpretations.
We may, for instance, take A, B,C, ... to denote propositions and — an
implication. (Note how rules R2 and R3 capture then Stoics’ patterns (i)
and (ii) from (A.2), p. 9.) But we may likewise let A4, B, C, ... stand for sets
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and — for set-inclusion. The following give then examples of applications
of this rule under these two interpretations:

If it’snice then we'll leave {1,2} C {1,2,3}
If weleave then we’ll see a movie {1,2,3} C {1,2,3,5}
If it’snice then we’ll see a movie {1,2} C {1,2,3,5}

The rule is “sound” with respect to these interpretations — when applied
to these domains in the prescribed way, it represents a valid argument. In
fact, R1 expresses transitivity of — and will be sound for every transitive
relation interpreting —. This is just a more formal way of expressing de
Morgan’s observation that the syllogism Barbara is valid for all transitive
relations.

A specification of a domain of objects (de Morgan’s “universe of dis-
course”), and of the rules for interpreting the symbols of a logical language
in this domain such that all the theorems of the logical theory are true is
said to be a “model” of the theory. The two suggested interpretations are
models of rule R1. (To make them models of the whole theory T' would
require more work, in particular, finding appropriate interpretation of O, A
and —, such that the axioms become true and all rules sound. For the
propositional case, one could for instance let — denote negation, O ‘true’
and A ‘false’.)

If we chose to interpret the formulae of L as events and A — B as,
say, “A is independet from B”, the rule would not be sound. Such an
interpretation would not give a model of the theory or, what amounts to
the same, if the theory were applied to this part of the world, we could
not trust its results. The next subsection describes some further concepts
arising with the formal semantics.

E.2. Formal semantics

What is known as formal semantics, or model theory, has a more compli-
cated history than does logical syntax. One could say that the history of
the emergence of semantic conceptions of logic in the late 19th and early
20th centuries is still poorly understood. Certainly, Frege’s notion that
propositions refer to (bedeuten) “The True” or “The False” — and this for
complex propositions as a function of the truth values of simple proposi-
tions — counts as semantics. As we mentioned earlier, this has often been the
intuition since Aristotle, although modal propositions and paradoxes pose
severe problems for this position. Nevertheless, this view dominates most
of the logic, in particular such basic fields as propositional and first-order
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logic. Also, earlier medieval theories of supposition incorporated useful se-
mantic observations. So, too, do the techniques of letters referring to the
values 1 and 0 that are seen from Boole through Peirce and Schréder. Both
Peirce and Schréder occasionally gave brief demonstrations of the indepen-
dence of certain logical postulates using models in which some postulates
were true, but not others. This was also the technique used by the inventors
of non-Euclidean geometry.

The first clear, significant and general result in model theory is usually
accepted to be a result discovered by Lowenheim in 1915 and strengthened
by Skolem in the 1920s.

Lowenheim-Skolem theorem

A theory that has a model at all, has a countable model.

That is to say, if there exists some model of a theory (i.e., an application of
it to some domain of objects), then there is sure to be one with a domain no
larger than the natural numbers. This theorem is in some ways a shocking
result, since it implies that any consistent formal theory of anything — no
matter how hard it tries to address the phenomena unique to a field such
as biology, physics, or even sets or just real numbers — can just as well be
understood as being about natural numbers: it says nothing more about
the actually intended field than it says about natural numbers.

E.2.1. Consistency

The second major result in formal semantics, Gédel’s completeness theo-
rem of 1930 (see E.2.2 below), required even for its description, let alone
its proof, more careful development of precise metalogical concepts about
logical systems than existed earlier. One question for all logicians since
Boole, and certainly since Frege, had been:

Is the theory consistent? In its purely syntactic analysis, this
amounts to the question: Is a contradictory sentence (of the form
“A and not-A”) derivable?

In most cases, the equivalent semantic counterpart of this is the question:
Does the theory have a model at all?

For a logical theory, consistency means that a contradictory theorem can-
not be derived in the theory. But since logic was intended to be a theory
of necessarily true statements, the goal was stronger: a theory is Post-
consistent (named after Emil Post) if every theorem is valid — that is, if
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no theorem is a contradictory or a contingent statement. (In nonclassical
logical systems, one may define many other interestingly distinct notions
of consistency; these notions were not distinguished until the 1930s.) Con-
sistency was quickly acknowledged as a desired feature of formal systems.
Earlier assumptions about consistency of various theories of propositional
and first-order logic turned out to be correct. A proof of the consistency of
propositional logic was first given by Post in 1921. Although the problem
itself is rather simple, the original difficulties concerned the lack of precise
syntactic and semantic means to characterize consistency. The first clear
proof of the consistency of the first-order predicate logic is found in the
book of David Hilbert and Wilhelm Ackermann, Grindzuge der theoretis-
che Logik (“Principles of theoretical logic”) from 1928. Here, in addition to
a precise formulation of consistency, the main problem was also a rigorous
statement of first-order predicate logic as a formal theory.

Consistency of more complex systems, however, proved elusive. For in-
stance, Hilbert had observed that there was no proof that even the Peano
postulates (for arithmetics) were consistent, while Zermelo was concerned
with demonstrating that set theory was consistent. These questions re-
ceived an answer that was not what was hoped for. Although Gerhard
Gentzen (1909-1945) showed that Peano arithmetics is consistent, he used
for this purpose stronger assumptions than those of Peano arithmetics.
Thus “true” consistency of arithmetics still depends on the consistency of
the extended system used in the proof. This system, in turn, can not
prove its own consistency and this is true about any system, satisfying
some reasonably weak assumptions. This is the content of Godel’s second
incompleteness theorem, which put a definite end to the Hilbert’s program
of using formal logic for proving the consistency of mathematics.

E.2.2. Completeness

In their book from 1928 Hilbert and Ackermann also posed the question of
whether a logical system and, in particular, first-order predicate logic, was
(as it is now called) “complete”, i.e.,

whether every valid proposition — that s, every proposition that is
true in all intended models — is provable in the theory.

In other words, does the formal theory describe all the noncontingent truths
of its subject matter? Some sort of completeness had clearly been a guiding
principle of logicians since Boole, and even since Aristotle (or Euclid in
geometry) — otherwise they would not have sought numerous axioms or
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postulates, risking nonindependence and even inconsistency. But earlier
writers have lacked the semantic terminology to specify what their theory
was about and wherein “aboutness” consists. Specifically, they lacked a
precise notion of a proposition being “valid”, — that is, true in all (intended)
models — and hence lacked a way of precisely characterizing completeness.
Even the language of Hilbert and Ackermann from 1928 is not perfectly
clear by modern standards.

Post had shown the completeness of propositional logic in 1921 and
Godel proved the completeness of first-order predicate logic in his doctoral
dissertation of 1930. In many ways, however, explicit consideration of issues
in semantics, along with the development of many of the concepts now
widely used in formal semantics and model theory, first appeared in a paper
by Alfred Tarski, The Concept of Truth in Formalized Languages, which was
published in Polish in 1933 and became widely known through its German
translation of 1936. Introducing the idea of a sentence being “true in” a
model, the paper marked the beginning of modern model theory. Even if the
outlines of how to model propositional logic had been clear to the Booleans
and to Frege, one of Tarski’s crucial contributions was an application of
his general theory to the semantics of the first-order logic (now termed the
set-theoretic, or Tarskian, interpretation).

Although the specific theory of truth Tarski advocated has had a com-
plex and debated legacy, his techniques and precise language for discussing
semantic concepts — such as consistency, completeness, independence — hav-
ing rapidly entered the literature in the late 1930s, remained in the center
of the subsequent development of logic and analytic philosophy. This influ-
ence accelerated with the publication of his works in German and then in
English, and with his move to the United States in 1939.

E.3. Computability and Decidability

The underlying theme of the whole development we have sketched is the
attempt to formalize logical reasoning, hopefully, to the level at which it
can be performed mechanically. The idea of “mechanical reasoning” has
been always present, if not always explicitly, in the logical investigations
and could be almost taken as their primary, if only ideal, goal. Intuitively,
“mechanical” involves some blind following of the rules and such a blind
rule following is the essence of a symbolic system as described in E.1.2. This
“mechanical blindness” follows from the fact the language and the rules are
unambiguously defined. Consequently, correctness of the application of a
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rule to an actual formula can be verified mechanically. You can easily check
that all applications of rules in the derivation (E.1) are correct and equally
easily see that, for instance, W is not a correct application of any
rule from T'.

Logic was supposed to capture correct reasoning and correctness
amounts to conformance to some accepted rules. A symbolic reasoning
system is an ultimately precise expression of this view of correctness which
also makes its verification a purely mechanic procedure. Such a mechnism
is possible because all legal moves and restrictions are expressed in the
syntax: the language, axioms and rules. In other words, it is exactly the
uninterpreted nature of symbolic systems which leads to mechanisation of
reasoning. Naturally enough, once the symbolic systems were defined and
one became familiar with them, i.e., in the beginning of the 20th century,
the questions about mechanical computability were raised by the logicians.
The answers led to the design and use of computers — devices for symbolic,
that is, uninterpreted manipulation.

E.3.1. Computability

What does it mean that something can be computed mechanically 2

In the 1930s this question acquired the ultimately precise, mathematical
meaning. Developing the concepts from Hilbert’s school, in his Princeton
lectures 1933-34 Godel introduced the schemata for so called “recursive
functions” working on natural numbers. Some time later Alonzo Church
proposed the famous thesis

Church thesis

A function is (mechanically) computable if and only if it can be
defined using only recursive functions.

This may sound astonishing — why just recursive function are to have such
a special significance? The answer comes from the work of Alan Turing
who introduced “devices” which came to be known as Turing machines.
Although defined as conceptual entities, one could easily imagine that such
devices could be actually built as physical machines performing exactly
the operations suggested by Turing. The machines could, for instance,
recognize whether a string had some specific form and, generally, compute
functions. The functions which could be computed on Turing machines
were shown to be exactly the recursive functions! Even more significant for
us may be the fact that there is a well-defined sublogic of first-order logic in
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which proving a theorem amounts to computing a recursive function, that
is, which can code all possible computer programs. This subset comprises
the Horn formulae, namely, the conditional formulae of the form

If A; and Ay and ... and A4, then C. (E.2)

Such rules might be claimed to have more “psychological plausibility” than
recursive functions. But they are computationally equivalent. With a few
variations and additions, the formulae (E.2) give the syntax of an elegant
programming language PROLOG. Thus, in the wide field of logic, there is
a small subdomain providing sufficient means to study the issues of com-
putability. (Such connections are much deeper and more intricate but we
cannot address them all here.)

Church thesis remains only a thesis, claiming that the informal and intu-
itive notion of mechanical computability is formalized exactly by the notion
of recursive functions (or their equivalents, like Horn formulae or Turing
machine). The fact that they are exactly the functions computable on the
physical computer lends this thesis a lot of plausibility. Moreover, so far
nobody has managed to introduce a notion of computability which would
be intuitively acceptable, physically realizable and, at the same time, would
exceed the capacities of Turing machines. A modern computer program,
with all its tricks and sophistication is, as far as its power and possibil-
ities are concerned, mnothing more than a Turing machine, a set of Horn
formulae. Thus, logical results, in particular the negative theorems stating
the limitations of logical formalisms, determine also the ultimate limits of
computers’ capabilities as exemplified below.

E.3.2. Decidability

By the 1930s almost all work in the foundations of mathematics and in
symbolic logic was being done in a standard first-order predicate logic, often
extended with axioms or axiom schemata of set-theory. This underlying
logic consisted of a theory of classical truth functional connectives, such as
“and”, “not” and “if . . . then” (propositional logic, as with Stoics or
Boole) and first-order quantification permitting propositions that “all” and
“at least one” individual satisfy a certain formula (Frege). Only gradually
in the 1920s and ’30s did a conception of a “first-order” logic, and of more
expressive alternatives, arise.

Formal theories can be classified according to their expressive or rep-
resentational power, depending on their language (notation) and reasoning
system (inference rules). Propositional logic allows merely manipulation of
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simple, propositional patterns, combined with operators like “or”, “and”,
(A.2), p.9. First-order logic allows explicit reference to, and quantification
over, individuals, such as numbers or sets, but not quantification over prop-
erties of these individuals. For instance, the statement “for all z: if z is
man then z is human” is first-order. But the following one is second-order,
involving quantification over properties P, R: “for every xz and any prop-
erties P, R: if P implies R and z is P then z is R.”? (Likewise, the fifth
postulate of Euclid is not finitely axiomatizable in the first-order language
but is rather a schema or second-order formulation.)

The question “why should one bother with less expressive formalisms,
when more expressive ones are available?” should appear quite natural.
The answer lies in the fact that increasing expressive power of a formalism
clashes with another desired feature, namely:

decidability
there exists a finite mechanical procedure for determining whether
a proposition is, or is not, a theorem of the theory.

The germ of this idea is present in the law of excluded middle claiming
that every proposition is either true or false. But decidability adds to it
the requirement which can be expressed only with the precise definition of
a finite mechanical procedure, of computability. This is the requirement
that not only the proposition must be true/provable or not: there must
be a terminating algorithm which can be run (on a computer) to decide
which is the case. (In E.1.2 we have shown that, for instance, —A is a
theorem of the theory T' defined there. But if you were now to tell whether
(—— A — (-0 — 0O)) is a theorem, you might have hard time trying to
find a derivation and even harder trying to prove that no derivation of this
formula exists. Decidability of a theory means that there is a computer
program capable to answer every such question.)

The decidability of propositional logic, through the use of truth tables,
was known to Frege and Peirce; its proof is attributable to Jan Lukasiewicz
and Emil Post independently in 1921. Lowenheim showed in 1915 that
first-order predicate logic with only single-place predicates was decidable
and that the full theory was decidable if the first-order predicate calcu-

2Note a vague analogy of the distinction between first-order quantification over indi-
viduals and second-order quantification over properties to the distinction between ex-
tensional and intensional aspects from B.3. Since in the extensional context, a property
P is just a set of individuals (possessing P), the intensional or property-oriented lan-
guage becomes higher-order, having to address not only individuals but also sets thereof.
Third-order language allows then to quantify over sets of sets of individuals, etc.
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lus with only two-place predicates was decidable. Further developments
were made by Thoralf Skolem, Heinrich Behmann, Jacques Herbrand, and
Willard Quine. Herbrand showed the existence of an algorithm which, if a
theorem of the first-order predicate logic is valid, will determine it to be so;
the difficulty, then, was in designing an algorithm that in a finite amount
of time would determine that propositions were invalid. (We can easily
imagine a machine which, starting with the specified axioms, generates all
possible theorems by simply generating all possible derivations — sequences
of correct rule applications. If the formula is provable, the machine will,
sooner or later, find a proof. But if the formula is not provable, the ma-
chine will keep for ever since the number of proofs is, typically, infinite.)
As early as the 1880s, Peirce seemed to be aware that the propositional
logic was decidable but that the full first-order predicate logic with rela-
tions was undecidable. The fact that first-order predicate logic (in any
general formulation) was undecidable was first shown definitively by Alan
Turing and Alonzo Church independently in 1936. Together with Godel’s
(second) incompleteness theorem and the earlier Lowenheim-Skolem the-
orem, the Church-Turing theorem of the undecidability of the first-order
predicate logic is one of the most important, even if “negative”, results of
20th century logic.

Many facts about the limits of computers arise as consequences of these
negative results. For instance, it is not (and never will be!) possible to
write a computer program which, given an arbitrary first-order theory T
and some formula f, is guaranteed to terminate giving the answer “Yes” if
f is a theorem of 7" and “No” if it is not. A more mundane example is the
following. One can easily write a computer program which for some inputs
does not terminate. It might be therefore desirable to have a program U
which could take as input another program P (a piece of text just like
“usual” input to any program) and description of its input d and decide
whether P run on d would terminate or not. Such a program U, however,
will never be written as the problem described is undecidable.

F. Summary

The idea of correct thinking is probably as old as thinking itself. With
Aristotle there begins the process of explicit formulation of the rules, pat-
terns of reasoning, conformance to which would guarantee correctness. This
idea of correctness has been gradually made precise and unambiguous lead-
ing to the formulation of (the general schema for defining) symbolic lan-
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guages, the rules of their manipulation and hence cirteria of correct “rea-
soning”. It is, however, far from obvious that the result indeed captures the
natural reasoning as performed by humans. The need for precision led to
complete separation of the reasoning aspect (syntactic manipulation) from
its possible meaning. The completely uninterpreted nature of symbolic
systems makes their relation to the real world highly problematic. More-
over, as one has arrived at the general schema of defining formal systems,
no unique system has arosen as the right one and their variety seems sur-
passed only by the range of possible application domains. The discussions
about which rules actually represent human thinking can probably continue
indefinitely. In the meantime, and perhaps most significantly, this purely
syntactic character of formal reasoning systems provided the basis for a
precise definition of the old theme of logical investigations: the unavoid-
able consequence, which now appears co-extensional, if not synonymous,
with the mechanical computability.

The question whether human mind and thinking can be reduced to such
a mechanic computation and simulated by a computer is still discussed by
the philosophers and cognitive scientists. Also, much successful research is
driven by the idea, if not the explicit goal, of obtaining such a reduction.
The “negative” results as those quoted at the end of the last section, estab-
lished by human mind and demonstrating limitations of the power of logic
and computers, suggest that human cognition may not be reducible to, and
hence neither simulated by, mechanic computation. In particular, reduction
to mechanic computability would imply that all human thinking could be
expressed as applications of simple rules like (E.2) on p. 39. Its possibility
has not been disproved but it certainly does not appear plausible. Yet,
as computable functions correspond only to a small part of logic, even if
this reduction turns out impossible, the question of reduction of thinking
to logic at large would still remain open. Most researchers do not seem
to believe in such reductions and, indeed, one need not believe in them to
study logic. In spite of its philosophical roots, and its apparently theoreti-
cal and abstract character, it turned out to be the fundamental tool in the
development, and later in the use and managment, of the most practical
and useful appliance of the 20th century — the computer.
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The Greek alphabet
upper lower upper lower
A ol alpha N v nu
B B8 beta =) 3 xi
r y gamma, (0] 0 omicron
A 1) delta II 7r pi
E € epsilon R p rho
VA ¢ zeta D) o sigma
H n eta T T tau
(€] 0 theta Y v upsilon
I L iota ® 10) phi
K K kappa X X chi
A A lambda v ) psi
M W mu Q w omega



