
January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents

The History of Logic 1
A Logic – patterns of reasoning 2

A.1 Reductio ad absurdum 2
A.2 Aristotle . 3
A.3 Other patterns and later developments 8

B Logic – a language about something 9
B.1 Early semantic observations and problems 9
B.2 The Scholastic theory of supposition 10
B.3 Intension vs. extension 11
B.4 Modalities . 12

C Logic – a symbolic language 13
C.1 The “universally characteristic language” 15
C.2 Calculus of reason . 15

D 19th and 20th Century – mathematization of logic 17
D.1 George Boole . 17
D.2 Gottlob Frege . 22
D.3 Set theory . 24
D.4 20th century logic . 26

E Modern Symbolic Logic . 29
E.1 Formal logical systems: syntax. 30
E.2 Formal semantics . 33
E.3 Computability and Decidability 37

F Summary . 41
The Greek alphabet . 42

v

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

vi Introduction to Logic

Part I. Basic Set Theory 43
1. Sets, Functions, Relations . 43

1.1. Sets and Functions 43
1.2. Relations . 50
1.3. Ordering Relations 52
1.4. Infinities . 54

2. Induction . 63
2.1. Well-Founded Orderings 63
2.2. Inductive Definitions 71
2.3. Transfinite Induction [optional] 87

Part II. Turing Machines 91
3. Turing Machines . 91

3.1. Alphabets and Languages 91
3.2. Turing Machines . 93
3.3. Universal Turing Machine 103
3.4. Undecidability . 106

Part III. Propositional Logic 112
4. Syntax and Proof Systems . 112

4.1. Axiomatic Systems 112
4.2. Syntax of PL . 118
4.3. Hilbert’s Axiomatic System 119
4.4. The system N . 122
4.5. H vs. N . 124
4.6. Provable Equivalence of formulae 125
4.7. Consistency . 127
4.8. Gentzen’s Axiomatic System 129
4.9. Some proof techniques 132

5. Semantics of PL . 135
5.1. Semantics of PL . 135
5.2. Semantic properties of formulae 142
5.3. Abbreviations . 143
5.4. Sets and Propositions 144

6. Soundness, Completeness . 154
6.1. Adequate Sets of Connectives 154
6.2. DNF, CNF . 156

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents vii

6.3. Soundness . 160
6.4. Completeness . 165

Part IV. Predicate Logic 175
7. Syntax and Proof System . 175

7.1. Syntax of FOL . 177
7.2. Scope of Quantifiers 180
7.3. The Proof System N 186
7.4. Gentzen’s system for FOL 190

8. Semantics . 196
8.1. Semantics of FOL . 196
8.2. Semantic properties of formulae 203
8.3. Open vs. closed formulae 204

9. More Semantics . 211
9.1. Prenex operations . 211
9.2. A few bits of Model Theory 215
9.3. “Syntactic” Semantics 219

10. Soundness, Completeness . 235
10.1. Soundness . 235
10.2. Completeness . 236

11. Identity and Some Consequences 250
11.1. FOL with Identity 251
11.2. A few more bits of Model Theory 259
11.3. Semi-Decidability and Undecidability of FOL 260
11.4. Why is First-Order Logic “First-Order”? 261

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

viii Introduction to Logic

Acknowledgments

Several lecturers have been using preliminary versions of this text and con-
tributed valuable comments and corrections to its present, final form. I
want to specifically thank Tore Langholm, Valentinas Kriaučiukas and Uwe
Wolter.

The first part, on the history of logic, is to a high degree a compilation
of various internet resources. I gratefully acknowledge the use of much de-
tailed information from Encyclopedia Britannica (www.britannica.com),
Wikipedia (en.wikipedia.org), Leibnitiana (www.gwleibniz.com), Stan-
ford Encyclopedia (plato.stanford.edu), and apologize the owners of
other sources which I might have inadverently left out. The arrangement,
development and conclusions of this part, however, reflect only the author’s
views and should not be attributed to other sources.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 1

The History of Logic

Once upon a time, sitting on a rock in Egypt, Parmenides invented logic.
Such a legend might have appealed to people believing in a (rather small)
set of well-defined rules constituting the logic. This belief had permeated
the main-stream thinking at least until the beginning of the 20th century.
But even if this medieval story appears now implausible, it reflects the fact
that Parmenides was the first philosopher who did not merely propose a
vision of reality but who also supported it by an extended argument. He
is reported to have had a Pythagorean teacher and, perhaps, his use of
argument was inspired by the importance attached to mathematics in the
Pythagorean tradition. Still, he never systematically formulated principles
of argumentation and using arguments is not the same as studying them.

“Logical thinking” may be associated roughly with something like cor-
rect reasoning and the study of logic begins with the attempts to formulate
the principles governing such reasoning. Now, correctness amounts to con-
formance to some prescribed rules. Identification of such rules, and the ways
of verifying conformance to them, begins with Aristotle in the 5th century
bc. He defined his logical discourse – a syllogism – as one “in which, certain
things being stated something other than what is stated follows of necessity
from their being so.” This intuition of necessary – unavoidable or mechan-
ical – consequences, embodying the ideal of correctness, both lies at the
origin of the discipline of logic and has since been the main force driving its
development until the 20th century. However, in a quite interesting turn,
its concluding chapter (or rather: the chapter at which we will conclude
its description) did not establish any consensus about the mechanisms of
the human thinking and the necessities founding its correctness. Instead, it
provided a precise counterpart of the Aristotelian definition of a process in
which, certain things being given, some other follow as their unavoidable,
mechanical consequences. This is known as Turing machine and its physical
realization is computer.

We will sketch logic’s development along the three, intimately connected
axes which reflect its three main domains.

(1) The foremost seems to be the study of correct arguments, their mean-
ing. Meaning, however, seems often very vague. One tries to capture it
more precisely in order to formulate the rules for construction of cor-
rect arguments and for their manipulation which, given some correct
arguments, allows one to arrive at new ones.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

2 Introduction to Logic

(2) In order to construct precise and valid forms of arguments one has to
determine their “building blocks”. One has to identify the basic terms,
their kinds and means of combination.

(3) Finally, there is the question of how to represent these patterns. Al-
though apparently of secondary importance, it is the answer to this
question which puts purely symbolic manipulation in the focus. It can
be considered the beginning of modern mathematical logic which led
to the development of the devices for symbolic manipulation known as
computers.

The first three sections sketch the development along the respective lines
until Renaissance beginning, however, with the second point, Section A,
following with the first, Section B, and concluding with the third, Section
C. Then, Section D indicates the development in the modern era, with
particular emphasis on the last two centuries. Section E sketches the basic
aspects of modern mathematical logic and its relations to computers.

A. Logic – patterns of reasoning

A.1. Reductio ad absurdum

If Parmenides was only implicitly aware of the general rules underlying his
arguments, the same perhaps is not true for his disciple Zeno of Elea (5th
century bc). Parmenides taught that there is no real change in the world
and that all things remain, eventually, the same one being. In the defense of
this heavily criticized thesis, Zeno designed a series of ingenious arguments,
known as “Zeno’s paradoxes”, demonstrating that the contrary assumption
leads to absurdity. One of the most known is the story of

Achilles and tortoise competing in a race
Tortoise, being a slower runner, starts some time t before Achilles.
In this time t, it will go some way w1 towards the goal. Now Achilles
starts running but in order to catch up with the tortoise he has to
first run the way w1 which will take him some time t1 (less than t).
In this time, tortoise will again walk some distance w2 away from
the point w1 and closer to the goal. Then again, Achilles must first
run the way w2 in order to catch the tortoise which, in the same
time t2, will walk some distance w3 away. Hence, Achilles will
never catch the tortoise. But this obviously absurd, so the thesis
that the two are really changing their positions cannot be true.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 3

It was only in the 19th century that mathematicians captured and expressed
precisely what was wrong with this way of thinking. This, however, does not
concern us as much as the fact that the same form of reasoning was applied
by Zeno in many other stories: assuming a thesis T , he analyzed it arriving
at a conclusion C; but C turns out to be absurd – therefore T cannot be
true. This pattern has been given the name “reductio ad absurdum” and
is still frequently used in both informal and formal arguments.

A.2. Aristotle

Various ways of arguing in political and philosophical debates were ad-
vanced by various thinkers. Sophists, often discredited by the “serious”
philosophers, certainly deserve the credit for promoting the idea of a cor-
rect argument, irrespectively of its subject matter and goal. Horrified by
the immorality of sophists’ arguing, Plato attempted to combat them by
plunging into ethical and metaphysical discussions and claiming that these
indeed had a strong methodological logic – the logic of discourse, “dialec-
tic”. In terms of development of modern logic there is, however, close to
nothing one can learn from that. The formulation of the principles for cor-
rect reasoning culminated in ancient Greece with Plato’s pupil Aristotle’s
(384-322 bc) teaching of categorical forms and syllogisms.

A.2.1. Categorical forms

Most of Aristotle’s logic was concerned with specific kinds of judgments,
later called “categorical propositions”, consisting of at most five building
blocks: (1) a quantifier (“every”, “some”, or “no”), (2) a subject, (3) a
copula (“is”), (4) perhaps a negation (“not”), and (5) a predicate. Subject,
copula and predicate were mandatory, the remaining two elements were
optional. Such propositions fall into one of the following forms:

quantifier subject copula (4) predicate

Every A is B : Universal affirmative
Every A is not B : Universal negative
Some A is B : Particular affirmative
Some A is not B : Particular negative

A is B : Singular affirmative
A is not B : Singular negative

In the singular judgements A stands for an individual, e.g. “Socrates is
(not) a man.” These two forms gained much less importance than the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

4 Introduction to Logic

rest since in most contexts they can be seen as special cases of 3 and 4,
respectively.

A.2.2. Conversions

Sometimes Aristotle adopted alternative but equivalent formulations. The
universal negative judgment could also be formulated as “No A is B”, while
the universal affirmative as “B belongs to every A” or “B is predicated of
every A”.

Aristotle formulated several such rules, later known as the theory of con-
version. To convert a proposition in this sense is to interchange its subject
and predicate. Aristotle observed that universal negative and particular
affirmative propositions can be validly converted in this way: if “some A is
B”, then also “some B is A”, and if “no A is B”, then also “no B is A”.
In later terminology, such propositions were said to be converted simply
(simpliciter). But universal affirmative propositions cannot be converted
in this way: if “every A is an B”, it does not follow that “every B is a
A”. It does follow, however, that “some B is a A”. Such propositions,
which can be converted by interchanging their subjects and predicates and,
in addition, also replacing the universal quantifier “all” by the existential
quantifier “some”, were later said to be converted accidentally (per acci-
dens). Particular negative propositions cannot be converted at all: from
the fact that some animal is not a dog, it does not follow that some dog is
not an animal.

Below, the four figures of syllogism are presented. Aristotle used the
laws of conversion to reduce other syllogisms to syllogisms in the first figure.
Conversions represent thus the first form of essentially formal manipulation.
They provide the rules for:

replacing occurrence of one (categorical) form of a statement by
another – without affecting the proposition!

What does “affecting the proposition” mean is another subtle matter. The
whole point of such a manipulation is that one changes the concrete ap-
pearance of a sentence, without changing its value. The intuition might
have been that they essentially mean the same and are interchangeable. In
a more abstract, and later formulation, one would say that “not to affect
a proposition” is “not to change its truth value” – either both are false or
both are true.

Two statements are equivalent if they have the same truth value.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 5

This wasn’t exactly the point of Aristotle’s but we may ascribe him a lot of
intuition in this direction. From now on, this will be a constantly recurring
theme in logic. Looking at propositions as thus determining a truth value
gives rise to some questions (and severe problems, as we will see.) Since we
allow using some “placeholders” – variables – a proposition need not have
a unique truth value. “All A are B” depends on what we substitute for A
and B. In general, a proposition P may be:

(1) a tautology – P is always true, no matter what we choose to substitute
for the “placeholders”; (e.g., “All A are A”. In particular, a proposition
without any “placeholders”, e.g., “all animals are animals”, may be a
tautology.)

(2) a contradiction – P is never true (e.g., “no A is A”);
(3) contingent – P is sometimes true and sometimes false; (“all A are B” is

true, for instance, if we substitute “animals” for both A and B, while
it is false if we substitute “birds” for A and “pigeons” for B).

A.2.3. Syllogisms

Aristotelian logic is best known for the theory of syllogisms which had
remained practically unchanged and unchallenged for approximately 2000
years. In Prior Analytics, Aristotle defined a syllogism as a

discourse in which, certain things being stated something other than
what is stated follows of necessity from their being so.

In spite of this very general definition, in practice he confined the term to
arguments with only two premises and a single conclusion, each of which
is a categorical proposition. The subject and predicate of the conclusion
each occur in one of the premises, together with a third term (the middle)
that is found in both premises but not in the conclusion. A syllogism thus
argues that because S(ubject) and P (redicate) are related in certain ways
to some M(iddle) term in the premises, they are related in a certain way
to one another in the conclusion.

The predicate of the conclusion is called the major term, and the premise
in which it occurs is called the major premise. The subject of the conclusion
is called the minor term and the premise in which it occurs is called the
minor premise. This way of describing major and minor terms conforms to
Aristotle’s actual practice but was proposed as a definition only by the 6th
century Greek commentator John Philoponus.

Aristotle distinguished three different “figures” of syllogisms, according

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

6 Introduction to Logic

to how the middle is related to the other two terms in the premises. He only
mentioned the fourth possibility which was counted as a separate figure
by later logicians. If one wants to prove syllogistically that S(ubject) is
P (redicate), one finds a term M(iddle) such that the argument can fit into
one of the following figures:

(I) “M is P” and “S is M” – hence “S is P”, or
(II) “P is M” and “S is M” – hence “S is P”, or

(III) “M is P” and “M is S” – hence “S is P”, or
(IV) “P is M” and “M is S” – hence “S is P”.

Each of these figures can come in various “moods”, i.e., each categori-
cal form can come with various quantifiers, yielding a large taxonomy of
possible syllogisms. Since the Middle Ages, one has used the following
abbreviations for the concerned quantifiers:

A : universal affirmative : all, every
E : universal negative : no
I : particular affirmative : some

O : particular negative : some is not, not every
The following is an example of a syllogism of figure I with the mood A-I-I.
“Marshal” is here the middle term and “politician” the major term.

A: Every marshal is a politician.
I: Some soldiers are marshals.
I: Some soldiers are politicians.

(A.1)

Figure A.2 gives examples of syllogisms of all four figures with different
moods. M is the middle term, P the major one and S the minor one. Four
quantifiers, distributed arbitrarily among the three statements of a syllo-
gism, give 64 different syllogisms of each figure and the total of 256 distinct
syllogisms. Aristotle identified 19 among them which are universally correct
or, as we would say today, valid. Validity means here that

no matter what concrete terms are substituted for the variables
(P,M,S), if the premises are true then also the conclusion is guar-
anteed to be true.

For instance, the 5 examples above, with the special names in the last col-
umn, are valid. The names, given by the medieval scholars to the valid
syllogisms, contained exactly three vowels identifying the mood. (The
mnemonic aid did not extend further: Celarent and Cesare identify the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 7

figure I: [M is P] [S is M] [S is P]

A-I-I Every [M is P] Some [S is M] Some [S is P] Darii

A-A-A Every [M is P] Every [S is M] Every [S is P] Barbara

figure II: [P is M] [S is M] [S is P]

E-A-E No [P is M] Every [S is M] No [S is P] Cesare

figure III: [M is P] [M is S] [S is P]

A-A-I Every [M is P] Every [M is S] Some [S is P] Darapti

A-A-A Every [M is P] Every [M is S] Every [S is P] –

figure IV: [P is M] [M is S] [S is P]

E-A-O No [P is M] Every [M is S] Some [S is not P] Fesapo

Fig. A.2 Examples of syllogisms of each figure and various moods.

same mood, so one had to simply remember that the former refers to figure
I and the latter to figure II.)

Mood A-A-A in figure III does not yield a valid syllogism. To see
this, we find a counterexample. Substituting women for M, female for P
and human for S, the premises hold while the conclusion states that every
human is female. A counterexample can be found to every invalid syllogism.

Note that a correct application of a valid syllogism does not guarantee
truth of the conclusion. (A.1) is such an application, but the conclusion
need not be true. It may namely happen that a correct application uses a
false assumption, for instance, in a country where the marshal title is not
used in the military. In such cases the conclusion may accidentally happen
to be true but no guarantees about that can be given. We see again that
the main idea is truth preservation in the reasoning process. An obvious,
yet nonetheless crucially important, assumption is:

The contradiction principle
For any proposition P it is never the case that both P and not-P
are true.

This principle seemed (and to many still seems) intuitively obvious and
irrefutable – if it were violated, there would be little point in construct-
ing any “truth preserving” arguments. Although most logicians accept it,
its status has been questioned and various logics, which do not obey this
principle, have been proposed.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

8 Introduction to Logic

A.3. Other patterns and later developments

Aristotle’s syllogisms dominated logic until late Middle Ages. A lot of
variations were invented, as well as ways of reducing some valid patterns
to others (as in A.2.2). The claim that

all valid arguments can be obtained by conversion and, possibly,
reductio ad absurdum from the three (four?) figures

has been challenged and discussed ad nauseum.
Early developments (already in Aristotle) attempted to extend the syl-

logisms to modalities, i.e., by considering instead of the categorical forms
as above, the propositions of the form “it is possible/necessary that some
A are B”. Early followers of Aristotle in the 4th/3th bc (Theophrastus of
Eresus, Diodorus Cronus, the school of Megarians with Euclid) elaborated
on the modal syllogisms and introduced another form of a proposition, the
conditional

if (A is B) then (C is D).

These were further developed by Stoics who also made another significant
step. One of great inventions of Aristotle were variables – the use of letters
for arbitrary objects or terms. Now, instead of considering only patterns
of terms where such variables are placeholders for objects, Stoics started to
investigate logic with patterns of propositions. In such patterns, variables
would stand for propositions instead of terms. For instance,

from two propositions: “the first” and “the second”, new propo-
sitions can be formed, e.g., “the first or the second”, “if the first
then the second”, etc.

The terms “the first”, “the second” were used by Stoics as variables instead
of single letters. The truth of such compound propositions may be deter-
mined from the truth of their constituents. We thus get new patterns of
arguments. The Stoics gave the following list of five patterns

(i) If 1 then 2; but 1; therefore 2.

(ii) If 1 then 2; but not 2; therefore not 1.

(iii) Not both 1 and 2; but 1; therefore not 2.

(iv) Either 1 or 2; but 1; therefore not 2.

(v) Either 1 or 2; but not 2; therefore 1.

(A.3)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 9

Chrysippus, 3th bc, derived many other schemata and Stoics claimed that
all valid arguments could be derived from these patterns. At the time, this
approach seemed quite different from the Aristotelian and a lot of time
went on discussions which is the right one. Stoic’s propositional patterns
had fallen into oblivion for a long time, but they re-emerged as the basic
tools of modern propositional logic. Medieval logic had been dominated
by Aristotelian syllogisms, but its elaboratations did not contribute signifi-
cantly to the theory of formal reasoning. However, Scholasticism developed
very sophisticated semantic theories, as indicated in the following section.

B. Logic – a language about something

The pattern of a valid argument is the first and through the centuries
fundamental issue in the study of logic. But there were (and are) a lot of
related issues. For instance, the two statements

(1) “all horses are animals”, and
(2) “all birds can fly”

are not exactly of the same form. More precisely, this depends on what
a form is. The first says that one class (horses) is included in another
(animals), while the second that all members of a class (birds) have some
property (can fly). Is this grammatical difference essential or not? Or else,
can it be covered by one and the same pattern or not? Can we replace
a noun by an adjective in a valid pattern and still obtain a valid pattern
or not? In fact, the first categorical form subsumes both above sentences,
i.e., from the point of view of the logic of syllogisms, they are considered
as having the same form.

Such questions indicate that forms of statements and patterns of rea-
soning require further analysis of “what can be plugged where” which, in
turn, depends on which words or phrases can be considered as “having
similar function”, perhaps even as “having the same meaning”. What are
the objects referred to by various kinds of words? What are the objects
referred to by the propositions?

B.1. Early semantic observations and problems

Certain teachings of the sophists and rhetoricians are significant for the
early history of (this aspect of) logic. For example, Prodicus (5th bc) ap-
pears to have maintained that no two words can mean exactly the same
thing. Accordingly, he devoted much attention to carefully distinguishing

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

10 Introduction to Logic

and defining the meanings of apparent synonyms, including many ethical
terms. On the other hand, Protagoras (5ht bc) is reported to have been
the first to distinguish different kinds of sentences – questions, answers,
prayers, and injunctions. Further logical development addressed primarily
propositions, “answers”, of which categorical propositions of Aristotle’s are
the outstanding example. The categorical forms gave a highly sophisticated
and very general schema for classifying various terms (possibly, with dif-
ferent grammatical status) as basic building blocks of arguments, i.e., as
potential subjects or predicates.

Since logic studies statements, their form as well as patterns in which
they enter valid arguments, one of the basic questions concerns the meaning
of a proposition. As we indicated earlier, two propositions can be considered
equivalent if they have the same truth value. This suggests another law,
beside the contradiction principle, namely

The law of excluded middle (tertium non datur)
Each proposition P is either true or false.

There is surprisingly much to say against this apparently simple claim.
There are modal statements (see B.4) which do not seem to have any definite
truth value. Among many early counterexamples, there is the most famous
one, which appeared in its usual version in the 4th century bc, and which
is still disturbing and discussed by modern logicians:

The liar paradox
The sentence “This sentence is false” does not seem to have any
content – it is false if and only if it is true!

Such paradoxes indicated the need for closer analysis of fundamental no-
tions of the logical enterprise.

B.2. The Scholastic theory of supposition

The character and meaning of various “building blocks” of a logical lan-
guage were thoroughly investigated by the Scholastics. Their theory of
supposition was meant to answer the question:

To what does a given occurrence of a term refer in a given propo-
sition?

Roughly, one distinguished three modes of supposition/reference:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 11

(1) personal: In the sentence “Every horse is an animal”, the term “horse”
refers to individual horses.

(2) simple: In the sentence “Horse is a species”, the term “horse” refers
to a universal (the concept ‘horse’).

(3) material: In the sentence “Horse is a monosyllable”, the term “horse”
refers to the spoken or written word.

The distinction between (1) and (2) reflects the fundamental duality of
individuals and universals which had been one of the most debated issues
in Scholasticism. The third point, apparently of little significance, marks
an important development, namely, the increasing attention paid to the
language and its mere syntax, which slowly becomes the object of study.
Today, one often blurs the distinction between the first two suppositions,
subsuming them under the category of ‘use’ and opposing to ‘mention’
which corresponds exactly to (3). Lacking the quotation marks, medieval
writers could write, for instance, the example sentence (3) as “ Horse taken
in the material supposition is a monosyllable.” Cumbersome as this may
appear to an untrained reader, it disambiguated precisely references to
language.

B.3. Intension vs. extension

Besides the supposition theory and its relatives, the logicians of the 14th
century developed a sophisticated theory of connotation. The term “black”
does not merely denote all black things – it also connotes the quality, black-
ness, which all such things possess. Connotation is also called “intension”
– saying “black” I intend blackness. Denotation is closer to “extension” –
the collection of all the objects referred to by the term “black”. This has
become one of the central distinctions in the later development of logic and
in the discussions about the entities referred to by words. Its variants recur
in most later theories, sometimes as if they were innovations. For instance,
Frege opposes Sinn (sense, concept) to Bedeutung (reference), viewing both
as constituting the meaning of a term. De Saussure distinguishes the sig-
nified (concept) from the referent (thing), and contrasts both with the
signifier (sign). These later variants repeat the medieval understanding of
a term which can be represented as follows:

term
refers to

!!!!!!!!!!!!
intends

""""""""""""

intension
can be ascribed to

extension

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

12 Introduction to Logic

The crux of many problems is that different intensions may refer to (denote)
the same extension. The “Morning Star” and the “Evening Star” have
different intensions and for centuries were considered to refer to two different
stars. As it turned out, these are actually two appearances of one and the
same planet Venus. The two terms have the same extension and the insight
into this identity is a true discovery, completely different from the empty
tautology that “Venus is Venus”.

Logic, trying to capture correctness of reasoning and conceptual con-
structions, might be expected to address the conceptual corner of the above
triangle, the connotations or intensions. Indeed, this has been the predom-
inant attitude and many attempts have been made to design a “universal
language of thought” in which one could speak directly about the concepts
and their interrelations. Unfortunately, the concept of concept is not obvi-
ous at all and such attempts never reached any universal consensus. One
had to wait until a more tractable way of speaking of and modeling concepts
become available. The emergence of modern mathematical logic coincides
with the successful coupling of logical language with the precise statement
of its meaning in terms of extension. Modern logic still has branches of
intensional logic, but its main tools are of extensional nature.

B.4. Modalities

In chapter 9 of De Interpretatione, Aristotle discusses the assertion

There will be a sea battle tomorrow.

The problem is that, at the moment when it is made, it does not seem to
have any definite truth value – whether it is true or false will become clear
tomorrow but until then it is possible that it will be the one as well the other.
This is another example (besides the liar paradox) indicating that adopt-
ing the principle of excluded middle, i.e., considering every proposition as
having always only one of two possible truth values, may be insufficient.

Besides studying the syllogisms, medieval logicians, having developed
the theory of supposition, incorporated into it modal factors. As neces-
sity and possibility are the two basic modalities, their logical investigations
reflected and augmented the underlying theological and ethical disputes
about God’s omnipotence and human freedom. The most important devel-
opments in modal logic occurred in the face of such questions as:

(1) whether statements about future contingent events are now true or false
(the question originating from Aristotle),

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 13

(2) whether humans can know in advance future contingent events, and
(3) whether God can know such events.

One might distinguish the more onotological character of the first problem
from the more epistemic flavour of the two latter, but in all three cases
logical modality is linked with time. Thus, for instance, Peter Aureoli
(12th/13th century) held that if something is B (for some predicate B)
but could be not-B, i.e., is not necessarily B, then it might change, in the
course of time, from being B to being not-B.

As in the case of categorical propositions, important issues here could
hardly be settled before one had a clearer idea concerning the kinds of
objects or states of affairs modalities are supposed to describe. In the late
13th century, the link between time and modality was severed by Duns
Scotus who proposed a notion of possibility based purely on the notion
of semantic consistency. “Possible” means here logically possible, that is,
not involving contradiction. This conception was radically new and had
a tremendous influence all the way down to the 20th century. Shortly
afterward, Ockham developed an influential theory of modality and time
which reconciled the claim that every proposition is either true or false
with the claim that certain propositions about the future are genuinely
contingent.

Duns Scotus’ ideas were revived in the 20th century, starting with the
work of Jan Lukasiewicz who, pondering over Aristotle’s assertion about
tomorrow’s sea battle, introduced 3-valued logic – a proposition may be
true, or false, or else it may have a third, “undetermined” truth value.
Also the “possible worlds” semantics of modalities, introduced by 19 years
old Saul Kripke in 1959 (reflecting some ideas of Leibniz and reformulating
some insights of Tarski and Jónsson), was based on Scotus’ combination of
modality with consistency. Today, modal and many-valued logics form a
dynamic and prolific field, applied and developed equally by philosophers,
mathematicians and computer scientists.

C. Logic – a symbolic language

Logic’s preoccupation with concepts and reasoning begun gradually to
put more and more severe demands on the appropriate and precise repre-
sentation of the used terms. We saw that syllogisms used fixed forms of
categorical statements with variables – A, B, etc. – representing arbitrary
terms (or objects). Use of variables was indisputable contribution of Aristo-
tle to the logical, and more generally mathematical notation. We also saw

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

14 Introduction to Logic

that Stoics introduced analogous variables standing for propositions. Such
notational tricks facilitated more concise, more general and more precise
statement of various logical facts.

Following the Scholastic discussions of connotation vs. denotation, logi-
cians of the 16th century felt the increased need for a more general logical
language. One of the goals was the development of an ideal logical language
that would naturally express ideal thought and be more precise than natu-
ral language. An important motivation underlying such attempts was the
idea of manipulation, in fact, symbolic or even mechanical manipulation of
arguments represented in such a language. Aristotelian logic had seen itself
as a tool for training “natural” abilities at reasoning. Now one would like
to develop methods of thinking that would accelerate or improve human
thought or even allow its replacement by mechanical devices.

Among the initial attempts was the work of Spanish soldier, priest and
mystic Ramon Lull (1235-1315) who tried to symbolize concepts and de-
rive propositions from various combinations of possibilities. He designed
sophisticated mechanisms, known as “Lullian circles”, where simple facts,
noted on the circumferences of various discs, could be combined by ap-
propriately rotating the discs, providing answers to theological questions.
The work of some of his followers, Juan Vives (1492-1540) and Johann Al-
sted (1588-1683) represents perhaps the first systematic effort at a logical
symbolism.

Some philosophical ideas in this direction occurred in 17th century
within Port-Royal – a group of anticlerical Jansenists located in Port-Royal
outside Paris, whose most prominent member was Blaise Pascal (1623-
1662). Elaborating on the Scholastical distinction between intension, or
comprehension, and extension, Pascal introduced the distinction between
real and nominal definitions. Real definitions aim at capturing the actual
concept; they are descriptive and state the essential properties. “Man is
a rational animal” attempts to give a real definition of the concept ‘man’,
capturing man’s essence. Nominal definitions merely stipulate the conven-
tions by which a linguistic term is to be used, referring to specific items.
“By monoid we understand a set with a unary operation” is a nominal
definition introducing the convention of using a particular word, “monoid”,
for a given concept. The distinction nominal vs. real goes back to the
discussions of the 14th century between the nominalism and realism with
respect to the nature of universals. But Port-Royal’s distinction, accompa-
nied by the emphasis put on usefulness of nominal definitions (in particular,
in mathematics), resonated in wide circles, signaling a new step on the line

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 15

marked earlier by the material supposition of the Scholastic theory – the
use of language becomes more and more conscious and explicit. Although
the Port-Royal logic itself contained no symbolism, the philosophical foun-
dation for using symbols by nominal definitions was nevertheless laid.

C.1. The “universally characteristic language”

The goal of a universal language had already been suggested by Descartes
(1596-1650) – firstly, as a uniform method for any scientific inquiry and
then, for mathematics, as a “universal mathematics”. It had also been
discussed extensively by the English philologist George Dalgarno (c. 1626-
87) and, for mathematical language and communication, by the French
algebraist François Viète (1540-1603). But it was Gottfried Leibniz (1646-
1716), who gave this idea the most precise and systematic expression. His
“lingua characteristica universalis” was an ideal that would, first, notation-
ally represent concepts by displaying the more basic concepts of which they
were composed, and second, represent (in the manner of graphs or pictures,
“iconically”) the concept in a way that could be easily grasped by readers,
no matter what their native tongue. Leibniz studied and was impressed
by the Egyptian and Chinese picturelike symbols for concepts. Although
we no longer use his notation, many items captured by it re-appear two
centuries later in logical texts.

C.2. Calculus of reason

Universal language seems a necessary precondition for another goal which
Leibniz proposed for logic. A “calculus of reason” (calculus ratiocinator),
based on appropriate symbolism, would

involve explicit manipulations of the symbols according to estab-
lished rules by which either new truths could be discovered or pro-
posed conclusions could be checked to see if they could indeed be
derived from the premises.

Reasoning could then take place in the way large sums are done – mechan-
ically or algorithmically – and thus not be subject to individual mistakes.
Such derivations could be checked by others or performed by machines, a
possibility that Leibniz seriously contemplated. Leibniz’ suggestion that
machines could be constructed to draw valid inferences or to check deduc-
tions was followed up in the 19th century by Charles Babbage, William
Stanley Jevons, Charles Sanders Peirce and his student Allan Marquand.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

16 Introduction to Logic

The symbolic calculus that Leibniz devised was motivated by his view
that most concepts were composite: they were collections or conjunctions
of other more basic concepts. Symbols (letters, lines, or circles) were then
used to stand for concepts and their relationships. This resulted in what
is intensional rather than an extensional logic – one whose terms stand for
properties or concepts rather than for the things having these properties.
Leibniz’ basic notion of the truth of a judgment was that

the concepts making up the predicate are “included in” the concept
of the subject.

For instance, the judgment ‘A zebra is striped and a mammal.’ is true
because the concepts forming the predicate ‘striped-and-mammal’ are “in-
cluded in” the concept (all possible predicates) of the subject ‘zebra’.

What Leibniz symbolized as A∞B, or what we would write today as
A = B, was that all the concepts making up concept A also are contained
in concept B, and vice versa.

Leibniz used two further notions to expand the basic logical calculus. In
his notation, A⊕B∞C indicates that the concepts in A together with those
in B wholly constitute those in C. Today, we might write this as A+B = C
or A ∨B = C – if we keep in mind that A,B, and C stood for concepts or
properties, not for individual things nor sets thereof. Leibniz also used the
juxtaposition of terms, AB∞C (which we might write as A ∧ B = C) to
signify that all the concepts in both A and B constitute the concept C.

A universal affirmative judgment, such as “Every A is B,” becomes in
Leibniz’ notation A∞AB. This equation states that the concepts included
in the concepts of both A and B are the same as those in A.

The syllogism Barbara:
Every A is B; every B is C; so every A is C,

becomes the sequence of equations: A∞AB; B∞BC; so A∞AC.

Notice that this conclusion can be derived from the premises by two simple
algebraic substitutions and the associativity of logical multiplication.

1. A ∞ AB Every A is B
2. B ∞ BC Every B is C

(1 + 2) A ∞ ABC
(1) A ∞ AC therefore : Every A is C

(C.1)

As many early symbolic logics, including many developed in the 19th cen-
tury, Leibniz’ system had difficulties with negative and particular state-
ments (A.2.1). The treatment of propositional logic was limited and did

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 17

not include any formalisation of relations nor of quantified statements. Only
later Leibniz became keenly aware of the importance of relations and re-
lational inferences. Although Leibniz might seem to deserve the credit for
great originality in his symbolic logic – especially in his equational, alge-
braic logic – such insights were relatively common to mathematicians of the
17th and 18th centuries familiar with the traditional syllogistic logic. For
instance, in 1685 Jakob Bernoulli published a work on the parallels of logic
and algebra, giving some algebraic renderings of categorical statements.
Later symbolic works of Lambert, Ploucquet, Euler, and even Boole – all
apparently uninfluenced by Leibniz and Bernoulli – suggest the extent to
which these ideas were apparent to the best mathematical minds of the day.

D. 19th and 20th Century – mathematization of logic

Leibniz’ system and calculus mark the appearance of a formalized, symbolic
language which is prone to mathematical manipulation. A bit ironically,
emergence of mathematical logic marks also this logic’s divorce, or at least
separation, from philosophy. Of course, the discussions of logic have contin-
ued both among logicians and philosophers but from now on these groups
form two increasingly distinct camps. Not all questions of philosophical
logic are important for mathematicians and most of results of mathemati-
cal logic have rather technical character which is not always of interest for
philosophers.

In this short presentation we have to ignore some developments which
did take place between 17th and 19th century. It was only in the 19th
century that the substantial contributions were made which created modern
logic. Perhaps the most important among those in the first half of the
19th century, was the work of George Boole (1815-1864), based on purely
extensional interpretation. It was a real break-through in the old dispute
intensional vs. extensional. It did not settle the issue once and for all – for
instance Frege, “the father of first-order logic” was still in favor of concepts
and intensions; and in modern logic there is still a branch of intensional
logic. However, Boole’s approach was so convincingly precise and intuitive
that it was later taken up and become the basis of modern – extensional or
set theoretical – semantics.

D.1. George Boole

Although various symbolic or extensional systems appeared earlier, Boole
formulated the first logic which was both symbolic and extensional. Most

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

18 Introduction to Logic

significantly, it survived the test of time and is today known to every student
of mathematics as well as of computer science or of analytical philosophy
as the propositional logic (earlier also as logic or algebra of classes). Boole
published two major works, The Mathematical Analysis of Logic in 1847
and An Investigation of the Laws of Thought in 1854. It was the first of
these two works that had the deeper impact. It arose from two streams
of influence: the English logic-textbook tradition and the rapid growth
of sophisticated algebraic arguments in the early 19th century. German
Carl Freidrich Gauss, Norwegian Niels Henrik Abel, French Évariste Galois
were major figures in this theoretical appreciation of algebra at that time,
represented also in Britain by Duncan Gregory and George Peacock. Such
conceptions gradually evolved into abstract algebras of quaternions and
vectors, into linear algebra, Galois theory and Boolean algebra itself.

Boole used variables – capital letters – for the extensions of terms, to
which he referred as classes of “things”. This extensional perspective made
the Boolean algebra a very intuitive and simple structure which, at the
same time, captured many essential intuitions. The universal class – called
“the Universe” – was represented by the numeral “1”, and the empty class
by “0”. The juxtaposition of terms (for example, “AB”) created a term
referring to the intersection of two classes. The addition sign signified the
non-overlapping union; that is, “A+B” referred to the entities in A or in B;
in cases where the extensions of terms A and B overlapped, the expression
was “undefined.” For designating a proper subclass of a class A, Boole used
the notation “vA”. Finally, he used subtraction to indicate the removing
of terms from classes. For example, “1 − A” indicates what one would
obtain by removing the elements of A from the universal class – that is, the
complement of A (relative to the universe, 1).

Boole offered a systematic, but not rigorously axiomatic, presentation.
His basic equations included:

1A = A 0A = 0
0 + 1 = 1 A + 0 = A

AA = A (idempotency)
A(BC) = (AB)C (associativity)

AB = BA A + B = B + A (commutativity)
A(B + C) = AB + AC A + (BC) = (A + B)(A + C) (distributivity)
A universal affirmative judgment, such as “All A’s are B’s,” can be written
using the proper subclass notation as A = vB. But Boole could write it also
in two other ways: A = AB (as did Leibniz) or A(1 − B) = 0. These two

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 19

interpretations greately facilitate derivation of syllogisms, as well as other
propositional laws, by algebraic substitution. Assuming the distributivity
A(B − C) = AB −AC, they are in fact equivalent:

AB = A assumption
0 = A−AB −AB
0 = A(1−B) distributivity

The derivation in the opposite direction (from 0 = A(1 − B) to A = AB)
follows by repeating the steps in the opposite order with adding, instead of
subtracting, AB to both sides in the middle. In words, the fact that all A’s
are B’s and that there are no A’s which are not B’s are equivalent ways
of stating the same, which equivalence could be included among Aristotle’s
conversions, A.2.2. Derivations become now explicitly controlled by the
applied axioms. For instance, derivation (C.1) becomes

A = AB assumption
B = BC assumption
A = A(BC) substitution BC for B

= (AB)C associativity
= AC substitution A for AB

(D.1)

In contrast to earlier symbolisms, Boole’s was extensively developed, ex-
ploring a large number of equations and techniques. It was convincingly
applied to the interpretation of propositional logic – with terms standing
for occasions or times rather than for concrete individual things. Seen in
historical perspective, it was a remarkably smooth introduction of the new
“algebraic” perspective which dominated most of the subsequent develop-
ment. The Mathematical Analysis of Logic begins with a slogan that could
serve as the motto of abstract algebra, as well as of much of formal logic:

the validity of the processes of analysis does not depend upon the
interpretation of the symbols which are employed, but solely upon
the laws of combination.

D.1.1. Further developments of Boole’s algebra; de Morgan

Boole’s approach was very appealing and quickly taken up by others. In
the 1860s Peirce and Jevons proposed to replace Boole’s “+” with a simple
inclusive union: the expression “A + B” was to be interpreted as the class
of things in A, in B, or in both. This results in accepting the equation
“1 + 1 = 1”, which is not true of the natural numbers. Although Boole
accepted other laws which do not hold in the algebra of numbers (e.g.,

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

20 Introduction to Logic

the idempotency of multiplication A2 = A), one might conjecture that his
interpretation of + as disjoint union tried to avoid also 1 + 1 = 1.

At least equally important figure of British logic in the 19th century as
Boole was Augustus de Morgan (1806-1871). Unlike most logicians in the
United Kingdom, including Boole, de Morgan knew the medieval logic and
semantics, as well as the Leibnizian symbolic tradition. His erudition and
work left several lasting traces in the development of logic.

In the paper published in 1846 in the Cambrdige Philosophical Transac-
tions, De Morgan introduced the enormously influential notion of a possibly
arbitrary and stipulated “universe of discourse”. It replaced Boole’s origi-
nal – and metaphysically a bit suspect – universe of “all things”, and has
become an integral part of the logical semantics. The notion of a stipu-
lated “universe of discourse” means that, instead of talking about “The
Universe”, one can choose this universe depending on the context. “1” may
sometimes stand for “the universe of all animals”, and in other contexts for
a two-element set, say “the true” and “the false”. In the former case, the
derivation (D.1) of A = AC from A = AB;B = BC represents an instance
of the Barbara syllogism “All A’s are B’s; all B’s are C’s; therefore all A’s
are C’s”. In the latter case, the equations of Boolean algebra yield the laws
of propositional logic where “A + B” corresponds to disjunction “A or B”,
and juxtaposition “AB” to conjunction “A and B”. With this reading,
the derivation (D.1) represents another reading of Barbara, namely: “If A
implies B and B implies C, then A implies C”.

Negation of A is simply its complement 1−A, and is obviously relative
to the actual universe. (It is often written as A.) De Morgan is known to
all students of elementary logic primarily through the de Morgan laws:

AB = A + B and dually A B = A + B.

Using these laws and some additional, easy facts, like BB = 0, B = B,
we can derive the following reformulation of the reductio ad absurdum “If
every A is B then every not-B is not-A”:

A = AB
A−AB = 0 −AB

A(1−B) = 0 distributivity over −
AB = 0 B = 1−B

A + B = 1 deMorgan
B(A + B) = B B·

(B)(A) + BB = B distributivity
(B)(A) + 0 = B BB = 0

(B)(A) = B X + 0 = X

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 21

I.e., if “Every A is B”, A = AB, than “every not-B is not-A”, B = (B)(A).
Or: if “A implies B” then “if B is false (absurd) then so is A”.

A series of essays and papers on logic by de Morgan had been published
from 1846 to 1862 under the title On the Syllogism. (The title indicates his
devotion to the philosophical tradition of logic and reluctance to turn it into
a mere branch of mathematics). The papers from 1850s are of considerable
significance, containing the first extensive discussion of quantified relations
since late medieval logic and Jung’s massive Logica hamburgensis of 1638.

Boole’s elegant theory had one serious defect, namely, its inability to
deal with relational inferences. De Morgan’s first significant contribution
to this field was made independently and almost simultaneously with the
publication of Boole’s first major work. In 1847 de Morgan published his
Formal Logic; or, the Calculus of Inference, Necessary and Probable. Al-
though his symbolic system was clumsy and did not show the appreciation
of abstract algebra that Boole’s did, it gave a treatment of relational ar-
guments which was later refined by himself and others. His paper from
1859, On Syllogism IV and the Logic of Relations, started the sustained
interest in the study of relations and their properties. De Morgan observed
here that all valid syllogisms could be justified by the copula ‘is’ being a
transitive and convertible (as he calls what today would be named “sym-
metric”) relation, i.e., one for which A ∼ B and B ∼ C implies A ∼ C
and, whenever A ∼ B then also B ∼ A. Sometimes the mere transitivity
suffices. The syllogism Barbara is valid for every transitive relation, e.g., if
A is greater than B and B is greater than C then A is greater than C. In
some other cases, also symmetry is needed as, for instance, to verify Cesare
of figure II. It says that: if P '∼ M and S ∼ M then S '∼ P . For assuming
otherwise, if S ∼ P then also P ∼ S by symmetry which, together with
S ∼ M , implies by transitivity that P ∼ M .

De Morgan made the point, taken up later by Peirce and implicitly
endorsed by Frege, that relational inferences are not just one type reasoning
among others but are the core of mathematical and deductive inference and
of all scientific reasoning. Consequently (though not correctly, but in the
right spirit) one often attributes to de Morgan the observation that all of
Aristotelian logic was helpless to show the validity of the inference,

All horses are animals; therefore,
every head of a horse is the head of an animal.

(D.2)

This limitation concerns likewise propositional logic of Boole and his fol-
lowers. From today’s perspective, this can be seen more as the limitation
of language, which does not provide means for expressing predication. Its

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

22 Introduction to Logic

appropriate (and significant) extension allows to incorporate analysis of
relational arguments. Such an extension, which initially seemed to be a
distinct, if not directly opposite approach, was proposed by the German
Gottlob Frege, and is today known as first-order predicate logic.

D.2. Gottlob Frege

In 1879 the young Gottlob Frege (1848-1925) published perhaps the most
influential book on symbolic logic in the 19th century, Begriffsschrift (“Con-
ceptual Notation”) – the title taken from Trendelenburg’s translation of
Leibniz’ notion of a characteristic language. Frege gives here a rigorous
presentation of the role and use of quantifiers and predicates. Frege was
apparently familiar with Trendelenburg’s discussion of Leibniz but was oth-
erwise ignorant of the history of logic. His book shows no trace of the in-
fluence of Boole and little trace of the older German tradition of symbolic
logic. Being a mathematician whose speciality, like Boole’s, had been calcu-
lus, he was well aware of the importance of functions. These form the basis
of his notation for predicates and he does not seem to have been aware of
the work of de Morgan and Peirce on relations or of older medieval treat-
ments. Contemporary mathematical reviews of his work criticized him for
his failure to acknowledge these earlier developments, while reviews written
by philosophers chided him for various sins against reigning idealist concep-
tions. Also Frege’s logical notation was idiosyncratic and problematically
two-dimensional, making his work hardly accessible and little read. Frege
ignored the critiques of his notation and continued to publish all his later
works using it, including his – also little-read – magnum opus, Grundgesetze
der Arithmetik (1893-1903; “The Basic Laws of Arithmetic”).

Although notationally cumbersome, Frege’s system treated precisely
several basic notions, in the way to be adopted by later logicians. “All
A’s are B’s” meant for Frege that the concept A implies the concept B, or
that to be A implies also to be B. Moreover, this applies to arbitrary x
which happens to be A. Thus the statement becomes: “∀x : A(x) → B(x)”,
where the quantifier ∀x means “for all x” and “→” denotes implication. The
analysis of this, and one other statement, can be represented as follows:

Every horse is an animal =

Every x which is a horse is an animal

Every x if it is a horse then it is an animal

∀x : H(x) → A(x)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 23

Some animals are horses =

Some x’s which are animals are horses

Some x’s are animals and are horses

∃x : A(x) ∧ H(x)

This was not the way Frege would write it but this was the way he would put
it and think of it. The Barbara syllogism will be written today in first-order
logic following exactly Frege’s analysis, though not his notation, as:(

(∀x : A(x) → B(x)) ∧ (∀x : B(x) → C(x))
)
→ (∀x : A(x) → C(x)).

It can be read as: “If every x which is A is also B, and every x which is
B is also C; then every x which is A is also C.” Judgments concerning
individuals can be obtained from the universal ones by substitution. For
instance:

Hugo is Hugo is
a horse; and Every horse is an animal; So: an animal.

H(Hugo) ∧ (∀v : H(v) → A(v))
H(Hugo) → A(Hugo) → A(Hugo)

(D.3)

The relational arguments, like (D.2) about horse-heads and animal-heads,
can be derived after we have represented the involved statements as follows:

y is a head of some horse =
there is a horse and y is its head

there is an x which is a horse and y is the head of x
∃x : H(x) ∧ Hd(y, x)

y is a head of some animal =
∃x : A(x) ∧ Hd(y, x)

Now, the argument (D.2) will be given the form as in the first line and
(very informal) treatement as in the following ones:

∀v(H(v) → A(v)) → ∀y
(
∃x(H(x) ∧ Hd(y, x)) → ∃z(A(z) ∧ Hd(y, z))

)

assume horses are animals and take an arbitrary horse-head y, e.g., a :

∀v(H(v) → A(v)) → ∃x
(
H(x) ∧ Hd(a, x)

)
→ ∃z

(
A(z) ∧ Hd(a, z)

)

assume horses are animals and that there is a horse h whose head is a :

∀v(H(v) → A(v)) → H(h) ∧ Hd(a, h) → ∃z
(
A(z) ∧ Hd(a, z)

)

but if horses are animals then h is an animal by (D.3),
so A(h) ∧ Hd(a, h)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

24 Introduction to Logic

According to the last line, a is an animal-head and since a was an arbitrary
horse-head, the claim follows.

In his first writings after the Begriffsschrift, Frege defended his own
system and attacked bitterly Boolean methods, remaining apparently igno-
rant of the improvements by Peirce, Jevons, Schröder, and others. His main
complaint against Booleans was the artificiality of their notation based on
numerals and the failure to develop a genuinely logical notation.

In 1884 Frege published Die Grundlagen der Arithmetik (“The Foun-
dations of Arithmetic”) and then several important papers on a series of
mathematical and logical topics. After 1879 he developed his position that

all of mathematics could be derived from basic logical laws – a
position later known as logicism in the philosophy of mathematics.

(D.4)

This view paralleled similar ideas about the reducibility of mathematics to
set theory from roughly the same time. But Frege insisted on keeping them
distinct and always stressed that his was an intensional logic of concepts, not
of extensions and classes. His views are often marked by hostility to British
extensional logic, like that of Boole, and to the general English-speaking
tendencies toward nominalism and empiricism. In Britain, however, Frege’s
work was much admired by Bertrand Russell who promoted Frege’s logicist
research program – first in the Introduction to Mathematical Logic (1903),
and then with Alfred North Whitehead, in Principia Mathematica (1910-
13). Still, Russell did not use Frege’s notation and his development of
relations and functions was much closer to Schröder’s and Peirce’s than to
Frege’s. Frege’s hostility to British tradition did not prevent him from ac-
knowledging the fundamental importance of Russell’s paradox, which Rus-
sell communicated to him in a letter in 1902. The paradox seemed to Frege
a shattering blow to his goal of founding mathematics and science in an in-
tensional logic and he expressed his worries in an appendix, hastily added
to the second volume of Die Grundgesetze der Arithmetik, 1903, which was
in press as Russell’s letter arrived.

It did not take long before also other mathematicians and logicians
started to admire Frege’s care and rigour. His derivations were so scrupu-
lous and precise that, although he did not formulate his theories axiomat-
ically, he is sometimes regarded as a founder of the modern, axiomatic
tradition in logic. His works had an enormous impact on the mathemat-
ical and philosophical logicians of the 20th century, especially, after their
translation into English in the 1960s.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 25

D.3. Set theory

As we have seen, the extensional view of concepts began gradually winning
the stage with the advances of Boolean algebra. Set theory, founded by Ger-
man Georg Cantor (1845-1918), addresses collections – of numbers, points
and, in general, of arbitrary elements, also of other collections – and is thus
genuinely extensional. Besides this difference from the traditional logic,
oriented more towards the intensional pole of the opposition, the initial
development of set theory was completely separate from logic. But already
in the first half of the 20th century, symbolic logic developed primarily in
interaction with the extensional principles of set theory. Eventually, even
Frege’s analyses merged with the set theoretical approach to the semantics
of logical formalism.

Booleans had used the notion of a set or a class, but did develop tools
for dealing with actually infinite classes. The conception of actual infini-
ties, as opposed to merely potential, unlimited possibilities, was according
to Aristotle a contradiction and most medieval philosophers shared this
view. It was challenged in Renaissance, e.g., by Galileo, and then also by
Leibniz. The problem had troubled 19th century mathematicians, like Carl
Friedrich Gauss and the Bohemian priest Bernhard Bolzano, who devoted
his Paradoxien des Unendlichen (1851; “Paradoxes of the Infinite”) to the
difficulties posed by infinities. De Morgan and Peirce had given technically
correct characterizations of infinite domains but these were not especially
useful and went unnoticed in the German mathematical world. And the
decisive development found place in this world.

Infinity – as the “infinitely small”, infinitesimal (coming from the in-
finitesimus which, in the Modern Latin of the 17th century, referred to the
“infinite-th” element in a series) – entered the mathematical landscape with
the integral and derivative calculus, introduced independently by Leibniz
and Newton in the 1660s. Infinitesimals have been often severely criticized
(e.g., by bishop Berkeley, as the “ghosts of departed quantities”) and only in
the late 19th century obtained solid mathematical foundations in the work
of the French baron Augustin-Louis Cauchy and German Karl Weierstraß.
Building now on their discussions of the foundations of the infinitesimals,
Germans Georg Cantor and Richard Dedekind developed methods for deal-
ing with the infinite sets of the integers and points on the real number line.
First Dedekind and then Cantor used Bolzano’s technique of measuring
sets by one-to-one mappings. Defining two sets to be “equinumerous” iff

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

26 Introduction to Logic

they are in one-to-one correspondence,1 Dedekind gave in Was sind und
was sollen die Zahlen? (1888; “What Are and Should Be the Numbers?”)
a precise definition of an infinite set:

A set is infinite if and only if the whole set can be put into one-to-
one correspondence with its proper subset.

This looks like a contradiction because, as long as we think of finite sets,
it indeed is. But take the set of all natural numbers, N = {0, 1, 2, 3, 4, ...}
and remove from it 0 getting N1 = {1, 2, 3, 4...}. The functions f : N1 → N,
given by f(x) = x − 1, and f1 : N → N1, given by f1(x) = x + 1, are
mutually inverse and establish a one-to-one correspondence between N and
its proper subset N1.

A set A is said to be “countable” iff it is equinumerous with N. One of
the main results of Cantor was demonstration that there are uncountable
infinite sets, in fact, sets “arbitrarily infinite”. (For instance, the set R of
real numbers was shown by Cantor to be “genuinely larger” than N.)

Cantor developed the basic outlines of a set theory, especially in his
treatment of infinite sets and the real number line. But he did not worry
much about rigorous foundations for such a theory nor about the precise
conditions governing the concept of a set and the formation of sets. In
particular, he did not give any axioms for his theory. The initial attempts
to formulate explicitly precise principles, not to mention rigorous axioma-
tizations, of set theory faced serious difficulties posed by the paradoxes of
Russell and the Italian mathematician Cesare Burali-Forti (1897). Some
passages in Cantor’s writings suggest that he was aware of the potential
problems, but he did not addressed them in a mathematical manner and,
consequently, did not propose any technically satisfactory way of solving
them. They were first overcome in the rigorous, axiomatic set theory –
initially, by Ernst Zermelo in 1908, and in its final version of Ernst Zermelo
and Abraham Fraenkel in 1922.

D.4. 20th century logic

The first half of the 20th century was the most active period in the history
of logic. The late 19th century work of Frege, Peano and Cantor, as well
as Peirce’s and Schröder’s extensions of Boole’s insights, had broken new
ground and established new international communication channels. A new
alliance – between logic and mathematics – emerged, gathering various lines
1The abbreviation “iff” stands for two-ways implication “if and only if”.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 27

of the late 19th century’s development. Common to them was the effort to
use symbolic techniques, sometimes called “mathematical” and sometimes
“formal”. Logic became increasingly mathematical in two senses. On the
one hand, it attempted to use symbolic methods that had come to dominate
mathematics, addressing the questions about

(1) the applications of the axiomatic method,
(2) a consistent theory of properties/relations (or sets),
(3) a logic of quantification.

On the other hand, it served the analysis and understanding of mathemat-
ics, becoming a tool in

(4) defining mathematical concepts,
(5) precisely characterizing mathematical systems, and
(6) describing the nature of mathematical proof.

This later role of logic – as a meta-mathematical and eventually founda-
tional tool – followed Frege’s logicism and dictated much of the development
in the first decades of the 20th century.

D.4.1. Logicism

An outgrowth of the theory of Russell and Whitehead, and of most mod-
ern set theories, was a stronger articulation of logicism, according to which
mathematical operations and objects are really purely logical constructions,
(D.4). Consequently, the question what exactly pure logic is and whether,
for example, set theory is really logic in a narrow sense has received in-
creased attention. There seems little doubt that set theory is not only logic
in the way in which, for example, Frege viewed it, i.e., as a formal theory
of properties. Cantorian set theory engenders a large number of transfinite
sets, i.e., nonphysical, nonperceived abstract objects. For this reason it
has been regarded – by some as suspiciously, by others as endearingly –
Platonistic. Still others, such as Quine, have only pragmatically endorsed
set theory as a convenient – perhaps the only – way of organizing the
whole world around us, especially if this world contains some elements of
transfinite mathematics. The controversies about the status of infinite sets
notwithstanding, it is thanks to them that, today, set theory as a foundation
for various (or even all) mathematical disciplines is rather incontroversial.
Mathematical theorems – whether in finitary discrete mathematics, or else
in topology or analysis – can, at least in principle, be formulated and proven
in the language of set theory.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

28 Introduction to Logic

But the first decades of the 20th century displayed a strong finitist Zeit-
geist, comparable to the traditional scepticism against actual infinities, and
embodied now in various criticisms of transfinite set theory. Already Kro-
necker in 19th century, opposing Weierstraß and Cantor, declared that God
made only integers, while everything else – in particular, of infinitary char-
acter – is the work of man. The same spirit, if not technical development,
was represented by the constructivism (known as intuitionism) of Dutch
Brouwer and Heyting, or by formalism searching for a finitary represen-
tation of mathematics in Hilbert’s program, named so after the German
mathematician David Hilbert (1862-1943). This program asked for an ax-
iomatization of the whole of mathematics as a logical theory in order to
prove formally that it is consistent. Even for those researchers who did not
endorse this logicist program, logic’s goal was closely allied with techniques
and goals in mathematics, such as giving an account of formal systems or of
the ideal nature of nonempirical proof. The logicist and formalist program
stimulated much activity in the first decades of the 20th century. It waned,
however, after Austrian Kurt Gödel demonstrated in 1931 that logic could
not provide a foundation for mathematics nor even a complete account of
its formal systems. Gödel proved namely a mathematical theorem which
interpreted in natural language says something like:

Gödel’s (first) incompleteness theorem
Any logical theory, satisfying reasonable and rather weak condi-
tions, cannot be consistent and, at the same time, prove all its
logical consequences.

Thus mathematics can not be reduced to a provably complete and consis-
tent logical theory. An interesting fact is that the proof of this theorem
constructs a sentence analogous to the liar paradox. Gödel showed that
in any formal theory satisfying his conditions, one can write the sentence
“I am not provable in this theory”, which cannot be provable unless the
theory is inconsistent.

In spite of this negative result, logic has remained closely allied with
mathematical foundations and principles. In particular, it has become a
mathematical discipline. Traditionally, its task has been understanding
of valid arguments of all sorts, in particular, those formulated in natu-
ral language. It had developed the tools needed for describing concepts,
propositions, and arguments and – especially, as the “logical patterns” or
“forms” – for assessing argument’s quality. During the first decades of the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 29

20th century, logic become gradually more and more occupied with the his-
torically somewhat foreign role of analyzing arguments in only one field,
mathematics. The philosophical and linguistic task of developing tools for
analyzing arguments in some natural language, or else for analyzing propo-
sitions as they are actually (and perhaps necessarily) conceived by humans,
was almost completely lost. This task was, to some extent, taken over by
analytical philosophy and by scattered efforts attempting to reduce basic
principles of other disciplines – such as physics, biology, and even music –
to axioms, usually, in set theory or first-order logic. But even if they might
have shown that it could be done, at least in principle, they were not very
enlightening: one does not better or more usefully understand a bacteria,
an atom or an animal by being told that it is a certain set or a (model of)
certain axiomatic theory. Thus, such efforts, at their zenith in the 1950s
and ’60s, had virtually disappeared in the ’70s. Logic has become a formal
discipline with its relations to natural, human reasoning seriously severed.
Instead, it found multiple applications in the field which originated from
the same motivations and had been germinating underneath the develop-
ments of logic – the field of purely formal manipulations and mechanical
reasoning, arising from the same finitist Zeitgeist of the first half of the
20th century: computer science. Its emergence from and dependence on
logic will become even clearer after we have described the basic elements of
modern, formal logical systems.

E. Modern Symbolic Logic

Already Aristotle and Euclid were aware of the notion of a rigorous logical
theory, in the sense of a – possibly axiomatic – specification of its theorems.
Then, in the 19th century, the crises in geometry could be credited with
renewing the attention for very careful presentations of these theories and
other aspects of formal systems.

Euclid designed his Elements around 10 axioms and postulates which
one could not resist accepting as obvious (e.g., “an interval can be pro-
longed indefinitely”, “all right angles are equal”). Assuming their truth, he
deduced some 465 theorems. The famous postulate of the parallels was

The fifth postulate
If a straight line falling on two straight lines makes the interior
angles on the same side less than the two right angles, the two
straight lines, if produced indefinitely, meet on that side on which
the angles are less than the two right angles.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

30 Introduction to Logic

This postulate, even if reformulated, was somehow less intuitive and more
complicated than others. Through hundreds of years mathematicians had
unsuccessfully tried to derive it from the others until, in the 19th century,
they started to reach the conclusion that it must be independent from the
rest. This meant that one might as well drop it! That was done inde-
pendently by the Russian Nicolai Lobachevsky in 1829 and the Hungarian
János Bolayi in 1832. (Gauss, too, considered this move, but he never
published his ideas on this subject.) What was left was a new axiomatic
system. The big question about what this subset of axioms possibly de-
scribed was answered by Lobachevsky and Bolayi who created its models,
which satisfied all the axioms except the fifth – the first non-Euclidean ge-
ometries. This first exercise in what in the 20th century became “model
theory”, can be considered the beginning of modern axiomatic approach.
For the discovery of non-Euclidean geometries unveiled the importance of
admitting the possibility of manipulating the axioms which, perhaps, are
not given by God and intuition but may be chosen with some freedom.

E.1. Formal logical systems: syntax.

Although set theory and the type theory of Russell and Whitehead were
considered to be logic for the purposes of the logicist program, a narrower
sense of logic re-emerged in the mid-20th century as what is usually called
the “underlying logic” of these systems. It does not make any existential
assumptions (as to what kinds of mathematical objects do or do not ex-
ist) and concerns only rules for propositional connectives, quantifiers, and
nonspecific terms for individuals and predicates. (An interesting issue is
whether the privileged relation of identity, denoted “=”, is a part of logic:
most researchers have assumed that it is.) In the early 20th century and
especially after Alfred Tarski’s (1901-1983) work in the 1920s and ’30s, a
formal logical system was regarded as being composed of three parts, all of
which could be rigorously described:

(1) the syntax (or notation);
(2) the rules of inference (or the patterns of reasoning);
(3) the semantics (or the meaning of the syntactic symbols).

One of the fundamental contributions of Tarski was his analysis of the
concept of ‘truth’ which, in the above three-fold setting is given a precise
treatement as a particular

relation between syntax (language) and semantics (the world).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 31

The Euclidean, and then non-Euclidean geometry were, as a matter of
fact, built as axiomatic-deductive systems (point 2). The other two aspects
of a formal system identified by Tarski were present too, but much less
emphasized: notation was very informal, relying often on drawings; the
semantics was rather intuitive and obvious. Tarski’s work initiated rigorous
study of all three aspects.

E.1.1. The language

First, there is the notation:

the rules of formation for terms and for well-formed formulas in
the logical system.

A formal language is simply a set of words (well formed formulae, wff),
that is, strings over some given alphabet (set of symbols) and is typically
specified by the rules of formation. For instance:

• the alphabet Σ = {!,+,→,−, (,)}
• the rules for forming words of the language L:

– !,+ ∈ L
– if A,B ∈ L then also −A ∈ L and (A → B) ∈ L.

This specification allows us to conclude that, for instance, +, −!, (+ →
−!), −(! → −+) all belong to L, while !+, () or ! → do not.

Previously, notation was often a haphazard affair in which it was un-
clear what could be formulated or asserted in a logical theory and whether
expressions were finite or were schemata standing for infinitely long wffs.
Now, the theory of notation itself became subject to exacting treatment,
starting with the theory of strings of Tarski, and the work of the American
Alonzo Church. Issues that arose out of notational questions include de-
finability of one wff by another (addressed in Beth’s and Craig’s theorems,
and in other results), creativity, and replaceability, as well as the expres-
sive power and complexity of different logical languages (gathered, e.g., in
Chomsky hierarchy).

E.1.2. Reasoning system

The second part of a logical system consists of

the axioms and rules of inference, or other ways of identifying what
counts as a theorem.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

32 Introduction to Logic

This is what is usually meant by the logical “theory” proper: a (typically
recursive) description of the theorems of the theory, including axioms and
every wff derivable from axioms by admitted rules. Using the language L,
one migh, for instance, define the following theory T :

Axioms: i) !

ii) (+→ −!)
iii) (A → −−A)
iv) (−−A → A)

Upper case letters denote variables for which we can substitute ar-
bitrary formulae of our language L.

Rules: R1)
(A → B) ; (B → C)

(A → C)

R2)
(A → B) ; A

B

R3)
(A → B) ; −B

−A

We can now perform symbolic derivations, starting with axioms and ap-
plying the rules, so that correctness can be checked mechanically. For
instance:

iii
(! → −−!)

i
!

R2 −−!

ii
(+→ −!)

R3 −+
iii

(−+ → −−−+)
R2−−−+

(E.1)

Thus, −−−+ is a theorem of our theory, and so is −+ which is obtained
by the (left) subderivation ending with the application of rule R3.

A formal description of a language, together with a specification of a
theory’s theorems (derivable propositions), are often called the “syntax”
of the theory. This may be somewhat misleading when compared to the
practice in linguistics, which would limit syntax to the narrower issue of
grammaticality. The term “calculus” is sometimes chosen to emphasize the
purely syntactic, uninterpreted nature of reasoning system.

E.1.3. Semantics

The last component of a logical system is the semantics for such a theory

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 33

and language, a specification of

what the terms of a theory refer to, and how the basic operations
and connectives are to be interpreted in a domain of discourse,
including truth conditions for the formulae in this domain.

Consider, as an example the rule R1 from the theory T above. It is merely
a “piece of text” and its symbols allow almost unlimited interpretations.
We may, for instance, take A,B,C, ... to denote propositions and → an
implication. (Note how rules R2 and R3 capture then Stoics’ patterns (i)
and (ii) from (A.3), p. 8.) But we may likewise let A,B,C, ... stand for sets
and → for set-inclusion. The following give then examples of applications
of this rule under these two interpretations:

If it’s nice then we’ll leave
If we leave then we’ll see a movie
If it’s nice then we’ll see a movie

{1, 2} ⊆ {1, 2, 3}
{1, 2, 3} ⊆ {1, 2, 3, 5}
{1, 2} ⊆ {1, 2, 3, 5}

The rule is “sound” with respect to these interpretations – when applied
to these domains in the prescribed way, it represents a valid argument. In
fact, R1 expresses transitivity of → and will be sound for every transitive
relation interpreting →. This is just a more formal way of expressing de
Morgan’s observation that the syllogism Barbara is valid for all transitive
relations.

A specification of a domain of objects (de Morgan’s “universe of dis-
course”), and of the rules for interpreting the symbols of a logical language
in this domain such that all the theorems of the logical theory are true is
said to be a “model” of the theory. The two suggested interpretations are
models of rule R1. (To make them models of the whole theory T would
require more work, in particular, finding appropriate interpretation of !,+
and −, such that the axioms become true and all rules sound. For the
propositional case, one could for instance let − denote negation, ! ‘true’
and + ‘false’.)

If we chose to interpret the formulae of L as events and A → B as,
say, “A is independet from B”, the rule would not be sound. Such an
interpretation would not give a model of the theory or, what amounts to
the same, if the theory were applied to this part of the world, we could
not trust its results. The next subsection describes some further concepts
arising with the formal semantics.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

34 Introduction to Logic

E.2. Formal semantics

Formal semantics, or model theory, relates the mere syntax to the whole
of mathematics by connecting the syntactic expressions with potentially
unlimited number of mathematical entities. It is more complex then the
logical syntax alone and has a more complicated history, which often seems
insufficiently understood. Certainly, Frege’s notion that propositions refer
to (bedeuten) “the true” or “the false” – and this for complex proposi-
tions as a function of the truth values of simple propositions – counts as
semantics. This intuition underlies the ancient law of excluded middle and
is likewise reflected in the use of letters for referring to the values 1 and
0, that started with Boole. Although modal propositions and paradoxes
pose severe problems for this view, it dominates most of the logic, perhaps,
because it provides a relatively simple and satisfactory model for a very sig-
nificant portion of mathematical and natural discourse. Medieval theories
of supposition formulated many useful semantic observations. In the 19th
century, both Peirce and Schröder occasionally gave brief demonstrations
of the independence of certain postulates using models in which some pos-
tulates were true, but not others. This was also the technique used by the
inventors of non-Euclidean geometry.

The first significant and general result of a clearly model theoretic char-
acter is usually accepted to be a result discovered by Löwenheim in 1915
and strengthened by Skolem in the 1920s.

Löwenheim-Skolem theorem
A theory that has a model at all, has a countable model.

That is to say, if there exists some model of a theory (i.e., an application of
it to some domain of objects), then there is sure to be one with a domain no
larger than the natural numbers. This theorem is in some ways a shocking
result, since it implies that any consistent formal theory of anything – no
matter how hard it tries to address the phenomena unique to a field such
as biology, physics, or even sets or just real numbers – can just as well be
understood as being about natural numbers: it says nothing more about
the actually intended field than it says about natural numbers.

E.2.1. Consistency

The second major result in formal semantics, Gödel’s completeness theo-
rem of 1930 (see E.2.2 below), required even for its description, let alone
its proof, more careful development of precise metalogical concepts about

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 35

logical systems than existed earlier. One question for all logicians since
Boole, and certainly since Frege, had been:

Is the theory consistent? In its purely syntactic analysis, this
amounts to the question: Is a contradictory sentence (of the form
“A and not-A”) derivable?

In most cases, the equivalent semantic counterpart of this is the question:

Does the theory have a model at all?

For a logical theory, consistency means that a contradictory theorem can-
not be derived in the theory. But since logic was intended to be a theory
of necessarily true statements, the goal was stronger: a theory is Post-
consistent (named after Emil Post) if every theorem is valid – that is, if
no theorem is a contradictory or a contingent statement. (In nonclassical
logical systems, one may define many other interestingly distinct notions
of consistency; these notions were not distinguished until the 1930s.) Con-
sistency was quickly acknowledged as a desired feature of formal systems.
Earlier assumptions about consistency of various theories of propositional
and first-order logic turned out to be correct. A proof of the consistency of
propositional logic was first given by Post in 1921. Although the problem
itself is rather simple, the original difficulties concerned the lack of precise
syntactic and semantic means to characterize consistency. The first clear
proof of the consistency of the first-order predicate logic is found in the
book of David Hilbert and Wilhelm Ackermann, Gründzuge der theoretis-
che Logik (“Principles of theoretical logic”) from 1928. Here, in addition to
a precise formulation of consistency, the main problem was also a rigorous
statement of first-order predicate logic as a formal theory.

Consistency of more complex systems proved elusive. Hilbert had ob-
served that there was no proof that even the Peano postulates (for arith-
metics) were consistent, while Zermelo was concerned with demonstrating
that set theory was consistent. These questions received an answer that was
not what was hoped for. Although Gerhard Gentzen (1909-1945) showed
that Peano arithmetics is consistent, he needed for this purpose stronger
assumptions than those of Peano arithmetics. Thus “true” consistency of
arithmetics still depends on the consistency of the extended system used in
the proof. This system, in turn, can not prove its own consistency and this
is true about any system, satisfying some reasonably weak assumptions.
This is the content of Gödel’s second incompleteness theorem, which put a

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

36 Introduction to Logic

definite end to the Hilbert’s program of using formal logic for proving the
consistency of mathematics.

E.2.2. Completeness

In their book from 1928 Hilbert and Ackermann also posed the question of
whether a logical system and, in particular, first-order predicate logic, was
“complete”, i.e.,

whether every valid proposition – that is, every proposition that is
true in all intended models – is provable in the theory.

In other words, does the formal theory describe all the noncontingent truths
of its subject matter? Some idea of completeness had clearly accompanied
Aristotle’s attempts to collect all human knowledge and, in particular, all
valid arguments or, in geometry, Euclid’s attempts to derive all true theo-
rems from a minimal set of axioms. Completness of a kind had also been a
guiding principle of logicians since Boole – otherwise they would not have
sought numerous axioms, risking their mutual dependence and even incon-
sistency. But all these earlier writers have lacked the semantic terminology
to specify what their theory was about and wherein “aboutness” consists.
In particular, they lacked the precise grasp of the “all truths” which they
tried to capture. Even the language of Hilbert and Ackermann from 1928
is not perfectly clear by modern standards.

Post had shown the completeness of propositional logic in 1921 and
Gödel proved the completeness of first-order predicate logic in his doctoral
dissertation of 1930. In many ways, however, explicit consideration of issues
in semantics, along with the development of many of the concepts now
widely used in formal semantics and model theory, first appeared in a paper
by Alfred Tarski, The Concept of Truth in Formalized Languages, which was
published in Polish in 1933 and became widely known through its German
translation of 1936. Introducing the idea of a sentence being “true in” a
model, the paper marked the beginning of modern model theory. Even if the
outlines of how to model propositional logic had been clear to the Booleans
and to Frege, one of Tarski’s crucial contributions was an application of
his general theory to the semantics of the first-order logic (now termed
the set-theoretic, or Tarskian, interpretation). Relativity of truth to a
model suggests choosing the models with some freedom (recall de Morgan’s
stipulated universe of discourse). Specifying precisely the class of intended
models for a theory allows then to ask about proposition’s “validity”, i.e.,
whether it is true in all intended models. Completeness amounts to the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 37

syntactic derivability of every valid propostion, and this definition applies
now unchanged to propositional and first-order logic, as well as to any other
logical system.

Although the specific theory of truth Tarski advocated has had a com-
plex and debated legacy, his techniques and precise language for discussing
semantic concepts – such as consistency, completeness, independence – hav-
ing rapidly entered the literature in the late 1930s, remained in the center
of the subsequent development of logic and analytic philosophy. This influ-
ence accelerated with the publication of his works in German and then in
English, and with his move to the United States in 1939.

E.3. Computability and Decidability

The underlying theme of the whole development we have sketched is the
attempt to formalize logical reasoning, hopefully, to the level at which it
can be performed mechanically. The idea of “mechanical reasoning” has
been always present, if not always explicitly, in the logical investigations
and could be almost taken as their primary, if only ideal, goal. Intuitively,
“mechanical” involves some blind following of the rules and such a blind
rule following is the essence of a symbolic system as described in E.1.2. This
“mechanical blindness” follows from the fact the language and the rules are
unambiguously defined. Consequently, correctness of the application of a
rule to an actual formula can be verified mechanically. You can easily check
that all applications of rules in the derivation (E.1) are correct and equally
easily see that, for instance, (!→") ; "

!
is not a correct application of any

rule from T .
Logic was supposed to capture correct reasoning and correctness

amounts to conformance to some accepted rules. A symbolic reasoning
system is an ultimately precise expression of this view of correctness which
also makes its verification a purely mechanic procedure. Such a mechnism
is possible because all legal moves and restrictions are expressed in the
syntax: the language, axioms and rules. In other words, it is exactly the
uninterpreted nature of symbolic systems which leads to mechanisation of
reasoning. Naturally enough, once the symbolic systems were defined and
one became familiar with them, i.e., in the beginning of the 20th century,
the questions about mechanical computability were raised by the logicians.
The answers led to the design and use of computers – devices for symbolic,
that is, uninterpreted manipulation.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

38 Introduction to Logic

E.3.1. Computability

What does it mean that something can be computed mechanically?

In the 1930s this question acquired the ultimately precise, mathematical
meaning. Developing the concepts from Hilbert’s school, in his Princeton
lectures 1933-34 Gödel introduced the schemata for so called “recursive
functions” working on natural numbers. Some time later Alonzo Church
proposed the famous thesis

Church thesis
A function is (mechanically) computable if and only if it can be
defined using only recursive functions.

This may sound astonishing – why just recursive function are to have such
a special significance? The answer comes from the work of Alan Turing
who introduced “devices” which came to be known as Turing machines.
Although defined as conceptual entities, one could easily imagine that such
devices could be actually built as physical machines performing exactly
the operations suggested by Turing. The machines could, for instance,
recognize whether a string had some specific form and, generally, compute
functions. The functions which could be computed on Turing machines
were shown to be exactly the recursive functions! Even more significant for
us may be the fact that there is a well-defined sublogic of first-order logic in
which proving a theorem amounts to computing a recursive function, that
is, which can code all possible computer programs. This subset comprises
the Horn formulae, namely, the conditional formulae of the form

If A1 and A2 and ... and An then C. (E.2)

Such rules might be claimed to have more “psychological plausibility” than
recursive functions. But they are computationally equivalent. With a few
variations and additions, the formulae (E.2) give the syntax of an elegant
programming language Prolog. Thus, in the wide field of logic, there is
a small subdomain providing sufficient means to study the issues of com-
putability. (Such connections are much deeper and more intricate but we
cannot address them all here.)

Church thesis remains only a thesis, claiming that the informal and intu-
itive notion of mechanical computability is formalized exactly by the notion
of recursive functions (or their equivalents, like Horn formulae or Turing
machine). The fact that they are exactly the functions computable on the
physical computer lends this thesis a lot of plausibility. Moreover, so far

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 39

nobody has managed to introduce a notion of computability which would
be intuitively acceptable, physically realizable and, at the same time, would
exceed the capacities of Turing machines. A modern computer program,
with all its tricks and sophistication is, as far as its power and possibil-
ities are concerned, nothing more than a Turing machine, a set of Horn
formulae. Thus, logical results, in particular the negative theorems stating
the limitations of logical formalisms, determine also the ultimate limits of
computers’ capabilities as exemplified below.

E.3.2. Decidability

By the 1930s almost all work in the foundations of mathematics and in
symbolic logic was being done in a standard first-order predicate logic, often
extended with axioms or axiom schemata of set-theory. This underlying
logic consisted of a theory of classical truth functional connectives, such as
“and”, “not” and “if . . . then” (propositional logic, as with Stoics or
Boole) and first-order quantification permitting propositions that “all” and
“at least one” individual satisfy a certain formula (Frege). Only gradually
in the 1920s and ’30s did a conception of a “first-order” logic, and of more
expressive alternatives, arise.

Formal theories can be classified according to their expressive or rep-
resentational power, depending on their language (notation) and reasoning
system (inference rules). Propositional logic allows merely manipulation of
simple, propositional patterns, combined with operators like “or”, “and”,
(A.3), p.8. First-order logic allows explicit reference to, and quantification
over, individuals, such as numbers or sets, but not quantification over prop-
erties of these individuals. For instance, the statement “for all x: if x is
man then x is human” is first-order. But the following one is second-order,
involving quantification over properties P,R: “for every x and any prop-
erties P,R: if P implies R and x is P then x is R.”2 (Likewise, the fifth
postulate of Euclid is not finitely axiomatizable in the first-order language
but is rather a schema or second-order formulation.)

The question “why should one bother with less expressive formalisms,
when more expressive ones are available?” should appear quite natural.
The answer lies in the fact that increasing expressive power of a formalism
2Note a vague analogy of the distinction between first-order quantification over indi-

viduals and second-order quantification over properties to the distinction between ex-
tensional and intensional aspects from B.3. Since in the extensional context, a property
P is just a set of individuals (possessing P), the intensional or property-oriented lan-
guage becomes higher-order, having to address not only individuals but also sets thereof.
Third-order language allows then to quantify over sets of sets of individuals, etc.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

40 Introduction to Logic

clashes with another desired feature, namely:

decidability
there exists a finite mechanical procedure for determining whether
a proposition is, or is not, a theorem of the theory.

The germ of this idea is present in the law of excluded middle claiming
that every proposition is either true or false. But decidability adds to it
the requirement which can be expressed only with the precise definition of
a finite mechanical procedure, of computability. This is the requirement
that not only the proposition must be true/provable or not: there must
be a terminating algorithm which can be run (on a computer) to decide
which is the case. (In E.1.2 we have shown that, for instance, −+ is a
theorem of the theory T defined there. But if you were now to tell whether
(− − + → (−! → !)) is a theorem, you might have hard time trying to
find a derivation and even harder trying to prove that no derivation of this
formula exists. Decidability of a theory means that there is a computer
program capable to answer every such question.)

The decidability of propositional logic, through the use of truth tables,
was known to Frege and Peirce; its proof is attributable to Jan Lukasiewicz
and Emil Post independently in 1921. Löwenheim showed in 1915 that
first-order predicate logic with only single-place predicates was decidable
and that the full theory was decidable if the first-order predicate calcu-
lus with only two-place predicates was decidable. Further developments
were made by Thoralf Skolem, Heinrich Behmann, Jacques Herbrand, and
Willard Quine. Herbrand showed the existence of an algorithm which, if a
theorem of the first-order predicate logic is valid, will determine it to be so;
the difficulty, then, was in designing an algorithm that in a finite amount
of time would determine that propositions were invalid. (We can easily
imagine a machine which, starting with the specified axioms, generates all
possible theorems by simply generating all possible derivations – sequences
of correct rule applications. If the formula is provable, the machine will,
sooner or later, find a proof. But if the formula is not provable, the ma-
chine will keep for ever since the number of proofs is, typically, infinite.)
As early as the 1880s, Peirce seemed to be aware that the propositional
logic was decidable but that the full first-order predicate logic with rela-
tions was undecidable. The fact that first-order predicate logic (in any
general formulation) was undecidable was first shown definitively by Alan
Turing and Alonzo Church independently in 1936. Together with Gödel’s
(second) incompleteness theorem and the earlier Löwenheim-Skolem the-

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

Contents 41

orem, the Church-Turing theorem of the undecidability of the first-order
predicate logic is one of the most important, even if “negative”, results of
20th century logic.

Many facts about the limits of computers arise as consequences of these
negative results. For instance, it is not (and never will be!) possible to
write a computer program which, given an arbitrary first-order theory T
and some formula f , is guaranteed to terminate giving the answer “Yes” if
f is a theorem of T and “No” if it is not. A more mundane example is the
following. One can easily write a computer program which for some inputs
does not terminate. It might be therefore desirable to have a program U
which could take as input another program P (a piece of text just like
“usual” input to any program) and description of its input d and decide
whether P run on d would terminate or not. Such a program U , however,
will never be written as the problem described is undecidable.

F. Summary

The idea of correct thinking is probably as old as thinking itself. With
Aristotle there begins the process of explicit formulation of the rules, pat-
terns of reasoning, conformance to which would guarantee correctness. This
idea of correctness has been gradually made precise and unambiguous lead-
ing to the formulation of (the general schema for defining) symbolic lan-
guages, the rules of their manipulation and hence cirteria of correct “rea-
soning”. It is, however, far from obvious that the result indeed captures the
natural reasoning as performed by humans. The need for precision led to
complete separation of the reasoning aspect (syntactic manipulation) from
its possible meaning. The completely uninterpreted nature of symbolic
systems makes their relation to the real world highly problematic. More-
over, as one has arrived at the general schema of defining formal systems,
no unique system has arosen as the right one and their variety seems sur-
passed only by the range of possible application domains. The discussions
about which rules actually represent human thinking can probably continue
indefinitely. In the meantime, and perhaps most significantly, this purely
syntactic character of formal reasoning systems provided the basis for a
precise definition of the old theme of logical investigations: the unavoid-
able consequence, which now appears co-extensional, if not synonymous,
with the mechanical computability.

The question whether human mind and thinking can be reduced to such
a mechanic computation and simulated by a computer is still discussed by

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

42 Introduction to Logic

the philosophers and cognitive scientists. Also, much successful research is
driven by the idea, if not the explicit goal, of obtaining such a reduction.
The “negative” results as those quoted at the end of the last section, estab-
lished by human mind and demonstrating limitations of the power of logic
and computers, suggest that human cognition may not be reducible to, and
hence neither simulated by, mechanic computation. In particular, reduction
to mechanic computability would imply that all human thinking could be
expressed as applications of simple rules like (E.2) on p. 38. Its possibility
has not been disproved but it certainly does not appear plausible. Yet,
as computable functions correspond only to a small part of logic, even if
this reduction turns out impossible, the question of reduction of thinking
to logic at large would still remain open. Most researchers do not seem
to believe in such reductions and, indeed, one need not believe in them to
study logic. In spite of its philosophical roots, and its apparently theoreti-
cal and abstract character, it turned out to be the fundamental tool in the
development, and later in the use and managment, of the most practical
and useful appliance of the 20th century – the computer.

The Greek alphabet

upper lower
A α alpha
B β beta
Γ γ gamma
∆ δ delta
E ε epsilon
Z ζ zeta
H η eta
Θ θ theta
I ι iota
K κ kappa
Λ λ lambda
M µ mu

upper lower
N ν nu
Ξ ξ xi
O o omicron
Π π pi
R ρ rho
Σ σ sigma
T τ tau
Y υ upsilon
Φ φ phi
X χ chi
Ψ ψ psi
Ω ω omega

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 43

Chapter 1

Sets, Functions, Relations

• Sets and Functions
– Set building operations
– Some equational laws

• Relations and Sets with Structures
– Properties of relations
– Ordering relations

• Infinities
– Countability vs. uncountability

1: Sets and Functions
♦ a Background Story ♦
A set is an arbitrary collection of arbitrary objects, called its mem-
bers. One should take these two occurrences of “arbitrary” seriously.
Firstly, sets may be finite, e.g., the set C of cars on the parking lot
outside the building, or infinite, e.g. the set N of numbers greater
than 5.

Secondly, any objects can be members of sets. We can talk about
sets of cars, blood-cells, numbers, Roman emperors, etc. We can also
talk about the set X whose elements are: my car, your mother and
number 6. (Not that such a set necessarily is useful for any purpose,
but it is possible to collect these various elements into one set.) In
particular sets themselves can be members of other sets. I can, for
instance, form the set whose elements are: my favorite pen, my four
best friends and the set N . This set will have 6 elements, even though
the set N itself is infinite.

A set with only one element is called a singleton, e.g., the set con-
taining only planet Earth. There is one special and very important
set – the empty set – which has no members. If it seems startling, you
may think of the set of all square circles or all numbers x such that
x < x. This set is mainly a mathematical convenience – defining a

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

44 Introduction to Logic

set by describing the properties of its members in an involved way, we
may not know from the very begining what its members are. Eventu-
ally, we may find that no such objects exist, that is, that we defined an
empty set. It also makes many formulations simpler since, without
the assumption of its existence, one would often had to take special
precautions for the case a set happened to contain no elements.

It may be legitimate to speak about a set even if we do not know
exactly its members. The set of people born in 1964 may be hard
to determine exactly but it is a well defined object because, at least
in principle, we can determine membership of any object in this set.
Similarly, we will say that the set R of red objects is well defined even
if we certainly do not know all its members. But confronted with a
new object, we can determine if it belongs to R or not (assuming, that
we do not dispute the meaning of the word “red”.)

There are four basic means of specifying a set.

(1) If a set is finite and small, we may list all its elements, e.g.,
S = {1, 2, 3, 4} is a set with four elements.

(2) A set can be specified by determining a property which makes
objects qualify as its elements. The set R of red objects is specified
in this way. The set S can be described as ‘the set of natural
numbers greater than 0 and less than 5’.

(3) A set may be obtained from other sets. For instance, given the
set S and the set S′ = {3, 4, 5, 6} we can form a new set S′′ =
{3, 4} which is the intersection of S and S′. Given the sets of odd
{1, 3, 5, 7, 9...} and even numbers {0, 2, 4, 6, 8...} we can form a new
set N by taking their union.

(4) Finally, a set can be determined by describing the rules by which
its elements may be generated. For instance, the set N of natural
numbers {0, 1, 2, 3, 4, ...} can be described as follows: 0 belongs to
N and if n belongs to N, then also n + 1 belongs to N and, finally,
nothing else belongs to N.

In this chapter we will use mainly the first three ways of describing
sets. In particular, we will use various set building operations as in
point 3. In the later chapters, we will constantly encouter sets de-
scribed by the last method. One important point is that the properties
of a set are entirely independent from the way the set is described.
Whether we just say ‘the set of natural numbers’ or the set N as de-
fined in point 2. or 4., we get the same set. Another thing is that

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 45

studying and proving properties of a set may be easier when the set is
described in one way rather than another.

♦ ♦

Definition 1.1 Given some sets S and T we write:

x ∈ S - x is a member (element) of S

S ⊆ T - S is a subset of T for all x : if x ∈ S then x ∈ T

S ⊂ T - S ⊆ T and S '= T for all x : if x ∈ S then x ∈ T
and for some x : x ∈ T and x '∈ S

Set building operations :

∅ - empty set for any x : x '∈ ∅
S ∪ T - union of S and T x ∈ S ∪ T iff x ∈ S or x ∈ T

S ∩ T - intersection of S and T x ∈ S ∩ T iff x ∈ S and x ∈ T

S \ T - difference of S and T x ∈ S \ T iff x ∈ S and x '∈ T

S - complement of S; given a universe U of all elements S = U \ S

S × T - Cartesian product of S and T x ∈ S × T iff x = 〈s, t〉 and
s ∈ S and t ∈ T

℘(S) - the power set of S x ∈ ℘(S) iff x ⊆ S

Also, {x ∈ S : Prop(x)} denotes the set of those x ∈ S which have the speci-
fied property Prop.

Remark.
Sets may be members of other sets. For instance {∅} is the set with one element
– which is the empty set ∅. In fact, {∅} = ℘(∅). It is different from the set ∅
which has no elements. {{a, b}, a} is a set with two elements: a and the set {a, b}.
Also {a, {a}} has two different elements: a and {a}. In particular, the power set
contains only sets as elements: ℘({a, {a, b}}) = {∅, {a}, {{a, b}}, {a, {a, b}}}.

In the definition of Cartesian product, we used the notation 〈s, t〉 to denote
an ordered pair whose first element is s and second t. In set theory, all possible
objects are modelled as sets. An ordered pair 〈s, t〉 is then represented as the
set with two elements – both being sets – {{s}, {s, t}}. Why not {{s}, {t}} or,
even simpler, {s, t}? Because elements of a set are not ordered. Thus {s, t} and
{t, s} denote the same set. Also, {{s}, {t}} and {{t}, {s}} denote the same set
(but different from the set {s, t}). In ordered pairs, on the other hand, the order
does matter – 〈s, t〉 and 〈t, s〉 are different pairs. This ordering is captured by the
representation {{s}, {s, t}}. We have here a set with two elements {A, B} where
A = {s} and B = {s, t}. The relationship between these two elements tells us
which is the first and which the second: A ⊂ B identifies the member of A as the
first element of the pair, and then the element of B \ A as the second one. Thus
〈s, t〉 = {{s}, {s, t}})= {{t}, {s, t}} = 〈t, s〉.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

46 Introduction to Logic

The set operations ∪, ∩, and \ obey some well known laws:

1. Idempotency 2. Associativity
A ∪A = A (A ∪B) ∪ C = A ∪ (B ∪ C)
A ∩A = A (A ∩B) ∩ C = A ∩ (B ∩ C)

3. Commutativity 4. Distributivity
A ∪B = B ∪A A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
A ∩B = B ∩A A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

5. deMorgan 6. Complement
(A ∪B) = A ∩B A ∩A = ∅
(A ∩B) = A ∪B A \ B = A ∩B

7. Emptyset
∅ ∪A = A ∅ ∩A = ∅

8. Consistency principles
a) A ⊆ B iff A ∪B = B b) A ⊆ B iff A ∩B = A

Remark 1.2 [Venn’s diagrams]
It is very common to represent sets and set relations by means of Venn’s diagrams
– overlapping figures, typically, circles or rectangles. On the the left in the figure
below, we have two sets A and B in some universe U . Their intersection A ∩ B
is marked as the area belonging to both by both vertical and horisontal lines.
If we take A to represent Armenians and B bachelors, the darkest region in the
middle represents Armenian bachelors. The region covered by only vertical, but
not horisontal, lines is the set difference A\B – Armenians who are not bachelors.
The whole region covered by either vertical or horisontal lines represents all those
who are either Armenian or are bachelors.

U

A

B

(A ∪B) = A ∩B

U

A

B

Now, the white region is the complement of the set A ∪ B (in the universe U)
– all those who are neither Armenians nor bachelors. The diagram to the right
is essentially the same but was constructed in a different way. Here, the region
covered with vertical lines is the complement of A – all non-Armenians. The
region covered with horisontal lines represents all non-bachelors. The region
covered with both horisontal and vertical lines is the intersection of these two
complements – all those who are neither Armenians nor bachelors. The two
diagrams illustrate the first de Morgan law since the white area on the left,

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 47

(A ∪B), is exactly the same as the area covered with both horisontal and vertical
lines on the right, A ∩B.

Venn’s diagrams may be handy tool to visualize simple set operations.
However, the equalities above can be also seen as a (not yet quite, but al-
most) formal system allowing one to derive various other set equalities. The
rule for performing such derivations is ‘substitution of equals for equals’,
known also from elementary arithemtics. For instance, the fact that, for
an arbitrary set A : A ⊆ A amounts to a single application of rule 8.a):
A ⊆ A iff A ∪ A = A, where the last equality holds by 1. A bit longer
derivation shows that (A ∪B) ∪ C = (C ∪A) ∪B :

(A ∪B) ∪ C
3= C ∪ (A ∪B) 2= (C ∪A) ∪B.

In exercises we will encounter more elaborate examples.
In addition to the set building operations from the above defintion, one

often encounters also disjoint union of sets A and B, written A 5 B and
defined as A 5 B = (A × {0}) ∪ (B × {1}). The idea is to use 0, resp. 1,
as indices to distinguish the elements originating from A and from B. If
A ∩ B = ∅, this would not be necessary, but otherwise the “disjointness”
of this union requires that the common elements be duplicated. E.g., for
A = {a, b, c} and B = {b, c, d}, we have A ∪ B = {a, b, c, d} while A 5
B = {〈a, 0〉, 〈b, 0〉, 〈c, 0〉, 〈b, 1〉, 〈c, 1〉, 〈d, 1〉}, which can be thought of as
{a0, b0, c0, b1, c1, d1}.

Definition 1.3 Given two sets S and T , a function f from S to T , f : S →
T , is a subset of S × T such that

• whenever 〈s, t〉 ∈ f and 〈s, t′〉 ∈ f , then t = t′, and
• for each s ∈ S there is some t ∈ T such that 〈s, t〉 ∈ f .

A subset of S × T that satisfies the first condition above but not necessarily
the second, is called a partial function from S to T .

For a function f : S → T , the set S is called the source or domain of the
function, and the set T its target or codomain.

The second point of this definition means that function is total – for each
argument (element s ∈ S), the function has some value, i.e., an element
t ∈ T such that 〈s, t〉 ∈ f . Sometimes this requirement is dropped and one
speaks about partial functions which may have no value for some arguments
but we will be for the most concerned with total functions.

Example 1.4
Let N denote the set of natural numbers {0, 1, 2, 3, ...}. The mapping

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

48 Introduction to Logic

f : N → N defined by f(n) = 2n is a function. It is the set of all pairs
f = {〈n, 2n〉 : n ∈ N}. If we let M denote the set of all people, then the
set of all pairs father = {〈m,m′s father〉 : m ∈ M} is a function assigning
to each person his/her father. A mapping ‘children’, assigning to each
person his/her children is not a function M → M for two reasons. For the
first, a person may have no children, while saying “function” we mean a
total function. For the second, a person may have more than one child.
These problems may be overcome if we considered it instead as a function
M → ℘(M) assigning to each person the set (possibly empty) of all his/her
children. !

Notice that although intuitively we think of a function as a mapping assign-
ing to each argument some value, the definition states that it is actually a
set (a subset of S × T is a set.) The restrictions put on this set are exactly
what makes it possible to think of this set as a mapping. Nevertheless,
functions – being sets – can be elements of other sets. We may encounter
situations involving sets of functions, e.g. the set TS of all functions from
set S to set T , which is just the set of all subsets of S × T , each satisfying
the conditions of the definition 1.3.

Remark 1.5 [Notation]
A function f associates with each element s ∈ S a unique element t ∈ T . We

write this t as f(s) – the value of f at point s.
When S is finite (and small) we may sometimes write a function as a set
{〈s1, t1〉, 〈s2, t2〉, ..., 〈sn, tn〉} or else as {s1 -→ t1, s2 -→ t2, ..., sn -→ tn}.
If f is given then by f [s -→ p] we denote the function f ′ which is the same as f
for all arguments x)= s : f ′(x) = f(x), while f ′(s) = p.

Definition 1.6 A function f : S → T is

injective iff whenever f(s) = f(s′) then s = s′;
surjective iff for all t ∈ T there exists an s ∈ S such that f(s) = t;
bijective, or a set-isomorphism, iff it is both injective and surjective.

Injectivity means that no two distinct elements from the source set are
mapped to the same element in the target set; surjectivity that each element
in the target is an image of some element from the source.

Example 1.7
The function father : M → M is injective – everybody has exactly one

(biological) father, but it is not surjective – not everybody is a father of
somebody. The following drawing gives some examples:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 49

S
h ## T

s1!"#$
%&'(

t1)* +,
-. /0

s2

$$######
t2

s3

%%$$$$$$$ t3

t4

S
f ## T

s1!"#$
%&'(

t1)* +,
-. /0

s2

%%$$$$$$$ t2

s3

$$#######
t3

t4

S T
g&&

s1)* +,
-. /0

t1&& !"#$
%&'(

s2 t2&&

s3 t3

''$$$$$$$

t4

''$$$$$$$

S
b ## T

s1!"#$
%&'(((%%%%%% t1!"#$

%&'(s2

((%%%%%% t2

s3

))&&&&&&&&
t3

S T
b′

&&

s1!"#$
%&'(

t1

**&&
&&

&&
&&
!"#$
%&'(s2 t2

++%%%%%%

s3 t3

++%%%%%%

Here h is neither injective nor surjective, f is injective but not surjective,
g : T → S is surjective but not injective. b and b′ are both injective and
surjective, i.e, bijective. !

Soon we will see the particular importance of bijections. There may exist
several different set-isomorphisms between two sets S and T . If there is
at least one set-isomorphism, we say that the two sets are isomorphic and
write S ! T . The following lemma gives another criterion for a function
to be a bijection.

Lemma 1.8 f : S → T is a set-isomorphism if and only if there is an inverse
function f−1 : T → S, such that for all s ∈ S : f−1(f(s)) = s and for all
t ∈ T : f(f−1(t)) = t.

Proof. We have to show two implications:
only if) If f is iso, we can define f−1 simply as the set of pairs f−1 def=
{〈t, s〉 : t = f(s)}.
if) If f(s) = f(s′) then s = f−1(f(s)) = f−1(f(s′)) = s′, i.e., f
is injective. Then, for any t ∈ T we have an s = f−1(t) for which
f(s) = f(f−1(t)) = t, i.e., f is surjective. QED (1.8)

In the example 1.7 both b and b′ were bijective. In fact, they acted as
mutual inverses satisfying the conditions of the above lemma: for each
s ∈ S; b′(b(s)) = s and for each t ∈ T : b(b′(t)) = t.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

50 Introduction to Logic

Definition 1.9 For any set U and A ⊆ U , the characteristic function of A
(relatively to U), denoted fA, is the function

{〈x,1〉 | x ∈ A} ∪ {〈x,0〉 | x ∈ A′}.
Hence fA(x) = 1 iff x ∈ A. Note that fA is a function from U to {1,0},

where {1,0} is a(ny) set with exactly two elements.
Let f : ℘(U) → 2U denote the function sending each subset A of U

to its characteristic function fA (the notation 2U stands for the set of all
functions from U to a two-element set, e.g., to {1,0}).

It is clear that if A '= B then fA '= fB . The first inequality means that
there is an x such that either x ∈ A \B or x ∈ B \A. In either case we will
have that fA(x) '= fB(x). Thus f is injective.

On the other hand, every function f ∈ 2U is the characteristic function
of some subset of U , namely, of the set Af = {x ∈ U : f(x) = 1}. That
is, f is surjective. Together, these two facts mean that we have a set-
isomorphism f : ℘(U) ! 2U .

2: Relations

Definition 1.10 A binary relation R between sets S and T is a subset R ⊆
S × T .
A binary relation on a set S is a subset of S × S, and an n-ary relation on S
is a subset of S1 × S2 × ...× Sn, where each Si = S.

Definition 1.10 makes any subset of S × T a relation. The definition 1.3
of function, on the other hand, required this set to satisfy some additional
properties. Hence a function is a special case of relation, namely, a relation
which relates each element of S with exactly one element of T .

Binary relations are sets of ordered pairs, i.e., 〈s, t〉 '= 〈t, s〉 – if s ∈ S
and t ∈ T , then the former belongs to S×T and the latter to T ×S, which
are different sets. For sets, there is no ordering and thus {s, t} = {t, s}. It
is common to write the fact that s and t stand in a relation R, 〈s, t〉 ∈ R,
as sRt or as R(s, t).

In general, relations may have arbitrary arities, for instance a subset
R ⊆ S × T × U is a ternary relation, etc. As a particular case, a unary
relation on S is simply a subset R ⊆ S. In the following we are speaking
only about binary relations (unless explicitly stated otherwise).

Example 1.11
Functions, so to speak, map elements of one set onto the elements of another

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 51

set (possibly the same). Relations relate some elements of one set with some
elements of another. Recall the problem from example 1.4 with treating
children as a function M → M . This problem is overcome by treating
children as a binary relation on the set M of all people. Thus children(p, c)
holds if an only if c is a child of p. Explicitly, this relation is children =
{〈p, c〉 : p, c ∈ M and c is a child of p}. !

Definition 1.12 Given two relations R ⊆ S × T and P ⊆ T × U , their
composition is the relation R ; P ⊆ S × U , defined as the set of pairs

R ; P = {〈s, u〉 ∈ S × U : there is a t ∈ T with R(s, t) and P (t, u)}.

As functions are special cases of relations, the above definition allows us to
form the composition g ; f of functions g : S → T and f : T → U , namely,
the function from S to U given by the equation (g ; f)(s) = f(g(s)).

Definition 1.13 A relation R ⊆ S × S is :
connected iff for all pairs of distinct s, t ∈ S : R(s, t) or R(t, s)

reflexive iff for all s ∈ S : R(s, s)
irreflexive iff for no s ∈ S : R(s, s)
transitive iff when R(s1, s2) and R(s2, s3) then R(s1, s3)

symmetric iff when R(s, t) then R(t, s)
asymmetric iff when R(s, t) then not R(t, s)

antisymmetric iff when R(s, t) and R(t, s) then s = t
equivalence iff it is reflexive, transitive and symmetric.

Numerous connections hold between these properties: every irreflexive,
transitive relation is also asymmetric, and every asymmetric relation is
also antisymmetric. Note also that just one relation is both connected,
symmetric and reflexive, namely the universal relation S × S itself.

The most common (and smallest) example of equivalence is the identity
relation idS = {〈s, s〉 : s ∈ S}. The relation ! – existence of a set-
isomorphism – is also an equivalence relation on any set (collection) of sets.
An equivalence relation ∼ on a set S allows us to partition S into disjoint
equivalence classes [s] = {s′ ∈ S : s′ ∼ s}.

Given a relation R ⊆ S × S, we can form its closure with respect to
one or more of these properties. For example, the reflexive closure of R,
written R, is the relation R ∪ idS . (It may very well happen that R already
is reflexive, R = R, but then we do have that R = R.) The transitive closure
of R, written R+, can be thought of as the infinite union
R ∪ (R ; R) ∪ (R ; R ; R) ∪ (R ; R ; R ; R) ∪ (R ; R ; R ; R ; R) ∪ . . .

and can be defined as the least relation R+ such that R+ = R ∪ (R+ ; R).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

52 Introduction to Logic

3: Ordering Relations
Of particular importance are the ordering relations which we will use ex-
tensively in Chapter 2 and later. Often we assume an implicit set S and
talk only about relation R. However, it is important to realize that when
we are talking about a relation R, we are actually considering a set with
structure, namely a pair 〈S, R〉.

Definition 1.14 〈S, R〉 is a quasiorder (or preorder), QO, iff R is
transitive : R(x, y) ∧R(y, z) → R(x, z)
reflexive : R(x, x)

〈S, R〉 is a weak partial order, wPO, iff R is
a quasiorder : R(x, y) ∧R(y, z) → R(x, z)

: R(x, x)
antisymmetric : R(x, y) ∧R(y, x) → x = y

〈S, R〉 is a strict partial order, sPO, iff R is
transitive : R(x, y) ∧R(y, z) → R(x, z)
irreflexive : ¬R(x, x)

A total order, TO, is a PO which is connected : x '= y → R(x, y) ∨ R(y, x)

A QO allows loops, for instance the situations like R(a1, a2), R(a2, a3),
R(a3, a1) for distinct a1, a2, a3. PO forbids such situations: by applications
of transitivity we have
• R(a2, a1) as well as R(a1, a2), which for wPO’s imply a1 = a2.
• R(a1, a1), which is impossible for sPO’s.

Obviously, given a wPO, we can trivially construct its strict version (by
making it irreflexive) and vice versa. We will therefore often say “partial
order” or PO without specifying which one we have in mind.

Instead of writing R(x, y) for a PO, we often use the infix notation x ≤ y
for a wPO, and x < y for the corresponding sPO. In other words, x ≤ y
means x < y or x = y, and x < y means x ≤ y and x '= y.

Example 1.15
Consider the set of all people and their ages.

(1) The relation ‘x is older than y’ is an sPO on the set of all people : it is
transitive, irreflexive (nobody is older than himself) and asymmetric:
if ‘x is older than y’ then ‘y is not older than x’.

(2) The relation ‘x is not younger than y’ is a QO. It is not a wPO since
it is not antisymmetric. (There are different people of the same age.)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 53

The weak version of the relation in 1. is the relation ‘x is older than y or
x, y is the same person’, which is clearly different from the relation in 2.
The relation in 1. is not a TO – of two different persons there may be none
who is older than the other. !

Example 1.16
Given a set of symbols, for instance Σ = {a, b, c}, the set Σ∗ contains all

finite strings over Σ, e.g., a, aa, abba, aaabbababab, There are various
natural ways of ordering Σ∗. Let s, p ∈ Σ∗

(1) Define s ≺Q p iff length(s) < length(p). This gives an sPO. The weak
relation s 8Q p iff length(s) ≤ length(p) will be a QO but not a wPO
since now any subset containing strings of equal length will form a loop.

(2) Define s ≺P p iff s is a prefix of p. (Prefix is an initial segment.) We
now obtain a wPO because any string is its own prefix and if both s
is a prefix of p and p is a prefix of s the two must be the same string.
This is not, however, a TO : neither of the strings a and bc is a prefix
of the other.

(3) Suppose that the set Σ is totally ordered, for instance, let Σ be the
Latin alphabet with the standard ordering a ≺ b ≺ c ≺ d.... We may
then define the lexicographic TO on Σ∗ as follows:
s ≺L p iff either s is a prefix of p or else the two have a longest common
prefix u (possibly empty) such that s = uv, t = uw and head(v) ≺
head(w), where head is the first symbol of the argument string. This
defines the usual ordering used, for instance, in dictionaries. !

Homomorphisms . [optional]
The following notions will not be used extensively, but it is often important
to realize that the functions between ordered sets should consider not only the
elements of the sets but also the relation between these elements.

Definition 1.17 Given two orderings (of any kind) P = 〈S1, R1〉 and Q =
〈S2, R2〉, a homomorphism h : P → Q is an order preserving function, i.e., a function
h : S1 → S2 such that R1(x, y) implies R2(h(x), h(y)).
An order-isomorphism is a set-isomorphism h : S1 ! S2 such that both h and h−1

are homomorphisms.

Thus, an order-isomorphism is a set-isomorphism which, in addition, preserves
the structure of the isomorphic relations. One often encounters two ordered sets
which are set-isomorphic but not order-isomorphic.

Example 1.18
Given two 4-element sets A and B, consider two sPO’s A = 〈A,≺A〉 and B =

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

54 Introduction to Logic

〈B,≺B〉 as shown below:
A a2

≺A

''

''

B

a1

≺A((

((

≺A

))

))

a4 b1 ≺B b2 ≺B b3 ≺B b4

a3

≺A**

**

f() h1() h2()
a1 b2 b1 b2

a2 b1 b2 b3

a3 b4 b3 b3

a4 b3 b4 b4

Any injective f : A → B is also a bijection, i.e., A ! B. However, a homo-
morphism h : A → B must also satisfy the additional condition, e.g., a1 ≺A a2

requires that also h(a1) ≺B h(a2). Thus, for instance, f from the table is not a
homomorphism A → B while h1 and h2 are.

Now, although the underlying sets A and B are isomorphic, there is no order-

isomorphism between A = 〈A,≺A〉 and B = 〈B,≺B〉 because there is no homo-

morphism from the latter to the former. B is connected, i.e., a total order while

A is not – any homomorphism would have to preserve the relation ≺B between

arbitrary two elements of B, but in A there is no relation ≺A between a2 and a3.

. [end optional]

4: Infinities
♦ a Background Story ♦
Imagine a primitive shepherd who possesses no idea of number or
counting – when releasing his sheep from the cottage in the morning
he wants to find the means of figuring out if, when he collects them
in the evening, all are back or, perhaps, some are missing.

He can, and most probably did, proceed as follows. Find a stick
and let the sheep leave one by one. Each time a sheep passes through
the gate, make a mark – something like / – on the stick. When all the
sheep have left, there will be as many marks on the stick as there were
sheep. On their return, do the same: let them go through the gate one
by one. For each sheep, erase one mark – e.g., set a \making one /

into ×. When all the sheep are inside, check if there are any /-marks
left. If no, i.e., there are only × on the stick, then everything is ok –
as many sheep returned home as had left in the morning. If yes, then
some sheep are missing.

Notice, that the shepherd still does not know “how many” sheep
he has – he still does not have the idea of a number. But, perhaps a
bit paradoxically, he has the idea of two equal numbers! This idea is
captured by the correspondance, in fact, several functions: the first
is a morning-function m which for each sheep from the set SM of all

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 55

sheep, assigns a new / on the stick – all the marks obtained in the
morning form a set M . The other, evening-function e, assigns to each
returning sheep (from the set of returning sheep SE) another mark \.
Superimposing the evening marks \ onto the morning marks /, i.e.,
forming ×-marks, amounts to comparing the number of elements in
the sets M and E by means of a function c assigning to each returning
sheep marked by \, a morning sheep /.

SM
m↔ M

c↔ E
e↔ SE!" #$%→ / × \ ← !" #$%!" #$%→ / × \ ← !" #$%!" #$%→ / × \ ← !" #$%

. . .

In fact, this simple procedure may be considered as a basis of count-
ing – comparing the number of elements in various sets. In order
to ensure that the two sets, like SM and M , have equal number of
elements, we have to insist on some properties of the involved func-
tion m. Each sheep must be given a mark (m must be total) and for
two distinct sheep we have to make two distinct marks (m must be
injective). The third required property – that of surjectivity – follows
automatically in the above procedure, since the target set M is formed
only along as we mark the sheep. In short, the shepherd knows that
there are as many sheep as the morning marks on the stick because
he has a bijective function between the respective sets. For the same
reason, he knows that the sets of returning sheep and evening marks
have the same number of elements and, finally, establishing a bijec-
tion between the sets M and E, he rests satisfied. (Violating a bit
the profiles of the involved functions, we may say that the composite
function e ; c ; m : SE → E → M → SM turns out to be bijective.)

You can now easily imagine what is going on when the shepherd
discovers that some sheep are missing in the evening. He is left with
some /-marks which cannot be converted into ×-marks. The function
c : E → M is injective but not surjective. This means that the set E
has strictly fewer elements than the set M .

These ideas do not express immediately the concept of a number as
we are used to it. (They can be used to do that.) But they do express
our intuition about one number being equal to, smaller or greater than

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

56 Introduction to Logic

another number. What is, perhaps, most surprising is that they work
equally well when the involved sets are infinite, thus allowing us to
compare “the number of elements” in various infinite sets.

♦ ♦
In this section, we consider only sets and set functions, in particular, set-

isomorphisms.

Definition 1.19 Two sets S and T have equal cardinality iff they are set-
isomorphic S ! T .
The cardinality of a set S, |S|, is the equivalence class [S] = {T : T ! S}.

This is not an entirely precise definition of cardinality which, as a matter
of fact, is the number associated with such an equivalence class. The point
is that it denotes the intuitive idea of the number of elements in the set –
all set-isomorphic sets have the same number of elements.

Definition 1.20 |S| ≤ |T | iff there exists an injective function f : S → T .

It can be shown that this definition is consistent, i.e., that if |S1| = |S2|
and |T1| = |T2| then there exists an injective function f1 : S1 → T1 iff there
exists an injective function f2 : S2 → T2. A set S has cardinality stricly
less than a set T , |S| < |T |, iff there exists an injective function f : S → T
but there exists no such surjective function.

Example 1.21
|∅| = 0, |{∅}| = 1, |{{∅}}| = 1, |{∅, {∅}}| = 2.
|{a, b, c}| = |{•,#,+}| = |{0, 1, 2}| = 3.
For finite sets, all operations from Definition 1.1 yield sets with possibly
different cardinality:

1. |{a, b} ∪ {a, c, d}| = |{a, b, c, d}| |S ∪ T | ≥ |S|
2. |{a, b} ∩ {a, c, d}| = |{a}| |S ∩ T | ≤ |S|
3. |{a, b} \ {a, c, d}| = |{b}| |S \ T | ≤ |S|
4. |{a, b} × {a, d}| = |{〈a, a〉, 〈a, d〉, 〈b, a〉〈b, d〉}| |S × T | = |S| ∗ |T |
5. |℘({a, b})| = |{∅, {a}, {b}, {a, b}}| |℘(S)| > |S|

!

From certain assumptions (“axioms”) about sets it can be proven that the
relation ≤ on cardinalities has the properties of a weak TO, i.e., it is reflex-
ive (obvious), transitive (fairly obvious), antisymmetric (not so obvious)
and total (less obvious).
. [optional]
As an example of how intricate reasoning may be needed to establish such “not
quite but almost obvious” facts, we show that ≤ is antisymmetric.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 57

Theorem 1.22 [Schröder-Bernstein] For arbitrary sets X, Y , if there are injections
i : X → Y and j : Y → X, then there is a bijection f : X → Y (i.e., if |X| ≤ |Y |
and |Y | ≤ |X| then |X| = |Y |).

Proof. If the injection i : X → Y is surjective, i.e., i(X) = Y , then i is a
bijection and we are done. Otherwise, we have Y0 = Y \ i(X))= ∅ and we
apply j and i repeatively as follows

Y0 = Y \ i(X) X0 = j(Y0)

Yn+1 = i(Xn) Xn+1 = j(Yn+1)

Y ∗ =
ω⋃

n=0

Yn X∗ =
ω⋃

n=0

Xn

i.e., Y0

j

,,+
++

++
++

+ Y1

j

--+
++

++
++

+ Y2

j

--+
++

++
++

+
j

..

. . . Y ∗

X

i

//

X0

i

//

X1

i

//

X2

i

//

. . . X∗

So we can divide both sets into disjoint components as in the diagram below.

Y =

j

00

Y ∗
11

j

22

∪ (Y \ Y ∗)

X =

i

//

X∗ ∪ (X \ X∗)
22

i

11

We show that the respective restrictions of j and i are bijections. First,
j : Y ∗ → X∗ is a bijection (it is injective, and the following equation shows
that it is surjective):

j(Y ∗) = j(
ω⋃

n=0

Yn) =
ω⋃

n=0

j(Yn) =
ω⋃

n=0

Xn = X∗

By lemma 1.8, j− : X∗ → Y ∗, defined by j−(x) = y : j(y) = x is a bijection
too. Furthermore:

i(X∗) = i(
ω⋃

n=0

Xn) =
ω⋃

n=0

i(Xn) =
ω⋃

n=0

Yn+1 =
ω⋃

n=1

Yn = Y ∗ \ Y0. (1.23)

Now, the first of the following equalities holds since i is injective, the second
by (1.23) and since i(X) = Y \ Y0 (definition of Y0), and the last since
Y0 ⊆ Y ∗:

i(X \ X∗) = i(X) \ i(X∗) = (Y \ Y0) \ (Y ∗ \ Y0) = Y \ Y ∗,

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

58 Introduction to Logic

i.e., i : (X \X∗) → (Y \ Y ∗) is a bijection. We obtain a bijection f : X → Y
defind by

f(x) =

{
i(x) if x ∈ X \ X∗

j−(x) if x ∈ X∗
QED (1.22)

A more abstract proof

The construction of the sets X∗ and Y ∗ in the above proof can be subsumed
under a more abstract formulation implied by the Claims 1. and 2. below. In
particular, Claim 1. has a very general form.

Claim 1. For any set X, if h : ℘(X) → ℘(X) is monotonic, i.e. such that,
whenever A ⊆ B ⊆ X then h(A) ⊆ h(B); then there is a set T ⊆ X : h(T) = T .

We show that T =
⋃
{A ⊆ X : A ⊆ h(A)}.

a) T ⊆ h(T) : for for each t ∈ T there is an A : t ∈ A ⊆ T and A ⊆ h(A). But
then A ⊆ T implies h(A) ⊆ h(T), and so t ∈ h(T).

b) h(T) ⊆ T : from a) T ⊆ h(T), so h(T) ⊆ h(h(T)) which means that h(T) ⊆ T
by definition of T .

Claim 2. Given injections i, j define ∗ : ℘(X) → ℘(X) by A∗ = X \ j(Y \ i(A)).

If A ⊆ B ⊆ X then A∗ ⊆ B∗.

Follows trivially from injectivity of i and j. A ⊆ B, so i(A) ⊆ i(B), so Y \ i(A) ⊇
Y \ i(B), so j(Y \ i(A)) ⊇ j(Y \ i(B)), and hence X \j(Y \ i(A)) ⊆ X \j(Y \ i(B)).

3. Claims 1 and 2 imply that there is a T ⊆ X such that T = T ∗, i.e., T =

X \ j(Y \ i(T)). Then f : X → Y defined by f(x) =

{
i(x) if x ∈ T
j−1(x) if x)∈ T

is a

bijection. We have X = j(Y \ i(T))∪T and Y = (Y \ i(T))∪ i(T), and obviously

j−1 is a bijection between j(Y \ i(T)) and Y \ i(T), while i is a bijection between

T and i(T). [end optional]

Cardinality of each finite set is a natural number. The apparently empty
Definition 1.19 becomes more significant when we look at the infinite sets.

Definition 1.24 A set S is infinite iff there exists a proper subset T ⊂ S
such that S ! T .

Example 1.25
Denote the cardinality of the set of natural numbers by |N| def= ℵ0. (Some-

times it is also written ω, although axiomatic set theory distinguishes be-
tween the cardinal number ℵ0 and the ordinal number ω. Ordinal number
is a more fine-grained notion than cardinal number, but we shall not worry
about this.) We have, for instance, that |N| = |N \ {0}|, as shown below to

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 59

the left. In fact, the cardinality of N is the same as the cardinality of the
even natural numbers! It is easy to see that the pair of functions f(n) = 2n
and f−1(2n) = n as shown to the righ:

{ 0 1 2 3 ...
> > > > ...

{ 1 2 3 4 ...

{ 0 1 2 3 4 5 ...
f ↓ > > > > > > ↑ f−1

{ 0 2 4 6 8 10 ...

In general, when |S| = |T | = ℵ0 and |P | = n < ℵ0, we have

|S ∪ T | = ℵ0 |S \ P | = ℵ0 |S × T | = ℵ0

The following drawing illustrates a possible set-isomorphisms N ! N× N:

03 13 23 33 43

02 12 22 32 42

01 11 21 31 41

00 10 20 30 40 50! ! !

"

"

##$ ##$

##$

##$ ##$

##$

##$

##$

##$

##$

##%

##%

##%

##%

##%

##%

##%

##%

##%

!

A set-isomorphism S ! N amounts to an enumeration of the elements of
S. Thus, if |S| ≤ ℵ0 we say that S is enumerable or countable; in case of
equality, we say that it is countably infinite. Now, the question “are there
any uncountable sets?” was answered by the founder of modern set theory:

Theorem 1.26 [Georg Cantor] For any set A : |A| < |℘(A)|.

Proof. The construction applied here shows that the contrary assump-
tion – A ! ℘(A) – leads to a contradiction. Obviously, |A| ≤ |℘(A)|,
since the inclusion defined by f(a) = {a} is an injective function
f : A → ℘(A). So assume the equality |A| = |℘(A)|, i.e., a corre-
sponding F : A → ℘(A) which is both injective and surjective. Define
the subset of A by B

def= {a ∈ A : a '∈ F (a)}. Since B ⊆ A, so B ∈ ℘(A)
and, since F is surjective, there is a b ∈ A such that F (b) = B. Is b in
B or not? Each of the two possible answers yields a contradiction:
(1) b ∈ F (b) means b ∈ {a ∈ A : a '∈ F (a)}, which means b '∈ F (b)
(2) b '∈ F (b) means b '∈ {a ∈ A : a '∈ F (a)}, which means b ∈ F (b).

QED (1.26)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

60 Introduction to Logic

Corollary 1.27 There is no greatest cardinal number.

In particular, ℵ0 = |N| < |℘(N)| < |℘(℘(N))| < ... Theorem 1.26 proves
that there exist uncountable sets, but are they of any interest? Another
theorem of Cantor shows that such sets have been around in mathematics
for quite a while.

Theorem 1.28 The set R of real numbers is uncountable.

Proof. Since N ⊂ R, we know that |N| ≤ |R|. The diagonalisation
technique introduced here by Cantor, reduces the assumption that
|N| = |R| ad absurdum. If R ! N then, certainly, we can enumer-
ate any subset of R. Consider only the closed interval [0, 1] ⊂ R. If
it is countable, we can list all its members, writing them in decimal
expansion (each rij is a digit):

n1 = 0. r11 r12 r13 r14 r15 r16
n2 = 0. r21 r22 r23 r24 r25 r26
n3 = 0. r31 r32 r33 r34 r35 r36
n4 = 0. r41 r42 r43 r44 r45 r46
n5 = 0. r51 r52 r53 r54 r55 r56
n6 = 0. r61 r62 r63 r64 r65 r66

...

Form a new real number r by replacing each rii with another digit,
for instance, let r = 0.r1r2r3r4..., where ri = rii + 1 mod 10. Then
r cannot be any of the listed numbers n1, n2, n3, For each such
number ni has a digit rii at its i-th position which is different from the
digit ri at the i-th position in r. QED (1.28)

“Sets” which are not sets

In Definition 1.1 we introduced several set building operations. The power
set operation ℘() has proven particularly powerful. However, the most
peculiar one is the comprehension operation, namely, the one allowing us
to form a set of elements satisfying some property {x : Prop(x)}. Although
apparently very natural, its unrestricted use leads to severe problems.

Russell’s Paradox
Define the set U = {x : x '∈ x} and say if U ∈ U . Each possible answer
leads to absurdity:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.1. Sets, Functions, Relations 61

(1) U ∈ U means that U is one of x in U , i.e., U ∈ {x : x '∈ x}, so U '∈ U
(2) U '∈ U means that U ∈ {x : x '∈ x}, so U ∈ U . !

The problem arises because in the definition of U we did not specify what
kind of x’s we are gathering. Among many solutions to this paradox, the
most commonly accepted is to exclude such definitions by requiring that
x’s which are to satisfy a given property when collected into a new set
must already belong to some other set. This is the formulation we used in
Definition 1.1, where we said that if S is a set then {x ∈ S : Prop(x)} is
a set too. The “definition” of U = {x : x '∈ x} does not conform to this
format and hence is not considered a valid description of a set.

Exercises 1.

exercise 1.1 Given the following sets

S1 = {{∅}, A, {A}} S6 = ∅
S2 = A S7 = {∅}
S3 = {A} S8 = {{∅}}
S4 = {{A}} S9 = {∅, {∅}}
S5 = {A, {A}}

Of the sets S1-S9, which
(1) are members of S1 ?
(2) are members of S4 ?
(3) are members of S9 ?

(4) are subsets of S1 ?
(5) are subsets of S4 ?
(6) are subsets of S9 ?

exercise 1.2 Let A = {a, b, c}, B = {c, d}, C = {d, e, f}.
(1) Write the sets: A ∪B, A ∩B, A ∪ (B ∩ C)
(2) Is a a member of {A,B}, of A ∪B?
(3) Write the sets A×B and B ×A.

exercise 1.3 Using the set theoretic equalities (page 46), show that:
(1) A ∩ (B \ A) = ∅
(2) ((A ∪ C) ∩ (B ∪ C)) ⊆ (A ∪B)

Show first some lemmata:
a) A ∩B ⊆ A
b) if A ⊆ B then A ⊆ B ∪ C
c) if A1 ⊆ X and A2 ⊆ X then A1 ∪A2 ⊆ X

.

Expand then the expression (A ∪ C) ∩ (B ∪ C) to one of the form
X1 ∪X2 ∪X3 ∪X4, show that each Xi ⊆ A ∪B and use lemma c).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

62 Introduction to Logic

exercise 1.4 Let S = {0, 1, 2} and T = {0, 1, {0, 1}}. Construct ℘(S)
and ℘(T).
exercise 1.5 Given two infinite sets
S = {5, 10, 15, 20, 25, ...} and
T = {3, 4, 7, 8, 11, 12, 15, 16, 19, 20, ...}.
(1) Specify each of these sets by defining the properties PS and PT such

that S = {x ∈ N : PS(x)} and T = {x ∈ N : PT (x)}
(2) For each of these sets specify two other properties PS1, PS2 and

PT1, PT2, such that S = {x ∈ N : PS1(x)} ∪ {x ∈ N : PS2(x)}
and similarly for T .

exercise 1.6 Prove the claims cited below Definition 1.13, that
(1) Every sPO (irreflexive, transitive relation) is asymmetric.
(2) Every asymmetric relation is antisymmetric.
(3) If R is connected, symmetric and reflexive, then R(s, t) for every pair

s, t. What about a relation that is both connected, symmetric and
transitive? In what way does this depend on the cardinality of S?

exercise 1.7 Let C be a collection of sets. Show that equality = and
existence of set-isomorphism ! are equivalence relations on C × C as
claimed under Definition 1.13. Give an example of two sets S and T such
that S ! T but S '= T (they are set-isomorphic but not equal).
exercise 1.8 For any (non-empty) collection of sets C, show that
(1) the inclusion relation ⊆ is a wPO on C
(2) ⊂ is its strict version
(3) ⊆ is not (necessarily) a TO on C.

exercise 1.9 If |S| = n for some natural number n, what will be the
cardinality of ℘(S)?
exercise 1.10 Let A be a countable set.
(1) If also B is countable, show that:

(a) the disjoint union A 5 B is countable (specify its enumeration,
assuming the existence of the enumerations of A and B);

(b) the union A ∪B is countable (specify an injection into A 5B).
(2) If B is uncountable, can A×B ever be countable?

exercise 1.11 Let A be a countable set. Show that A has countably many
finite subsets, proceeding as follows:

(1) Show first that for any n ∈ N, the set ℘n(A) of finite subsets – with
exactly n elements – of A is countable.

(2) Using a technique similar to the one from Example 1.25, show that the
union

⋃
n∈N ℘n(A) of all these sets is countable.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 63

Chapter 2

Induction
• Well-founded Orderings

– General notion of Inductive proof
• Inductive Definitions

– Structural Induction

1: Well-Founded Orderings
♦ a Background Story ♦
Ancients had many ideas about the basic structure and limits of the
world. According to one of them our world – the earth – rested on
a huge tortoise. The tortoise itself couldn’t just be suspended in a
vacuum – it stood on the backs of several elephants. The elephants
stood all on a huge disk which, in turn, was perhaps resting on the
backs of some camels. And camels? Well, the story obviously had
to stop somewhere because, as we notice, one could produce new sub-
levels of animals resting on other objects resting on yet other animals,
resting on ... indefinitely. The idea is not well founded because such
a hierarchy has no well defined begining, it hangs in a vacuum. Any
attempt to provide the last, the most fundamental level is immediately
met with the question “And what is beyond that?”

The same problem of the lacking foundation can be encoutered
when one tries to think about the begining of time. When was it?
Physicists may say that it was Big Bang. But then one immediately
asks “OK, but what was before?”. Some early opponents of the Bibli-
cal story of creation of the world – and thus, of time as well – asked
“What did God do before He created time?”. St. Augustine, realising
the need for a definite answer which, however, couldn’t be given in the
same spirit as the question, answered “He prepared the hell for those
asking such questions.”

One should be wary here of the distinction between the begining and
the end, or else, between moving backward and forward. For sure, we
imagine that things, the world may continue to exist indefinitely in

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

64 Introduction to Logic

the future – this idea does not cause much trouble. But our intuition
is uneasy with things which do not have any begining, with chains
of events extending indefinitely backwards, whether it is a backward
movement along the dimension of time or causality.

Such non well founded chains are hard to imagine and even harder
to do anything with – all our thinking, activity, constructions have
to start from some begining. Having an idea of a begining, one will
often be able to develop it into a description of the ensuing process.
One will typically say: since the begining was so-and-so, such-and-
such had to follow since it is implied by the properties of the begining.
Then, the properties of this second stage, imply some more, and so
on. But having nothing to start with, we are left without foundation
to perform any intelligible acts.

Mathematics has no problems with chains extending infinitely in
both directions. Yet, it has a particular liking for chains which do
have a begining, for orderings which are well-founded. As with our
intuition and activity otherwise, the possibility of ordering a set in a
way which identifies its least, first, starting elements, gives a mathe-
matician a lot of powerful tools. We will study in this chapter some
fundamental tools of this kind. As we will see later, almost all our
presentation will be based on well-founded orderings.

♦ ♦

Definition 2.1 Let 〈S,≤〉 be a PO and T ⊆ S.

• x ∈ T is a minimal element of T iff there is no element smaller than x,
i.e., for no y ∈ T : y < x

• 〈S,≤〉 is well-founded iff each non-empty T ⊆ S has a minimal element.

The set of natural numbers with the standard ordering 〈N,≤〉 is well-
founded, but the set of all integers with the natural extension of this or-
dering 〈Z,≤〉 is not – the subset of all negative integers does not have a
≤-minimal element. Intuitively, well-foundedness means that the ordering
has a “basis”, a set of minimal “starting points”. This is captured by the
following lemma.

Lemma 2.2 A PO 〈S,≤〉 is well-founded iff there is no infinite decreasing
sequence, i.e., no sequence {an}n∈N of elements of S such that an > an+1.

Proof. We have to show two implications.

⇐) If 〈S,≤〉 is not well-founded, then let T ⊆ S be a subset without a

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 65

minimal element. Let a1 ∈ T – since it is not minimal, we can find
a2 ∈ T such that a1 > a2. Again, a2 is not minimal, so we can find
a3 ∈ T such that a2 > a3. Continuing this process we obtain an
infinite descending sequence a1 > a2 > a3 >

⇒) If there is such a sequence a1 > a2 > a3 > ... then, obviously, the
set {an : n ∈ N} ⊆ S has no minimal element. QED (2.2)

Example 2.3
Consider again the orderings on finite strings as defined in example 1.16.

(1) The relation ≺Q is a well-founded sPO; there is no way to construct an
infinite sequence of strings with ever decreasing lengths!

(2) The relation ≺P is a well-founded PO : any subset of strings will contain
element(s) such that none of their prefixes (except the strings them-
selves) are in the set. For instance, a and bc are ≺P -minimal elements
in S = {ab, abc, a, bcaa, bca, bc}.

(3) The relation≺L is not well-founded, since there exist infinite descending
sequences like

. . . ≺L aaaab ≺L aaab ≺L aab ≺L ab ≺L b.

In order to construct any such descending sequence, however, there is
a need to introduce ever longer strings as we proceed towards infinity.
Hence the alternative ordering below is also of interest.

(4) The relation ≺Q was defined in example 1.16. Now define s ≺L′ p iff
s ≺Q p or (length(s) = length(p) and s ≺L p). Hence sequences are
ordered primarily by length, secondarily by the previous lexicographic
order. The ordering ≺L′ is indeed well-founded and, in addition, con-
nected, i.e., a well-founded TO. !

Definition 2.4 A well-ordering, WO, is a well-founded TO.

Notice that well-founded ordering is not the same as well-ordering. The
former can still be a PO which is not a TO. The requirement that a WO
= 〈S,≤〉 is a TO implies that each (sub)set of S has not only a minimal
element but also a unique minimal element.

Example 2.5
The set of natural numbers with the “less than” relation, 〈N, <〉, is an

sPO. It is also a TO (one of two distinct natural numbers must be smaller
than the other) and well-founded (any non-empty set of natural numbers
contains a least element). !

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

66 Introduction to Logic

Although sets like N or Z have the natural orderings, these are not the
only possible orderings of these sets. In particular, for a given set S there
may be several different ways of imposing a well-founded ordering on it.

Example 2.6
The set of integers, 〈Z, <〉, is a TO but not well-founded – negative numbers
have no minimal element.

That < and ≤ fail to be WO on Z does not mean that Z cannot be
made into a WO. One has to come up with another ordering. For instance,
let |x| for an x ∈ Z denote the absolute value of x (i.e., |x| = x if x ≥ 0
and |x| = −x if x < 0.) Say that x ≺ y if either |x| < |y| or (|x| = |y| and
x < y). This means that we order Z as 0 ≺ −1 ≺ 1 ≺ −2 ≺ 2.... This ≺ is
clearly a WO on Z.

Of course, there may be many different WO’s on a given set. Another
WO on Z could be obtained by swapping the positive and negative integers
with the same absolute values, i.e., 0 ≺′ 1 ≺′ −1 ≺′ 2 ≺′ −2.... !

1.1: Inductive Proofs on Well-founded Orderings

Well-founded orderings play a central role in many contexts because they
allow one to apply a particularly convenient proof technique – proof by
induction – which we now proceed to study.

♦ a Background Story ♦
Given some set S, a very typical problem is to show that all elements
of S satisfy some property, call it P , i.e., to show that for all x ∈ S :
P (x). How one can try to prove such a fact depends on how the set
S is described.

A special case is when S is finite and has only few elements – in
this case, we can just start proving P (x) for each x separately.

A more common situation is that S has infinitely many elements.
Let S = {2i : i ∈ Z} and show that each x ∈ S is an even number.
Well, this is trivial by the way we have defined the set. Let x be an
arbitrary element of S. Then, by definition of S, there is some i ∈ Z
such that x = 2i. But this means precisely that x is an even number
and, since x was assumed arbitrary, the claim holds for all x ∈ S.

Of course, in most situations, the relation between the definition
of S and the property we want to prove isn’t that simple. Then the
question arises: “How to ensure that we check the property for all
elements of S and that we can do it in finite time (since otherwise

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 67

we would never finish our proof)?” The idea of proof by induction
answers this question in a particular way. It tells us that we have to
find some well-founded ordering of the elements of S and then proceed
in a prescribed fashion: one shows the statement for the minimal
elements and then proceeds to greater elements in the ordering. The
trick is that the strategy ensures that only finitely many steps of the
proof are needed in order to conclude that the statement holds for all
elements of S.

The inductive proof strategy is not guaranteed to work in all cases
and, particularly, it depends heavily on the choice of the ordering.
It is, nevertheless, a very powerfull proof technique which will be of
crucial importance for all the rest of the material we will study.

♦ ♦
The most general and abstract statement of the inductive proof strategy

is as follows.

Theorem 2.7 Let 〈S,≤〉 be a well-founded ordering and T ⊆ S.
Assume the following condition: for all y ∈ S : if (for all x ∈ S : x < y → x ∈
T) then y ∈ T . Then T = S.

Proof. Assume that T satisfies the condition but T '= S, i.e., S \ T '=
∅. Since S is well-founded, S \ T must have a minimal element y.
Since y is minimal in S \ T , any x < y must be in T . But then the
condition implies y ∈ T . This is a contradiction – we cannot have both
y ∈ T and y ∈ S \ T – showing that T = S. QED (2.7)

This theorem of induction is the basis for the following proof strategy for
showing properties of sets on which some well-founded ordering has been
defined.

Idea 2.8 [Inductive proof] Let 〈S,≤〉 be well-founded and P be a pred-
icate. Suppose we want to prove that each element x ∈ S has the property
P – that P (x) holds for all x ∈ S. I.e., we want to prove that the sets
T = {x ∈ S : P (x)} and S are equal. Proceed as follows:

Induction :: Let x be an arbitrary element of S, and assume that for all y <
x : P (y) holds. Prove that this implies that also P (x) holds.

Closure :: If you managed to show this, you may conclude S = T , i.e., P (x)
holds for all x ∈ S.

Observe that the hypothesis in the Induction step, called the induction

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

68 Introduction to Logic

hypothesis, IH, allows us to assume P (y) for all y < x. Since we are work-
ing with a well-founded ordering, there are some minimal elements x for
which no such y exists. For these minimal x’s, we then have no hypothesis
and simply have to show that the claim P (x) holds for them without any
assumptions. This part of the proof is called the Basis of induction.

Example 2.9
Consider the natural numbers greater than 1, i.e. the set N2 = {n ∈ N :

n ≥ 2}. We want to prove the prime number theorem: for each n ∈ N2 :
P (n), where P (n) stands for ‘n is a product of prime numbers’. First we
have to decide which well-founded ordering on N2 to use – the most obvious
first choice is to try the natural ordering <, that is, we prove the statement
on the well-founded ordering 〈N2, <〉 :

Basis :: Since 2 – the minimal element in N2 – is a prime number, we
have P (2).

Ind. :: So let n > 2 and assume IH: that P (k) holds for every k < n.
If n is prime, P (n) holds trivially. So, finally, assume that n is
a non-prime number greater than 2. Then n = x ∗ y for some
2 ≤ x, y < n. By IH, P (x) and P (y), i.e., x and y are products
of primes. Hence, n is a product of primes.

Clsr. :: So P (n) for all n ∈ N2. !

Example 2.10
For any number x '= 1 and for any n ∈ N, we want to show: 1 + x + x2 +

... + xn = xn+1−1
x−1 . There are two different sets involved (of x’s and of n’s),

so we first try the easiest way – we attempt induction on the well-founded
ordering 〈N, <〉, which is simply called “induction on n”:

Basis :: For n = 0, we have 1 = x−1
x−1 = 1.

Ind. :: Let n′ > 0 be arbitrary, i.e., n′ = n + 1. We expand the left
hand side of the equality:

1 + x + x2 + ... + xn + xn+1 = (1 + x + x2 + ... + xn) + xn+1

(by IH since n < n′ = n + 1) =
xn+1 − 1

x− 1
+ xn+1

=
xn+1 − 1 + (x− 1)xn+1

x− 1

=
xn+1+1 − 1

x− 1

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 69

Notice that here we have used much weaker IH – the hypothesis that the
claim holds for n = n′ − 1 (implied by IH) is sufficient to establish the
induction step. Closure yields the claim for all n ∈ N. !

The proof rule from the idea 2.8 used in the above examples may be written
more succinctly as

∀x(∀y(y < x → P (y)) → P (x))
∀xP (x)

(2.11)

where “∀x” is short for “for all x ∈ N2” (in 2.9), resp. “for all x ∈ N”
(in 2.10) and the horizontal line indicates that the sentence below can be
inferred from the sentence above.

Example 2.12
A convex n-gon is a polygon with n sides and where each interior angle is
less than 180◦. A triangle is a convex 3-gon and, as you should know from
the basic geometry, the sum of the interior angles of a triangle is 180◦. Now,
show by induction that the sum of interior angles of any convex n-gon is
(n− 2)180◦.

The first question is: induction on what? Here it seems natural to try
induction on n, i.e., on the number of sides. (That is, we consider a well-
founded ordering on n-gons in which X < Y iff X has fewer sides than
Y .)

The basis case is: let X be an arbitrary triangle, i.e., 3-gon. We use the
known result that the sum of interior angles of any triangle is indeed 180◦.

For the induction step: let n > 3 be arbitrary number and X an ar-
bitrary convex n-gon. Selecting two vertices with one common neighbour
vertex between them, we can always divide X into a triangle X3 and (n−1)-
gon Xr, as indicated by the dotted line on the drawing below.

&
&
'

'#
#

(
(

....................
X

Xr

X3

Xr has one side less than X so, by induction hypothesis, we have that the
sum of its angles is (n−3)180◦. Also by IH, the sum of angles in X3 is 180◦.
At the same time, the sum of the angles in the whole X is simply the sum
of angles in X3 and Xr. Thus it equals (n − 3)180◦ + 180◦ = (n − 2)180◦

and the proof is complete. !

The simplicity of the above examples is due to not only the fact that the
problems are easy but also that the ordering to be used is very easy to
identify. In general, however, there may be different orderings on a given

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

70 Introduction to Logic

set and then the first question about inductive proof concerns the choice of
appropriate ordering.

Example 2.13
We want to prove that for all integers z ∈ Z :{

1 + 3 + 5 + ... + (2z − 1) = z2 if z > 0
(−1) + (−3) + (−5) + ... + (2z + 1) = −(z2) if z < 0

.

We show examples of two proofs using different orderings.

(1) For the first, this looks like two different statements, so we may try to
prove them separately for positive and negative integers. Let’s do it:

Basis :: For z = 1, we have 1 = 12.
Ind. :: Let z′ > 1 be arbitrary, i.e., z′ = z + 1 for some z > 0.

1 + 3 + ... + (2z′ − 1) = 1 + 3 + ... + (2z − 1) + (2(z + 1)− 1)
(by IH since z < z′ = z + 1) = z2 + 2z + 1 = (z + 1)2 = (z′)2

The proof for z < 0 is entirely analogous, but now we have to reverse the
ordering: we start with z = −1 and proceed along the negative integers
only considering z ≺ z′ iff |z| < |z′|, where |z| denotes the absolute value
of z (i.e., |z| = −z for z < 0). Thus, for z, z′ < 0, we have actually that
z ≺ z′ iff z > z′.

Basis :: For z = −1, we have −1 = −(−1)2.
Ind. :: Let z′ < −1 be arbitrary, i.e., z′ = z − 1 for some z < 0.

−1− 3 + ... + (2z′ + 1) = −1− 3 + ... + (2z + 1) + (2(z − 1) + 1)
(by IH since z ≺ z′) = −|z|2 − 2|z| − 1

= −(|z|2 + 2|z|+ 1) = −(|z|+ 1)2

= −(z − 1)2 = −(z′)2

The second part of the proof makes it clear that the well-founded ordering
on the whole Z we have been using was not the usual <. We have, in a sense,
ordered both segments of positive and negative numbers independently in
the following way (the arrow x → y indicates the ordering x ≺ y):

1 ## 2 ## 3 ## 4 ## 5 ## . . .

−1 ## −2 ## −3 ## −4 ## −5 ## . . .

The upper part coincides with the typically used ordering < but the lower
one was the matter of more specific choice.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 71

Notice that the above ordering is different from another, natural one,
which orders two integers z ≺′ z′ iff |z| < |z′|. This ordering (shown below)
makes, for instance, 3 ≺′ −4 and −4 ≺′ 5. The ordering above did not
relate any pair of positive and negative intergers with each other.

1 ##

33,,
,,

, 2 ##

33,,
,,

, 3 ##

33,,
,,

, 4 ##

33,,
,,

, 5 ##

33--
--

--
. . .

−1 ##

44.....
−2 ##

44.....
−3 ##

44.....
−4 ##

44.....
−5 ##

44.....
. . .

(2) The problem can be stated a bit differently. We have to show that

for all z ∈ Z :
{

1 + 3 + 5 + ... + (2z − 1) = z2 if z > 0
−(1 + 3 + 5 + ... + (2|z| − 1)) = −(z2) if z < 0

.

Thus formulated, it becomes obvious that we only have one statement to
prove: we show the first claim (in the same way as we did it in point 1.) and
then apply trivial arithmetics to conclude from x = y that also −x = −y.

This, indeed, is a smarter way to prove the claim. Is it induction? Yes
it is. We prove it first for all positive integers – by induction on the natu-
ral ordering of the positive integers. Then, we take an arbitrary negative
integer z and observe (assume induction hypothesis!) that we have already
proved 1 + 3 + ... + (2|z| − 1) = |z|2. The well-founded ordering on Z we
are using in this case orders first all positive integers along < (for proving
the first part of the claim) and then, for any z < 0, puts z after |z| but
unrelated to other n > |z| > 0 – the induction hypothesis for proving the
claim for such a z < 0 is, namely, that the claim holds for |z|. The ordering
is shown on the left:

1 ##

00

2 ##

00

3 ##

00

4 ##

00

. . .

−1 −2 −3 −4 . . .

−1

−2

1 ## 2 ## 3 ## 4 ## . . .

55/////////

66"""""" ##

77!!!
!!!

880
00

00
00

00 −3

−4
. . .

As a matter of fact, the structure of this proof allows us to view the used
ordering in yet another way. We first prove the claim for all positive in-
tegers. Thus, when proving it for an arbitrary negative integer z < 0, we
can assume the stronger statement than the one we are actually using, i.e.,
that the claim holds for all positive integers. This ordering puts all negative
integers after all positive ones as shown on the right in the figure above.

None of the orderings we encountered in this example was total. !

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

72 Introduction to Logic

2: Inductive Definitions
We have introduced the general idea of inductive proof over an arbitrary
well-founded ordering defined on an arbitrary set. The idea of induction –
a kind of stepwise construction of the whole from a “basis” by repetitive
applications of given rules – can be applied not only for constructing proofs
but also for constructing, that is defining, sets. We now illustrate this tech-
nique of definition by induction and then (subsection 2.3) proceed to show
how it gives rise to the possibility of using a special case of the inductive
proof strategy – the structural induction – on sets defined in this way.

♦ a Background Story ♦
Suppose I make a simple statement, for instance, (1) ‘John is a nice
person’. Its truth may be debatable – some people may think that,
on the contrary, he is not nice at all. Pointing this out, they might
say – “No, he is not, you only think that he is”. So, to make my
statemet less definite I might instead say (2) ‘I think that ‘John is a
nice person’’. In the philosophical tradition one would say that (2)
expresses a reflection over (1) – it expresses the act of reflecting over
the first statement. But now, (2) is a new statement, and so I can
reflect over it again: (3) ‘I think that ‘I think that ‘John is nice”’. It
isn’t perhaps obvious why I should make this kind of statement, but
I certainly can make it and, with some effort, perhaps even attach
some meaning to it. Then, I can just continue: (4) ‘I think that (3)’,
(5) ‘I think that (4)’, etc. The further (or higher) we go, the less
idea we have what one might possibly intend with such expressions.
Philosophers used to spend time analysing their possible meaning –
the possible meaning of such repetitive acts of reflection over reflection
over reflection ... over something. In general, they agree that such
an infinite regress does not yield anything intuitively meaningful and
should be avoided.

In the daily discourse, we hardly ever attempt to carry such a
process beyond the level (2) – the statements at the higher levels do
not make any meaningful contribution to a conversation. Yet they
are possible for purely linguistic reasons – each statement obtained in
this way is grammatically correct. And what is ‘this way’? Simply:

Basis :: Start with some statement, e.g., (1) ‘John is nice’.

Step :: Whenever you have produced some statement (n) – at
first, it is just (1), but after a few steps, you have some

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 73

higher statement (n) – you may produce a new statement
by prepending (n) with ‘I think that ...’. Thus you obtain
a new, (n+1), statement ‘I think that (n)’.

Anything you obtain according to this rule happens to be grammati-
cally correct and the whole infinite chain of such statements consitutes
what philosophers call an infinite regress.

The crucial point here is that we do not start with some set
which we analyse. We are defining a new set – the set of statements
{(1), (2), (3), ...} – in a peculiar way. The idea of induction – stepwise
construction from a “basis” – is not applied for proving properties of
a given set but for defining a new one.

♦ ♦
One may often encounter sets described by means of abbreviations like E =
{0, 2, 4, 6, 8, ...} or T = {1, 4, 7, 10, 13, 16, ...}. The abbreviation ... indicates
that the author assumes that you have figured out what the subsequent
elements will be – and that there will be infinitely many of them. It is
assumed that you have figured out the rule by which to generate all the
elements. The same sets may be defined more precisely with the explicit
reference to the respective rule:

E = {2 ∗ n : n ∈ N} and T = {3 ∗ n + 1 : n ∈ N} (2.14)

Another way to describe these rules is as follows. The set E is defined by:

Basis :: 0 ∈ E and,
Step :: whenever an x ∈ E, then also x + 2 ∈ E.

Clsr. :: Nothing else belongs to E.

The other set is defined similarly:

Basis :: 1 ∈ T and,
Step :: whenever an x ∈ T , then also x + 3 ∈ T .

Clsr. :: Nothing else belongs to T .

Here we are not so much defining the whole set by one static formula, as
we did in (2.14), but are rather specifying the rules for generating new
elements from some elements which we have already included in the set.
Not all formulae (static rules, as those used in (2.14)) allow equivalent
formulation in terms of such generation rules. Yet, quite many sets of
interest can be defined by means of such generation rules – quite many sets
can be introduced by means of inductive definitions. Inductively defined
sets will play a central role in all the subsequent chapters.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

74 Introduction to Logic

Idea 2.15 [Inductive definition of a set] An inductive definition of a
set S consists of

Basis :: List some (at least one) elements B ⊆ S.
Ind. :: Give one or more rules to construct new elements of S from already

existing elements.
Clsr. :: State that S consists exactly of the elements obtained by the basis

and induction steps.

The closure condition is typically assumed rather than stated explicitly,
and we will not mention it either.

Example 2.16
The finite strings Σ∗ over an alphabet Σ from Example 1.16, can be defined
inductively, staring with the empty string, ε, i.e., the string of length 0, as
follows:

Basis :: ε ∈ Σ∗

Ind. :: if s ∈ Σ∗ then xs ∈ Σ∗ for all x ∈ Σ

Constructors are the empty string ε and the operations prepending an el-
ement in front of a string x , for all x ∈ Σ. Notice that 1-element strings
like x will be here represented as xε. !

Example 2.17
The finite non-empty strings Σ+ over alphabet Σ are defined by starting

with a different basis.

Basis :: x ∈ Σ+ for all x ∈ Σ
Ind. :: if s ∈ Σ+ then xs ∈ Σ+ for all x ∈ Σ !

Often, one is not interested in all possible strings over a given alphabet
but only in some subsets. Such subsets are called languages and, typically,
are defined by induction.

Example 2.18
Define the set of strings N over Σ = {0, s}:

Basis :: 0 ∈ N
Ind. :: If n ∈ N then sn ∈ N

This language is the basis of the formal definition of natural numbers. The
constructors are 0 and the operation of appending the symbol ‘s’ to the
left. (The ‘s’ signifies the “successor” function corresponding to n + 1.)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 75

Notice that we do not obtain the set {0, 1, 2, 3...} but {0, s0, ss0, sss0...},
which is a kind of unary representation of natural numbers. Notice that,
for instance, the strings 00s, s0s0 '∈ N, i.e., N '= Σ∗. !

Example 2.19

(1) Let Σ = {a, b} and let us define the language L ⊆ Σ∗ consisting only of
the strings starting with a number of a’s followed by the equal number
of b’s, i.e., {anbn : n ∈ N}.

Basis :: ε ∈ L
Ind. :: if s ∈ L then asb ∈ L

Constructors of L are ε and the operation adding an a in the beginning
and a b at the end of a string s ∈ L.

(2) Here is a more complicated language over Σ = {a, b, c, (,),¬,→} with
two rules of generation.

Basis :: a, b, c ∈ L
Ind. :: if s ∈ L then ¬s ∈ L

if s, r ∈ L then (s → r) ∈ L

By the closure property, we can see that, for instance, ‘(‘ '∈ L and
(¬b) '∈ L. !

In the examples from section 1 we saw that a given set may be endowed
with various well-founded orderings. Having succeded in this, we can than
use the powerful technique of proof by induction according to theorem 2.7.
The usefulness of inductive definitions is related to the fact that such an
ordering may be obtained for free – the resulting set obtains implicitly a
well-founded ordering induced by the very definition as follows.3

Idea 2.20 [Induced wf Order] For an inductively defined set S, define
a function f : S → N as follows:

Basis :: Let S0 = B and for all b ∈ S0 : f(b) def= 0.
Ind. :: Given Si, let Si+1 be the union of Si and all the elements

x ∈ S \ Si which can be obtained according to one of the
rules from some elements y1, . . . , yn of Si. For each such new
x ∈ Si+1 \ Si, let f(x) def= i + 1.

Clsr. :: The actual ordering is then x ≺ y iff f(x) < f(y).
3In fact, an inductive definition imposes at least two such orderings of interest, but

here we consider just one.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

76 Introduction to Logic

The function f is essentially counting the minimal number of steps – con-
secutive applications of the rules allowed by the induction step of Definition
2.15 – needed to obtain a given element of the inductive set.

Example 2.21
Refer to Example 2.16. Since the induction step amounts there to increas-
ing the length of a string by 1, following the above idea, we would obtain
the ordering on strings s ≺ p iff length(s) < length(p). !

2.1: “1-1” Definitions

A common feature of the above examples of inductively defined sets is the
impossibility of deriving an element in more than one way. For instance in
Example 2.17, the only way to derive the string abc is to start with c and
then add b and a to the left in sequence. One apparently tiny modification
changes this state of affairs:

Example 2.22
The finite non-empty strings over alphabet Σ can also be defined induc-

tively as follows.

Basis :: x ∈ Σ+ for all x ∈ Σ
Ind. :: if s ∈ Σ+ and p ∈ Σ+ then sp ∈ Σ+

!

According to this example, abc can be derived by concatenating either a
and bc, or ab and c. We often say that the former definitions are 1-1, while
the latter is not. Given a 1-1 inductive definition of a set S, there is an
easy way to define new functions on S – again by induction.

Idea 2.23 [Inductive function definition] Suppose S is defined induc-
tively from basis B and a certain set of construction rules. To define a function
f on elements of S do the following:

Basis :: Identify the value f(x) for each x in B.
Ind. :: For each way an x ∈ S can be constructed from one or more

y1, . . . , yn ∈ S, show how to obtain f(x) from the values
f(y1), . . . , f(yn).

Clsr. :: If you managed to do this, then the closure property of S guaran-
tees that f is defined for all elements of S.

The next few examples illustrate this method.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 77

Example 2.24
We define the length function on finite strings by induction on the defini-
tion in example 2.16 as follows:

Basis :: length(ε) = 0
Ind. :: length(xs) = length(s) + 1 !

Example 2.25
We define the concatenation of finite strings by induction on the definition
from example 2.16:

Basis :: ε · t = t
Ind. :: xs · t = x(s · t) !

Example 2.26
In Example 2.16 strings were defined by a left append (prepend) opera-

tion which we wrote as juxtaposition xs. A corresponding right append
operation can be now defined inductively.

Basis :: ε C y = yε
Ind. :: xs C y = x(s C y)

and the operation of reversing a string:

Basis :: εR = ε
Ind. :: (xs)R = sR C x !

The right append operation C does not quite fit the format of idea 2.23
since it takes two arguments – a symbol as well as a string. It is possible to
give a more general version that covers such cases as well, but we shall not
do so here. The definition below also apparently goes beyond the format of
idea 2.23, but in order to make it fit we merely have to think of addition,
for instance in m+n, as an application of the one-argument function add n
to the argument m.

Example 2.27
Using the definition of N from Example 2.18, we can define the plus oper-
ation for all n, m ∈ N :

Basis :: 0 + n = n
Ind. :: s(m) + n = s(m + n)

It is not obvious that this is the usual addition. For instance, does it hold
that n + m = m + n? We shall verify this in an exercise.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

78 Introduction to Logic

We can use this definition to calculate the sum of two arbitrary nat-
ural numbers represented as elements of N. For instance, 2 + 3 would be
processed as follows:

ss0 + sss0 D→ s(s0 + sss0) D→ ss(0 + sss0) D→ ss(sss0) = sssss0 !

Note carefully that the method of inductive function definition 2.23 is
guaranteed to work only when the set is given by a 1-1 definition. Imagine
that we tried to define a version of the length function in example 2.24 by
induction on the definition in example 2.22 as follows: len(x) = 1 for x ∈ Σ,
while len(ps) = len(p) + 1. This would provide us with alternative (and
hence mutually contradictive) values for len(abc), depending on which way
we choose to derive abc. Note also that the two equations len(x) = 1 and
len(ps) = len(p) + len(s) provide a working definition, but in this case it
takes some reasoning to check that this is indeed the case.

2.2: Inductive Definitions, Recursive Programming

If you are not familiar with the basics of programming you may skip this
subsection and go directly to subsection 2.3. No new concepts are intro-
duced here but merely illustrattions of the relation between the two areas
from the title.

All basic structures known from computer science are defined induc-
tively – any instance of a List, Stack, Tree, etc., is generated in finitely
many steps by applying some basic constructor operations. These oper-
ations themselves may vary from one programming language to another,
or from one application to another, but they always capture the inductive
structure of these data types. We give here but two simple examples which
illustrate the inductive nature of two basic data structures and show how
this leads to the elegant technique of recursive programming.

1. Lists
A List (to simplify matters, we assume that we store only integeres as
data elements) is a sequence of 0 or more integers. The idea of a sequence
or, more generally, of a linked structure is captured by pointers between
objects storing data. Thus, one would define objects of the form

List
int x;
List next;

so that, for instance, the list 〈3, 7, 2, 5〉 would contain 4 List objects, plus
the additional null object at the end:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 79

3 • next ## 7 • next ## 2 • next ## 5 • next ##

The declaration of the List objects tells us that a List is:
(1) either a null object (the default value for pointers)
(2) or an integer (stored in the current List object) followed by another

List object.

But this is exactly an inductive definition, namely, the one from exam-
ple 2.16, the only difference being that of the language used.

1a. From inductive definition to recursion
The above is also a 1-1 definition and thus gives rise to natural recursive
programming over lists. The idea of recursive programming is to traverse
a structure in the order opposite to the way we imagine it built along its
inductive definition. We start at some point of the structure and proceed
to its subparts until we reach the basis case. For instance, the function
computing length of a list is programmed recursively to the left:

int length(List L) int sum(List L)
IF (L is null) return 0; IF (L is null) return 0;
ELSE return 1+length(L.next); ELSE return L.x+sum(L.next);

It should be easy to see that the pseudo-code on the left is nothing more
than the inductive definition of the function from example 2.24. Instead of
the mathematical formulation used there, it uses the operational language
of programming to specify:
1. the value of the function in the basis case (which also terminates the

recursion) and then
2. the way to compute the value in the non-basis case from the value for

some subcase which brings recursion “closer to” the basis.

The same schema is applied in the function to the right which computes
the sum of all integers in the list.

Notice that, abstractly, Lists can be viewed simply as finite strings.
You may rewrite the definition of concatenation from Example 2.25 for
Lists as represented here.

1b. Equality of Lists
Inductive 1-1 definition of a set (here of the set of List objects given by their
declaration) gives also rise to the obvious recursive function for comparing
objects for equality. Two lists are equal iff
i) they have the same structure (i.e., the same number of elements) and

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

80 Introduction to Logic

ii) respective elements in both lists are equal

The corresponding pseudo-code for recursive function definition is as fol-
lows. The first two lines check point i) and ensure termination upon reach-
ing the basis case. The third line checks point ii). If everything is ok so
far, the recursion proceeds to check the rest of the lists:

boolean equal(List L, R)
IF (L is null AND R is null) return TRUE;
ELSE IF (L is null OR R is null) return FALSE;
ELSE IF (L.x '= R.x) return FALSE;
ELSE return equal(L.next, R.next);

2. Trees
Another very common data structure is binary tree BT. (Again, we simplify
presentation by assuming that we only store integers as data.) Unlike in a
list, each node (except the null ones) has two successors (called “children”)
left and right:

BT
int x;
BT left;
BT right;

5
left

9911111111 right

7722222222

2
left

::33
33

right

880
00

0 7
left

::33
33

right

;;4
44

4

3
left

<<55
55

right

,,+
++

+

The inductive definition says that a binary tree BT is
(1) either a null object
(2) or an integer (stored in the current BT object) with two pointers (left

and right) to other (always distinct) BT objects.

2a. From inductive definition to recursion
To compute the sum of integers stored in a given tree, we have to compute
the sums stored in its left and right subtrees and add to them the value
stored at the current node itself. The recursive function reflecting the
inductive definition is as follows:

int sum(BT T)
IF (T is null) return 0;
ELSE return (sum(T.left) + T.x + sum(T.right));

Again, the first line detects the basis case, while the second one computes
the non-basic case, descending recursively down the tree structure.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 81

2b. Equality of Binary Trees
Using the operational intuition of inductive generation might suggest that
the definition of binary tree is not 1-1. To generate the tree from the
example drawing, we might first generate its left subtree and then the
right one, or else other way around. The sequence of steps leading to the
construction of the whole tree would not be unique.

However, this operational intuition, relaying on the temporal ordering
of construction steps is not what matters for a definition to be 1-1. There
is only one logical way to obtain this tree: we must have both its left and
its right subtree, and only then we can make this tree. That is, there are
unique elements (left and right subtree, and the integer to be stored in the
root node itself) and the unique rule to be applied (put left subtree to the
left, right to the right, and the integer in the node). The definition is 1-1.

Equality of binary trees follows naturally: two trees are equal iff
i) they have the same structure and
ii) respective elements stored at respective nodes in both trees are equal

Having the same structure amounts here to the following condition: trees
T1 and T2 have the same structure iff:
• both are null or
• T1 = (L1, x1, R1), T2 = (L2, x2, R2), i.e., neither is null, and both

L1, L2 have the same structure and R1, R2 have the same structure.

This is clearly an inductive definition of ‘having the same structure’, giving
us the recursive pseudo-code for checking equality of two binary trees:

boolean equal(BT T1,T2)
IF (T1 is null AND T2 is null) return TRUE;
ELSE IF (T1 is null OR T2 is null) return FALSE;
ELSE IF (T1.x '= T2.x) return FALSE;
ELSE return (equal(T1.left, T2.left) AND

equal(T1.right,T2.right));

Ending now this programming excursion, we return to the proof strategy
arising from inductive definitions of sets which will be of crucial importance
in later chapters.

2.3: Proofs by Structural Induction

Since, according to Idea 2.20, an inductive definition of a set induces
a well-founded ordering, it allows us to perform inductive proofs of the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

82 Introduction to Logic

properties of this set. This is called proof by structural induction – the
word “structural” indicating that the proof, so to speak, proceeds along
the structure of the set imposed by its inductive definition. In contrast to
the definitions of functions on inductive sets 2.23, this proof strategy works
for all inductively defined sets, regardless of whether the definitions are 1-1.

Proof by structural induction is just a special case of the inductive proof
Idea 2.8. Simply, because any inductive definition of a set induces a well-
founded ordering on this set according to the Idea 2.20. Using this ordering
leads to the following proof strategy:

Idea 2.28 [Proof by Structural Induction] Suppose that, given a set
S defined inductively from basis B, we want to prove that each element x ∈ S
has the property P – that P (x) holds for all x ∈ S. Proceed as follows:

Basis :: Show that P (x) holds for all x ∈ B.
Ind. :: For each way an x ∈ S can be constructed from one or

more y1, . . . , yn ∈ S, show that the induction hypothesis :
P (y1), . . . , P (yn) implies P (x).

Clsr. :: If you managed to show this, then the closure property of S allows
you to conclude that P (x) holds for all x ∈ S.

It is straightforward to infer the proof rule in idea 2.28 from the one in
idea 2.8. We assume that 2.8 holds. Then, assuming Basis and Induction
step of 2.28, we merely has to prove the Induction step in idea 2.8. So
let x be an arbitrary member of S and assume the IH that P (y) holds
for all y ≺ x. There are two possible cases: Either f(x) = 0, in which
case x ∈ S0 = B, and P (x) follows from the Basis part of idea 2.28.
Otherwise x ∈ Si+1 \ Si for some i ∈ N. Then x can be obtained from
some y1, . . . , yn ∈ Si. Since these are all less than x in the sense of ≺, by the
IH P (y1) and . . . and P (yn). But then P (x) follows from the Induction
part of idea 2.28, and the argument is complete.

The great advantage of inductively defined sets is that, in order to prove
their properties, one need not inquire into the details of the induced well-
founded ordering but merely has to follow the steps of the definition (as
described in idea 2.28).

Example 2.29
The set of natural numbers was defined inductively in example 2.18. The

induced well-founded ordering will say that sn0 ≺ sm0 iff n < m. Thus,
writing the natural numbers in the usual way 0, 1, 2, 3, . . ., and replacing sn
by n + 1, the induced ordering is the standard ordering < – the structural

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 83

induction on this set will be the usual mathematical induction. That is:

Basis :: Show that P (0) holds.
Ind. :: Assuming the induction hypothesis P (n), show that it implies

also P (n + 1).

It is the most common form of induction used in mathematics. The proof
in example 2.10 used this form, observed there as a “weaker induction
hypothesis” (than the one allowed by the general formulation from idea 2.8).
Using structural induction, we show that for all n ∈ N :

1 + 2 + ... + n =
n(n + 1)

2
.

Basis :: n = 0 : 0 =
0(0 + 1)

2
= 0

Ind. :: Assume the IH 1 + 2 + ... + n =
n(n + 1)

2
. Then

1 + 2 + ... + n + (n + 1) =
n(n + 1)

2
+(n + 1) =

(n + 1)(n + 2)
2. !

The proof rule for natural numbers used above can be written more suc-
cinctly as follows.

P (0) & ∀x(P (x) → P (x + 1))
∀xP (x)

(2.30)

This rule can be sometimes more cumbersome to use than the rule (2.11).
To see this, try to use it to prove the prime number theorem which was
shown in example 2.9 using the general induction schema for natural num-
bers (i.e., the rule (2.11)). The difference between the two concerns, ac-
tually, only the “easiness” of carrying out the proof – as you are asked to
show in exercise 2.9, the two proof rules have the same power.

Example 2.31
We show that the concatenation function from Example 2.25 is associative,
i.e., that for any strings s · (t · p) = (s · t) · p. We proceed by structural
induction on the first argument:

Basis :: ε · (t · p) = t · p = (ε · t) · p
Ind. :: xs · (t · p) = x(s · (t · p)) IH= x((s · t) · p) = (x(s · t)) · p = (xs · t) · p !

Example 2.32
Define the set U inductively:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

84 Introduction to Logic

Basis :: ∅ ∈ U
Ind. :: if S ∈ U then ℘(S) ∈ U .

and show that for all S ∈ U : S '∈ S. What is the ordering ≺ induced on
the set U by this definition? Well, ∅ is the least element and then, for any
set S we have that S < ℘(S). ≺ is the transitive closure of this relation
<. The nice thing about structural induction is that one actually need not
have a full insight into the structure of the induced ordering but merely has
to follow the inductive definition of the set.

Basis :: Since, for all X : X '∈ ∅ so, in particular, ∅ '∈ ∅.
Ind. :: Assume IH : S '∈ S. Contrapositively, assume that ℘(S) ∈

℘(S). This means that ℘(S) ⊆ S. On the other hand, S ∈
℘(S). But since X ⊆ Y iff for all x : x ∈ X ⇒ x ∈ Y , we thus
obtain that S ∈ ℘(S) & ℘(S) ⊆ S ⇒ S ∈ S, contradiciting IH. !

Example 2.33
Show that the set L defined in Example 2.19.1 is actually the set T =
{anbn : n ∈ N}.
1. We show first the inclusion L ⊆ T by structural induction on L.

Basis :: ε = a0b0.
Ind. :: Assume that s ∈ L satisfies the property, i.e., s = anbn for

some n ∈ N. The string produced from s by the rule will then
be asb = aanbnb = an+1bn+1. Hence all the strings of L have
the required form and L ⊆ {anbn : n ∈ N}.

Notice again that we did not ask about the precise nature of the induced
ordering but merely followed the steps of the inductive definition of L in
carrying out this proof. (The induced ordering ≺ on L is given by: anbn ≺
ambm iff n < m.)

2. On the other hand, any element of {anbn : n ∈ N} can be generated in
n steps according to the L’s construction rule. This is shown by induction
on n, that is, on the natural ordering 〈N, <〉:

Basis :: For n = 0, we have a0b0 = ε ∈ L.
Ind. :: If IH : anbn ∈ L, then aanbnb = an+1bn+1 ∈ L by the induction

step of definition of L.

Hence {anbn : n ∈ N} ⊆ L. !

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 85

Example 2.34
Recall the language L defined in Example 2.19.2. Define its subset S :

Basis :: B = {a, b,¬c, (a → (b → c)), (c → b)} ⊂ S
Ind. :: if s ∈ S and (s → t) ∈ S then t ∈ S

if ¬t ∈ S and (s → t) ∈ S then ¬s ∈ S

We show that S = B ∪ {(b → c),¬b, c} constructing S step by step:

S0 = B = {a, b,¬c, (a → (b → c)), (c → b)}
S1 = S0 ∪ {(b → c)}, with a for s and (b → c) for t in the first rule

= {a, b,¬c, (a → (b → c)), (c → b), (b → c)}
S2 = S1 ∪ {¬b, c} taking b for s and c for t and applying both rules

= {a, b,¬c, (a → (b → c)), (c → b), (b → c),¬b, c}
S = Every application of a rule to some new combination of strings

now yields a string which is already in S2. Since no new strings
can be produced, the process stops here and we obtain S = S2. !

The last example will illustrate some more intricate points which often
may appear in proofs by structural induction.

Example 2.35
Recall the definition of finite non-empty strings Σ+ from Example 2.17.
For the same alphabet Σ, define the set Σ′ inductively as follows:

Basis :: x ∈ Σ′ for all x ∈ Σ
Ind-a :: if x ∈ Σ and s ∈ Σ′ then xs ∈ Σ′

Ind-b :: if x ∈ Σ and s ∈ Σ′ then sx ∈ Σ′.

If we want to view this as a definition of finite non-empty strings, we have
to first observe that the same string may be generated in various ways –
this definition is not 1-1. For instance, abc may be obtained from bc by
prepending a according to rule 1, or else from ab by appending c according
to rule 2. To make sure that these operations yield the same result, we
should augment the above definition with the equation:

x(sy) = (xs)y (2.36)

Intuitively, the sets Σ+ and Σ′ are the same – we said that both are the
set of finite non-empty string. But this is something we have to show. As
is often the case, equality of two sets is shown by showing two inclusions.
Σ+ ⊆ Σ′. This inclusion is trivial since anything which can be generated
from the Basis and Induction rule in definition of Σ+ can be generated by
the same process following defnition of Σ′. (Strictly speaking, we show it

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

86 Introduction to Logic

by structural induction following the definition of Σ+: every element of
its basis is also in the basis of Σ′; and then, whatever can be obtained
according to the rule from the definition of Σ+ can be obtained by the first
rule from the definition of Σ′.)
Σ′ ⊆ Σ+, i.e., for every s : s ∈ Σ′ → s ∈ Σ+. We show the claim by
structural induction on s, i.e., on the definition of Σ′.

Basis :: if x ∈ Σ, then x ∈ Σ′ and also x ∈ Σ+.
IH :: Assume the claim for s, i.e., s ∈ Σ′ → s ∈ Σ+. Notice that,

according to Idea 2.28, we have to show now the claim for each
way a “new” element may be obtained. The two different rules
in the inductive definition of Σ′, give rise to two cases to be
considered.

Ind-a :: xs ∈ Σ′ – by IH, s ∈ Σ+, and so by the induction step of the
definition of Σ+ : xs ∈ Σ+.

Ind-b :: sx ∈ Σ′ ...? There does not seem to be any helpful information
to show that then sx ∈ Σ+...
Let us therefore try a new level of induction, now for showing
this particular case. We have the assumption of IH above, and
proceed by sub-induction, again on s:

Basis2 :: s = y ∈ Σ and x ∈ Σ – but then xy ∈ Σ+, by the induction
step of its definition

IH2 :: The Basis has been shown for arbitrary x and y = s, and
so we may assume that: for every x ∈ Σ and for s ∈ Σ′ :
sx ∈ Σ+. We have again two cases for s:

Ind2-a :: ys ∈ Σ′, and (ys)x ∈ Σ′ – then, by (2.36), (ys)x = y(sx)
while by IH2, sx ∈ Σ+. But this suffices to conclude that
y(sx) ∈ Σ+.

Ind2-b :: sy ∈ Σ′, and (sy)x ∈ Σ′ – by IH2 we have that sy ∈ Σ+,
but what can we then do with the whole term (sy)x?
Well, sy ∈ Σ+ is very significant – by the definition of Σ+,
this means that sy can be actually written as zt for some
z ∈ Σ and t ∈ Σ+, i.e., sy = zt. Can we now conclude
that (sy)x = (zt)x (2.36)= z(tx) ∈ Σ+? Not really, because
for that we would need that tx ∈ Σ+, and we do not know
that. We might, perhaps, try yet another level of induction
– now on t – but this should start looking suspicious.

What we know about tx is that i) tx ∈ Σ′ (since zt ∈ Σ′ so t ∈ Σ′) and that

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 87

ii) length(tx) = length(sy). If IH2 could be assumed for all such tx (and
not only for the particular sy from which the actual (sy)x is built), we would
be done. And, as a matter of fact, we are allowed to assume just that in
our (sub-)induction hypothesis IH2. Why? Because proving our induction
step for the term of the form (sy)x (or (ys)x) we can assume the claim for
all terms which are smaller in the actual ordering. This is the same as the
strong version of the induction principle, like the one used in example 2.9,
as compared to the weaker version, like the one used in Example 2.10.
The actual formulation of Idea 2.28 allows us only the weaker version of
induction hypothesis – namely, the assumption of the claim only for the
immediate predecessors of the element for which we are proving the claim
in the induction step. However, if we inspect the actual ordering induced
by the inductive definition according to Idea 2.20 and apply the general
theorem 2.7, then we see that also this stronger version will be correct. !

We will encounter many examples of inductive proofs in the rest of the
course. In fact, the most important sets we will consider will be defined
inductively and most proofs of their properties will use structural induction.

3: Transfinite Induction [optional]
As a final example, we give an inductive definition of ordinals (introduced by von
Neumann and called also “ordinal numbers” though, as a matter of fact, they
are sets), and show inductively some properties of this set. The example shows
that induction is by no means restricted to finitely generated elements. It can be
carried over to sets of arbitrary cardinality. Although the principle is the same
as before, emphasising the context, one calls it “transfinite induction”.

Define the collection of von Neumann’s ordinals, O, inductively as follows:

Basis :: ∅ ∈ O
Ind. :: 1) if x ∈ O then x+ = x ∪ {x} ∈ O – “successor” of an ordinal is an

ordinal
2) if xi ∈ O then

⋃
xi ∈ O – arbitrary (possibly infinite) union of

ordinals is an ordinal

We show a few simple facts about O using structural induction.

(A) For all x ∈ O : y ∈ x ⇒ y ⊂ x.

Basis :: x = ∅, and as there is no y ∈ ∅, the claim follows trivially.
Ind :: 1) From IH : y ∈ x ⇒ y ⊂ x show that y ∈ x+ ⇒ y ⊂ x+. y ∈ x+

means that either a) y ∈ x, from which, by IH, we get y ⊂ x and
thus y ⊂ x ∪ {x}, or b) y = x, and then y ⊆ x but y)= x ∪ {x}, i.e.,
y ⊂ x ∪ {x}.
2) IH : for all xi : y ∈ xi ⇒ y ⊂ xi. If y ∈

⋃
xi, then there is some

k : y ∈ xk and, by IH, y ⊂ xk. But then y ⊂
⋃

xi.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

88 Introduction to Logic

(B) For all x ∈ O : y ∈ x ⇒ y ∈ O (each element of an ordinal is an ordinal)

Basis :: Since there is no y ∈ ∅, this follows trivially.
Ind :: Let x ∈ O and 1) assume IH : y ∈ x ⇒ y ∈ O. If y ∈ x ∪ {x} then

either y ∈ x and by IH y ∈ O, or else y = x but x ∈ O.
2) IH : for all xi : y ∈ xi ⇒ y ∈ O. If y ∈

⋃
xi, then there is some xk

for which y ∈ xk. Then, by IH, y ∈ O.

The second rule in the definition of O enables one to construct elements of O
without any immediate predecessor. In the above proofs, the case 1) was treated
by a simple induction assuming the claim about the immediate predecessor. The
case 2), however, required the stronger version assuming the claim for all ordinals
xi involved in forming the new ordinal by union. This step amounts to transfinite
induction – what we have proven holds for the set O whose small, initial segment
is shown below, with the more standard notation indicated in the right column.

ω + ω






ω






∅
{∅}
{∅, {∅}}
{∅, {∅}, {∅, {∅}}}
...
ω
{ω, {ω}}
{ω, {ω}, {ω, {ω}}}
...

0
1
2
3
...
ω
ω + 1
ω + 2
...

2ω 2ω
{2ω, {2ω}} 2ω + 1
...

...

ω is the first such limit ordinal (with no immediate predecessor), ω + ω = 2ω the
second, etc. – the sequence of ordinals continues indefinitely:

0, 1, 2, 3, 4, 5, . . . ω, ω + 1, ω + 2, . . . ω + ω =

2ω, 2ω + 1, 2ω + 2, . . . 3ω, 3ω + 1, . . . 4ω, 4ω + 1, . . . ω ∗ ω =

ω2, ω2 + 1, . . . ω3, ω3 + 1, . . . ω4, ω4 + 1, . . .

ωω, ωω + 1, . . . ω2ω, . . . ω3ω, . . . ωω∗ω, . . . ω(ω3), . . . ω(ωω), . . .

Ordinals play the central role in set theory, providing the paradigm for well-
orderings (total well-founded orderings). Notice that this means that we may
have several ordinals of the same cardinality (the concept of ordinal number
includes ordering, that of a cardinal number does not). For instance, the ordinals

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

I.2. Induction 89

ω, ω + 1 and 1 + ω, can be easily seen to have the same cardinality:

ω = 0 < 1 < 2 < 3 < 4 < 5 < ...
ω + 1 = 0 < 1 < 2 < 3 < 4 < 5 < ... < ω
1 + ω = • < 0 < 1 < 2 < 3 < 4 < 5 < ...

The functions f : ω + 1 → 1 + ω defined by f(ω) = • and f(n) = n and
g : 1 + ω → ω defined by g(•) = 0 and g(n) = n + 1 are obviously bijections,
i.e., set-isomorphisms. g is, in addition order-isomorphism, since it satisfies for
all elements x, y ∈ 1 + ω : x < y ⇒ g(x) < g(y). This means that these two
ordinals represent essentially the same ordering. However, f does not preserve
the ordering, since it maps the greatest element ω of the ordering ω + 1 onto the
smallest element • of the ordering 1 + ω. These two ordinals, although of the
same cardinality ω, represent different ways of ordering all ω elements. The first
makes first an infinite sequence and then adds a maximal element at the end of
it. The second makes an infinite sequence and adds a new minimal element in
front of it. Thus the former does possess a maximal element while the latter does
not.

We thus see that ω + 1)= 1 + ω – the inequality which holds in the ordinal

arithmetics exactly because the ordinals represent not only numbers (or unstruc-

tured sets) but orderings.. [end optional]

Exercises 2.

exercise 2.1 Given the following inductively defined set S ⊂ N× N:

Basis :: 〈0, 0〉 ∈ S
Ind. :: If 〈n, m〉 ∈ S then 〈s(n),m〉 ∈ S and 〈s(n), s(m)〉 ∈ S

Determine the property P which allows you to describe the set S as a set
of the form
{〈n, m〉 : P (n, m)}.
Describe those elements of S which can be derived in more than one way.
exercise 2.2 Let Σ = {a, b, c}, Γ = {¬,→, (,)} and define the language
WFFΣ over Σ ∪ Γ inductively as follows:

Basis :: If A ∈ Σ then A ∈ WFFΣ

Ind. :: If A,B ∈ WFFΣ then ¬A ∈ WFFΣ and (A → B) ∈ WFFΣ.

(1) Which of the following strings belong to WFFΣ :
(a → ¬b) → c, a → b → c, ¬(a → b), (¬a → b), ¬a → b ?

(2) Replace Σ with ∆ = {∗,#} and use the analogous definition of WFF∆.
Which strings are in WFF∆ :
∗#, ¬∗, ¬(##), (∗ → #), ∗ → #, ∗ ← # ?

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

90 Introduction to Logic

exercise 2.3 Describe the ordering induced on the Σ+ of example 2.22
by the definitions of idea 2.20.
exercise 2.4 Use induction on N to prove the following equations for all
1 ≤ n ∈ N

(1) 1 + 2 + ... + n =
n(n + 1)

2
(2) (1 + 2 + ... + n)2 = 13 + 23 + ... + n3

(In the induction step expand the expression ((1+2+ ...+n)+(n+1))2

and use 1.)

exercise 2.5 Use induction to prove that a finite set with n elements has
2n subsets (cf. Exercise 1.9).
exercise 2.6 Let X be a country with finitely many cities. Show that
for any such X, if every two cities in X have (at least) one one-way road
between them, then there is some starting city x0 and a route from x0

which passes through every city exactly once.
exercise 2.7 Using the definition of strings Σ∗ from example 2.16 as a
schema for structural induction, show that the reverse operation from
example 2.26 is idempotent, i.e., (sR)R = s.
(Show first, by structural induction on s, the lemma: for all y ∈ Σ, s ∈
Σ∗ : (s C y)R = y(sR).)
exercise 2.8 Show that the operation + on N, defined in example 2.27, is
commutative, i.e., that the identity n + m = m + n holds for all n, m ∈ N.
This requires a nested induction, i.e.,
• the basis: for all m ∈ N, 0 + m = m + 0, and
• the induction: for all m ∈ N, s(n) + m = m + s(n), given that for all

m ∈ N, n + m = m + n

can themselves be proved only by the use of induction (on m).
exercise 2.9 We have seen two different proof rules for induction on nat-
ural numbers – one (2.11) in example 2.9 and another (2.30) in exam-
ple 2.29. Show that each can be derived from the other. Begin by stating
clearly what exactly you are asked to prove!
(One part of this proof follows trivially from the general argument after
Idea 2.28.)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 91

Chapter 3

Turing Machines
• Alphabets, Strings, Languages
• Turing Machiness as accepting vs. computing devices
• A Universal Turing Machine
• Decidability

1: Alphabets and Languages
♦ a Background Story ♦
The languages we use for daily communication are what we call natural
languages. They are acquired in childhood and are suited to just about
any communication we may have. They have developed along with
the development of mankind and form a background for any culture
and civilisation. Formal languages, on the other hand, are explicitly
designed by people for a clear, particular purpose. A semi-formal
language was used in the preceding chapters for the purpose of talking
about sets, functions, relations, etc. It was only semi-formal because
it was not fully defined. It was introduced along as we needed some
notation for particular concepts.

Formal language is a fundament of formal logical system and we
will later encouter several examples of formal languages. Its most
striking feature is that, although designed for some purposes, it is
an entity on its own. It is completely specified without necessarily
referring to its possible meaning. It is a pure syntax. Similar dis-
tinction can be drawn with respect to natural languages. The syntax
of a natural language is captured by the intuition of the grammatically
correct expressions. Quadrille drinks procrastination is a grammat-
ically correct expression consisting of the subject quadrille, verb in
the proper form drinks, and object procrastination. As you can see,
the fact that it is grammatical, does not ensure that it is meaningful.
The sentence does convey an idea of some strange event which, unless
it is employed in a very particular context, does not make any sense.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

92 Introduction to Logic

The pure syntax does not guarantee meaning. Yet, on the positive
side, syntax is much easier to define and control than its intended
meaning. At the even more basic level, and with respect to the written
form, the basic building block of a language’s syntax is the alphabet.
We have the Latin alphabet a,b,c... and words are built from these
letters. Yet, as with the meaningless grammatical sentences, not all
possible combinations of the letters form valid words; aabez is perhaps
a syntactic possibility but it is not a correct expression – there is no
such word.

We will now start using such purely syntactic languanges. Their
basis is determined by some, arbitrarily chosen alphabet. Then, one
may design various syntactic rules determining which expressions
built from the alphabet’s symbols, form valid, well-formed words and
sentences. In this chapter, we will merely introduce the fundamental
definition of a language and observe how the formal notion of com-
putability relates necessarily to some formal language. In the subse-
quent chapters, we will study some particular formal languages form-
ing the basis of most common logical systems.

♦ ♦

Definition 3.1 An alphabet is a (typically finite) set, its members are called
symbols. The set of all finite strings over an alphabet Σ is denoted Σ∗. A
language L over an alphabet Σ is a subset L⊆ Σ∗.

Example 3.2
The language with natural numbers as the only expressions is a subset of
N ⊆ Σ∗ where Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

Typically, languages are defined inductively. The language L of natural
number arithmetic can be defined over the alphabet Σ′ = Σ∪{), (,+,−, ∗}

Basis :: If n ∈ N then n ∈ L
Ind. :: If m,n ∈ L then (m + n), (m− n), (m ∗ n) ∈ L. !

Alphabets of particular importance are the ones with only two symbols.
Any finite alphabet Σ with n distinct symbols can be encoded using an
alphabet with only two symbols, e.g., ∆ = {0, 1}

Example 3.3
To code any 2-symbol alphabet Σ, we just choose any bijection Σ ↔ ∆.

To code Σ = {a, b, c} we may choose the representation {a D→ 00, b D→
01, c D→ 10}.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 93

The string aacb will be represented as 00001001. Notice that to decode this
string, we have to know that any symbol from Σ is represented by a string
of exactly two symbols from ∆. !

In general, to code an alphabet with n symbols, one has to use strings
from ∆ of length Elog2nF. Coding a 5-symbol alphabet, will require strings
of length at least 3.

Binary representation of natural numbers is a more specific coding using
not only the difference between symbols but also positions at which they
occur.

Definition 3.4 A binary number b is an element of Σ∗ where Σ = {0, 1}.
A binary number b = bnbn−1...b2b1b0 represents the natural number bn ∗ 2n +
bn−1 ∗ 2n−1 + bn−2 ∗ 2n−2 + ... + b1 ∗ 21 + b0 ∗ 20.

For instance, 0001 and 01 both represent 1; 1101 represents 1 ∗ 23 + 1 ∗
22 + 0 ∗ 2 + 1 ∗ 1 = 13.

2: Turing Machines
♦ a Background Story ♦
Turing Machine (after English mathematician Alan Turing, 1912-
1954) was the first general model designed for the purpose of sepa-
rating problems which can be solved automatically from those which
cannot. Although the model was purely mathematical, it was easy to
imagine that a corresponding physical device could be constructed. In
fact, it was and is today known as the computer.

Many other models of computability have been designed but, as it
turns out, all such models define the same concept of computability,
i.e., the same problems are mechanically computable irrespectively of
the definition of computability. The fundamental results about Turing
machines apply to all computations on even most powerful computers.
The limits of Turing computability are also the limits of the modern
computers.

The rest of the story below is taken from Turing’s seminal pa-
per “On computable numbers, with an application to the Entschei-
dungsproblem” from 1936:

“Computing is normally done by writing certain symbols on paper.
We may suppose this paper is divided into squares like a child’s arith-
metic book. In elementary arithmetic the two-dimensional character

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

94 Introduction to Logic

of the paper is sometimes used. But such a use is always avoidable,
and I think that it will be agreed that the two-dimenstional charac-
ter of paper is no essential of computation. I assume then that the
computation is carried out one one-dimensional paper, i.e., on a tape
divided into squares. I shall also suppose that the number of symbols
which may be printed is finite. If we were to allow an infinitey of
symbols, then there would be symbols differing to an arbitrary small
extent. The effect of this restriction of the number of symbols is not
very serious. It is always possible to use sequences of symbols in
the place of single symbols. Thus an Arabic numeral such as 17 or
999999999999999 is normally treated as a single symbol. Similarly,
in any European language words are treated as single symbols. (Chi-
nese, however, attempts to have an enumerable infinity of symbols).
The differences from our point of view between the single and com-
pound symbols is that the compound symbols, if they are too lengthy,
cannot be observed at one glance. This is in accordance with expe-
rience. We cannot tell at a glance whether 9999999999999999 and
999999999999999 are the same.

The behaviour of the computer at any moment is determined by
the symbols which he is observing, and his “state of mind” at that
moment. We may suppose that there is a bound B to the number of
symbols of squares which the computer can observe at one moment. If
he wishes to observe more, he must use successive observations. We
will also suppose that the number of states of mind which need be taken
into account is finite. The reasons for this are of the same character
as those which restrict the number of symbols. If we admitted an
infinity of states of mind, some of them will be “arbitrarily close”
and will be confused. Again, the restriction is not one which seriously
affects computation, since the use of more complicated states of mind
can be avoided by writing more symbols on the tape.

Let us imagine the operations performed by the computer to be split
up into “simple operations” which are so elementary that it is not
easy to imagine them further divided. Every such operation consists
of some change of the physical system consisting of the computer and
his tape. We know the state of the system if we know the sequence
of symbols on the tape, which of these are observed by the computer
(possibly with a special order), and the state of mind of the computer.
We may suppose that in a simple operation not more than onse symbol
is altered. Any other change can be split up into simple changes of

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 95

this kind. The situation in regard to the squares whose symbols may
be altered in this way is the same as in regard to the observed squares.
We may, therefore, without loss of generality, assume that the squares
whose symbols are changed are always “observed” squares.

Besides these changes of symbols, the simple operations must in-
clude changes of distribution of observed squares. The new squares
must be immediately recognisable by the computer. I think it is rea-
sonable to suppose that they can only be squares whose distance from
the closest of the immediately previously observed squares does not ex-
ceed a certain fixed amount. Let us say that each of the new observed
squares is within L squares of an immediately previously observed
square.

In connection with “immediate recognisability”, it may be thought
that there are other kinds of square which are immediately recognis-
able. In particular, squares marked by special symbols might be taken
as imemdiately recognisable. Now if these squares are marked only by
single symbols there can be only finite number of them, and we should
not upset our theory by adjoining these marked squares to the ob-
served squares. If, on the other hand, they are marked by a sequence
of symbols, we cannot regard the process of recognition as a simple
process. This is a fundamental point and should be illustrated. In
most mathematical papers the equations and theorems are numbered.
Normally the numbers do not go beyond (say) 1000. It is, therefore,
possible to recognise a theorem at a glance by its number. But if
the paper was very long, we might reach Theorem 157767733443477;
then, further on in the paper, we might find “...hence (applying The-
orem 157767733443477) we have...”. In order to make sure which
was the relevant theorem we should have to compare the two numbers
figure by figure, possibly ticking the figures off in pencil to make sure
of their not being counted twice. If in spite of this it is still thought
that there are other “immediately recognisable” squares, it does not
upset my contention so long as these squares can be found by some
process of which my type of machine is capable. [...]

The simple operations must therefor include:

(a) Changes of the symbol on one of the observed squares.

(b) Changes of one of the squares observed to another square within
L squares of one of the previously observed squares.

It may be that some of these changes necessarily involve a change of

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

96 Introduction to Logic

state of mind. The most general single operation must therefore be
taken to be one of the following:

(A) A possible change (a) of symbol together with a possible change of
state of mind.

(B) A possible change (b) of observed squares, together with a possible
change of mind.

The operation actually performed is determined, as has been sug-
gested, by the state of mind of the computer and the observed symbols.
In particular, they determine the state of mind of the computer after
the operation is carried out.

We may now construct a machine to do the work of this com-
puter. To each state of mind of the computer corresponds an “m-
configuration” of the machine. The machine scans B squares corre-
sponding to the B squares observed by the computer. In any move the
machine can change a symbol on a scanned square or can change any
one of the scanned squares to another square distant not more than
L squares from one of the other scanned squares. The move which is
done, and the succeeding configuration, are determined by the scanned
symbol and the m-configuration.”

♦ ♦

Definition 3.5 A Turing machine, M is a quadruple 〈K, Σ, q0, τ〉 where

• K is a finite set of states of M
• Σ is a finite alphabet of M
• q0 ∈ K is the initial state
• τ : K × Σ → K × (Σ ∪ {L,R}) is a (partial) transition function of M .

For convenience, we will assume that Σ always contains the ‘space’ symbol
#. This definition deviates only slightly from the one sketched by Turing
and does not deviate from it at all with respect to the computational power
of the respective machines. The difference is that our machine reads only
a single symbol (a single square, or position) at a time, B = 1, and that it
moves at most one square at the time, L = 1.

Idea 3.6 [Operation of TM] Imagining M as a physical device with a
“reading head” moving along an infinite “tape” divided into discrete positions,
the transition function τ determines its operation as follows:

• M starts in the initial state q0, with “its head” at some position on the
input tape.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 97

• When M is in a state q and “reads” a symbol a, and the pair 〈q, a〉 is
in the domain of τ , then M “performs the action” 〈q′, a′〉 = τ(〈q, a〉):
“passes to the state” q′ “doing” a′ which may be one of the two things:

– if a′ ∈ Σ, M “prints” the symbol a′ at the current position on the tape;
– otherwise a′ = L or a′ = R – then M “moves its head” one step to the

left or right, respectively.

• When M is in a state q and reads a symbol a, and the pair 〈q, a〉 is not in
the domain of τ then M “stops its execution” – it halts.

• To “run M on the input string w” is to write w on an otherwise blank
tape, place the reading head on the first symbol of w (if w is the empty
string, place the reading head on any position) and then start the machine
(from state q0).

• M(w) denotes the tape’s content after M has run on the input w.

τ may be written as a set of quadruples {〈q1, a1, q′1, a
′
1〉, 〈q2, a2, q′2, a

′
2〉, ...}

called instructions. We will often write a single instruction as 〈q, a〉 D→
〈q′, a′〉. Notice that initially the tape contains the “input” for the compu-
tation. However, it is also used by M for writing the “output”.
Remark.
Sometimes, one allows τ to be a relation which is not a function. This leads
to nondeterministic Turing machines. However, such machines are not more
powerful than the machines from our definition, and we will not study them.
Another variant, which does not increase the power and will not be discussed
here either, allows TM to use several tapes. For instance, a machine with 2 tapes
would have τ : K × Σ× Σ → K × (Σ ∪ {L, R})× (Σ ∪ {L, R}).

Turing machines embody the idea of mechanically computable functions
or algorithms. The following three examples illustrate different flavours
of such computations. The one in Example 3.7 disregards its input (for
simplicity we made the input blank) and merely produces a constant value
– it computes a constant function. The one in Example 3.8 does not modify
the input but recognizes whether it belongs to a specific language. Starting
on the leftmost 1 it halts if and only if the number of consecutive 1’s is
even – in this case we say that it accepts the input string. If the number
is odd the machine goes forever. The machine in Example 3.9 computes a
function of the input x. Using unary representation of natural numbers, it
returns Ex/2F – the least natural number greater than or equal to x/2.

Example 3.7
The following machine goes PING! Starting on an empty (filled with

blanks) tape, it writes “PING” and halts. The alphabet is {#, P, I,N,G},

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

98 Introduction to Logic

we have 7 states q0...q6 with the initial state q0, and the transition function
is as follows (graphically, on the right, state qx is marked by 12345678x and the
initial state qz by z):

〈q0,#〉 D→〈q0, P 〉 〈q0, P 〉 D→〈q1,R〉
〈q1,#〉 D→〈q1, I〉 〈q1, I〉 D→〈q2,R〉
〈q2,#〉 D→〈q2, N〉 〈q2, N〉 D→〈q3,R〉
〈q3,#〉 D→〈q3, G〉

0

#,P

==
P,R ## 123456781

#,I

==
I,R ## 123456782

#,N

==
N,R ## 123456783

#,G

==

!

Example 3.8
The alphabet is {#, 1} and machine has 2 states. It starts on the left-

most 1 in state q0 – the transition function is given on the left, while the
corresponding graphical representation on the right:

〈q0, 1〉 D→〈q1,R〉
〈q1, 1〉 D→〈q0,R〉
〈q1,#〉 D→〈q1,#〉

0
1,R

%% 123456781
1,R

'' #,#>>

Write the computations of this machine on the inputs 1, 11 and 111. !

Example 3.9
The simplest idea to make a machine computing Ex/2F – using the alphabet
{#, 1} and unary representation of numbers – might be to go through the
input removing every second 1 (replacing it with #) and then compact the
result to obtain a contiguous sequence of 1’s. We apply a different algorithm
which keeps all 1’s together all the time. Machine starts at the leftmost 1:

1 Starting on the leftmost 1 in q0

q0 〈q0, 1〉 -→〈q1, R〉 − jump over one 1; halt if no 1
q1 〈q1, 1〉 -→〈q2, #〉 − replace next 1 with #; halt if no 1
q2 〈q2, #〉 -→〈q3, L〉 − move left and
q3 〈q3, #〉 -→〈q4, R〉 〈q3, 1〉 -→〈q3, L〉 return to the leftmost 1
q4 〈q4, 1〉 -→〈q5, #〉 − erase it
q5 〈q5, #〉 -→〈q6, R〉 − move right− return to # inserted
q6 〈q6, #〉 -→〈q7, 1〉 〈q6, 1〉 -→〈q6, R〉 in q1 replacing it with 1 erased in q4

q7 〈q7, 1〉 -→〈q0, R〉 − move right and continue from q0

0
1,R ## 123456781 1,# ## 123456782 #,L ## 123456783

#,R
00

1,L
??

1234567871,R

// 123456786
#,1

&&

1,R

==
123456785

#,R
&& 123456784

1,#
&&

Try to follow the computations on the input tapes #, 1, 11 and 111. !

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 99

2.1: Composing Turing machines . [optional]

The following machine starts its computation anywhere within or just after a

string of 1’s and adds one 1 at the end of the string, M+1 : 01,R
.. #,1 ##123456781 .

Now taking, for instance the machine M/2 from example 3.9, we should be able to
put the two together into a machine Mf computing the function f(x) = 5x/26+1,
by runing first M/2 and then M+1.

To do this in general, one has to ensure that the configuration in which the
first machine halts (if it does) is of the form assumed by the second machine
when it starts. A closer look at the machnie M/2 from 3.9 enables us to conclude
that it halts with the reading head just after the rightmost 1. This is an ac-
ceptable configuration for starting M+1 and so we can write our machine Mf as

M/2
#,# ##9: ;<=> ?@M+1 . This abbreviated notation says that: Mf starts by running

M/2 from its initial state and then, whenever M/2 halts and reads a blank #, it
passes to the initial state of M+1 writing #, and then runs M+1.

We give a more elaborate example illustrating the idea of composing Turing
machines. A while-loop in a programming language is a command of the form
while B do F, where B is a boolean function and F is a command which we will
assume computes some function. Assuming that we have machines MB and MF ,
we will construct a machine computing a function G(y) expressed by the following
while-loop:

G(y) = { x:=1; z:=y;
while not B(x,z) do {

x:=x+1;
z:=F(x,y);}

return x; }
I.e., G(y) is the least x > 0 such that B(x, F (x, y)) is true. If no such x exists
G(y) is undefined.

We consider the alphabet Σ = {#, 1, Y, N} and functions over positive natural
numbers (without 0) N, with unary representation as strings of 1’s. Let our given
functions be F : N × N → N and B : N × N → {Y, N}, and the corresponding
Turing machines, MF , resp. MB . More precisely, sF is the initial state of MF

which, starting in a configuration of the form C1, halts iff z = F (x, y) is defined
in the final state eF in the configuration of the form C2:

C1 :

1y 1x

· · ·# 1 ... 1 # 1 ... 1 # · · ·
↑

sF

MF ↓

C2 :

1y 1x 1z

· · ·# 1 ... 1 # 1 ... 1 # 1 ... 1 # · · ·
↑

eF

If, for some pair x, y, F (x, y) is undefined, MF (y, x) may go forever.
B, on the other hand, is total and MB always halts in its final state eB ,

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

100 Introduction to Logic

when started from a configuration of the form C2 and intial state sB , yiedling a
confguration of the form C3:

C2 :

1y 1x 1z

· · ·# 1 ... 1 # 1 ... 1 # 1 ... 1 # · · ·
↑

sB

MB ↓

C3 :

1y 1x 1z

· · ·# 1 ... 1 # 1 ... 1 # 1 ... 1 u # · · ·
↑

eB

where u = Y iff B(x, z) = Y (true) and u = N iff B(x, z) = N (false).
Using MF and MB , we design a TM MG which starts in its initial state sG

in a configuration C0, and halts in its final state eG iff G(y) = x is defined, with
the tape as shown in T :

C0 :

1y

· · ·# 1 ... 1 # · · ·
↑

sG

MG ↓

T :

1y 1x

· · ·# 1 ... 1 # 1 ... 1 # · · ·

MG will add a single 1 (= x) past the lefttmost # to the right of the input y,
and run MF and MB on these two numbers. If MB halts with Y , we only have
to clean up F (x, y). If MB halts with N , MG erases F (x, y), extends x with a
single 1 and continues:

sG

1,R

@@
#,R ##123456781 #,1 ##9: ;<=> ?@MF

1,1 ##9: ;<=> ?@MB
Y,# ##

N,#

00

123456785
#,L

00123456784 #,L ##123456783
1,#

&&

#,1

//

123456782#,L&& 1234567861,#

//

In case of success, MB exits along the Y and states 5-6 erase the sequence of 1’s
representing F (x, y). MG stops in state 6 to the right of x. If MB got N , this N
is erased and states 3-4 erase the current F (x, y). The first blank # encountered
in the state 3 is the blank right to the right of the last x. This # is replaced with
1 – increasing x to x + 1 – and MF is started in a configuration of the form C1.

MG(y) will go forever if no x exists such that B(x, F (x, y)) = Y . However, it
may also go forever if such x exists but F (x′, y) is undefined for some 0 < x′ < x !
Then the function G(y) computed by MG is undefined. In the theory of recursive
functions, such a schema is called µ-recursion (“µ” for minimal) – here it is the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 101

function G : N → N

G(y) = the least x ∈ N such that B(x, F (x, y)) = Y
and F (x′, y) is defined for all x′ ≤ x.

The fact that if G(y) = x (i.e., when it is defined) then also F (x′, y) must be

defined for all x′ ≤ x, captures the idea of mechanic computability – MG simply

checks all consequtive values of x′ until the correct one is found.. . [end optional]

2.2: Alternative representation of TMs . [optional]

We give an alternative, equivalent, representation of an arbitrary TM defining it
directly by a set of transitions between situations rather than of “more abstract”
instructions.

The definition 3.5 of a TM embodies the abstract character of an algorithm
which operates on any possible actual input. The following definition 3.10 gives a
“more concrete” representation of a computation on some given input in that it
takes into account the “global state” of the computation expressed by the contents
of the tape to the left and to the right of the reading head.

Definition 3.10 A situation of a TM is a quadruple 〈l, q, c, r〉 where q is the
current state, c the symbol currently under the reading head, l the tape to the left
and r the tape to the right of the current symbol. For instance

· · · # a b b # · · ·
↑
qi

corresponds to the situation 〈ab, qi, b, ε〉. Notice that l represents only the part of the
tape to the left up to the beginning of the infinite sequence of only blanks (resp. r
to the right).
A computation of a TM M is a sequence of transitions between situations

S0 -→M S1 -→M S2 -→M ... (3.11)

where S0 is an initial situation and each S -→M S′ is an execution of a single instruc-
tion. The reflexive transitive closure of the relation -→M is written -→∗

M
.

In example 3.8 we saw a machine accepting (halting on) each sequence of an even
number of 1’s. Its computation starting on the input 11 expressed as a sequence
of transitions between the subsequent situations will be

· · · # 1 1 # · · ·
↑
q0

-→M

· · · # 1 1 # · · ·
↑
q1

-→M

· · · # 1 1 # · · ·
↑
q0

In order to capture the manipulation of the whole situations, we need some means
of manipulating the strings (to the left and right of the reading head). Given a

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

102 Introduction to Logic

string s and a symbol x ∈ Σ, let xs denote application of a function prepending
the symbol x in front of s (x 8 s from example 2.26). Furthermore, we consider
the functions hd and tl returning, resp. the first symbol and the rest of a non-
empty string. (E.g., hd(abc) = a and tl(abc) = bc.) Since the infinite string of
only blanks corresponds to empty input, we will identify such a string with the
empty string, #ω = ε. Consequently, we let #ε = ε. The functions hd and tl
must be adjusted, i.e., hd(ε) = # and tl(ε) = ε.

Basis :: hd(ε) = # and tl(ε) = ε (with #ω = ε)
Ind :: hd(sx) = x and tl(sx) = s.

We imagine the reading head some place on the tape and two (infinte) strings star-
ing to the left, resp., right of the head. (Thus, to ease readability, the prepending
operation on the left string will be written sx rather than xs.)

Each instruction of a TM can be equivalently expressed as a set of transi-
tions between situations. That is, given a TM M according to definition 3.5, we
can construct an equivalent representation of M as a set of transitions between
situtations. Each write-instruction 〈q, a〉 -→〈p, b〉, for a, b ∈ Σ corresponds to the
transition:

w : 〈l, q, a, r〉 9〈l, p, b, r〉

A move-right instruction 〈q, x〉 -→〈p, R〉 corresponds to

R : 〈l, q, x, r〉 9〈lx, p, hd(r), tl(r)〉

and, analogously, 〈q, x〉 -→〈p, L〉
L : 〈l, q, x, r〉 9〈tl(l), p, hd(l), xr〉

Notice that, for instance, for L, if l = ε and x = #, the equations we have imposed
earlier will yield 〈ε, q, #, r〉 9 〈ε, p, #, #r〉. Thus a TM M can be represented as
a quadruple 〈K, Σ, q0,9M 〉, where 9M is a relation (function, actually) on the set
of situations 9M ⊆ Sit × Sit. (Here, Sit are represented using the functions on
strings as above.) For instance, the machine M from example 3.8 will now look
as follows:

(1) 〈l, q0, 1, r〉 9〈l1, q1, hd(r), tl(r)〉
(2) 〈l, q1, 1, r〉 9〈l1, q0, hd(r), tl(r)〉
(3) 〈l, q1, #, r〉 9〈l, q1, #, r〉

A computation of a TM M according to this representation is a sequence of
transitions

S0 9M S1 9M S2 9M ... (3.12)

where each S 9M S′ corresponds to one of the specified transitions between situ-
ations. The reflexive transitive closure of this relation is denoted 9∗

M
.

It is easily shown (exercise 3.8) that the two representations are equivalent,

i.e., a machine obtained by such a transformation will have exactly the same

computations (on the same inputs) as the original machine.. [end optional]

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 103

3: Universal Turing Machine
Informally, we might say that one Turing machine M ′ simulates another one
M if M ′ is able to perform all the computations which can be performed
by M or, more precisely, if any input w for M can be represented as an
input w′ for M ′ and the result M ′(w′) represents the result M(w).

This may happen in various ways, the most trivial one being the case
when M ′ is strictly more powerful than M . If M is a multiplication machine
(returning n ∗ m for any two natural numbers), while M ′ can do both
multiplication and addition, then augmenting the input w for M with the
indication of multiplication, we can use M ′ to do the same thing as M would
do. Another possibility might be some encoding of the instructions of M in
such a way that M ′, using this encoding as a part of its input, can act as if
it was M . This is what happens in a computer since a computer program
is a description of an algorithm, while an algorithm is just a mechanical
procedure for performing computations of some specific type – i.e., it is a
Turing machine. A program in a high level language is a Turing machine
M – compiling it into a machine code amounts to constructing a machine
M ′ which can simulate M . Execution of M(w) proceeds by representing
the high level input w as an input w′ acceptable for M ′, running M ′(w′)
and converting the result back to the high level representation.

We won’t define formally the notions of representation and simulation,
relying instead on their intuitive understanding and the example of a Uni-
versal Turing machine we will present. Such a machine is a Turing machine
which can simulate any other Turing machine. It is a conceptual prototype
and paradigm of the programmable computers as we know them.

Idea 3.13 [A Universal TM] To build a UTM which can simulate an
arbitrary TM M

(1) Choose a coding of Turing machines so that they can be represented on
an input tape for UTM.

(2) Represent the input of M on the input tape for UTM.
(3) Choose a way of representing the state of the simulated machine M (the

current state and position of the head) on the tape of UTM.
(4) Design the set of instructions for the UTM.

To simplify the task, without losing generality, we will assume that the
simulated machines work only on the default alphabet Σ = {∗,#}. At the
same time, the UTM will use an extended alphabet with several symbols,
namely Π, which is the union of the following sets:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

104 Introduction to Logic

• Σ – the alphabet of M
• {S, N,R, L} – additional symbols to represent instructions of M
• {X, Y, 0, 1} – symbols used to keep track of the current state and posi-

tion
• {(, A, B} – auxiliary symbols for bookkeeping

We will code machine M together with its original input as follows:

(instructions of M current state input and head position (3.14)

1. A possible coding of TMs.
(1) Get the set of instructions from the description of a TM M =

〈K, Σ, q1, τ〉.
(2) Each instruction t ∈ τ is a four-tuple

t : 〈qi, a〉 D→〈qj , b〉
where qi, qj ∈ K, a is # or ∗, and b ∈ Σ ∪ {L,R}. We assume that
states are numbered from 1 up to n > 0. Represent t as Ct :

Ct : S ... S a b N ... N

1 i 1 j

i.e., first i S-symbols representing the initial state qi, then the read
symbol a, so the action – either the symbol to be written or R, L, and
finally j N -symbols for the final state qj .

(3) String the representations of all the instructions, with no extra spaces,
in increasing order of state numbers. If for a state i there are two
instructions, t#i for input symbol # and t∗i for input symbol ∗, put t∗i
before t#i .

(4) Put the “end” symbol ‘(’ to the left:

(Ct1 Ct2 · · · Ctz current state · · ·

Example 3.15
Let M = 〈{q1, q2, q3}, {∗,#}, q1, τ〉, where τ is given in the left part of the
table:

1

∗,R

AA
#,∗ ## 123456782 ∗,L

??

#,R

00123456783
〈q1, ∗〉 D→〈q1,R〉 S ∗ RN
〈q1,#〉 D→〈q2, ∗〉 S# ∗NN
〈q2, ∗〉 D→〈q2, L〉 SS ∗ LNN
〈q2,#〉 D→〈q3,R〉 SS#RNNN

The coding of the instructions is given in right part of the table. The whole
machine will be coded as:

(S ∗ R N S # ∗ N N S S ∗ L N N S S # R N N N · · ·

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 105

It is not necessary to perform the above conversion but – can you tell what
M does? !

2. Input representation. We included the alphabet of the original
machines Σ = {∗,#} in the alphabet of the UTM. There is no need to code
this part of the simulated machines.

3. Current state. After the representation of the instruction set of M ,
we will reserve part of the tape for the representation of the current state.
There are n states of M , so we reserve n+1 fields for unary representation
of the number of the current state. The i-th state is represented by i X’s
followed by (n + 1− i) Y ’s: if M is in the state i, this part of the tape will
be:

instructions X · · · X Y · · · Y input
1 i n+1

We use n + 1 positions so that there is always at least one Y to the right
of the sequence of X’s representing the current state.

To “remember” the current position of the head, we will use the two
extra symbols 0 and 1 corresponding, respectively, to # and ∗. The current
symbol under the head will be always changed to 0, resp., 1. When the
head is moved away, these symbols will be restored back to the original
ones #, resp., ∗. For instance, if M ’s head on the input tape ∗ ∗## ∗#∗
is in the 4-th place, the input part of the UTM tape will be ∗ ∗#0 ∗#∗.

4. Instructions for UTM. We will let UTM start execution with its head
at the rightmost X in the bookkeeping section of the tape. After completing
the simulation of one step of M ’s computation, the head will again be placed
at the rightmost X. The simulation of each step of computation of M will
involve several things:

(4.1) Locate the instruction to be used next.
(4.2) Execute this instruction, i.e., either print a new symbol or move the

head on M ’s tape.
(4.3) Write down the new state in the bookkeeping section.
(4.4) Get ready for the next step: clean up and move the head to the right-

most X.

We indicate the working of UTM at these stages:

4.1. Find instruction. In a loop we erase one X at a time, replacing it
by Y , and pass through all the instructions converting one S to A in each

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

106 Introduction to Logic

instruction. If there are too few S’s in an instruction, we convert all the
N ’s to B’s in that instruction.

When all X’s have been replaced by Y ’s, the instructions corresponding
to the actual state have only A’s instead of S. We desactivate the instruc-
tions which still contain S by going through all the instructions: if there is
some S not converted to A, we replace all N ’s by B’s in that instruction.
Now, there remain at most 2 N -lists associated with the instruction(s) for
the current state.

We go and read the current symbol on M ’s tape and replace N ’s by B’s
at the instruction (if any) which does not correspond to what we read.

The instruction to be executed has N ’s – others have only B’s.

4.2. Execute instruction. UTM starts now looking for a sequence of
N ’s. If none is found, then M – and UTM – stops. Otherwise, we check
what to do looking at the symbol to the left of the leftmost N . If it is R or
L, we go to the M ’s tape and move its head restoring the current symbol
to its Σ form and replacing the new symbol by 1, resp. 0. If the instruction
is to write a new symbol, we just write the appropriate thing.

4.3. Write new state. We find again the sequence of N ’s and write the
same number of X’s in the bookkeeping section indicating the next state.

4.4. Clean up. Finally, convert all A’s and B’s back to S and N ’s, and
move the head to the rightmost X.

4: Undecidability
Turing machine is a possible formal expression of the idea of mechanical
computability – we are willing to say that a function is computable iff there
is a Turing machine which computes its values for all possible arguments.
(Such functions are also called recursive.) Notice that if a function is not
defined on some arguments (for instance, division by 0) this would require
us to assign some special, perhaps new, values for such arguments. For the
partial functions one uses a slightly different notion.

function F is
computable iff there is a TM which halts with F (x) for

all inputs x
semi-computable iff there is a TM which halts with F (x)

whenever F is defined on x but does
not halt when F is undefined on x

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 107

A problem P of YES-NO type (like “is x a member of set S?”) gives rise
to a special case of function FP (a predicate) which returns one of the only
two values. We get here a third notion.

problem P is
decidable iff FP is computable – the machine com-

puting FP always halts returning cor-
rect answer YES or NO

semi-decidable iff FP is semi-computable – the machine
computing FP halts with the correct
answer YES, but may not halt when the
answer is NO

co-semi-decidable iff not-FP is semi-computable – the ma-
chine computing FP halts with the cor-
rect answer NO, but may not halt when
the answer is YES

Thus a problem is decidable iff it is both semi- and co-semi-decidable.
Set membership is a special case of YES-NO problem but one uses a

different terminology:

set S is iff the membership problem x ∈ S is
recursive iff decidable

recursively enumerable iff semi-decidable
co-recursively enumerable iff co-semi-decidable

Again, a set is recursive iff it is both recursively and co-recursively enumer-
able.

One of the most fundamental results about Turing Machines concerns
the undecidability of the Halting Problem. Following our strategy for en-
coding TMs and their inputs for simulation by a UTM, we assume that the
encoding of the instruction set of a machine M is E(M), while the encoding
of input w for M is just w itself.

Problem 3.16 [The Halting problem] Is there a Turing machine MH

such that for any machine M and input w, MH(E(M), w) always halts and

MH(E(M), w) =
{

Y (es) if M(w) halts
N(o) if M(w) does not halt

The problem is trivially semi-decidable: given an M and w, simply run
M(w) and see what happens. If the computation halts, we get the correct
YES answer to our problem. If it does not halt, then we may wait forever.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

108 Introduction to Logic

Unfortunately, the following theorem ensures that, in general, there is not
much else to do than wait and see what happens.

Theorem 3.17 [Undecidability of Halting Problem] There is no Tur-
ing machine which decides the halting problem.

Proof. Assume, on the contrary, that there is such a machine MH .
(1) We can easily design a machine M1 that is undefined (does not halt)

on input Y and defined everywhere else, e.g., a machine with one
state q0 and instruction 〈q0, Y 〉 D→〈q0, Y 〉.

(2) Now, construct machine M ′
1 which on the input (E(M), w) gives

M1(MH(E(M), w)). It has the property that M ′
1(E(M), w) halts

iff M(w) does not halt. In particular:

M ′
1(E(M), E(M)) halts iff M(E(M)) does not halt.

(3) Let M∗ be a machine which to an input w first computes (w,w) and
then M ′

1(w,w). In particular, M∗(E(M∗)) = M ′
1(E(M∗), E(M∗)).

This one has the property that:

M∗(E(M∗)) halts iff M ′
1(E(M∗), E(M∗)) halts iff M∗(E(M∗))
does not halt

This is clearly a contradiction, from which the theorem follows.
QED (3.17)

Thus the set {〈M,w〉 : M halts on input w} is semi-recursive but not re-
cursive. In terms of programming, the undecidability of Halting Problem
means that it is impossible to write a program which could 1) take as input
an arbitrary program M and its possible input w and 2) determine whether
M run on w will terminate or not.

The theorem gives rise to a series of corollaries identifying other unde-
cidable problems. The usual strategy for such proofs is to show that if a
given problem was decidable then we could use it to decide the (halting)
problem already known to be undecidable.

Corollary 3.18 There is no Turing machine

(1) MD which, for any machine M , always halts with MD(E(M)) = 0 iff M
is total (always halts) and with 1 iff M is undefined for some input;

(2) ME which, for given two machines M1,M2, always halts with 1 iff the two
halt on the same inputs and with 0 otherwise.

Proof. (1) Assume that we have an MD. Given an M and some
input w, we may easily construct a machine Mw which, for any input

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 109

x computes M(w). In particular Mw is total iff M(w) halts. Then
we can use arbitrary x in MD(E(Mw), x) to decide halting problem.
Hence there is no such MD.
(2) Assume that we have an ME . Take as M1 a machine which does
nothing but halts immediately on any input. Then we can use ME and
M1 to construct an MD, which does not exist by the previous point.

QED (3.18)

Exercises 3.

exercise 3.1 Suppose that we want to encode the alphabet consisting of
26 (Latin) letters and 10 digits using strings – of fixed length – of symbols
from the alphabet ∆ = {−, •}. What is the minimal length of ∆-strings
allowing us to do that? What is the maximal number of distinct symbols
which can be represented using the ∆-strings of this length?

The Morse code examplifies such an encoding although it uses additional

symbol – corresponding to # – to separate the representations, and it uses

strings of different lengths. For instance, Morse represents A as •− and B as

−• ••, while 0 as −−−−−. (The more frequently a letter is used, the shorter

its representation in Morse.) Thus the sequence • −# − • • • is distinct from

• − − • ••.
exercise 3.2 The questions at the end of Examples 3.8 and 3.9 (run the
respective machines on the suggested inputs).
exercise 3.3 Let Σ = {1,#} and a sequence of 1’s represent a natural
number. Design a TM which starting at the leftmost 1 of the input x
computes x + 1 by appending 1 at the end of x, and returns the head to
the leftmost 1.
exercise 3.4 Consider the alphabet Σ = {a, b} and the language from
example 2.19.1, i.e., L = {anbn : n ∈ N}.

(1) Build a TM M1 which given a string s over Σ (possibly with additional
blank symbol #) halts iff s ∈ L and goes forever iff s '∈ L. If you find
it necessary, you may allow M1 to modify the input string.

(2) Modify M1 to an M2 which does a similar thing but always halts in the
same state indicating the answer. For instance, the answer ‘YES’ may
be indicated by M2 just halting, and ‘NO’ by M2 writing some specific
string (e.g., ‘NO’) and halting.

exercise 3.5 The correct ()-expressions are defined inductively (relatively
to a given set S of other expressions):

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

110 Introduction to Logic

Basis :: Each s ∈ S and empty word are correct ()-expressions
Ind. :: If s and t are correct ()-expressions then so are: (s) and st.

(1) Show the following equivalence, i.e., two implications, by the induction
on the length of ()-expressions and on their structure, respectively: s is
correct iff 1) the numbers of left ‘(’ and right ‘)’ parantheses in s are equal,
say n, and 2) for each 1 ≤ i ≤ n the i-th ‘(’ comes before the i-th ‘)’. (the
leftmost ‘(’ comes before the leftmost ‘)’, the second leftmost ‘(’ before the
second leftmost ‘)’, etc.)

(2) The machine below reads a ()-expression starting on its leftmost sym-
bol and halting in state 7 iff the input was correct and in state 3 otherwise.
Its alphabet Σ consists of two disjoint sets Σ1∩Σ2 = ∅, where Σ1 is some
set of symbols (for writing S-expressions) and Σ2 = {X, Y, (,),#}. In the
diagram we use an abbreviation ’?’ to indicate ‘any other symbol from
Σ not mentioned explicitly among the transitions from this state’. For
instance, when in state 2 and reading # the machine goes to state 3 and
writes #; reading) it writes Y and goes to state 4 – while reading any
other symbol ?, it moves head to the right remaining in state 2.123456783

0

),)
$$6666666666666 (,X ##

?,R

BB

#,L
00

123456781 X,R ## 123456782#,#
''7777777777777

?,R

CC

),Y
00123456786

#,R %%7777777777777Y,) DD X,(EE

?,L

FF
123456785#,R

''7777777777777
?,L

CC 123456784
Y,L

&&

123456787
Run the machine on a couple of your own tapes with ()-expressions (correct
and incorrect!). Justify, using the claim from (1), that this machine does
the right thing, i.e., decides the correctness of ()-expressions.
exercise 3.6 Let Σ = {a, b, c} and ∆ = {0, 1} (Example 3.3). Specify an
encoding of Σ in ∆∗ and build two Turing machines:

(1) Mc which given a string over Σ converts it to a string over ∆
(2) Md which given a string over ∆ converts it to a string over Σ

The two should act so that their composition gives identity, i.e., for all
s ∈ Σ∗ : Md(Mc(s)) = s and, for all d ∈ ∆∗ : Mc(Md(d)) = d. Choose the
initial and final position of the head for both machines so that, executing
the one after another will actually produce the same initial string.
Run each of the machines on some example tapes. Run then the two

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

II.1. Turing Machines 111

machines subsequently to check whether the final tape is the same as the
initial one.
exercise 3.7 What is the cardinality of the set TM = {M | M is a
Turing machine}, assuming a uniform representation of Turing machines,
i.e., each machine occurs exactly once in TM?
(1) What is the cardinality of the ℘(1∗) ?
(2) Now, show that there exists an undecidable subset of 1∗.
exercise 3.8 Use induction on the length of computations to show that,
applying the schema from subsection 2.2 of transforming an instruction
representation of an arbitrary TM M over the alphabet Σ = {#, 1}, yields
the same machine M . I.e. for any input (initial situation) S0 the two com-
putations given by (3.11) of definition 3.10 and (3.12) from subsection 2.2
are identical: S0 D→M S1 D→M S2 D→M ... = S0 CM S1 CM S2 CM ...

The following (optional) exercises concern construction of a UTM.

exercise 3.9 Following the strategy from 1: A possible coding of TMs,
and the Example 3.15, code the machine which you designed in exercise
3.3.
exercise 3.10 Complete the construction of UTM.

(1) Design four TMs to be used in a UTM as described in the four stages
of simulation in 4: Instructions for UTM.

(2) Indicate for each (sub)machine the assumptions about its initial and
final situation.

(3) Put the four pieces together and run your UTM on the coding from the
previous exercise with some actual inputs.

exercise 3.11 The representation of the tape for the simulated TM M ,
given in (3.14), seems to allow it to be infinite only in one direction,
extending indefinitely to the right, but terminating on the left at the
preceding block of X’s and Y ’s coding the current state.
Explain why this is not any real restriction, i.e., why everything computed
by a TM with tape infinite in both directions, can also be computed by a
TM with tape which is infinite only in one direction.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

112 Introduction to Logic

Chapter 4

Syntax and Proof Systems

• Axiomatic Systems in general
• Syntax of PL
• Proof Systems
• Provable equivalence, Compactness
• Decidability of PL

1: Axiomatic Systems
♦ a Background Story ♦
One of the fundamental goals of all scientific inquiry is to achieve
precision and clarity of a body of knowledge. This “precision and
clarity” means, among other things:

• all assumptions of a given theory are stated explicitly;
• the language of the theory is designed carefully by choosing some

basic, primitive notions and defining others in terms of these
ones;

• the theory contains some basic principles – all other claims of the
theory follow from its basic principles by applications of defini-
tions and some explicit laws.

Axiomatization in a formal system is the ultimate expression of these
postulates. Axioms play the role of basic principles – explicitly stated
fundamental assumptions, which may be disputable but, once assumed
imply the other claims, called theorems. Theorems follow from the
axioms not by some unclear arguments but by formal deductions ac-
cording to well defined rules.

The most famous example of an axiomatisation (and the one
which, in more than one way gave the origin to the modern axiomatic
systems) was Euclidean geometry. Euclid systematised geometry by
showing how many geometrical statements could be logically derived

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 113

from a small set of axioms and principles. The axioms he postulated
were supposed to be intuitively obvious:

A1. Given two points, there is an interval that joins them.
A2. An interval can be prolonged indefinitely.
A3. A circle can be constructed when its center, and a point on it, are

given.
A4. All right angles are equal.

There was also the famous fifth axiom – we will return to it shortly.
Another part of the system were “common notions” which may be
perhaps more adequately called inference rules about equality:

CN1. Things equal to the same thing are equal.
CN2. If equals are added to equals, the wholes are equal.
CN3. If equals are subtracted from equals, the reminders are equal.
CN4. Things that coincide with one another are equal.
CN5. The whole is greater than a part.

Presenting a theory, in this case geometry, as an axiomatic system
has tremendous advantages. For the first, it is economical – instead
of long lists of facts and claims, we can store only axioms and deduc-
tion rules, since the rest is derivable from them. In a sense, axioms
and rules “code” the knowledge of the whole field. More importantly,
it systematises knowledge by displaying the fundamental assumptions
and basic facts which form a logical basis of the field. In a sense, Eu-
clid uncovered “the essence of geometry” by identifying axioms and
rules which are sufficient and necessary for deriving all geometrical
theorems. Finally, having such a compact presentation of a compli-
cated field, makes it possible to relate not only to particular theorems
but also to the whole field as such. This possibility is reflected in us
speaking about Euclidean geometry vs. non-Euclidean ones. The dif-
ferences between them concern precisely changes of some basic prin-
ciples – inclusion or removal of the fifth postulate.

As an example of proof in Euclid’s system, we show how using the
above axioms and rules he deduced the following proposition (“Ele-
ments”, Book 1, Proposition 4):

Proposition 4.1 If two triangles have two sides equal to two sides respec-
tively, and have the angles contained by the equal straight lines equal, then
they also have the base equal to the base, the triangle equals the triangle, and
the remaining angles equal the remaining angles respectively, namely those
opposite the equal sides.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

114 Introduction to Logic

Proof. Let ABC and DEF be two triangles having the two sides
AB and AC equal to the two sides DE and DF respectively,
namely AB equal to DE and AC equal to DF , and the angle
BAC equal to the angle EDF .

)))))

#
##& &
&

B C

A" $
)))))

#
##& &
&

E F

D" $
I say that the base BC also equals the base EF , the triangle
ABC equals the triangle DEF , and the remaining angles equal
the remaining angles respectively, namely those opposite the equal
sides, that is, the angle ABC equals the angle DEF , and the angle
ACB equals the angle DFE.
If the triangle ABC is superposed on the triangle DEF , and if
the point A is placed on the point D and the straight line AB on
DE, then the point B also coincides with E, because AB equals
DE.
Again, AB coinciding with DE, the straight line AC also coin-
cides with DF , because the angle BAC equals the angle EDF .
Hence the point C also coincides with the point F , because AC
again equals DF .
But B also coincides with E, hence the base BC coincides with
the base EF and – by CN4. – equals it. Thus the whole triangle
ABC coincides with the whole triangle DEF and – by CN4. –
equals it. QED (4.1)

The proof is allowed to use only the given assumptions, the axioms
and the deduction rules. Yet, the Euclidean proofs are not exactly
what we mean by a formal proof in an axiomatic system. Why? Be-
cause Euclid presupposed a particular model, namely, the abstract set
of points, lines and figures in an infinite, homogenous space. This pre-
supposition need not be wrong (although, according to modern physics,
it is), but it has important bearing on the notion of proof. For in-
stance, it is intuitively obvious what Euclid means by “superposing
one triangle on another”. Yet, this operation hides some further as-
sumptions, for instance, that length does not change during such a
process. This implicit assumption comes most clearly forth in consid-
ering the language of Euclid’s geometry. Here are just few definitions
from “Elements”:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 115

D1. A point is that which has no part.
D2. A line is breadthless length.
D3. The ends of a line are points.
D4. A straight line is a line which lies evenly with the points on itself.

D23. Parallel straight lines are straight lines which, being in the same
plane and being produced indefinitely in both directions, do not
meet one another in either direction.

These are certainly smart formulations but one can wonder if, say, D1
really defines anything or, perhaps, merely states a property of some-
thing intended by the name “point”. Or else, does D2 define anything
if one does not pressupose some intuition of what length is? To make a
genuinely formal system, one would have to identify some basic no-
tions as truly primitive – that is, with no intended interpretation. For
these notions one may postulate some properties. For instance, one
might say that we have the primitive notions of P, L and IL (for point,
line and indefinitely prolonged line). P has no parts; L has two ends,
both being P’s; any two P’s determine an L (whose ends they are –
this reminds of A1); any L determines uniquely an IL (cf. A2.), and
so on. Then, one may identify derived notions which are defined in
terms of the primitive ones. Thus, for instance, the notion of parallel
lines can be defined from the primitives as it was done in D23.

The difference may seem negligible but is of the utmost importance.
By insisting on the uniterpreted character of the primitive notions, it
opens an entirely new perspective. On the one hand, we have our
primitive, uniterpreted notions. These can be manipulated according
to the axioms and rules we have postulated. On the other hand, there
are various possibilities of interpretating these primitive notions. All
such interpretations will have to satisfy the axioms and conform to
the rules, but otherwise they may be vastly different. This was the
insight which led, first, to non-Euclidean geometry and, then, to the
formal systems. We will now illustrate this first stage of development.

The strongest, and relatively simple formulation of the famous fifth
axiom, the “Parallel Postulate”, is as follows:

A5. Given a line L and a point p not on line L, exactly one line L′

can be drawn through p parallel to L (i.e., not intersecting L no
matter how far extended).

This axiom seems to be much less intuitive than the other ones and
mathematicians had spent centuries trying to derive it from the other

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

116 Introduction to Logic

ones. Failing to do that, they started to ask the question “But, does
this postulate have to be true? What if it isn’t?”

Well, it may seem that it is true – but how can we check? It
may be hard to prolong any line indefinitely. Thus we encouter the
other aspect of formal systems, which we will study in the following
chapters, namely, what is the meaning or semantics of such a system.
Designing an axiomatic system, one has to specify precisely what are
its primitive terms and how these terms may interact in derivation
of the theorems. On the other hand, one specifies what these terms
are supposed to denote. In fact, terms of a formal system may denote
anything which conforms to the rules specified for their interaction.
Euclidean geometry was designed with a particular model in mind –
the abstract set of points, lines and figures that can be constructed
with compass and straightedge in an infinite space. But now, allow-
ing for the primitve character of the basic notions, we can consider
other interpretations. We can consider as our space a finite circle
C, interpret a P as any point within C, an L as any closed inter-
val within C and an IL as an open-ended chord of the circle, i.e., a
straight line within the circle which approaches indefinitely closely,
but never touches the circumference. (Thus one can “prolong a line
indefinitely” without ever meeting the circumference.) Such an inter-
pretation does not satisfy the fifth postulate.

ABCDEFGH*****
..

...L

'
p

ABCDEFGH*****
..

...L

)))))

..

...y '
x' '

p

We start with a line L and a point p not on L. We can then choose
two other points x and y and, by A1, obtain two lines xp and yp which
can be prolonged indefinitely according to A2. As we see, neither of
these indefinitely prolonged lines intersects L. Thus, both are parallel
to L according to the very same, old definition D23.

Failing to satify the fifth postulate, this interpretation is not a
model of Euclidean geometry. But it is a model of the first non-
Euclidean geometry – the Bolyai-Lobachevsky geometry, which keeps
all the definitions, postulates and rules except the fifth postulate.
Later, many other non-Euclidean geometries have been developed –
perhaps the most famous one, by Hermann Minkowski as a four-

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 117

dimensional space-time universe of the relativity theory.
And now we can observe another advantage of using axiomatic sys-

tems. Since non-Euclidean geometry preserves all Euclid’s postulates
except the fifth one, all the theorems and results which were derived
without the use of the fifth postulate remain valid. For instance, the
proposition 4.1 need no new proof in the new geometries.

This illustrates one of the reasons why axiomatic systems deserve
a separate study. Revealing which sets of postulates are needed to es-
tablish which consquences, it allows their reuse. Studying some par-
ticular phenomena, one can then start by asking which postulates are
satisfied by them. An answer to this question yields then immediately
all the theorems which have been proven from these postulates.

It is of crucial importance and should be constantly kept in mind
that axiomatic systems, their primitive terms and proofs, are purely
syntactic, that is, do not presuppose any interpretation. Of course, their
eventual usefulness depends on whether we can find interesting inter-
pretations for their terms and rules but this is another story. In this
chapter, we study some fundamental axiomatic systems without con-
sidering such interpretations, which will be addressed later on.

♦ ♦
Recall that an inductive definition of a set consists of a Basis, an Induc-
tion part, and an implicit Closure condition. When the set defined is a
language, i.e., a set of strings, we often talk about an axiomatic system. In
this case, the elements of the basis are called axioms,, the induction part is
given by a set of proof rules, and theorems are the members of so defined
set. The symbol C denotes the set of theorems, i.e., A ∈ C iff A is a theorem
but the statement A ∈ C is written C A. Usually C is identified as a subset
of some other language L ⊆ Σ∗, thus C ⊆ L ⊆ Σ∗.

Definition 4.2 An axiomatic system C, over an L ⊆ Σ∗, has the form:

Axioms :: A set Ax ⊆ C⊆ L, and

Proof
Rules :: of the form: “if A1 ∈ C, . . . , An ∈ C then C ∈ C ”, i.e.,

elements R ∈ Ln × L, written R :
CA1; . . . ;CAn

CC
.

Ai are premisses and C conclusion of the rule R.

The rules are always designed so that C is in L if A1, . . . , An are, thus C
is guaranteed to be a subset of L. A formula A is a theorem of the system

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

118 Introduction to Logic

iff there is a proof of A in the system.

Definition 4.3 A proof in an axiomatic system is a finite sequence
A1, . . . ,An of strings from L, such that for each Ai

• either Ai ∈ Ax or else
• there are Ai1 , . . . , Aik in the sequence with all i1, . . . , ik < i, and an

application of a proof rule R :
CAi1 ; . . . ;CAik

CAi
.

A proof of A is a proof in which A is the final string.

Remark.
Notice that for a given language L there may be several axiomatic systems which
all define the same subset of L, albeit, by means of very different rules.
There are also variations which we will consider, where the predicate 9 is defined
on various sets built over L, for instance, ℘(L)× L.

2: Syntax of PL
The basic logical system, originating with Boole’s algebra, is Propositional
Logic (PL). The name reflects the fact that the expressions of the language
are “intended as” propositions. This interpretation will be part of the
semantics of PL to be discussed in the following chapters. Here we introduce
syntax and the associated axiomatic proof system of PL.

Definition 4.4 The language of well-formed formulae of PL is defined as
follows:

(1) An alphabet for an PL language consists of a set of propositional variables
Σ = {a, b, c...}, together with the (formula building) connectives: ¬ and
→, and auxiliary symbols (,).

(2) The well-formed formulae, WFFΣ
PL, are defined inductively:

Basis :: Σ ⊆ WFFΣ
PL;

Ind :: 1) if A ∈ WFFΣ
PL then ¬A ∈ WFFΣ

PL

2) if A,B ∈ WFFΣ
PL then (A → B) ∈ WFFΣ

PL.

(3) The propositional variables are called atomic formulae, the formulae of the
form A or ¬A, where A is atomic are called literals.

Remark 4.5 [Some conventions]
1) Compare this definition to Exercise 2.2.

2) The outermost pair of parantheses is often suppressed, hence A → (B → C)
stands for the formula (A → (B → C)) while (A → B) → C stands for the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 119

formula ((A → B) → C).

3) Formulae are strings over the symbols in Σ ∪ {), (,→,¬}, i.e., WFFΣ
PL ⊆

(Σ ∪ {), (,→,¬})∗. We use lower case letters for the propositional variables of
an alphabet Σ, while upper case letters stand for arbitrary formulae. The sets of
WFFΣ

PL over Σ = {a, b} and over Σ1 = {c, d} are disjoint (though in one-to-one
correspondence). Thus, the definition yields a different set of formulae for dif-
ferent Σ’s. Writing WFFPL we mean well-formed PL formulae over an arbitrary
alphabet and most of our discussion is concerned with this general case irrespec-
tively of a particular alphabet Σ.

4) It is always implicitly assumed that Σ)= ∅.

5) For the reasons which we will explain later, occasionally, we may use the ab-
breviations ⊥ for ¬(B → B) and ; for B → B, for arbitrary B.

In the following we will always – unless explicitly stated otherwise – assume
that the formulae involved are well-formed.

3: Hilbert’s Axiomatic System
Hilbert’s system H for PL is defined with respect to a unary relation (pred-
icate) CH ⊆ WFFPL which we write as CH B rather than as B ∈ CH. It reads
as “B is provable in H”.

Definition 4.6 The predicate CH of Hilbert’s system for PL is defined induc-
tively by:

Axioms :: A1: CH A → (B → A);
A2: CH (A → (B → C)) → ((A → B) → (A → C));
A3: CH (¬B → ¬A) → (A → B);

Proof
Rule :: called Modus Ponens:

CH A ; CH A → B

CH B
.

Remark [Axioms vs. axiom schemata]
A1–A3 are in fact axiom schemata; the actual axioms comprise all formulae
of the indicated form with the letters A,B,C instantiated to arbitrary
formulae. For each particular alphabet Σ, there will be a different (infinite)
collection of actual axioms. Similar instantiations are performed in the
proof rule. For instance, for Σ = {a, b, c, d}, all the following formulae are
instances of axiom schemata:

A1 : b → (a → b), (b → d) → (¬a → (b → d)), a → (a → a),
A3 : (¬¬d → ¬b) → (b → ¬d).

The following formulae are not (instances of the) axioms:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

120 Introduction to Logic

a → (b → b), (¬b → a) → (¬a → b).
Hence, an axiom schema, like A1, is actually a predicate giving, for any Σ,
the set of Σ-instances A1Σ = {x → (y → x) : x, y ∈ WFFΣ

PL} ⊂ WFFΣ
PL.

Also any proof rule R with n premises (in an axiomatic system over
a language L) is typically given as a schema – a relation R ⊆ Ln × L. A
proof rule as in Definition 4.2 is just one element of this relation, which is
called an “application of the rule”. For a given Σ, Hilbert’s Modus Ponens
schema yields an infinite set of its applications MPΣ = {〈x, x → y, y〉 :
x, y ∈ WFFΣ

PL} ⊂ WFFΣ
PL×WFFΣ

PL×WFFΣ
PL. The following are examples of

such applications for {a, b, c} ⊆ Σ :
CH a ; CH a → b

CH b

CH a → ¬b ; CH (a → ¬b) → (b → c)
CH b → c

...

In H, the sets AiΣ and MPΣ are recursive, provided that Σ is (which it
always is by assumption). Recursivity of MPΣ means that we can always
decide whether a given triple of formulae is an application of the rule.
Recursivity of the set of axioms means that we can always decide whether
a given formula is an axiom or not. Axiomatic systems which do not satisfy
these conditions are of lesser interest and we will not consider them. !

That both AiΣ and MPΣ of H are recursive sets does not imply that so
is CH. This only means that given a sequence of formulae, we can decide
whether it is a proof or not. To decide if a given formula belongs to CH
would require a procedure for deciding if such a proof exists – probably, a
procedure for constructing a proof. We will see several examples illustrating
that, even if such a procedure for CH exists, it is by no means simple.

Lemma 4.7 For an arbitrary B ∈ WFFPL : CH B → B

Proof.
1 : 9H (B → ((B → B) → B)) → ((B → (B → B)) → (B → B)) A2
2 : 9H B → ((B → B) → B) A1
3 : 9H (B → (B → B)) → (B → B) MP (2, 1)
4 : 9H B → (B → B) A1
5 : 9H B → B MP (4, 3)

QED (4.7)

The phrase “for an arbitrary B ∈ WFFPL” indicates that any formula of
the above form (with any well-formed formula over any actual alphabet Σ
substituted for B) will be derivable, e.g. CH a → a, CH (a → ¬b) → (a →
¬b), etc. All the results concerning PL will be stated in this way.

But we cannot substitute different formulae for the two occurences of
B. If we try to apply the above proof to deduce CH A → B it will fail –
identify the place(s) where it would require invalid transitions.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 121

In addition to provability of simple formulae, also derivations can be
“stored” for future use. The above lemma means that we can always, for
arbitrary formula B, use CH B → B as a step in a proof. More generally,
we can “store” derivations in the form of admissible rules.

Definition 4.8 Let C be an axiomatic system. A rule
CC A1 ; . . . ; CC An

CC C
is admissible in C if whenever there are proofs in C of all the premisses, i.e.,
CC Ai for all 1 ≤ i ≤ n, then there is a proof in C of the conclusion CC C.

Lemma 4.9 The following rules are admissible in H:

(1)
CH A → B ; CH B → C

CH A → C
(2)

CH B

CH A → B

Proof.
(1) 1 : 9H (A → (B → C)) → ((A → B) → (A → C)) A2

2 : 9H (B → C) → (A → (B → C)) A1
3 : 9H B → C assumption
4 : 9H A → (B → C) MP (3, 2)
5 : 9H (A → B) → (A → C) MP (4, 1)
6 : 9H A → B assumption
7 : 9H A → C MP (6, 5)

(2) 1 : 9H B assumption
2 : 9H B → (A → B) A1
3 : 9H A → B MP (1, 2)

QED (4.9)

Lemma 4.10 (1) CH ¬¬B → B (2) CH B → ¬¬B

Proof.
(1) 1 : 9H ¬¬B → (¬¬¬¬B → ¬¬B) A1

2 : 9H (¬¬¬¬B → ¬¬B) → (¬B → ¬¬¬B) A3
3 : 9H ¬¬B → (¬B → ¬¬¬B) L.4.9.(1) (1, 2)
4 : 9H (¬B → ¬¬¬B) → (¬¬B → B) A3
5 : 9H ¬¬B → (¬¬B → B) L.4.9.(1) (3, 4)
6 : 9H (¬¬B → (¬¬B → B)) →

((¬¬B → ¬¬B) → (¬¬B → B)) A2
7 : 9H (¬¬B → ¬¬B) → (¬¬B → B) MP (5, 6)
8 : 9H ¬¬B → B MP (L.4.7, 7)

(2) 1 : 9H ¬¬¬B → ¬B point (1)
2 : 9H (¬¬¬B → ¬B) → (B → ¬¬B) A3
3 : 9H B → ¬¬B MP (1, 2)

QED (4.10)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

122 Introduction to Logic

4: The system N
In the system N , instead of the unary predicate CH we use a binary relation
CN ⊆ ℘(WFFPL)×WFFPL, written as Γ CN B. It reads as “B is provable in
N from the assumptions Γ”.

Definition 4.11 The axioms and rules of N are as in Hilbert’s system with
the additional axiom schema A0:

Axioms :: A0: Γ CN B, whenever B ∈ Γ;
A1: Γ CN A → (B → A);
A2: Γ CN (A → (B → C)) → ((A → B) → (A → C));
A3: Γ CN (¬B → ¬A) → (A → B);

Proof
Rule :: Modus Ponens:

Γ CN A ; Γ CN A → B

Γ CN B
.

Remark.
As for H, the “axioms” are actually schemata. The real set of axioms is the
infinite set of actual formulae obtained from these schemata by substituting actual
formulae for the upper case variables. Similarly for the proof rule.

The next lemma corresponds exactly to lemma 4.9. In fact, the proof of
that lemma (and most others) can be taken over line for line from H, with
hardly any modification (just replace CH by Γ CN) to serve as a proof of this
lemma.

Lemma 4.12 The following rules are admissible in N :

(1)
Γ CN A → B ; Γ CN B → C

Γ CN A → C
(2)

Γ CN B

Γ CN A → B

The name N reflects the intended association with the so called “natural
deduction” reasoning. This system is not exactly what is usually so called
and we have adopted N because it corresponds so closely to H. But while
H derives only single formulae, tautologies, N provides also means for rea-
soning from the assumptions Γ. This is the central feature which it shares
with natural deduction systems: they both satisfy the following Deduction
Theorem. (The expression “Γ, A” is short for “Γ ∪ {A}.”)

Theorem 4.13 [Deduction Theorem] If Γ, A CN B, then Γ CN A → B.

Proof. By induction on the length l of a proof of Γ, A CN B. Basis,
l = 1, means that the proof consists merely of an instance of an axiom
and it has two cases depending on which axiom was involved:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 123

A1-A3 :: If B is one of these axioms, then we also have Γ CN B
and lemma 4.12.2 gives the conclusion.

A0 :: If B results from this axiom, we have two subcases:
(1) If B = A, then Lemma 4.7 gives that Γ CN B → B.
(2) If B '= A, then B ∈ Γ, and so Γ CN B. Lemma 4.12.2

gives Γ CN A → B.

MP :: B follows by MP:
Γ, A CN C ; Γ, A CN C → B

Γ, A CN B
By the induction hypothesis, we have the first two lines
of the following proof:
1 : Γ 9N A → C
2 : Γ 9N A → (C → B)
3 : Γ 9N (A → (C → B)) → ((A → C) → (A → B)) A2
4 : Γ 9N (A → C) → (A → B) MP (2, 3)
5 : Γ 9N A → B MP (1, 4)

QED (4.13)

Example 4.14
Using Deduction Theorem significantly shortens the proofs. The tedious

proof of Lemma 4.7 can be now recast as:
1 : B 9N B A0
2 : 9N B → B DT !

Lemma 4.15 CN (A → B) → (¬B → ¬A)

Proof. 1 : A → B 9N (¬¬A → ¬¬B) → (¬B → ¬A) A3
2 : A → B 9N ¬¬A → A L.4.10.1
3 : A → B 9N A → B A0
4 : A → B 9N ¬¬A → B L.4.12.1(2, 3)
5 : A → B 9N B → ¬¬B L.4.10.2
6 : A → B 9N ¬¬A → ¬¬B L.4.12.1(4, 5)
7 : A → B 9N ¬B → ¬A MP (6, 1)
8 : 9N (A → B) → (¬B → ¬A) DT QED (4.15)

Deduction Theorem is a kind of dual to MP: each gives one implication of
the following

Corollary 4.16 Γ, A CN B iff Γ CN A → B.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

124 Introduction to Logic

Proof. ⇒) is Deduction Theorem 4.13. ⇐) By Exercise 4.4, the as-
sumption can be strengthened to Γ, A CN A → B. But then, also
Γ, A CN A, and by MP Γ, A CN B. QED (4.16)

We can now easily show the following:

Corollary 4.17 The following rule is admissible in N :
Γ CN A → (B → C)
Γ CN B → (A → C)

Proof. Follows trivially from the above 4.16: Γ CN A → (B → C)
iff Γ, A CN B → C iff Γ, A, B CN C. As Γ, A, B abbreviates the set
Γ ∪ {A,B}, this is also equivalent to Γ, B CN A → C, and then to
Γ CN B → (A → C). QED (4.17)

5: H vs. N
In H we prove only single formulae, while in N we work “from the assump-
tions” proving their consequences. Since the axiom schemata and rules of
H are special cases of their counterparts in N , it is obvious that for any
formula B, if CH B then ∅ CN B. In fact this can be strengthened to an
equivalence. (We follow the convention of writing CN B for ∅ CN B.)

Lemma 4.18 For any formula B we have: CH B iff CN B.

Proof. One direction is noted above. In fact, any proof of CH B itself
qualifies as a proof of CN B. The other direction is almost as obvious,
since there is no way to make any real use of A0 in a proof of CN B.
More precisely, take any proof of CN B and delete all lines (if any) of
the form Γ CN A for Γ '= ∅. The result is still a proof of CN B, and
now also of CH B.
More formally, the lemma can be proved by induction on the length of
a proof of CN B: Since Γ = ∅ the last step of the proof could have used
either an axiom A1, A2, A3 or MP. The same step can be then done in
H – for MP, the proofs of CN A and CN A → B for the appropriate A
are shorter and hence by the IH have counterparts in H. QED (4.18)

The next lemma is a further generalization of this result.

Lemma 4.19 CH G1 → (G2 → ...(Gn → B)...) iff {G1, G2, . . . , Gn} CN B.

Proof. We prove the lemma by induction on n:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 125

Basis :: The special case corresponding to n = 0 is just the pre-
vious lemma.

Ind. :: Suppose the IH:
CH G1 → (G2 → ...(Gn → B)..) iff {G1, G2...Gn} CN B
for any B. Then, taking (Gn+1 → B) for B, we obtain
CH G1 → (G2 → ...(Gn → (Gn+1 → B))..)

(by IH) iff {G1, G2...Gn} CN (Gn+1 → B)
(by Corollary 4.16) iff {G1, G2, . . . , Gn, Gn+1} CN B.

QED (4.19)

Lemma 4.18 states the equivalence of N and H with respect to the simple
formulae of H. This lemma states a more general equivalence of these
two systems: for any finite N -expression B ∈ CN there is a corresponding
H-formula B′ ∈ CH and vice versa.

Observe, however, that this equivalence is restricted to finite Γ in N -
expressions. The significant difference between the two systems consists in
that N allows to consider also consequences of infinite sets of assumptions,
for which there are no corresponding formulae in H, since every formula
must be finite.

6: Provable Equivalence of formulae

Equational reasoning is based on the simple principle of substitution of
equals for equals. E.g., having the arithmetical expression 2 + (7 + 3) and
knowing that 7+3 = 10, we also obtain 2+(7+3) = 2+10. The rule applied

in such cases may be written as
a = b

F [a] = F [b]
where F [] is an expression

“with a hole” (a variable or a placeholder) into which we may substitute
other expressions. We now illustrate a logical counterpart of this idea.

Lemma 4.7 showed that any formula of the form (B → B) is derivable in
H and, by lemma 4.18, in N . It allows us to use, for instance, 1) CN a → a,
2) CN (a → b) → (a → b), 3) . . . as a step in any proof. Putting it a
bit differently, the lemma says that 1) is provable iff 2) is provable iff ...
Recall the abbreviation G for an arbitrary formula of this form introduced in
Remark 4.5. It also introduced the abbreviation ⊥ for an arbitrary formula
of the form ¬(B → B). These abbreviations indicate that all the formulae
of the respective form are equivalent in the following sense.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

126 Introduction to Logic

Definition 4.20 Formulae A and B are provably equivalent in an axiomatic
system C for PL, if both CC A → B and CC B → A. If this is the case, we write
CC A ↔ B.4

Lemma 4.10 provides an example, namely

CH B ↔ ¬¬B (4.21)

Another example follows from axiom A3 and lemma 4.15:

CN (A → B) ↔ (¬B → ¬A) (4.22)

In Exercise 4.2, you are asked to show that all formulae G are provably
equivalent, i.e.,

CN (A → A) ↔ (B → B). (4.23)

To show the analogous equivalence of all ⊥ formulae,

CN ¬(A → A) ↔ ¬(B → B), (4.24)

we have to proceed differently since we do not have CN ¬(B → B).5 We
can use the above fact and lemma 4.15:

1 : 9N (A → A) → (B → B)
2 : 9N ((A → A) → (B → B)) → (¬(B → B) → ¬(A → A)) L.4.15
3 : 9N ¬(B → B) → ¬(A → A) MP (1, 2)

and the opposite implication is again an instance of this one.
Provable equivalence A ↔ B means – and it is its main importance

– that the formulae are interchangeable. Whenever we have a proof of
a formula F [A] containing A (as a subformula, possibly with several oc-
curences), we can replace A by B – the result will be provable too. This
fact is a powerful tool in simplifying proofs and is expressed in the following
theorem. (The analogous version holds for H.)

Theorem 4.25 The following rule is admissible in N :
CN A ↔ B

CN F [A] ↔ F [B]
,

for any formula F [A].

Proof. By induction on the complexity of F [] viewed as a formula
“with a hole” (where there may be several occurences of the “hole”,
i.e., F [] may have the form ¬[] → G or else [] → (¬G → ([] → H)),
etc.).

4In the view of lemma 4.7 and 4.9.1, and their generalizations to N , the relation Im ⊆
WFFΣ

PL × WFFΣ
PL given by Im(A, B) ⇔ $N A → B is reflexive and transitive. This

definition amounts to adding the requirement of symmetricity making ↔ the greatest
equivalence contained in Im.
5In fact, this is not true, as we will see later on.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 127

[] :: i.e., F [A] = A and F [B] = B – the conclusion is then the
same as the premise.

¬G[] :: IH allows us to assume the claim for G[] :
CN A ↔ B

CN G[A] ↔ G[B]
.

1 : 9N A → B assumption
2 : 9N G[A] → G[B] IH
3 : 9N (G[A] → G[B]) → (¬G[B] → ¬G[A]) L.4.15
4 : 9N ¬G[B] → ¬G[A] MP (2, 3)

The same for CN ¬G[A] → ¬G[B], starting with the
assumption CN B → A.

G[] → H[] :: Assuming CN A ↔ B, IH gives us the following ssump-
tions : CN G[A] → G[B], CN G[B] → G[A], CN H[A] →
H[B] and CN H[B] → H[A]. We show only the implica-
tion CN F [A] → F [B]:

1 : 9N H[A] → H[B] IH
2 : G[A] → H[A] 9N H[A] → H[B] exc.4.4
3 : G[A] → H[A] 9N G[A] → H[A] A0
4 : G[A] → H[A] 9N G[A] → H[B] L.4.12.1(3, 2)
5 : 9N G[B] → G[A] IH
6 : G[A] → H[A] 9N G[B] → G[A] exc.4.4
7 : G[A] → H[A] 9N G[B] → H[B] L.4.12.1(6, 4)
8 : 9N (G[A] → H[A]) → (G[B] → H[B]) DT (7)

Entirely symmetric proof yields the other implication
CN F [B] → F [A].

QED (4.25)

The theorem, together with the preceding observations about equivalence
of all G and all ⊥ formulae justify the use of these abbreviations: in a proof,
any formula of the form ⊥, resp. G, can be replaced by any other formula
of the same form. As a simple consequence of the theorem, we obtain:

Corollary 4.26 For any formula F [A], the following rule is admissible:
CN F [A] ; CN A ↔ B

CN F [B]

Proof. If CN A ↔ B, theorem 4.25 gives us CN F [A] ↔ F [B] which,
in particular, implies CN F [A] → F [B]. MP applied to this and the
premise CN F [A], gives CN F [B]. QED (4.26)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

128 Introduction to Logic

7: Consistency
Lemma 4.7, and the discussion of provable equivalence above, show that for
any Γ (also for Γ = ∅) we have Γ CN G, where G is an arbitrary instance
of B → B. The following notion indicates that the similar fact, namely
Γ CN ⊥ need not always hold.

Definition 4.27 A set of formulae Γ is consistent iff Γ 'CN ⊥.

An equivalent formulation says that Γ is consistent iff there is a formula
A such that Γ 'CN A. In fact, if Γ CN A for all A then, in particular, Γ CN ⊥.
Equivalence follows then by the next lemma.

Lemma 4.28 If Γ CN ⊥, then Γ CN A for all A.

Proof. (Observe how corollary 4.26 simplifies the proof.)
1 : Γ 9N ¬(B → B) assumption
2 : Γ 9N B → B L.4.7
3 : Γ 9N ¬A → (B → B) 2 + L.4.12.2
4 : Γ 9N ¬(B → B) → ¬¬A C.4.26 (4.22)
5 : Γ 9N ¬¬A MP (1, 4)
6 : Γ 9N A C.4.26 (4.21) QED (4.28)

This lemma is the (syntactic) reason for why inconsistent sets of “assump-
tions” Γ are uninteresting. Given such a set, we do not need the machinery
of the proof system in order to check whether something is a theorem or
not – we merely have to check if the formula is well-formed. Similarly, an
axiomatic system, like H, is inconsistent if its rules and axioms allow us to
derive CH ⊥.

Notice that the definition requires that ⊥ is not derivable. In other
words, to decide if Γ is consistent it does not suffice to run enough proofs
and see what can be derived from Γ. One must show that, no matter
what, one will never be able to derive ⊥. This, in general, may be an
infinite task requiring searching through all the proofs. If ⊥ is derivable,
we will eventually construct a proof of it, but if it is not, we will never
reach any conclusion. That is, in general, consistency of a given system
may be semi-decidable. (Fortunately, consistency of H as well as of N
for an arbitrary Γ is decidable (as a consequence of the fact that “being a
theorem” is decidable for these systems) and we will comment on this in
subsection 8.1.) In some cases, the following theorem may be used to ease
the process of deciding that a given Γ is (in)consistent.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 129

Theorem 4.29 [Compactness] Γ is consistent iff each finite subset ∆ ⊆ Γ
is consistent.

Proof.
⇒ If Γ 'CN ⊥ then, obviously, there is no such proof from any subset
of Γ.
⇐ Contrapositively, assume that Γ is inconsistent. The proof of ⊥
must be finite and, in particular, uses only a finite number of assump-
tions ∆ ⊆ Γ. This means that the proof Γ CN ⊥ can be carried from a
finite subset ∆ of Γ, i.e., ∆ CN ⊥. QED (4.29)

8: Gentzen’s Axiomatic System
By now you should be convinced that it is rather cumbersome to design

proofs in H or N . From the mere form of the axioms and rules of these
systems it is by no means clear that they define recursive sets of formulae.
(As usual, it is easy to see (a bit more tedious to prove) that these sets are
semi-recursive.)

We give yet another axiomatic system for PL in which proofs can be
constructed mechanically. The relation CG ⊆ ℘(WFFPL)× ℘(WFFPL), con-
tains expressions, called sequents, of the form Γ CG ∆, where Γ,∆ ⊆ WFFPL

are finite sets of formulae. It is defined inductively as follows:

Axioms :: Γ CG ∆, whenever Γ ∩∆ '= ∅

Rules :: ¬ C :
Γ CG ∆, A

Γ,¬A CG ∆
C¬ :

Γ, A CG ∆
Γ CG ∆,¬A

→ C :
Γ CG ∆, A ; Γ, B CG ∆

Γ, A → B CG ∆
C→ :

Γ, A CG ∆, B

Γ CG ∆, A → B

The power of the system is the same whether we allow Γ’s and ∆’s in the
axioms to contain arbitrary formulae or only atomic ones. We comment
now on the “mechanical” character of G and the way one can use it.

8.1: Decidability of the axiomatic systems for PL

Gentzen’s system defines a set CG⊆ ℘(WFFPL) × ℘(WFFPL). Unlike for H
or N , it is (almost) obvious that this set is recursive – we do not give a
formal proof but indicate its main steps.

Theorem 4.30 Relation CG is decidable.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

130 Introduction to Logic

Proof. [sketch] Given an arbitrary sequent Γ CG ∆ = A1, ..., An CG
B1, ..., Bm, we can start processing its formulae in an arbitrary order,
for instance, from left to right, by applying relevant rules bottom-up!
For instance, B → A,¬A CG ¬B is shown by building the proof starting
at the bottom line:

5 : axiom
4 : B CG A,B axiom

3 : C¬ CG ¬B,A,B ; A CG A,¬B

2 : →C
B → A CG ¬B,A

1 : ¬ C ¬A,B → A CG ¬B

In general, the proof in G proceeds as follows:
• If Ai is atomic, we continue with A1+i, and then with B’s.
• If a formula is not atomic, it is either ¬C or C → D. In either

case there is only one rule which can be applied (remember, we
go bottom-up). Premise(s) of this rule are uniquely determined by
the conclusion (formula we are processing at the moment) and its
application will remove the main connective, i.e., reduce the number
of ¬, resp. →!

• Thus, eventually, we will arrive at a sequent Γ′ CG ∆′ which contains
only atomic formulae. We then only have to check whether Γ′∩∆′ =
∅, which is obviously a decidable problem since both sets are finite.

Notice that the rule →C “splits” the proof into two branches, but
each of them contains fewer connectives. We have to process both
branches but, again, for each we will eventually arrive at sequents with
only atomic formulae. The initial sequent is derivable in G iff all such
branches terminate with axioms. And it is not derivable iff at least one
terminates with a non-axiom (i.e., Γ′ CG ∆′ where Γ′ ∩∆′ = ∅). Since
all branches are guaranteed to terminate CG is decidable. QED (4.30)

Now, notice that the expressions used in N are special cases of sequents,
namely, the ones with exactly one formula on the right of CN . If we restrict
our attention in G to such sequents, the above theorem still tells us that
the respective restriction of CG is decidable. We now indicate the main steps
involved in showing that this restricted relation is the same as CN . As a
consequence, we obtain that CN is decidable, too. That is, we want to show
that

Γ CN B iff Γ CG B.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 131

1) In Exercise 4.3, you are asked to prove a part of the implication “if CN B
then CG B”, by showing that all axioms of N are derivable in G. It is not
too difficult to show that also the MP rule is admissible in G. It is there
called the (cut)-rule whose simplest form is:

Γ CG A ; Γ, A CG B

Γ CG B
(cut)

and MP is easily derivable from it. (If Γ CG A → B, then it must have
been derived using the rule C→, i.e., we must have had earlier (“above”)
in the proof of the right premise Γ, A CG B. Thus we could have applied
(cut) at this earlier stage and obtain Γ CG B, without bothering to derive
Γ CG A → B at all.)

2) To complete the proof we would have to show also the opposite impli-
cation “if CG B then CN B”, namely that G does not prove more formulae
than N does. (If it did, the problem would be still open, since we would
have a decision procedure for CG but not for CN ⊂ CG. I.e., for some formula
B '∈ CN we might still get the positive answer, which would merely mean
that B ∈ CG.) This part of the proof is more involved since Gentzen’s rules
for ¬ do not produce N -expressions, i.e., a proof in G may go through inter-
mediary steps involving expressions not derivable (not existing, or “illegal”)
in N .

3) Finally, if N is decidable, then lemma 4.18 implies that also H is decid-
able – according to this lemma, to decide if CH B, it suffices to decide if
CN B.

8.2: Gentzen’s rules for abbreviated connectives

The rules of Gentzen’s form a very well-structured system. For each con-
nective, →, ¬ there are two rules – one treating its occurrence on the left,
and one on the right of CG. As we will soon see, it makes often things easier
if one is allowed to work with some abbreviations for frequently occurring
sets of symbols. For instance, assume that in the course of some proof, we
run again and again in the sequence of the form ¬A → B. Processing it
requires application of at least two rules. One may be therefore tempted
to define a new connective A ∨ B

def= ¬A → B, and a new rule for its
treatement. In fact, in Gentzen’s system we should obtain two rules for the
occurrence of this new symbol on the left, resp. on the right of CG. Now
looking back at the original rules from the begining of this section, we can

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

132 Introduction to Logic

see how such a connective should be treated:

Γ CG A,B,∆
Γ,¬A CG B,∆

Γ CG ¬A → B,∆
Γ CG A ∨ B,∆

Γ, A CG ∆
Γ CG ¬A,∆ Γ, B CG ∆
Γ,¬A → B CG ∆
Γ, A ∨ B CG ∆

Abbreviating these two derivations yields the following two rules:

C∨
Γ CG A,B,∆

Γ CG A ∨ B,∆
∨C

Γ, A CG ∆ ; Γ, B CG ∆
Γ, A ∨ B CG ∆

(4.31)

In a similar fashion, we may construct the rules for another, very common
abbreviation, A ∧B

def= ¬(A → ¬B):

C∧
Γ CG A,∆ ; Γ CG B,∆

Γ CG A ∧B,∆
∧ C

Γ, A, B CG ∆
Γ, A ∧B CG ∆

(4.32)

It is hard to imagine how to perform a similar construction in the systems
H or N . We will meet the above abbreviations in the following chapters.

9: Some proof techniques
In the next chapter we will see that formulae of PL may be interpreted as
propositions – statements possessing truth-value true or false. The connec-
tive ¬ may be then interpreted as negation of the argument proposition,
while → as (a kind of) implication. With this intuition, we may recognize
some of the provable facts (either formulae or admissible rules) as giving
rise to particular strategies of proof which can be – and are – utilized at
all levels, in fact, throughout the whole of mathematics, as well as in much
of informal reasoning. Most facts from and about PL can be viewed in this
way, and we give only a few most common examples.

• As a trivial example, the provable equivalence CN B ↔ ¬¬B from (4.21),
means that in order to show double negation ¬¬B, it suffices to show B.
One will hardly try to say “I am not unmarried.” – “I am married.” is
both more convenient and natural.

• Let G, D stand, respectively, for the statements ‘Γ CN ⊥’ and ‘∆ CN ⊥
for some ∆ ⊆ Γ’ from the proof of theorem 4.29. In the second point, we
showed ¬D → ¬G contrapositively, i.e., by showing G → D. That this is
a legal and sufficient way of proving the first statement can be justified by
appealing to (4.22) – (A → B) ↔ (¬B → ¬A) says precisely that proving
one is the same as (equivalent to) proving the other.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.1. Syntax and Proof Systems 133

• Another proof technique is expressed in corollary 4.16: A CN B iff
CN A → B. Treating formulae on the left of CN as assumptions, this tells
us that in order to prove that A implies B, A → B, we may prove A CN B,
i.e., assume that A is true and show that then also B must be true.

• In Exercise 4.1.(5) you are asked to show admissibility of the rule:
A CN ⊥
CN ¬A

Interpreting ⊥ as something which can never be true, a contradiction or
an absurdity, this rule expresses reductio ad absurdum which we have seen
in the chapter on history of logic (Zeno’s argument about Achilles and tor-
toise): if A can be used to derive an absurdity, then A can not be true i.e.,
(applying the law of excluded middle) its negation must be.

Exercises 4.

exercise 4.1 Prove the following statements in N :
(1) CN ¬A → (A → B)

(Hint: Complete the following proof:

1 : 9N ¬A → (¬B → ¬A) A1
2 : ¬A 9N ¬B → ¬A C.4.16
3 : A3
4 : MP (2, 3)
5 : DT (4))

(2) ¬B,A CN ¬(A → B)
(Hint: Start as follows:

1 : A, A → B 9N A A0
2 : A, A → B 9N A → B A0
3 : A, A → B 9N B MP (1, 2)
4 : A 9N (A → B) → B DT (3)

...
Apply then Lemma 4.15; you will also need Corollary 4.16.)

(3) CN A → (¬B → ¬(A → B))
(4) CN (A → ⊥) → ¬A
(5) Show now admissibility in N of the rules

(a)
CN A → ⊥
CN ¬A

(b)
A CN ⊥
CN ¬A

(Hint: for (a) use (4) and MP, and for (b) use (a) and Deduction Theorem)

(6) Prove the first formula in H, i.e., (1′) : CH ¬A → (A → B).

exercise 4.2 Show the claim (4.23), i.e., CN (A → A) ↔ (B → B).
(Hint: use Lemma 4.7 and then Lemma 4.12.(2).)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

134 Introduction to Logic

exercise 4.3 Consider the Gentzen’s system G from section 8.
(1) Show that all axioms of the N system are derivable in G.

(Hint: Instead of pondering over the axioms to start with, apply the bottom-

up strategy from Section 8.1.)

(2) Using the same bottom-up strategy, prove in G the formulae (1), (2)
and (3). from Exercise 4.1.

exercise 4.4 Lemma 4.12 generalized lemma 4.9 to the expressions in-
volving assumptions Γ CN . . . We can, however, reformulate the rules in a
different way, namely, by placing the antecedents of → to the left of CN .
Show the admissibility in N of the rules:

(1)
Γ CN B

Γ, A CN B
(2)

Γ, A CN B ; Γ, B CN C

Γ, A CN C

((1) must be shown directly by induction on the length of the proof of Γ 9N B,

without using corollary 4.16 – why? For (2) you can then use 4.16.)

exercise 4.5 Show that the following definition of consistency is equiva-
lent to 4.27:
Γ is consistent iff there is no formula A such that both Γ CA and Γ C¬A.
Hint: You should show that for arbitrary Γ one has that:
Γ)9N ⊥ iff for no A : Γ 9N A and Γ 9N ¬A, which is the same as showing that:
Γ 9N ⊥ ⇔ for some A : Γ 9N A and Γ 9N ¬A.

The implication ⇒) follows easily from the assumption Γ 9N ¬(B → B) and
lemma 4.7. For the opposite one start as follows (use corollary 4.26 on 3: and
then MP):

1 : Γ 9N A ass.
2 : Γ 9N ¬A ass.
3 : Γ 9N ¬¬(A → A) → ¬A L.4.12.2 (2)

...

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 135

Chapter 5

Semantics of PL
• Semantics of PL
• Semantic properties of formulae
• Abbreviations
• Propositions, Sets and Boolean Algebras

In this chapter we are leaving the proofs and axioms from the previous
chapter aside. For the time being, none of the concepts below should be
referred to any earlier results on axiomatic systems. (Such connections will
be studied in the following chapters.) Here, we are studying exclusively
the language of PL – Definition 4.4 – and the standard way of assigning
meaning to its expressions.

1: Semantics of PL
♦ a Background Story ♦
There is a huge field of Proof Theory which studies axiomatic systems
per se, i.e., without reference to their possible meanings. This was the
kind of study we were carrying out in the preceding chapter. As we
emphasised at the begining of that chapter, an axiomatic system may
be given different interpretations and we will in this chapter see a few
possibilities for interpreting the system of Propositional Logic. Yet,
axiomatic systems are typically introduced for the purpose of study-
ing particular areas or particular phenomena therein. They provide
syntactic means for such a study: a language for referring to objects
and their properties and a proof calculus capturing, hopefully, some
of the essential relationships between various aspects of the domain.

As you should have gathered from the presentation of the history
of logic, its original intention was to capture the patterns of correct
reasoning which we otherwise carry out in natural language. Proposi-
tional Logic, in particular, emerged as a logic of statements: proposi-
tional variables may be interpreted as arbitrary statements, while the
connectives as the means of constructing new statements from others.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

136 Introduction to Logic

For instance, consider the following argument:

If it is raining, we will go to cinema.
and If we go to cinema, we will see a Kurosawa film.

hence If it is raining, we will see a Kurosawa film.

If we agree to represent the implication if ... then ... by the
syntactic symbol →, this reasoning is represented by interpreting A
as It will rain, B as We will go to cinema, C as We will see a

Kurosawa film and by the deduction
A → B ; B → C

A → C
. As we have

seen in lemma 4.9, this is a valid rule in the system CH. Thus, we
might say that the system CH (as well as CN) captures this aspect of
our natural reasoning.

However, one has to be extremely careful with this kinds of analo-
gies. They are never complete and any formal system runs, sooner
or later, into problems when confronted with the richness and sophis-
tication of natural language. Consider the following argument:

If I am in Paris then I am in France.
and If I am in Rome then I am in Italy.

hence If I am in Paris then I am in Italy or else
if I am in Rome then I am in France.

It does not look plausible, does it? Now, let us translate it into state-
ment logic: P for being in Paris, F for being in France, R in Rome
and I in Italy. Using Gentzen’s rules with the standard reading of ∧
as ‘and’ and ∨ as ‘or’, we obtain:

R → I, P, R CG I, F, P ; F,R → I, P, R CG I, F

P → F,R → I, P, R CG I, F

P → F,R → I, P CG I, R → F

P → F,R → I CG P → I,R → F

P → F,R → I CG P → I ∨ R → F

P → F ∧R → I CG P → I ∨ R → F

CG (P → F ∧R → I) → (P → I ∨ R → F)

Our argument – the implication from (P → F and R → I) to (P → I
or R → F) turns out to be provable in CG. (It is so in the other systems
as well.) Logicians happen to have an answer to this particular prob-
lem (we will return to it in exercise 6.1). But there are other strange
things which cannot be easily answered. Typically, any formal system

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 137

attempting to capture some area of discourse, will capture only some
part of it. Attempting to apply it beyond this area, leads inevitably to
counterintuitive phenomena.

Statement logic attempts to capture some simple patterns of rea-
soning at the level of propositions. A proposition can be thought of
as a declarative sentence which may be assigned a unique truth value.
The sentence “It is raining” is either true or false. Thus, the intended
and possible meanings of propositions are truth values: true or false.
Now, the meaning of the proposition If it rains, we will go to a
cinema, A → B, can be construed as: if ‘it is true that it will rain’
then ‘it is true that we will go to a cinema’. The implication A → B
says that if A is true then B must be true as well.

Now, since this implication is itself a proposition, it will have to be
given a truth value as its meaning. And this truth value will depend
on the truth value of its constituents: the propositions A and B. If A
is true (it is raining) but B is false (we are not going to a cincema),
the whole implication A → B is false.

And now comes the question: what if A is false? Did the implica-
tion A → B assert anything about this situation? No, it did not. If A
is false (it is not raining), we may go to a cinema or we may stay at
home – I haven’t said anything about that case. Yet, the proposition
has to have a meaning for all possible values of its parts. In this case
– when the antecedent A is false – the whole implication A → B is
declared true irrespectively of the truth value of B. You should notice
that here something special is happening which does not necessarily
correspond so closely to our intuition. And indeed, it is something
very strange! If I am a woman, then you are Dalai Lama. Since I
am not a woman, the implication happens to be true! But, as you
know, this does not mean that you are Dalai Lama. This example,
too, can be explained by the same argument as the above one (to be
indicated in exercise 6.1). However, the following implication is true,
too, and there is no formal way of excusing it being so or explain-
ing it away: If it is not true that when I am a man then I am a
man, then you are Dalai Lama, ¬(M → M) → D. It is correct, it is
true and ... it seems to be entirely meaningless.

In short, formal correctness and accuracy does not always corre-
spond to something meaningful in natural language, even if such a
correspondance was the original motivation. A possible discrepancy
indicated above concerned, primarily, the discrepancy between our in-

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

138 Introduction to Logic

tuition about the meaning of sentences and their representation in a
syntactic system. But the same problem occurs at yet another level –
analogous discrepancies occur between our intuitive understanding of
the world and its formal semantic model. Thinking about axiomatic
systems as tools for modelling the world, we might be tempted to look
at the relation as illustrated on the left side of the following figure: an
axiomatic system modelling the world. In truth, however, the relation
is more complicated as illustrated on the right of the figure.

Axiomatic system

The World

! "

Axiomatic system

Formal semantics

The World

! "
An axiomatic system never addresses the world directly. It addresses
a possible semantic model which tries to give a formal representation
of the world. As we have repeatedly said, an axiomatic system may
be given various interpretations, each providing a possible formal se-
mantic model of the system. To what extent these models capture our
intuition about the world is a different question – about the “correct-
ness” or “incorrectness” of modelling. An axiomatic system in itself
is neither, because it can be endowed with different interpretations.
The problems indicated above were really the problems with the se-
mantic model of natural language which was implicitly introduced by
assuming that statements are to be interpreted as truth values.

We will now endavour to study the semantics – meaning – of the
syntactic expessions from WFFPL. We will see some alternative se-
mantics starting with the standard one based on the so called “truth
functions” (which we will call “boolean functions”). To avoid confu-
sion and surprises, one should always keep in mind that we are not
talking about the world but are defining a formal model of PL which,
at best, can provide an imperfect link between the syntax of PL and
the world. The formality of the model, as always, will introduce some
discrepancies as those described above and many things may turn out
not exactly as we would expect them to be in the real world.

♦ ♦

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 139

Let B be a set with two elements. Any such set would do but, for conve-
nience, we will typically let B = {1,0}. Whenever one tries to capture the
meaning of propositions as their truth value, and uses Propositional Logic
with this intention, one interprets B as the set {true, false}. Since this gives
too strong associations and leads often to incorrect intuitions without im-
proving anything, we will avoid the words true and false. Instead we will
talk about “boolean values” (1 and 0) and “boolean functions”. If the word
“truth” appears, it may be safely replaced with “boolean”.

For any n ≥ 0, there are various functions mapping Bn → B. For
instance, for n = 2, a function f : B×B → B can be defined by f(1,1) def= 1,
f(1,0) def= 0, f(0,1) def= 1 and f(0,0) def= 1. It can be written more concisely
as the boolean table:6

x y f(x, y)
1 1 1
1 0 0
0 1 1
0 0 1

The first n-columns contain all the possible combinations of the arguments
(giving 2n distinct rows), and the last column specifies the value of the
function for this combination of the arguments. For each of the 2n rows a
function takes one of the two possible values, so for any n there are exactly
22n

different functions Bn → B. For n = 0, there are only two (constant)
functions, for n = 1 there will be four distinct functions (which ones?) and
so on. Surprisingly, the language of PL describes exactly such functions!

Definition 5.1 An PL structure consists of:

(1) A domain with two boolean values, B = {1,0}
(2) Interpretation of the connectives, ¬ : B → B and → : B2 → B, as the

boolean functions given by the tables:

x ¬ x x y x → y
1 0 1 1 1
0 1 1 0 0

0 1 1
0 0 1

Given an alphabet Σ, an PL structure for Σ is an PL structure with
(3) an assignment of boolean values to all propositional variables, i.e., a func-

tion V : Σ → {1,0} (also called a valuation of Σ.)
6Boolean tables are typically referred to as “truth tables”. Since we are trying not to

misuse the word “truth”, we stay consistent by replacing it here, too, with “boolean”.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

140 Introduction to Logic

Connectives are thus interpreted as functions on the set {1,0}. To dis-
tinguish the two, we use the simple symbols ¬ and → when talking about
syntax, and the underlined ones ¬ and → when we are talking about the
semantic interpretation as boolean functions. ¬ is interpreted as the func-
tion ¬ : {1,0} → {1,0}, defined by ¬(1) def= 0 and ¬(0) def= 1. → is binary
and represents one of the functions from {1,0}2 into {1,0}.

Example 5.2
Let Σ = {a, b}. V = {a D→ 1, b D→ 1} is a Σ-structure (i.e., a structure
interpreting all symbols from Σ) assigning 1 (true) to both variables. V =
{a D→ 1, b D→ 0} is another Σ-structure.

Let Σ = {‘John smokes’, ‘Mary sings’}. Here ‘John smokes’ is a propo-
sitional variable (with a rather lengthy name). V = {‘John smokes’ D→ 1,
‘Mary sings’ D→ 0} is a Σ-structure in which both “John smokes” and “Mary
does not sing”. !

The domain of interpretation has two boolean values 1 and 0, and so
we can imagine various functions, in addition to those interpreting the
connectives. As remarked above, for arbitrary n ≥ 0 there are 22n

distinct
functions mapping {1,0}n into {1,0}.

Example 5.3
Here is an example of a (somewhat involved) boolean function F :

{1,0}3 → {1,0}
x y z F (x, y, z)
1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

!

Notice that in Definition 5.1 only the valuation differs from structure to
structure. The interpretation of the connectives is always the same – for
any Σ, it is fixed once and for all as the specific boolean functions. Hence,
given a valuation V , there is a canonical way of extending it to the inter-
pretation of all formulae – a valuation of propositional variables induces a
valuation of all well-formed formulae. We sometimes write V̂ for this ex-
tended valuation. This is given in the following definition which, intuitively,

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 141

corresponds to the fact that if we know that ‘John smokes’ and ‘Mary does
not sing’, then we also know that ‘John smokes and Mary does not sing’,
or else that it is not true that ‘John does not smoke’.

Definition 5.4 Any valuation V : Σ → {1,0} induces a unique valuation
V̂ : WFFΣ

PL → {1,0} as follows:
1. for A ∈ Σ : V̂ (A) = V (A)
2. for A = ¬B : V̂ (A) = ¬(V̂ (B))
3. for A = (B → C) : V̂ (A) = V̂ (B) → V̂ (C)

For the purposes of this section it is convenient to assume that some
total ordering has been selected for the propositional variables, so that for
instance a “comes before” b, which again “comes before” c.

Example 5.5
Given the alphabet Σ = {a, b, c}, we use the fixed interpretation of the

connectives to determine the boolean value of, for instance, a → (¬b → c)
as follows:

a b c ¬ b ¬b → c a → (¬b → c)
1 1 1 0 1 1
1 1 0 0 1 1
1 0 1 1 1 1
1 0 0 1 0 0
0 1 1 0 1 1
0 1 0 0 1 1
0 0 1 1 1 1
0 0 0 1 0 1

!

Ignoring the intermediary columns, this table displays exactly the same
dependence of the entries in the last column on the entries in the first
three ones as the function F from Example 5.3. We say that the formula
a → (¬b → c) determines the function F . The general definition is given
below.

Definition 5.6 For any formula B, let {b1, . . . , bn} be the propositional
variables in B, listed in increasing order. Each assignment V : {b1, . . . , bn} →
{1,0} determines a unique boolean value V̂ (B). Hence, each formula B
determines a function B : {1,0}n → {1,0}, given by the equation

B(x1, . . . , xn) = ̂{b1 D→ x1, . . . , bn D→ xn}(B).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

142 Introduction to Logic

Example 5.7
Suppose a and b are in Σ, and a comes before b in the ordering. Then

(a → b) determines the function →, while (b → a) determines the function
← with the boolean table shown below.

x y x → y x ← y

1 1 1 1
1 0 0 1
0 1 1 0
0 0 1 1

!

Observe that although for a given n there are exactly 22n

boolean func-
tions, there are infinitely many formulae over n propositional variables.
Thus, different formulae will often determine the same boolean function.
Deciding which formulae determine the same functions is an important
problem which we will soon encounter.

2: Semantic properties of formulae
Formula determines a boolean function and we now list some semantic
properties of formulae, i.e., properties which are actually the properties of
such induced functions.

Definition 5.8 Let A,B ∈ WFFPL, and V be a valuation.

A is iff condition holds notation:

satisfied in V iff V̂ (A) = 1 V |= A

not satisfied in V iff V̂ (A) = 0 V '|= A

valid/tautology iff for all V : V |= A |= A
falsifiable iff there is a V : V '|= A '|= A

satisfiable iff there is a V : V |= A
unsatisfiable/contradiction iff for all V : V '|= A

(tauto)logical consequence of B iff B → A is valid B ⇒ A
(tauto)logically equivalent to B iff A ⇒ B and B ⇒ A A ⇔ B

If A is satisfied in V , we say that V satisfies A. Otherwise V falsifies
A. (Sometimes, one also says that A is valid in V , when A is satisfied
in V . But notice that validity of A in V does not mean or imply that
A is valid (in general), only that it is satisfiable.) Valid formulae – those

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 143

satisfied in all structures – are also called tautologies and the unsatisfiable
ones contradictions. Those which are both falsifiable and satisfiable, i.e.,
which are neither tautologies nor contradictions, are called contingent. A
valuation which satisfies a formula A is called a model of A.

Sets of formulae are sometimes called theories. Many of the properties
defined for formulae are defined for theories as well. Thus a valuation is
said to satisfy a theory iff it satisfies every formula in the theory. Such a
valuation is also said to be a model of the theory. The class of all models of
a given theory Γ is denoted Mod(Γ). Like a single formula, a set of formulae
Γ is satisfiable iff it has a model, i.e., iff Mod(Γ) '= ∅.

Example 5.9
a → b is not a tautology – assign V (a) = 1 and V (b) = 0. Hence a ⇒ b

does not hold. However, it is satisfiable, since it is true, for instance, under
the valuation {a D→ 1, b D→ 1}. The formula is contingent.

B → B evaluates to 1 for any valuation (and any B ∈ WFFPL), and so
B ⇒ B. As a last example, we have that B ⇔ ¬¬B.

B B B→B

0 0 1
1 1 1

B ¬B ¬¬B B→ ¬¬B and ¬¬B→B

1 0 1 1 and 1
0 1 0 1 and 1

!

The operators ⇒ and ⇔ are meta-connectives stating that a correspond-
ing relation (→ and ↔, respectively) between the two formulae holds for
all boolean assignments. These operators are therefore used only at the
outermost level, like for A ⇒ B – we avoid something like A ⇔ (A ⇒ B)
or A → (A ⇔ B).

Fact 5.10 We have the obvious relations between the sets of Sat(isfiable),
Fal(sifiable), Taut(ological), Contr(adictory) and All formulae:

• Contr ⊂ Fal • Taut ⊂ Sat
• Fal ∩ Sat '= ∅ • All = Taut ∪ Contr ∪ (Fal ∩ Sat)

3: Abbreviations
Intuitively, ¬ is supposed to express negation and we read ¬B as “not

B”. → corresponds to implication: A → B is similar to “if A then B”.
These formal symbols and their semantics are not exact counterparts of
the natural language expressions but they do try to mimic the latter as far
as possible. In natural language there are several other connectives but, as

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

144 Introduction to Logic

we will see in Chapter 5, the two we have introduced for PL are all that
is needed. We will, however, try to make our formulae shorter – and more
readable – by using the following abbreviations:

Definition 5.11 We define the following abbreviations:

• A ∨ B
def= ¬A → B, read as “A or B”

• A ∧B
def= ¬(A → ¬B), read as “A and B”

• A ↔ B
def= (A → B) ∧ (B → A), read as “A if and only if B”

(!Not to be confused with the provable equivalence from definition 4.20!)

Example 5.12
Some intuitive justification for the reading of these abbreviations comes

from the boolean tables for the functions they denote. For instance, the
table for ∧ will be constructed according to its definition:

x ∧ y =
x y ¬ y x → ¬y ¬ (x → ¬y)
1 1 0 0 1
1 0 1 1 0
0 1 0 1 0
0 0 1 1 0

Thus A ∧ B evaluates to 1 (true) iff both components are true. (In Exer-
cise 5.1 you are asked to do the analogous thing for ∨.) !

4: Sets and Propositions
We have defined semantics of PL by interpreting the connectives as func-
tions over B. Some consequences, in form of the laws which follow from
this definition, are listed in Subsection 4.1. In Subsection 4.2 we observe
close relationship to the laws obeyed by the set operations and then define
an altenative semantics of the language of PL based on set-interpretation.
Finally, Subsection 4.3 gathers these similarities in the common concept of
boolean algebra.

4.1: Laws

The definitions of semantics of the connectives together with the introduced

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 145

abbreviations entitle us to conclude validity of some laws for PL.

1. Idempotency 2. Associativity
A ∨ A ⇔ A (A ∨ B) ∨ C ⇔ A ∨ (B ∨ C)
A ∧A ⇔ A (A ∧B) ∧ C ⇔ A ∧ (B ∧ C)

3. Commutativity 4. Distributivity
A ∨ B ⇔ B ∨ A A ∨ (B ∧ C) ⇔ (A ∨ B) ∧ (A ∨ C)
A ∧B ⇔ B ∧A A ∧ (B ∨ C) ⇔ (A ∧B) ∨ (A ∧ C)

5. de Morgan 6. Conditional
¬(A ∨ B) ⇔ ¬A ∧ ¬B A → B ⇔ ¬A ∨ B
¬(A ∧B) ⇔ ¬A ∨ ¬B A → B ⇔ ¬B → ¬A

For instance, idempotency of ∧ is verified directly from the definition of ∧,
as follows:

A ¬A A→ ¬A ¬(A→ ¬A) def= A∧A

1 0 0 1
0 1 1 0

The other laws can (and should) be verified in a similar manner. A ⇔ B
means that for all valuations (of the propositional variables occurring in
A and B) the truth values of both formulae are the same. This means
almost that they determine the same function, with one restriction which
is discussed in exercise 5.10.

For any A,B,C the two formulae (A∧B)∧C and A∧(B∧C) are distinct.
However, as they are tautologically equivalent it is not always a very urgent
matter to distinguish between them. In general, there are a great many
ways to insert the missing parentheses in an expression like A1∧A2∧. . .∧An,
but since they all yield equivalent formulae we usually do not care where
these parentheses go. Hence for a sequence A1, A2, . . . , An of formulae
we may just talk about their conjunction and mean any formula obtained
by supplying missing parentheses to the expression A1 ∧ A2 ∧ . . . ∧ An.
Analogously, the disjunction of A1, A2, . . . , An is any formula obtained by
supplying missing parentheses to the expression A1 ∨A2 ∨ . . . ∨An.

Moreover, the laws of commutativity and idempotency tell us that order
and repetition don’t matter either. Hence we may talk about the conjunc-
tion of the formulae in some finite set, and mean any conjunction formed
by the elements in some order or other. Similarly for disjunction.

The elements A1, . . . , An of a conjunction A1 ∧ . . . ∧ An are called the
conjuncts. The term disjunct is used analogously.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

146 Introduction to Logic

4.2: Sets and PL

Compare the set laws 1.– 5. from page 1 with the tautological equivalences
from the previous subsection. It is easy to see that they have “corresponding
form” and can be obtained from each other by the following translations.

set-expression − statement
set variable a, b... − propositional variable a, b...

− ¬
∩ − ∧
∪ − ∨
= − ⇔

One also translates :
U − G
∅ − ⊥

Remark 5.13 [Formula- vs. set-operations]
Although there is some sense of connection between the subset ⊆ and implication
→, the two have very different function. The latter allows us to construct new
propositions. The former, ⊆, is not however a set building operation: A ⊆ B does
not denote a (new) set but states a relation between two sets. The consistency
principles are not translated because they are not so much laws as definitions
introducing a new relation ⊆ which holds only under the specified conditions.
In order to find a set operation corresponding to →, we should reformulate the
syntactic definiton 5.11 and verify that A → B ⇔ ¬A ∨ B. The corresponding

set-building operation %, would be then defined by A % B
def
= A ∪B.

We do not have a propositional counterpart of the set minus \ operation
and so the second complement law A \ B = A ∩ B has no propositional form.
However, this law says that in the propositional case we can merely use the
expression A∧¬B corresponding to A∩B′. We may translate the remaining set
laws, e.g., A ∩ A = ∅ as A ∧ ¬A ⇔ ⊥, etc. Using definition of ∧, we then get

⊥ ⇔ A ∧ ¬A
3.⇔ ¬A ∧ A ⇔ ¬(¬A → ¬A), which is an instance of the formula

¬(B → B).

Let us see if we can discover the reason for this exact match of laws. For the
time being let us ignore the superficial differences of syntax, and settle for
the logical symbols on the right. Expressions built up from Σ with the use
of these, we call boolean expressions, BEΣ. As an alternative to a valuation
V : Σ → {0,1} we may consider a set-valuation SV : Σ → ℘(U), where U
is any non-empty set. Thus, instead of the boolean-value semantics in the
set B, we are defining a set-valued semantics in an arbitrary set U . Such

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 147

SV can be extended to ŜV : BEΣ → ℘(U) according to the rules
ŜV (a) = SV (a) for all a ∈ Σ
ŜV (G) = U

ŜV (⊥) = ∅
ŜV (¬A) = U \ ŜV (A)

ŜV (A ∧B) = ŜV (A) ∩ ŜV (B)

ŜV (A ∨ B) = ŜV (A) ∪ ŜV (B)

Lemma 5.14 Let x ∈ U be arbitrary, V : Σ → {1,0} and SV : Σ → ℘(U)
be such that for all a ∈ Σ we have x ∈ SV (a) iff V (a) = 1. Then for all
A ∈ BEΣ we have x ∈ ŜV (A) iff V̂ (A) = 1.

Proof. By induction on the complexity of A. Everything follows from
the boolean tables of G,⊥,¬,∧,∨ and the observations below.

x ∈ U always
x ∈ ∅ never
x ∈ P iff x '∈ P

x ∈ P ∩Q iff x ∈ P and x ∈ Q
x ∈ P ∪Q iff x ∈ P or x ∈ Q QED (5.14)

Example 5.15
Let Σ = {a, b, c}, U = {4, 5, 6, 7} and choose x ∈ U to be 4. The upper part
of the table shows an example of a valuation and set-valuation satisfying
the conditions of the lemma, and the lower part the values of some formulae
(boolean expressions) under these valuations.

{1,0} V← Σ SV→ ℘({4, 5, 6, 7})
1 ← a → {4, 5}
1 ← b → {4, 6}
0 ← c → {5, 7}

{1,0} V̂← BEΣ ŜV→ ℘({4, 5, 6, 7})
1 ← a ∧ b → {4}
0 ← ¬a → {6, 7}
1 ← a ∨ c → {4, 5, 7}
0 ← ¬(a ∨ c) → {6}

The four formulae illustrate the general fact that for any A ∈ BEΣ we have
V̂ (A) = 1 ⇔ 4 ∈ ŜV (A). !

The set identities on page 1 say that the BE’s on each side of an identity
are interpreted identically by any set-valuation. Hence the corollary below

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

148 Introduction to Logic

expresses the correspondence between the set-identities and tautological
equivalences.

Corollary 5.16 Let A,B ∈ BEΣ. Then
(ŜV (A) = ŜV (B) for all set-valuations SV , into all sets U) iff (A ⇔ B).

Proof. The idea is to show that for every set-valuation that inter-
prets A and B differently, there is some valuation that interprets them
differently, and conversely.
⇐) First suppose ŜV (A) '= ŜV (B). Then there is some x ∈ U that is
contained in one but not the other. Let Vx be the valuation such that
for all a ∈ Σ,

Vx(a) = 1 iff x ∈ SV (a).
Then V̂x(A) '= V̂x(B) follows from lemma 5.14.
⇒) Now suppose V̂ (A) '= V̂ (B). Let SV be the set-valuation into
℘({1}) = {∅, {1}} such that for all a ∈ Σ,

1 ∈ SV (a) iff V (a) = 1.

Again lemma 5.14 applies, and ŜV (A) '= ŜV (B) follows. QED (5.16)

This corollary provides an explanation for the validity of essentially the
same laws for statement logic and for sets. These laws were universal, i.e.,
they stated equality of some set expressions for all possible sets and, on
the other hand, logical equivalence of corresponding logical formulae for all
possible valuations. We can now rewrite any valid equality A = B between
set expressions as A ⇔ B, where primed symbols indicate the corresponding
logical formulae; and vice versa. Corollary says that one is valid if and only
if the other one is.

Let us reflect briefly over this result which is quite significant. For the
first, observe that the semantics with which we started, namely, the one
interpreting connectives and formulae over the set B, turns out to be a
special case of the set-based semantics. We said that B may be an arbi-
trary two-element set. Now, take U = {•}; then ℘(U) = {∅, {•}} has two
elements. Using • as the “designated” element x (x from lemma 5.14), the
set-based semantics over this set will coincide with the propositional seman-
tics which identifies ∅ with 0 and {•} with 1. Reinterpreting corollary with
this in mind, i.e., substituting ℘({•}) for B, tells us that A = B is valid (in
all possible ℘(U) for all possible assignments) iff it is valid in ℘({•})! In
other words, to check if some set equality holds under all possible interpre-
tations of the involved set variables, it is enough to check if it holds under

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 149

all possible interpretations of these variables in the structure ℘({•}). (One
says that this structure is a cannonical representative of all such set-based
interpretations of propositional logic.) We have thus reduced a problem
which might seem to involve infinitely many possibilities (all possible sets
standing for each variable), to a simple task of checking the solutions with
substituting only {•} or ∅ for the inolved variables.

4.3: Boolean Algebras . [optional]

The discussion in subsection 4.2 shows the concrete connection between the set
interpretation and the standard interpretation of the language of PL. The fact
that both set operations and (functions interpreting the) propositional connec-
tives obey essentially the same laws can be, however, stated more abstractly –
they are both examples of yet other, general structures called “boolean algebras”.

Definition 5.17 The language of boolean algebra is given by 1) the set of boolean
expressions, BEΣ, relatively to a given alphabet Σ of variables:

Basis :: 0, 1 ∈ BEΣ and Σ ⊂ BEΣ

Ind. :: If t ∈ BEΣ then −t ∈ BEΣ

:: If s, t ∈ BEΣ then (s + t) ∈ BEΣ and (s ∗ t) ∈ BEΣ

and by 2) the formulae which are equations s ≡ t where s, t ∈ BEΣ.

A boolean algebra is any set X with interpretation

• of 0, 1 as constants 0, 1 ∈ X (“bottom” and “top”);

• of − as a unary operation − : X → X (“complement”), and

• of +, ∗ as binary operations +, ∗ : X2 → X (“join” and “meet”),

• of ≡ as identity, =,

satisfying the following axioms:

1. Neutral elements 2. Associativity

x + 0 ≡ x (x + y) + z ≡ x + (y + z)
x ∗ 1 ≡ x (x ∗ y) ∗ z ≡ x ∗ (y ∗ z)

3. Commutativity 4. Distributivity

x + y ≡ y + x x + (y ∗ z) ≡ (x + y) ∗ (x + z)
x ∗ y ≡ y ∗ x x ∗ (y + z) ≡ (x ∗ y) + (x ∗ z)

5. Complement

x ∗ (−x) ≡ 0 x + (−x) ≡ 1

Be wary of confusing the meaning of the symbols “0,1,+,−, ∗” above with the
usual meaning of arithmetic zero, one, plus, etc. – they have nothing in common,
except for the superficial syntax!!!

Roughly speaking, the word “algebra”, stands here for the fact that the only
formulae are equalities and reasoning happens by using properties of equality:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

150 Introduction to Logic

reflexivity – x ≡ x, symmetry – x≡y
y≡x , transitivity – x≡y ; y≡z

x≡z , and by “sub-
stituting equals for equals”, according to the rule:

g[x] ≡ z ; x ≡ y
g[y] ≡ z.

(5.18)

(Compare this to the provable equivalence from theorem 4.25, in particular, the
rule from 4.26.) Other laws, which we listed before, are derivable in this manner
from the above axioms. For instance,

• Idempotency of ∗, i.e.
x ≡ x ∗ x (5.19)

is shown as follows
: x

1≡ x ∗ 1
5≡ x ∗ (x + (−x))

4≡ (x ∗ x) + (x ∗ (−x))
5≡ (x ∗ x) + 0

1≡ x ∗ x
(Similarly, x ≡ x + x.)

• Another fact is a form of absorption:

0 ∗ x ≡ 0 x + 1 ≡ 1 (5.20)

: 0 ∗ x
5≡ (x ∗ (−x)) ∗ x

3≡ ((−x) ∗ x) ∗ x
2≡ (−x) ∗ (x ∗ x)

(5.19)
≡ (−x) ∗ x

5≡ 0

: x + 1
5≡ x + (x + (−x))

3,2
≡ (x + x) + (−x)

(5.19)
≡ x + (−x)

5≡ 1

• Complement of any x is determined uniquely by the two properties from
5., namely, any y satisfying both these properties is necessarily x’s complement:

if a) x + y ≡ 1 and b) y ∗ x ≡ 0 then y ≡ −x (5.21)

: y
1≡ y ∗ 1

5≡ y ∗ (x + (−x))
4≡ (y ∗ x) + (y ∗ (−x))

b)
≡ 0 + (y ∗ (−x))

5≡
(x ∗ (−x)) + (y ∗ (−x))

3,4
≡ (x + y) ∗ (−x)

a)
≡ 1 ∗ (−x)

3,1
≡ −x

• Involution,
−(−x) ≡ x (5.22)

follows from (5.21). By 5. we have x ∗ (−x) ≡ 0 and x + (−x) ≡ 1 which, by
(5.21) imply that x ≡ −(−x).

The new notation used in the definition 5.17 was meant to emphasize the fact
that boolean algebras are more general structures. It should have been obvious,
however, that the intended interpretation of these new symbols was as follows:

sets ← boolean algebra → PL
℘(U) @ ← x → ∈ {1,0}
x ∪ y ← x + y → x∨y
x ∩ y ← x ∗ y → x∧y

x ← −x → ¬x
∅ ← 0 → 0
U ← 1 → 1
= ← ≡ → ⇔

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 151

The fact that any set ℘(U) obeys the set laws from page 46, and that the set
B = {1,0} obeys the PL-laws from 4.1 amounts to the statement that these
structures are, in fact, boolean algebras under the above interpretation of boolean
operations. (Not all the axioms of boolean algebras were included, so one has to
verify, for instance, the laws for neutral elements and complement, but this is
an easy task.) Thus, all the above formulae (5.19)–(5.22) will be valid for these
structures under the interpretation from the table above, i.e.,

℘(U)−law ← boolean algebra law → PL−law
A ∩A = A ← x ∗ x = x → A ∧A ⇔ A (5.19)
∅ ∩A = ∅ ← 0 ∗ x = 0 → ⊥∧A ⇔ ⊥ (5.20)
U ∪A = U ← 1 + x = 1 → ; ∨ A ⇔ ; (5.20)

(A) = A ← −(−x) = x → ¬(¬A) ⇔ A (5.22)

The last fact for PL was, for instance, verified at the end of Example 5.9.
Thus the two possible semantics for our WFFPL, namely, the set {1,0} with

the logical interpretation of the (boolean) connectives as ∧, ∧, etc. on the one
hand, and an arbitrary ℘(U) with the interpretation of the (boolean) connectives
as ∪, ∩, etc. are both boolean algebras.

Now, we said that boolean algebras come with the reasoning system – equa-

tional logic – which allows us to prove equations A ≡ B, where A, B ∈ BE.

On the other hand, the axiomatic systems for PL, e.g., the Hilbert’s system 9H,

proved only simple boolean expressions: 9H A. Are these two reasoning systems

related in some way? They are, indeed, but we will not study precise relation-

ship in detail. At this point we only state the following fact: if 9H A then also

the equation A ≡ 1 is provable in equational logic, where A ≡ 1 is obtained

by replacing all subformulas x → y by the respective expressions −x + y (recall

x → y ⇔ ¬x ∨ y). For instance, the equation corresponding to the first axiom

of 9H A → (B → A) is obtained by translating → to the equivalent boolean ex-

pression: (−A +−B + A) = 1. You may easily verify provability of this equation

from axioms 1.-5., as well as that it holds under set interpretation – for any sets

A, B ⊆ U : A ∪B ∪A = U . [end optional]

Exercises 5.

exercise 5.1 Recall Example 5.12 and set up the boolean table for the
formula a ∨ b with ∨ trying to represent “or”. Use your definnition to
represent the following statements, or explain why it can not be done:

(1) x < y or x = y.
(2) John is ill or Paul is ill.
(3) Either we go to cinema or we stay at home.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

152 Introduction to Logic

exercise 5.2 Write the boolean tables for the following formulae and de-
cide to which among the four classes from Fact 5.10 (Definition 5.8) they
belong:

(1) a → (b → a)
(2) (a → (b → c)) → ((a → b) → (a → c))
(3) (¬b → ¬a) → (a → b)

exercise 5.3 Rewrite the laws 1. Neutral elements and 5. Complement of
boolean algebra to their propositional form and verify their validity using
boolean tables. (Use G for 1 and ⊥ for 0.)
exercise 5.4 Verify whether (a → b) → b is a tautology. Is the following
proof correct? If not, what is wrong with it?
1 : A, A → B 9N A → B A0
2 : A, A → B 9N A A0
3 : A → B 9N B MP (2, 1)
4 : 9N (A → B) → B DT

exercise 5.5 Verify the following facts:

(1) A1 → (A2 → (A3 → B)) ⇔ (A1 ∧A2 ∧A3) → B.
(2) (A ∧ (A → B)) ⇒ B

Use boolean tables to show that the following formulae are contradictions:
(3) ¬(B → B)
(4) ¬(B ∨ C) ∧ C

Determine now what sets are denoted by these two expressions – for the
set-interpretation of → recall remark 5.13.
exercise 5.6 Show which of the following pairs are equivalent:

1. A → (B → C) ? (A → B) → C
2. A → (B → C) ? B → (A → C)
3. A ∧ ¬B ? ¬(A → B)

exercise 5.7 Prove a result analogous to corollary 5.16 for ⊆ and ⇒ in-
stead of = and ⇔.
exercise 5.8 Use point 3. from exercise 5.6 to verify that (C ∧ D) →
(A∧¬B) and (C ∧D) → ¬(A → B) are equivalent. How does this earlier
exercise simplify the work here?
exercise 5.9 (Compositionality and substitutivity)
Let F [] be a formula with (one or more) “holes” and A,B be arbitrary
fomulae. Assuming that for all valuations V , V̂ (A) = V̂ (B), use induction
on the complexity of F [] to show that then V̂ (F [A]) = V̂ (F [B]), for all
valuations V .

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.2. Semantics of PL 153

(Hint: The structure of the proof will be similar to that of Theorem 4.25. Ob-

serve, however, that here you are proving a completely different fact concerning

not the provability relation but the semantic interpretation of the formulae –

not their provable but tautological equivalence.)

exercise 5.10 Tautological equivalence A ⇔ B amounts almost to the
fact that A and B have the same interpretation. We have to make the
meaning of this “almost” more precise.

(1) Show that neither of the two relations A ⇔ B and A = B imply the
other, i.e., give examples of A and B such that (a) A ⇔ B but A '= B
and (b) A = B but not A ⇔ B.
(Hint: Use extra/different propositional variables not affecting the truth of

the formula.)

(2) Explain why the two relations are the same whenever A and B contain
the same variables.

(3) Finally explain that if A = B then there exists some formula C obtained
from B by “renaming” the propositional variables, such that A ⇔ C.

exercise 5.11 Let Φ be an arbitrary, possibly infinite, set of formulae.
The following conventions generalize the notion of (satisfaction of) binary
conjunction/disjunction to such arbitrary sets. Given a valuation V , we
say that Φ’s:

• conjunction is true under V , V̂ (
∧

Φ) = 1, iff for all A : if A ∈ Φ then
V̂ (A) = 1.

• disjunction is true udner V , V̂ (
∨

Φ) = 1, iff there exists an A such that
A ∈ Φ and V̂ (A) = 1.

Let now Φ be a set containing zero or one formulae. What would be
the most natural interpretations of the expressions “the conjunction of
formulae in Φ” and “the disjunction of formulae in Φ” ?

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

154 Introduction to Logic

Chapter 6

Soundness, Completeness

• Adequate Sets of Connectives

• Normal Forms: DNF and CNF

• Soundness and Completeness of N and H

This chapter focuses on the relations between the syntax and axiomatic
systems for PL and their semantic counterpart. Before we discuss the cen-
tral concepts of soundness and completeness, we will first ask about the
“expressive power” of the language we have introduced. Expressive power
of a language for propositional logic can be identified with the possibilities
it provides for defining various boolean functions. In section 1 we show
that all boolean functions can be defined by the formulae in our language.
Section 2 explores a useful consequence of this fact showing that each for-
mula can be written equivalently in a special normal form. The rest of the
chapter shows then soundness and completeness of our axiomatic systems.

1: Adequate Sets of Connectives
This and next section study the relation we have established in Defini-
tion 5.6 between formulae of PL and boolean functions (on our two-element
set B). According to this definition, any PL formula defines a boolean
function. The question now is the opposite: Can any boolean function be
defined by some formula of PL?

Introducing abbreviations ∧, ∨ and others in Section 5.3, we remarked
that they are not necessary but merely convenient. Their being “not neces-
sary” means that any function which can be defined by a formula containing
these connectives, can also be defined by a formula which does not contain
them. E.g., a function defined using ∨ can be also defined using ¬ and →.

Concerning our main question we need a stronger notion, namely, the
notion of a complete, or adequate set of connectives which is sufficient to
define all boolean functions.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 155

Definition 6.1 A set AS of connectives is adequate if for every n > 0,
every boolean function f : {1,0}n → {1,0} is determined by some formula
containing only the connectives from the set AS.

Certainly, not every set is adequate. If we take, for example, the set with
only negation {¬}, it is easy to see that it cannot be adequate. It is a unary
operation, so that it will never give rise to, for instance, a function with
two arguments. But it won’t even be able to define all unary functions. It
can be used to define only two functions B → B – inverse (i.e., ¬ itself)
and identity (¬¬(x) = x). (The proof-theoretic counterpart of this last
fact was Lemma 4.10, showing provable equivalence of B and ¬¬B.) Any
further applications of ¬ will yield one of these two functions. The constant
functions (f(x) = 1 or f(x) = 0) can not be defined using exclusively this
single connective. The following theorem identifies the first adequate set.

Theorem 6.2 {¬,∧,∨} is an adequate set.

Proof. Let f : {1,0}n → {1,0} be an arbitrary boolean function of
n arguments (for some n > 0) with a given boolean table. If f always
equals 0 then the contradiction (a1∧¬a1)∨ . . .∨(an∧¬an) determines
f . For the case when f equals 1 for at least one row of arguments, we
write the proof to the left illustrating it with an example to the right.

Proof Example
Let a1, a2, . . . , an be distinct proposi-
tional variables listed in increasing or-
der. The boolean table for f has 2n

rows. Let ar
c denote the entry in the

c-th column and r-th row.

a1 a2 f(a1, a2)
1 1 0
1 0 1
0 1 1
0 0 0

For each 1 ≤ r ≤ 2n, 1 ≤ c ≤ n let

Lr
c =

{
ac if ar

c = 1
¬ac if ar

c = 0

L1
1 = a1, L1

2 = a2

L2
1 = a1, L2

2 = ¬a2

L3
1 = ¬a1, L3

2 = a2

L4
1 = ¬a1, L4

2 = ¬a2

For each row 1 ≤ r ≤ 2n form the con-
junction: Cr = Lr

1 ∧ Lr
2 ∧ . . . ∧ Lr

n.
Then for all rows r and p)= r :

Cr(ar
1, . . . , a

r
n) = 1 and

Cr(ap
1, . . . , a

p
n) = 0.

C1 = a1 ∧ a2

C2 = a1 ∧ ¬a2

C3 = ¬a1 ∧ a2

C4 = ¬a1 ∧ ¬a2

Let D be the disjunction of those Cr

for which f(ar
1, . . . , a

r
n) = 1.

D = C2 ∨ C3

= (a1 ∧¬a2) ∨ (¬a1 ∧a2)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

156 Introduction to Logic

The claim is: the function determined by D is f , i.e., D = f .
If f(ar

1, . . . , a
r
n) = 1 then D contains the corresponding disjunct

Cr which, since Cr(ar
1, . . . , a

r
n) = 1, makes D(ar

1, . . . , a
r
n) = 1. If

f(ar
1, . . . , a

r
n) = 0, then D does not contain the corresponding disjunct

Cr. But for all p '= r we have Cp(ar
1, . . . , a

r
n) = 0, so none of the dis-

juncts in D will be 1 for these arguments, and hence D(ar
1, . . . , a

r
n) = 0.

QED (6.2)

Corollary 6.3 The following sets of connectives are adequate:
(1) {¬,∨} (2) {¬,∧} (3) {¬,→}

Proof. (1) By de Morgan’s law A ∧ B ⇔ ¬(¬A ∨ ¬B). Thus we can
express each conjunction by negations and disjunction. Using distribu-
tive and associative laws, this allows us to rewrite the formula obtained
in the proof of Theorem 6.2 to an equivalent one without conjunction.
(2) The same argument as above.
(3) According to definition 5.11, A ∨ B

def= ¬A → B. This, however,
was a merely syntactic definition of a new symbol ‘∨’. Here we have
to show that the boolean functions ¬ and → can be used to define
the boolean function ∨. But this was done in Exercise 5.2.(1) where
the semantics (boolean table) for ∨ was given according to the defini-
tion 5.11, i.e., where A ∨ B ⇔ ¬A → B, required here, was shown. So
the claim follows from point 1. QED (6.3)

Remark.
Our definition of “adequate” does not require that any formula determines the
functions from {1,0}0 into {1,0}. {1,0}0 is the singleton set {ε} and there
are two functions from it into {1,0}, namely {ε -→ 1} and {ε -→ 0}. These
functions are not determined by any formula in the connectives ∧,∨,→,¬. The
best approximations are tautologies and contradictions like (a → a) and ¬(a →
a), which we in fact took to be the special formulae ; and ⊥. However, these
determine the functions {1 -→ 1, 0 -→ 1} and {1 -→ 0, 0 -→ 0}, which in a
strict set-theoretic sense are distinct from the functions above. To obtain a set of
connectives that is adequate in a stricter sense, one would have to introduce ; or
⊥ as a special formula (in fact, a 0-argument connective) that does not contain
any propositional variables.

2: DNF, CNF
The fact that, for instance, {¬,→} is an adequate set, vastly reduces the
need for elaborate syntax when studying propositional logic. We can (as we
indeed have done) restrict the syntax of WFFPL to the necessary minimum.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 157

This simplifies many proofs concerned with the syntax and the axiomatic
systems since such proofs involve, typically, induction on the definition (of
WFF, of C, etc.) Adequacy of the set means that any entity (any function
defined by a formula) has some specific, “normal” form using only the
connectives from the adequate set.

Now we will show that even more “normalization” can be achieved.
Not only every (boolean) function can be defined by some formula using
only the connectives from one adequate set – every such a function can be
defined by such a formula which, in addition, has a very specific form.

Definition 6.4 A formula B is in

(1) disjunctive normal form, DNF, iff B = C1 ∨ ... ∨ Cn, where each Ci is a
conjunction of literals.

(2) conjunctive normal form, CNF, iff B = D1 ∧ ... ∧Dn, where each Di is a
disjunction of literals.

Example 6.5
Let Σ = {a, b, c}.
• (a ∧ b) ∨ (¬a ∧ ¬b) and (a ∧ b ∧ ¬c) ∨ (¬a ∧ c) are both in DNF
• a ∨ b and a ∧ b are both in DNF and CNF
• (a ∨ (b ∧ c)) ∧ (¬b ∨ a) is neither in DNF nor in CNF
• (a ∨ b) ∧ c ∧ (¬a ∨ ¬b ∨ ¬c) is in CNF but not in DNF
• (a ∧ b) ∨ (¬a ∨ ¬b) is in DNF but not in CNF.

The last formula can be transformed into CNF applying the laws like those
from 5.4.1 on p. 144. The distributivity and associativity laws yield:

(a ∧ b) ∨ (¬a ∨ ¬b) ⇔ (a ∨ ¬a ∨ ¬b) ∧ (b ∨ ¬a ∨ ¬b)
and the formula on the right hand side is in CNF. !

Recall the form of the formula constructed in the proof of Theorem 6.2 –
it was in DNF! Thus, this proof tells us not only that the set {¬,∧,∨} is
adequate but also

Corollary 6.6 Each formula is logically equivalent to a formula in DNF.

Proof. For any B there is a D in DNF such that B = D. By “renam-
ing” the propositional variables of D (see exercise 5.10) one obtains a
new formula BD in DNF, such that B ⇔ BD. QED (6.6)

We now use this corollary to show the next.

Corollary 6.7 Each formula is logically equivalent to a formula in CNF.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

158 Introduction to Logic

Proof. Assuming, by Corollary 6.3, that the only connectives in B are
¬ and ∧, we proceed by induction on B’s complexity:

a :: A propositional variable is a conjunction over one literal,
and hence is in CNF.

¬A :: By Corollary 6.6, A is equivalent to a formula AD in
DNF. Exercise 6.10 allows us to conclude that B is equiv-
alent to BC in CNF.

C ∧A :: By IH, both C and A have CNF : CC , AC . Then CC∧AC

is easily transformed into CNF (using associative laws),
i.e., we obtain an equivalent BC in CNF.

QED (6.7)

The concepts of disjunctive and conjunctive normal forms may be ambigu-
ous, as the definitions do not determine uniquely the form. If 3 variables
a, b, c are involved, the CNF of ¬(a ∧ ¬b) can be naturally seen as ¬a ∨ b.
But one could also require all variables to be present, in which case the
CNF would be (¬a ∨ b ∨ c) ∧ (¬a ∨ b ∨ ¬c). Applying distributivity to the
following formula in DNF: (b ∧ a) ∨ (c ∧ a) ∨ (b ∧ ¬a) ∨ (c ∧ ¬a), we obtain
CNF (b ∨ c) ∧ (a ∨ ¬a). The last, tautological conjunct can be dropped, so
that also b ∨ c can be considered as the CNF of the original formula.

2.1: CNF, Clauses and Satisfiability . [optional]

An algorithm for constructing a DNF follows from the proof of Theorem 6.2. CNF
can be constructed by performing the dual moves. Given a boolean table for a
function, pick the rows with value 0 and for each such row form the conjunction
of literals as in the proof of Theorem 6.2. Take the conjunction of negations of all
these rows – CNF results now from moving negations inwards using de Morgan.
For the function from the proof of Theorem 6.2, we obtain ¬(a1∧a2)∧¬(¬a1∧¬a2)
which, after application of de Morgan, yields (¬a1 ∨ ¬a2) ∧ (a1 ∨ a2).

A disjunction of literals is called a clause and thus CNF is a conjunction of
clauses. It plays a crucial role in many applications and the problem of deciding
if a given CNF formula is satisfiable, SAT, is the paradigmatic NP-complete
problem. (Deciding if a given DNF formula is satisfiable is trivial – it suffices to
check if it contains any conjunction without any pair of complementary literals.)

For a given set V of n = |V | variables, a V -clause or (abstracting from the
actual names of the variables and considering only their number) n-clause is one
with n literals. There are 2n distinct n-clauses, and the set containing them all
is denoted C(V). The following fact may seem at first surprising, claiming that
every subset of such n-clauses, except the whole C(V), is satisfiable.

Fact 6.8 For a T ⊆ C(V) : mod(T) = ∅ ⇔ T = C(V).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 159

Proof. Proceeding by induction on the number |V | = n of variables, the
claim is trivially verified for n = 1 or n = 2. For any n + 1 > 2, in any
subset of 2n− 1 = 2n−1 + 2n−1− 1 clauses, at least one of the literals, say x,
occurs 2n−1 times. These clauses are satisfied by making x = 1. From the
remaining 2n−1 − 1 clauses, we remove x, and obtain 2n−1 − 1 clauses over
n− 1 variables, for which IH applies. Since every subset of 2n − 1 clauses is
satisfiable, so is every smaller subset, for every n. QED (6.8)

This follows, in fact, from a more general observation. Given a subset T ⊆ C(V)
of V -clauses, its models are determined exactly by the clauses in C(V) \ T . For
an n-clause C, let val(C) denote the valuation assigning 0 to all positive literals
and 1 to all negative literals in C.

Fact 6.9 Let T ⊆ C(V) : mod(T) = {val(C) | C ∈ C(V) \ T}.
This holds because each C ∈ C(V) \ T differs from each M ∈ T at least at one

literal, say lCM ∈ M and lMC ∈ C (where l− l denotes arbitrarily complementary
pair of literals). Taking the complements of all literals in C will then make true
val(C) |= M ∈ T , at least by the respective literal lCM ∈ M , on which the two
differ. Since C contains such a literal for each clause from T , val(C) |= T .

Example 6.10
For V = {a, b, c}, let the theory T contain the 5 V -clauses listed in the first

column.
C(V) \ T

a ∨ ¬b ∨ ¬c ¬a ∨ b ∨ ¬c ¬a ∨ b ∨ c
val() : a b c a b c a b c

T : 0 1 1 1 0 1 1 0 0
1. a ∨ b ∨ c 1 1 1 1 1
2. a ∨ b ∨ ¬c 1 1 1 1
3. a ∨ ¬b ∨ c 1 1 1 1 1
4. ¬a ∨ ¬b ∨ c 1 1 1 1 1
5. ¬a ∨ ¬b ∨ ¬c 1 1 1 1

The three clauses in C(V) \ T give valuations in the second row. Each of them

makes 1 the literals marked in the rows for the respective clauses of T . !

Fact 6.9 finds important application in the decision procedures for satisfiability
and in counting the number of models of a theory. It is commonly applied as
the so called “semantic tree”, representing the models of a theory. Order the
atoms V of the alphabet in an arbitrary total ordering v1, v2,, vn, and build a
complete binary tree by staring with the empty root (level 0) and, at each level
i > 0, adding two children, vi and vi, to each node at the previous level i − 1.
A complete branch in such a tree (i.e., each of the 2n leafs) represents a possible
assignment of the values 1 to each node vi and 0 to each node vi on the branch.
According to Fact 6.9, each clause from C(V) excludes one such branch, formed
by negations of all literals in the clause. One says that the respective branch
becomes “closed” and, on the drawing below, these closed branches, for the five

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

160 Introduction to Logic

clauses from T , are marked by ×:

ε

**88
88

((%%%%%%%%

a

GG&&
&&

00

a

HH9
99

99

00
b

::::
::

00

b

II;
;;

;

00

b

JJ<<
<<

<
00

b

;;=
==

=

00
c
×

c
× c c c c

×
c
×

c
×

The literals on the open branches, terminating with the unmarked leafs, give the
three models of T , as in Example 6.10.

In practice, the algorithms do not build the complete tree which quickly be-
comes prohibitively large as n grows. Instead, it is developed gradually, observing
if there remain any open branches. Usually, a theory is given by clauses of various
length, much shorter than the total number n of variables. Such a shorter clause
excludes then all branches containing all its negated literals. E.g., if the theory is
extended with the clause ¬a ∨ b, all branches containing a and b become closed,
as shown below. Once closed, a branch is never extended during the further
construction of the tree.

ε

<<>>
>>

((%%%%%%%%

a

::33
33

3
00

a

;;4
44

44

00
b

JJ??
??

?

00

b
× b

KK@@
@@
@@

00

b

II;
;;

;;

00
c
×

c
× c c

×
c
×

c
×

The resulting theory still has one model, represented by the open branch a, b, c.

Adding any clause closing this branch, i.e., a∨¬b∨¬c or ¬c or ¬b or ¬c∨a, etc.,

makes the theory inconsistent.. [end optional]

3: Soundness
♦ a Background Story ♦
The library offers its customers the possibility of ordering books on
internet. From the main page one may ask the system to find the book
one wishes to borrow. (We assume that appropriate search engine will
always find the book one is looking for or else give a message that it
could not be identified. In the sequel we are considering only the case
when the book you asked for was found.)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 161

The book (found by the system) may happen to be immediately
available for loan. In this case, you may just reserve it and our
story ends here. But the most frequent case is that the book is on
loan or else must be borrowed from another library. In such a case,
the system gives you the possibility to order it: you mark the book
and the system will send you a message as soon as the book becomes
available. (You need no message as long as the book is not available
and the system need not inform you about that.) Simplicity of this
scenario notwithstanding, this is actually our whole story.

There are two distinct assumptions which make us relay on the
system when we order a book. The first is that when you get the
message that the book is available it really is. The system will not play
fool with you saying “Hi, the book is here” while it is still on loan
with another user. We trust that what the system says (“The book
is here”) is true. This property is what we call “soundness” of the
system – it never provides us with false information.

But there is also another important aspect making up our trust in
the system. Suppose that the book actually becomes available, but you
do not get the appropriate message. The system is still sound – it
does not give you any wrong information – but only because it does
not give you any information whatsoever. It keeps silent although it
should have said that the book is there and you can borrow it. The
other aspect of our trust is that whenever there is a fact to be reported
(‘the book became available’), the system will do it – this is what we
call “completeness”.

Just like a system may be sound without being complete (keep silent
even though the book arrived to the library), it may be complete with-
out being sound. If it constantly sent messages that the book you
ordered was available, it would, sooner or later (namely when the
book eventually became available) report the true fact. However, in
the meantime, it would provide you with a series of incorrect infor-
mation – it would be unsound.

Thus, soundness of a system means that whatever it says is cor-
rect: it says “The book is here” only if it is here. Completeness means
that everything that is correct will be said by the system: it says “The
book is here” if (always when) the book is here. In the latter case,
we should pay attention to the phrase “everything that is correct”. It
makes sense because our setting is very limited. We have one com-
mand ‘order the book ...’, and one possible response of the system: the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

162 Introduction to Logic

message that the book became avilable. “Everything that is correct”
means here simply that the book you ordered actually is available. It
is only this limited context (i.e., limited and well-defined amount of
true facts) which makes the notion of completeness meaningfull.

In connection with axiomatic systems one often resorts to another
analogy. The axioms and the deduction rules together define the scope
of the system’s knowledge about the world. If all aspects of this knowl-
edge (all the theorems) are true about the world, the system is sound.
This idea has enough intuitive content to be grasped with reference to
vague notions of ‘knowledge’, ‘the world’, etc. and our illustration
with the system saying “The book is here” only when it actually is,
merely makes it more specific.

Completeness, on the other hand, would mean that everything that
is true about the world (and expressible in the actual language), is also
reflected in the system’s knowledge (theorems). Here it becomes less
clear what the intuitive content of ‘completeness’ might be. What can
one possibly mean by “everything that is true”? In our library exam-
ple, the user and the system use only very limited language allowing
the user to ‘order the book ...’ and the system to state that it is ava-
ialable. Thus, the possible meaning of “everything” is limited to the
book being available or not. One should keep this difference between
‘real world’ and ‘availability of a book’ in mind because the notion of
completeness is as unnatural in the context of natural language and
real world, as it is adequate in the context of bounded, sharply de-
lineated worlds of formal semantics. The limited expressiveness of a
formal language plays here crucial role of limiting the discourse to a
well-defined set of expressible facts.

The library system should be both sound and complete to be useful.
For axiomatic systems, the minimal requirement is that that they are
sound – completeness is a desirable feature which, typically, is much
harder to prove. Also, it is known that there are axiomatic systems
which are sound but inherently incomplete but we will not study such
systems. 7

♦ ♦
Definition 5.8 introduced, among other concepts, the validity relation |= A,
stating that A is satisfied by all structures. On the other hand, we studied
the syntactic notion of a proof in a given axiomatic system C, which we

7Thanks to Eivind Kolflaath for the library analogy.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 163

wrote as CC A. We also saw a generalization of the provability predicate
CH in Hilbert’s system to the relation Γ CN A, where Γ is a theory – a set
of formulae. We now define the semantic relation Γ |= A of “A being a
(tauto)logical consequence of Γ”.

Definition 6.11 For Γ ⊆ WFFPL, A ∈ WFFPL and a valuation V , we write:
• V |= Γ iff V |= G for all G ∈ Γ – V is a model of Γ
• Mod(Γ) = {V : V |= Γ} – all models of Γ
• |= Γ iff for all V : V |= Γ – Γ is valid
• Γ |= A iff for all V ∈ Mod(Γ) : V |= A, ..– A is a logical

i.e., ∀V : V |= Γ ⇒ V |= A consequence of Γ

The analogy between the symbols |= and C is not accidental. The former
refers to a semantic, while the later to a syntactic notion and, ideally, these
two notions should be equivalent in some sense. The following table gives
the picture of the intended “equivalences”:

syntactic vs. semantic

CH A vs. |= A
Γ CN A vs. Γ |= A

For H and N , there is such an equivalence, namely:
Γ CA ⇔ Γ |= A (6.12)

The implication Γ CC A ⇒ Γ |= A is called soundness of the proof system
C : whatever we can prove in C from the assumptions Γ, is true in every
structure satisfying Γ. This is usually easy to establish as we will see
shortly. The problematic implication is the other one – completeness –
stating that any formula which is true in all models of Γ is provable from the
assumptions Γ. (Γ = ∅ is a special case: the theorems CC A are tautologies
and the formulae |= A are those satisfied by all possible structures (since
any structure V satisfies the empty set of assumptions).)

Remark 6.13 [Soundness and Completeness]
Another way of viewing these two implications is as follows. Given an axiomatic
system C and a theory Γ, the relation Γ 9C defines the set of formulae – the
theorems – ThC(Γ) = {A : Γ 9C A}. On the other hand, given the definition of
Γ |= , we obtain a (possibly different) set of formulae, namely, the set Γ∗ = {B :
Γ |= B} of (tauto)logical consequences of Γ. Soundness of C, i.e., the implication
Γ 9C A ⇒ Γ |= A means that any provable consequence is also a (tauto)logical
consequence and amounts to the inclusion ThC(Γ) ⊆ Γ∗. Completeness means
that any (tauto)logical consequence of Γ is also provable and amounts to the
opposite inclusion Γ∗ ⊆ ThC(Γ).

For proving soundness of an axiomatic system consisting, like H or N , of

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

164 Introduction to Logic

axioms and proof rules, one has to show that the axioms are valid and the
rules preserve truth: whenever the assumptions of the rule are satisfied in
a model M , then so is the conclusion. (Since H treats only tautologies, this
claim reduces there to preservation of validity: whenever the assumptions
of the rule are valid, so is the conclusion.) When these two facts are es-
tablished, a straightforward induction proof shows that all theorems of the
system must be valid.

Theorem 6.14 [Soundness] For every set Γ ⊆ WFFPL and formula A ∈
WFFPL : Γ CN A ⇒ Γ |= A.

Proof. From the above remarks, we have to show that all axioms are
valid, and that MP preserves validity:

A1–A3 :: In exercise 5.2 we have seen that all axioms of H are
valid, i.e., satisfied by any structure. In particular, the
axioms are satisfied by all models of Γ, for any Γ.

A0 :: The axiom schema A0 allows us to conclude Γ CN B for
any B ∈ Γ. This is obviously sound: any model V of Γ
must satisfy all the formulae of Γ and, in particular, B.

MP :: Suppose Γ |= A and Γ |= A → B. Then, for an arbitrary
V ∈ Mod(Γ) we have V̂ (A) = 1 and V̂ (A → B) = 1.
Consulting the boolean table for → : the first assump-
tion reduces the possibilites for V to the two rows for
which V (A) = 1, and then, the second assumption to the
only possible row in which V (A → B) = 1. In this row
V (B) = 1, so V |= B. Since V was arbitrary model of Γ,
we conclude that Γ |= B. QED (6.14)

Soundness of H follows by easy simplifications of this proof.

Corollary 6.15 Every satisfiable theory is consistent.

Proof. We show the equivalent statement that every inconsistent the-
ory is unsatisfiable. Indeed, if Γ CN ⊥ then Γ |= ⊥ by Theorem 6.14,
hence Γ is not satisfiable (since ¬(x→x) = 0). QED (6.15)

Remark 6.16 [Equivalence of two soundness notions]
Soundness is often expressed as Corollary 6.15, since the two are equivalent:

6.14. Γ 9N A ⇒ Γ |= A

6.15. (exists V : V |= Γ) ⇒ Γ)9N ⊥

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 165

The implication 6.14 ⇒ 6.15 is given in the proof of corollary 6.15. For the
opposite: if Γ 9N A then Γ ∪ {¬A} is inconsistent (Exercise 4.5) and hence (by
6.15) unsatisfiable, i.e., for any V : V |= Γ ⇒ V)|= ¬A. But if V)|= ¬A then
V |= A, and so, since V was arbitrary, Γ |= A.

4: Completeness
The proof of completeness involves several lemmata which we now proceed
to establish. Just as there are two equivalent ways of expressing soundness,
there are two equivalent ways of expressing completeness. One (correspond-
ing to Corollary 6.15) says that every consistent theory is satisfiable and
the other that every valid formula is provable.

Lemma 6.17 The two formulations of completeness are equivalent:

(1) Γ 'CN ⊥ ⇒ Mod(Γ) '= ∅
(2) Γ |= A ⇒ Γ CN A

Proof. (1) ⇒ (2). Assume (1) and Γ |= A, i.e., for any V : V |= Γ ⇒
V |= A. Then Γ ∪ {¬A} has no model and, by (1), Γ,¬A CN ⊥. By
Deduction Theorem Γ CN ¬A → ⊥, and so Γ CN A by Exercise 4.1.5
and lemma 4.10.1.
(2) ⇒ (1). Assume (2) and Γ 'CN ⊥. By (the observation before)
lemma 4.28 this means that there is an A such that Γ 'CN A and, by
(2), that Γ '|= A. This means that there is a structure V such that
V '|= A and V |= Γ. Thus (1) holds. QED (6.17)

We prove the first of the above formulations: we take an arbitrary Γ and,
assuming that it is consistent, i.e., Γ 'CN ⊥, we show that Mod(Γ) '= ∅ by
constructing a particular structure which we prove to be a model of Γ. This
proof is not the simplest possible for PL. However, we choose to do it this
way because it illustrates the general strategy used later in the completeness
proof for FOL. Our proof uses the notion of a maximal consistent theory:

Definition 6.18 A theory Γ ⊂ WFFΣ
PL is maximal consistent iff it is consis-

tent and, for any formula A ∈ WFFΣ
PL, Γ CN A or Γ CN ¬A.

From Exercise 4.5 we know that if Γ is consistent then for any A at most
one, Γ CN A or Γ CN ¬A, is the case, i.e.:

Γ 'CN A or Γ 'CN ¬A or equivalently Γ CN A ⇒ Γ 'CN ¬A (6.19)

Consistent Γ can not prove too much – if it proves something (A) then
there is something else (namely ¬A) which it does not prove.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

166 Introduction to Logic

Maximality is a kind of the opposite – Γ can not prove too little: if Γ
does not prove something (¬A) then there must be something else it proves
(namely A):

Γ CN A or Γ CN ¬A or equivalently Γ CN A ⇐ Γ 'CN ¬A (6.20)

If Γ is maximal consistent it satisfies both (6.19) and (6.20) and hence, for
any formula A, exactly one of Γ CN A and Γ CN ¬A is the case.

For instance, given Σ = {a, b}, the theory Γ = {a → b} is consistent.
However, it is not maximal consistent because, for instance, Γ 'CN a and Γ 'CN
¬a. (The same holds if we replace a by b.) In fact, we have an alternative,
equivalent, and easier to check formulation of maximal consistency for PL.

Fact 6.21 A theory Γ ⊂ WFFΣ
PL is maximal consistent iff it is consistent and

for all a ∈ Σ : Γ CN a or Γ CN ¬a.

Proof. ‘Only if’ part, i.e. ⇒, is trivial from definition 6.18 which
ensures that Γ CN A or Γ CN ¬A for all formulae, in particular all
atomic ones. The opposite implication is shown by induction on the
complexity of A.

A is :
a ∈ Σ :: This basis case is trivial, since it is exactly what is given.
¬B :: By IH, we have that Γ CN B or Γ CN ¬B. In the latter

case, we are done (Γ CN A), while in the former we obtain
Γ CN ¬A, i.e., Γ CN ¬¬B from lemma 4.10.

C → D :: By IH we have that either Γ CN D or Γ CN ¬D. In the
former case, we obtain Γ CN C → D by lemma 4.9. In
the latter case, we have to consider two subcases – by
IH either Γ CN C or Γ CN ¬C. If Γ CN ¬C then, by
lemma 4.9, Γ CN ¬D → ¬C. Applying MP to this and
axiom A3, we obtain Γ CN C → D. So, finally, assume
Γ CN C (and Γ CN ¬D). But then Γ CN ¬(C → D) by
Exercise 4.1.3.

QED (6.21)

The maximality property of a maximal consistent theory makes it easier to
construct a model for it. We prove first this special case of the completeness
theorem:

Lemma 6.22 Every maximal consistent theory is satisfiable.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 167

Proof. Let Γ be any maximal consistent theory, and let Σ be the set
of propositional variables. We define the valuation V : Σ → {1,0} by
the equivalence

V (a) = 1 iff Γ CN a

for every a ∈ Σ. (Hence also V (a) = 0 iff Γ 'CN a.)
We now show that V is a model of Γ, i.e., for any formula B : if
B ∈ Γ then V̂ (B) = 1. In fact we prove the stronger result that for
any formula B,

V̂ (B) = 1 iff Γ CN B.

The proof goes by induction on (the complexity of) B.
B is :

a :: Immediate from the definition of V .
¬C :: V̂ (¬C) = 1 iff V̂ (C) = 0. By IH, the latter holds iff

Γ 'CN C, i.e., iff Γ CN ¬C.
C → D :: We consider two cases:

– V̂ (C → D) = 1 implies (V̂ (C) = 0 or V̂ (D) = 1). By
the IH, this implies (Γ 'CN C or Γ CN D), i.e., (Γ CN ¬C
or Γ CN D). In the former case Exercise 4.1.1, and in
the latter lemma 4.12.2 gives that Γ CN C → D.

– V̂ (C → D) = 0 implies V̂ (C) = 1 and V̂ (D) = 0,
which by the IH imply Γ CN C and Γ 'CN D, i.e.,
Γ CN C and Γ CN ¬D, which by exercise 4.1.3 and
two applications of MP imply Γ CN ¬(C → D), i.e.,
Γ 'CN C → D. QED (6.22)

Next we use this result to show that every consistent theory is satisfiable.
What we need, is a result stating that every consistent theory is a subset
of some maximal consistent theory.

Lemma 6.23 Every consistent theory can be extended to a maximal consis-
tent theory.

Proof. Let Γ be a consistent theory, and let {a0, . . . , an} be the set
of propositional variables used in Γ. [The case when n = ω (is countably

infinite) is treated in the small font within the square brackets.] Let
• Γ0 = Γ

• Γi+1 =
{

Γi, ai if this is consistent
Γi,¬ai otherwise

• Γ̂ = Γn+1 [=
⋃

i<ω Γi, if n = ω]

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

168 Introduction to Logic

We show by induction on i that for any i, Γi is consistent.
Basis :: Γ0 = Γ is consistent by assumption.
Ind. :: Suppose Γj is consistent. If Γj+1 is inconsistent, then

from the definition of Γj+1 we know that both Γj , aj and
Γj ,¬aj are inconsistent, hence by Deduction Theorem
both aj → ⊥ and ¬aj → ⊥ are provable from Γj . Ex-
ercise 4.1.4 tells us that in this case both ¬aj and ¬¬aj

are provable from Γj , contradicting (see exercise 4.5) the
assumption that Γj is consistent.

In particular, Γn = Γ̂ is consistent. [For the infinite case, we use the

above proof, the fact that any finite subtheory of Γ must be contained in a

Γi for some i, and then the compactness theorem 4.29.]

To finish the proof, we have to show that Γ̂ is not only consistent but
also maximal, i.e., that for every A, Γ̂ CN A or Γ̂ CN ¬A. But this was
shown in Fact 6.21, and so the proof is complete. QED (6.23)

The completeness theorem is now an immediate consequence:

Theorem 6.24 Every consistent theory is satisfiable.

Proof. Let Γ be consistent. By lemma 6.23 it can be extended to a
maximal consistent theory Γ̂ which, by lemma 6.22, is satisfiable, i.e.,
has a model V . Since Γ ⊆ Γ̂, this model satisfies also Γ. QED (6.24)

Corollary 6.25 Let Γ ⊆ WFFPL and A ∈ WFFPL. Then

(1) Γ |= A implies Γ CN A, and
(2) |= A implies CH A.

Proof. In view of lemma 4.18, 2. follows from 1. But 1. follows from
theorem 6.24 by lemma 6.17. QED (6.25)

The soundness and completeness results are gathered in

Corollary 6.26 For any Γ ⊆ WFFPL, A ∈ WFFPL : Γ |= A ⇔ Γ CN A.

The proof of completeness could be formulated much simpler. We chose
the above, more complicated formulation, because it illustrates a general
technique, which is applicable in many situations. We will encounter the
same form of argument, when proving completeness of first-order logic.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 169

4.1: Some Applications

Having a sound and complete axiomatic system allows us to switch freely
between the syntactic (concerning provability) and semantic (concerning
validity) arguments – depending on which one is easier in a given context.

1. Is a formula valid?
In case of PL it is, typically, easiest to verify it by making the appropriate
boolean table. However, we have also proved several formulae. Thus, for
instance, asked whether (A → (B → C)) → ((A → B) → (A → C))
is valid, we have a direct answer – it is axiom A2 of H and thus, by
soundness of H, we can immediately conclude that the formula is valid.

2. Is a formula provable?
In theorem 4.30 we gave an argument showing decidability of membership
in CN . In a bit roundabout way, we transformed N expressions into corre-
sponding G expressions, and used G to decide their derivability (which, we
said, was equivalent to derivability in N).

Corollary 6.26 gives us another, semantic, way of deciding membership
in CN . It says that N -derivable formulae are exactly the ones which are
valid. Thus, to see if G = A1, ..., An CN B is derivable in N it suffices
to see if A1, ..., An |= B. Since G is derivable iff G′ = CN A1 → (A2 →
...(An → B)...) is (lemma 4.19), the problem can be decided by checking
if G′ is valid. But this is trivial! Just make the boolean table for G′, fill
out all the rows and see if the last column contains only 1. If it does, G′

is valid and so, by completeness, derivable. If it does not (contains some
0), G′ is not valid and, by soundness, is not derivable.

Example 6.27
Is CN A → (B → (B → A))? We make the boolean table:

A B B→A B→(B→A) A→(B→(B→A))
1 1 1 1 1
1 0 1 1 1
0 1 0 0 1
0 0 1 1 1

The table tells us that |= A → (B → (B → A)) and thus, by complete-
ness of N , we conclude that the formula is derivable in N .

Now, is CN B → (B → A)? The truth table is like the one above
without the last column. The formula is not valid (third row gives 0),

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

170 Introduction to Logic

'|= B → (B → A) and thus, by soundness of N , we can conclude that it
is not derivable in N . !

Notice that to decide provability by such a reference to semantics we need
both properties – completeness guarantees that whatever is valid is prov-
able, while soundness that whatever is not valid is not provable.

This application of soundness/completeness is not typical because, usu-
ally, axiomatic systems are designed exactly to facilitate answering the more
complicated question about validity of formulae. In PL, however, the se-
mantics is so simple and decidable that it is easier to work with it directly
than using respective axiomatic systems (except, perhaps, for G).

3. Is a rule admissible?

For instance, is the rule
CN A → B ; CN ¬B

CN ¬A
admissible in N ?

First, we have to verify if the rule itself is sound. So let V be an arbitrary
structure (valuation) such that V |= A → B and V |= ¬B. From the latter
we have that V (B) = 0 and so, using the definition of →, we obtain that
since V (A → B) = 1, we must have V (A) = 0. This means that V |= ¬A.
Since V was arbitrary, we conclude that the rule is sound.

Now comes the application of soundess/completeness of N . If CN A → B
and CN ¬B then, by soundness of N , we also have |= A → B and |= ¬B.
Then, by soundness of the rule itself, |= ¬A. And finally, by completeness
of N , this implies CN ¬A. Thus, the rule is, indeed, admissible in N , even
though we have not shown how exactly the actual proof of ¬A would be
constructed. This form of an argument can be applied to show that any
sound rule, will be admissible in a sound and complete axiomatic system.

On the other hand, if a rule is not sound, the soundness of the axiomatic
system immediately implies that the rule will not be admissible in it. For

instance, the rule
CN A → B ; CN B

CN A
is not sound (verify it – find a valu-

ation making both premises true and the conclusion false). By soundness
of N , we may conclude that it isn’t admissible there.

Exercises 6.

exercise 6.1 Translate the following argument into a formula of PL and
show both semantically and syntactically (assuming soundness and com-
pleteness of any of the reasoning systems we have seen) – that it is a
tautology:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 171

• If I press the gas pedal and turn the key, the car will start. Hence,
either if I press the gas pedal the car will start or if I turn the key the
car will start.

The confusion arises from the fact that in the daily language there is no
clear distinction between → and ⇒. The immediate understanding of the
implications in the conclusions of these arguments will interpret them as
⇒ rather than →. This interpretation makes them sound absurd.
exercise 6.2 Define the binary connective ↓ (Sheffer’s stroke) as follows:

x y x↓y
1 1 0
1 0 0
0 1 0
0 0 1

Show that {↓} is an adequate set. (Hint: Express some set you know is

adequate using ↓.)
exercise 6.3 Show that {∨,∧} is not an adequate set.
exercise 6.4 Let F , G be two boolean functions given by
• F (x, y) = 1 iff x = 1,
• G(x, y, z) = 1 iff y = 1 or z = 0.

Write each of these functions as formulae in CNF and DNF.
exercise 6.5 Find DNF and CNF formulae inducing the same boolean
functions as the formulae:

(1) (¬a ∧ b) → c
(2) (a → b) ∧ (b → c) ∧ (a ∨ ¬c)
(3) (¬a ∨ b) ∨ (a ∨ (¬a ∧ ¬b))

[Recall first exercise 5.10. You may follow the construction from the proof of

Theorem 6.2. But you may just use the laws which you have learned so far to

perform purely syntactic manipulations. Which of these two ways is simpler?]

exercise 6.6 Let Σ = {a, b, c} and consider two sets of formulae ∆ =
{a ∧ (a → b)} and Γ = {a, a → b,¬c}. Give an example of

• an A ∈ WFFΣ
PL such that ∆ '|= A and Γ |= A

• a model (valuation) V such that V |= ∆ and V '|= Γ.

exercise 6.7 Let Σ = {a, b, c}. Which of the following sets of formulae
are maximal consistent?

(1) {a, b,¬c}
(2) {a, b, c}

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

172 Introduction to Logic

(3) {¬b → a,¬a ∨ c}
(4) {¬a ∨ b, b → c,¬c}
(5) {¬a ∨ b, b → c,¬c, a}

exercise 6.8 Show that Γ is maximal-consistent (in N) iff it has only one
model.
exercise 6.9 We consider the Gentzen system for PL.
We define the interpretation of sequents as follows. A structure (valuation)
V satisfies the sequent Γ CG ∆, V |= Γ CG ∆, iff either there is a formula
γ ∈ Γ such that V '|= γ, or there is a formula δ ∈ ∆ such that V |= δ.
The definition can be abbreviated as requiring that V |=

∧
Γ →

∨
∆ or,

writing explicitly the sequent

V |= γ1, ..., γg CG δ1, ..., δd ⇐⇒ V |= γ1 ∧ ... ∧ γg → δ1 ∨ ... ∨ δd.

A sequent Γ CG ∆ is valid iff it is satisfied under every valuation, i.e., iff∧
Γ ⇒

∨
∆.

We have remarked that the same formulae are provable whether in the
axioms we require only atoms or allow general formulae. Here we take
the version with only atomic formulae in the axioms (i.e., axioms are
seqeuents Γ CG ∆ with Γ ∩ ∆ '= ∅ and where all formulae in Γ ∪ ∆ are
atomic (i.e., propositional variables)). Also, we consider only the basic
system with the rules for the connectives ¬ and →.

(1) (a) Say (in only one sentence!) why the axioms of CG are valid, i.e., why
every valuation V satisfies every axiom.
(b) Given an irreducible sequent S (containing only atomic formulae)
which is not an axiom, describe a valution V making V '|= S (a so called
“counter-model” for S).

(2) Verify that the rules are invertible, that is, are sound in the direction
“bottom up”: for any valuation V , if V satisfies the conclusion of the
rule, then V satisfies all the premises.

(3) Suppose that Γ 'CG ∆. Then, at least one of the branches of the proof
(built bottom-up from this given sequent) ends with a non-axiomatic
sequent, S (containing only atoms). Hence, as shown in point 1.(b), S
has a counter-model.
(a) On the basis of (one of) the above points, explain (in only one
sentence!) why this counter-model V for S will also be a counter-model
for Γ CG ∆, i.e., why it will be the case that V '|=

∧
Γ →

∨
∆.

(b) You have actually proved completeness of the system CG. Explain
(in one sentence or formula) why one can claim that.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

III.3. Soundness, Completeness 173

optional
exercise 6.10 Apply de Morgan’s laws to show directly (without using
corollaries 6.6-6.7) that

(1) if A is in CNF then ¬A is equivalent to a formula in DNF
(2) if A is in DNF then ¬A is equivalent to a formula in CNF

exercise 6.11 The following rules, called (respectively) the constructive
and destructive dilemma, are often handy in constructing proofs

(CD)
A ∨ B ; A → C ; B → D

C ∨ D
(DD)

¬C ∨ ¬D ; A → C ; B → D

¬A ∨ ¬B
Show that they are sound, i.e., in any structure V which makes the as-
sumptions of (each) rule true, the (respective) conclusion is true as well.
Give an argument that these rules are admissible in N . (If the syntax
X ∨ Y seems confusing, it can be written as ¬X → Y .)
exercise 6.12 [Galois connections]
A) We used the word “theory” for an arbitrary set of formulae. Another,
common, usage distinguishes between such a set – calling it non-logical
axioms – and its closure under CC which is called a theory (relatively to
some given proof system C). In remark 6.13 we defined this set – the
theory of Γ – as ThC(Γ) = {B ∈ WFF : Γ CC B}. Similarly, the models
of Γ are defined as Mod(Γ) = {V : V |= Γ}. As an example, we can
instantiate the generic notions of Cand |= to N , obtaining:

• ThN (Γ) = {B ∈ WFFPL : Γ CN B}
• Mod(Γ) = {V : Σ → {1,0} : V̂ (G) = 1 for all G ∈ Γ}
Show the following statements:

(1) ∆ ⊆ Γ ⇒ ThN (∆) ⊆ ThN (Γ)
(2) ∆ ⊆ Γ ⇒ Mod(∆) ⊇ Mod(Γ)

B) Notice that we can view Mod as a function Mod : ℘(WFF) → ℘(Str)
assigning to a theory Γ (a set of non-logical axioms) the set of all
Structures (valuations) which satisfy all the axioms from Γ. On the other
hand, we can define a function Th : ℘(Str) → ℘(WFF) assigning to an
arbitrary set of Structures the set of all formulae satisfied by all these
structures. (This Th should not be confused with ThC above which was
defined relatively to a proof system!) That is:

• Mod : ℘(WFF) → ℘(Str) is defined by Mod(Γ) def= {V : V |= Γ}
• Th : ℘(Str) → ℘(WFF) is defined by Th(K) def= {A : K |= A}

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

174 Introduction to Logic

Assuming a sound and complete proof system C, show that

(1) ThC(Γ) = Th(Mod(Γ))
(2) What would you have to change in the above equation if you merely

knew that C is sound (but not complete) or complete (but not sound)?

Now, show that these two functions form the so called “Galois connection”,
i.e. satisfy:

(3) K ⊆ L ⇒ Th(K) ⊇ Th(L)
(4) ∆ ⊆ Γ ⇒ Mod(∆) ⊇ Mod(Γ)
(5) K ⊆ Mod(Th(K))
(6) Γ ⊆ Th(Mod(Γ))

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 175

Chapter 7

Syntax and Proof System

• Syntax of FOL
• Proof System N for FOL
• Gentzen’s Proof System G for FOL

♦ a Background Story ♦
Prolopsitional logic is a rudimentary system with very limited ex-
pressive power. The only relation between various statements it
can handle is that of identity and difference – the axiom schema
CH A → (B → A) sees merely that the first and last statements must
be identical while the middle one is arbitrary (possibly different from
A). Consider, however, the following argument:

A: Every man is mortal;
and B: Socrates is a man;

hence C: Socrates is mortal.

Since all the involved statements are different, the representation in
PL will amount to A∧B → C which, obviously, is not a valid formula.
The validity of this argument rests on the fact that the minor premise
B makes Socrates, so to speak, an instance of the subject of the major
premise A – whatever applies to every man, applies to each particular
man.

In this particular case, one might try to refine the representation of
the involved statements a bit. Say that we use the following proposi-
tional variables: Man (for ‘being a man’), Mo (for ‘being mortal’)
and So (for ‘being Socrates’). Then we obtain: So → Man and
Man → Mo, which does entail So → Mo. We were lucky! - be-
cause the involved statements had rather simple structure. If we, for
instance, wanted to say that “Some men are thieves” in addition to
“All men are mortal”, we could hardly use the same Man in both
cases. The following argument, too, is very simple, but it illustrates
the need for talking not only about atomic statements, but also about
involved enitites and relations between them:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

176 Introduction to Logic

Every horse is an animal;
hence Every head of a horse is a head of an animal.

Its validity relies not so much on the form, let alone identity and
difference, of the involved statements as on the relations between the
involved entities, in particular, that of ‘being a head of...’ Since each
horse is an animal, whatever applies to animals (or their heads) ap-
plies to horses as well. It is hard to imagine how such an argument
might possibly be represented (as a valid statement) in PL.

Intuitiviely, the semantic “view of the world” underlying FOL can
be summarised as follows.

(1) We have a universe of discourse U comprising all entities of (cur-
rent) interest.

(2) We may have particular means of picking some entities.

(a) For instance, a name, ‘Socrates’ can be used to designate a
particular individual: Such names correspond to constants,
or functions with 0 arguments.

(b) An individual may also be picked by saying ‘the father of
Socrates’. Here, ‘the father of ...’ (just like ‘the head of ...’)
is a function taking 1 argument (preferably a man, but gener-
ally an arbitrary entity from U , since the considered functions
are total) and pointing at another individual. Functions may
have arbitrary arities, e.g., ‘the children of x and y’ is a func-
tion of 2 arguments returning a set of children, ‘the solutions
of x2− y2 = 0’ is a function of 2 arguments returning a set of
numbers.

(c) To faciliate flexible means of expression, we may use vari-
ables, x, y, etc. to stand for arbitrary entities in more com-
plex expressions.

(3) The entities from U can be classified and related using various
predicates and relations:

(a) We may identify subsets of U by means of (unary) predicates:
the predicate M(y) – true about those y’s which are men, e.g.
M(Socrates), but not about inanimate things – identifies a
subset of those elements of U about which it is true, i.e., {y ∈
U : M(y)}; the predicate Mo(y) – true about the mortal beings
and false about all other entities – identifies the subset of
mortal beings; H(y) – the subset of horses, A(y) – the animals,
etc.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 177

(b) The entities may stand in various relations to each other:
‘x is older than y’ is a 2-argument relation which will hold
between some individuals but not between others; similarly
for ‘x is the head of y’, Hd(x, y), etc.

(4) Hd(x, y), stating that ‘x is the head of y’, is very different from
the function hd(y) returning, for every y, its head. The latter
merely picks new individual objects. The former is a predicate –
it states some fact. Predicates and relations are the means for
stating the “atomic facts” about the world.8 These can be then
combined using the connectives, as in PL, ‘and’, ‘or’, ‘not’, etc.
In addition, we may also state facts about indefinite entities, for
instance, ‘for-every x : M(x) → Mo(x)’, ‘for-no x : H(x) ∧M(x)’,
etc.

Agreeing on such an interpretation of the introduced symbols, the
opening arguments would be written :

A: for-every y : M(y) → Mo(y)
B: M(Socrates)
C: Mo(Socrates)

for-every y : H(y) → A(y)
for-every x : (there-is y : H(y) ∧Hd(x, y)) →

(there-is y : A(y) ∧Hd(x, y))

This illustrates the intention of the language of FOL, which we now
begin to study, and its semantics which will be our object in the fol-
lowing chapters.

♦ ♦

1: Syntax of FOL
In PL the non-logical (i.e., relative to the context of application) part of the
language was only the set Σ of propositional variables. In FOL this part is
much richer which also means that, in a context of particular application,
the user can – and has to – make more detailed choices. Nevertheless, this
non-logical part of the language has well defined components which will
still make it possible to treat FOL in a uniform way, relatively independent
of such contextual choices.

8For this reason, First Order Logic is also called “Predicate Logic”

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

178 Introduction to Logic

Definition 7.1 The alphabet of FOL consist of two disjoint sets Σ and Φ:

Σ : the non-logical alphabet contains non-logical symbols:

– individual constants: I = {a, b, c...}
– individual variables: V = {x, y, z...}
– function symbols: F = {f, g, h...} each taking a fixed finite number

of arguments, called its arity.
– relation symbols: R = {P,Q,R...}, each with a fixed arity.

Φ : contains the logical symbols:

– the connectives of PL : ¬,→
– quantifier : ∃

We make no assumption about the sizes of I,F ,R; any one of them may
be infinite or empty, though typically each is finite. V, on the other hand,
is always a countably infinite set.

We also use some auxiliary symbols like parentheses and commas. Rela-
tion symbols are also called predicate symbols or just predicates. Individual
variables and constants are usually called just variables and constants.

Example 7.2
Suppose we want to talk about stacks – standard data structures. We

might start by setting up the following alphabet ΣStack (to indicate arities,
we use the symbol U for the whole universe):

(1) I = {empty} – the only constant for representing empty stack;
(2) V = {x, y, s, u, v, ...} – we seldom lists these explicitly; just mark that

something is a variable whenever it is used;
(3) F = {top : U → U, pop : U → U, push : U2 → U};
(4) R = {St ⊆ U, El ⊆ U, ≡ ⊆ U2} – for identifying Stacks, Elements,

and for expressing equality.
!

Unlike PL, the language of FOL is designed so that we may write not only
formulae but also terms. The former, as before, will denote some boolean
values. Terms are ment to refer to “individuals” or some “objects” of the
“world”. Formulae are built using propositional connectives, as in PL, from
simpler expressions – atomic formulae – which, however, are not merely
propositional variables but have some internal structures involving terms.
In addition, we have a new formula-building operation of quantification
over individual variables.

Definition 7.3 [Terms] The set of terms over Σ, TΣ, is defined inductively:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 179

(1) all constants are terms, I ⊆ TΣ.
(2) all variables are terms, V ⊆ TΣ.
(3) if f ∈ F is an n-ary function symbol and t1, . . . , tn are in TΣ, then

f(t1, . . . , tn) ∈ TΣ.

Terms not containing any variables are called ground terms, and the set of
ground terms is denoted GT Σ.

Example 7.4
Consider the alphabet of stacks from Example 7.2. The only ground
terms are the constant empty and applications of functions to it, e.g.,
pop(empty), top(empty), pop(pop(empty)). Notice, that also terms
like push(empty, empty), push(empty, pop(empty)), etc. are well-formed
ground terms, even if they do not necessarily correspond to our intensions.

The non ground terms will be of the same kind but will involve
variables, say x, s. For instance, pop(s), top(pop(s)), push(empty, x),
pop(push(x, empty)), etc. !

Definition 7.5 [Formulae] The well-formed formulae of predicate logic
over a given Σ, WFFΣ

FOL, are defined inductively:

(1) If P ∈ R is an n-ary relation symbol and t1, . . . , tn are terms, then
P (t1, . . . , tn) ∈ WFFΣ

FOL.
(2) If A ∈ WFFΣ

FOL and x is a variable, then ∃xA is in WFFΣ
FOL.

(3) If A,B ∈ WFFΣ
FOL then ¬A, (A → B) ∈ WFFΣ

FOL

Formulae from point (1) are called atomic, those from (2) are quantified.
Thus the FOL language “refines” the PL language in that propositional con-
nectives connect not just propositional variables but more detailed atomic
or quantified formulae.
Remark.
As in the case of PL, these definitions are parameterized by Σ, yielding a new
instance of the FOL language for each particular choice of Σ. Nevertheless we will
often speak about “the FOL language,” taking Σ as an implicit, and arbitrary
though non-empty, parameter.

Example 7.6
Continuing our example of stacks, atomic formulae will be, for instance:
El(empty), St(x), empty ≡ pop(empty), push(s, x) ≡ pop(pop(empty)),
etc. The non-atomic ones are simply boolean combinations of atoms, e.g.,
El(x) ∧ St(s) → pop(push(s, x)) ≡ s. !

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

180 Introduction to Logic

1.1: Abbreviations

The symbol ∃ is called the existential quantifier – ∃xA reads as “there exists
an x such that A”. For convenience, we define the following abbreviation:

Definition 7.7 We define ∀xA
def= ¬∃x¬A.

∀ is the universal quantifier and ∀xA is read “for all x, A holds”. Writing
QxA, we will mean any one of the two quantifiers, i.e., ∀xA or ∃xA.

We will, of course, use also the abbreviations ∨ and ∧ for propositional
connectives. Sometimes (when it is “safe”) the arguments to ∨ and ∧ will
be written without the surrounding parentheses. Similarly for →.

2: Scope of Quantifiers
Quantification introduces several important issues into the syntax of FOL.
This section explains the concept of the scope of quantification, the resulting
distinction between the free and bound occurrences of variables, and the
operation of substitution which has to respect this distinction.

Definition 7.8 In a quantified formula QxB, B is the scope of Qx.

Parantheses or colons are used to diasmbiguate the scope: the notation
Qx(B), Qx : B, or (Qx : B) indicates that B is the scope of Qx.

Example 7.9
The scopes of the various quantifiers are underlined:

in formula the scope
1. ∀x∃yR(x, y) of ∃y is R(x, y)

of ∀x is ∃yR(x, y)
2. ∀x(R(x, y) ∧ R(x, x)) of ∀x is R(x, y) ∧R(x, x)
3. ∀xR(x, y) ∧ R(x, x) of ∀x is R(x, y)
4. ∀xR(x, x) → ∃yQ(x, y) of ∀x is R(x, x)

of ∃y is Q(x, y)
5. ∀x(R(x, x) → ∃yQ(x, y)) of ∃y is Q(x, y)

of ∀x is R(x, x) → ∃yQ(x, y)
6. ∀x(R(x, x) → ∃xQ(x, x)) of ∃x is Q(x, x)

of ∀x is R(x, x) → ∃xQ(x, x) !

Definition 7.10 For any formula A we say that

• An occurrence of a variable x which is not within the scope of any quantifier
Qx in A is free in A.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 181

• An occurrence of a variable x which is not free in A is said to be bound.
Moreover, it is bound by the innermost (i.e., closest to the left) quantifier
of the form Qx inside the scope of which it occurs,

• A is closed if it has no free occurrences of any variable. (We also say that
A is a sentence.)

• A is open if it is not closed.

For any A, V(A) is the set of variables with free occurrences in A. Thus A is
closed iff V(A) = ∅.

Example 7.11
In example 7.9, y is free in 2. and 3. In 3. the occurrences of x in R(x, x)
are free too, but the occurrence of x in R(x, y) is bound. Similarly, in 4. the
occurrences of x in R(x, x) are bound, but the one in Q(x, y) is free. In
5. all occurrences of x are bound by the frontmost ∀x. In 6., however, the
occurrences of x in R(x, x) are bound by the frontmost ∀x, but the ones in
Q(x, x) are bound by the ∃x. Thus 2., 3. and 4. are open formulae while
the others are closed. !

Remark 7.12 [An analogy to programming]
As we will see in next chapter, the difference between bound and free variables

is that the names of the former do not make any difference while of the latter do
influence the interpretation of formulae. As a convenient analogy, one may think
about free variables in a formula A as global variables in an imperative program
A. The bound variables correspond to the local variables and quantifier to a block
with declaration of local variables. For instance, in the following program P1 on
the left

P1: begin P2: begin
int x,y; int x,y;
x:=5; y:=10; x:=5; y:=10;
begin begin

int x,z; int w,z;
x:=0; x:=x+3; w:=0; w:=w+3;
z:=20; y:=30; z:=20; y:=30;

end; end;
end; end;

the global variable x is redeclared in the inner block. This can be said to make
the global x “invisible” within this block. y is another global variable, while z is
a local variable in the block. At the exit, we will have x = 5 and y = 30 since
these global variables are not affected by the assignment to the local ones within
the block. Also, z will not be available after the exit from the inner block.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

182 Introduction to Logic

A formula with a similar scoping effect would be:

A(x, y) ∧ QxQzB(x, z, y) or alternatively

QxQy
(
A(x, y) ∧ QxQzB(x, z, y)

) (7.13)

where we ignore the meaning of the predicates A, B but concentrate only on the
“visibility”, i.e., scope of the quantifiers. Variable y is free (on the left, and within
the scope of the same quantifier on the right) and thus its occurrence in B(...y)
corresponds to the same entity as its occurrence in A(...y). On the other hand,
x in A(x...) – in the outermost block – is one thing, while x in B(x...) – in the
inner block – a completely different one, since the latter is in the scope of the
innermost quantifier Qx.

As one would expect, the program P2 on the right is equivalent to P1, the
only difference being the renaming of local x to w. In fact, the formula (7.13)
will be equivalent to the one where the bound x has been renamed, e.g., to the
following one

A(x, y) ∧ QwQzB(w, z, y) or alternatively

QxQy
(
A(x, y) ∧ QwQzB(w, z, y)

)

Renaming of free variables will not be allowed in the same way.

At this point, the distinction free vs. bound may, and probably does,
seem unclear – at least, as far as its possible meaning and motivation are
concerned. So, for now, it is best to accept the Definition 7.10 at its face
value. It makes it easy to distinguish free and bounded occurrences by
simple syntactic check as illustrated in Example 7.9.

2.1: Some examples

Before we begin a closer discussion of the syntax of FOL, we give a few
examples of vocabularies (alphabets) which can be used for describing some
known structures.

Example 7.14 [Stacks]
Using the alphabet of stacks from Example 7.2, we may now set up the

following (non-logical) axioms ΓStack for the theory of stacks (x, s ∈ V):

(1) St(empty)
(2) ∀x, s : El(x) ∧ St(s) → St(push(s, x))
(3) ∀s : St(s) → St(pop(s))
(4) ∀s : St(s) → El(top(s))

These axioms describe merely the profiles of the involved functions and de-
termine the extension of the respective predicates. According to the first
axiom empty is a stack, while the second axiom says that if x is an element

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 183

and s is a stack then also the result of push(s, x) is stack. (Usually, one uses
some abbreviated notation to capture this information. In typed program-
ming languages, for instance, it is taken care of by the typing system.) The
further (non-logical) axioms detemining more specific properties of stacks
would then be:

(5) pop(empty) ≡ empty
(6) ∀x, s : El(x) ∧ St(s) → pop(push(s, x)) ≡ s
(7) ∀x, s : El(x) ∧ St(s) → top(push(s, x)) ≡ x

Notice that we have not given any axioms which would ensure that ≡
behaves as the identity relation. We will discuss the issue of identity in
a later chapter, so here we merely list the needed axioms (the first three
make ≡ an equivalence relation):

(8) ∀x : x ≡ x
(9) ∀x, y : x ≡ y → y ≡ x

(10) ∀x, y, z : x ≡ y ∧ y ≡ z → x ≡ z

and two axiom schemata:
(11) for every n-ary f ∈ F :

∀x1, x′1...xn, x′n : x1 ≡ x′1 ∧ ... ∧ xn ≡ x′n → f(x1...xn) ≡ f(x′1...x′n)
(12) for every n-ary R ∈ R :

∀x1, x′1...xn, x′n : x1 ≡ x′1 ∧ ... ∧ xn ≡ x′n ∧R(x1...xn) → R(x′1...x′n) !

Example 7.15 [Queues]
We use the same alphabet as for stacks, although we intend different mean-
ing to some symbols. Thus St is now to be interpreted as the set of (FIFO)
queues, pop is to be interpreted as tail, push as add (at the end) and top
as the head, the frontmost element of the queue. We only need to replace
the axioms 6-7 with the following:

6a. ∀x, s : El(x) ∧ St(s) ∧ s ≡ empty → pop(push(s, x)) ≡ s
6b. ∀x, s :

El(x) ∧ St(s) ∧ ¬(s ≡ empty) → pop(push(s, x)) ≡ push(pop(s), x)
7a. ∀x, s : El(x) ∧ St(s) ∧ s ≡ empty → top(push(s, x)) ≡ x
7b. ∀x, s : El(x) ∧ St(s) ∧ ¬(s ≡ empty) → top(push(s, x)) ≡ top(s) !

Example 7.16 [Graphs]
All axioms in the above two examples were universal formulae (with only
∀-quantifier in front). We now describe graphs which require more specific
formulae.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

184 Introduction to Logic

Graph is a structure with two sets: V – vertices, and E – edges. Each
edge has a unique source and target vertex. Thus, we take as our non-logical
alphabet ΣGraph :

• F = {sr, tr} – for source and target functions
• R = {V,E,≡} – V,E unary predicates for the set of vertice and edges,

and binary ≡ for the identity relation.

The axiom

(1) ∀e : E(e) → (V (sr(e)) ∧ V (tr(e)))

determines the profile of the functions sr and tr. This, in fact, is all that
one need to say in order to get arbitrary graphs. Typically, we think of a
graph with at most one edge between two vertices. For that case, we need
to add the axiom:

(2) ∀e1, e2 : (sr(e1) ≡ sr(e2) ∧ tr(e1) ≡ tr(e2)) → e1 ≡ e2

The graphs, so far, are directed. An undirected graph can be seen as a
directed graph where for any edge from x to y, there is also an opposite
edge from y to x:

(3) ∀x, y : (∃e : sr(e) ≡ x ∧ tr(e) ≡ y) → (∃e : tr(e) ≡ x ∧ sr(e) ≡ y)

The intension of the above formula could be captured by a simpler one:

∀e1∃e2 : sr(e1) ≡ tr(e2) ∧ tr(e1) ≡ sr(e2).

Finally, we may make a special kind of transitive graphs: if there is an edge
from x to y and from y to z, then there is also an edge from x to z, and
this applies for any possible pair of edges:

(4) ∀e1, e2 :
(
tr(e1) ≡ sr(e2) → ∃e : (sr(e) ≡ sr(e1) ∧ tr(e) ≡ tr(e2))

)
!

Example 7.17 [Simple graphs]
If we want to consider only simple graphs, i.e., graphs satisfying the ax-

iom (2) from the previous example, we can choose a much more convenient
vocabulary ΣSG: our universe is the set of all possible vertices, we need no
function symbols, and we use one binary relation symbol: E – the edge re-
lation. Axioms (1) and (2) become then redundant. If we want to consider
undirected graphs, we make E symmetric:

(1) ∀x, y : E(x, y) → E(y, x).

If we want to consider transitive graphs, we make E transitive:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 185

(2) ∀x, y, z : E(x, y) ∧ E(y, z) → E(x, z).

Graphs without self-loops (i.e., where no edge leads from a vertex to itself)
are ones where E is irreflexive:

(3) ∀x : ¬E(x, x)

Using the representation from the previous example, this axiom would be:
∀e : E(e) → ¬(sr(e) ≡ tr(e)). !

Notice that all above axioms are sentences (i.e., closed formulae).

2.2: Substitution

Definition 7.18 In a given term t/formula A, we may substitute a term
s for the free occurrences of the variable x – txs/Ax

s denote the resulting
term/formula. The operations are defined inductively on the structure of
terms/formulae:

x :: xx
s

def= s
y :: yx

s
def= y, for any y '= x

f(t1, . . . , tk) :: f(t1, . . . , tk)x
s

def= f((t1)
x
s , . . . , (tk)x

s).

This determines txs for any terms t, s and variable x. Building further on this,
we obtain the corresponding definition for formulae:

Atomic :: P (t1, . . . , tk)x
s

def= P (t1x
s , . . . , tkx

s)
¬B :: (¬B)x

s
def= ¬(Bx

s)
B → C :: (B → C)x

s
def= (Bx

s → Cx
s)

∃xA :: (∃xA)x
s

def= ∃xA
∃yA :: (∃yA)x

s
def= ∃y(Ax

s), for any y '= x.

Example 7.19
In Example 7.9 formulae 1., 5. and 6. had no free variables, so the applica-
tion of any substitution will leave these formulae unchanged. For formulae
2., 3. and 4. from that example, we obtain:

2. (∀x(R(x, y) ∧R(x, x)))x
t = ∀x(R(x, y) ∧R(x, x))

2′. (∀x(R(x, y) ∧R(x, x)))y
s = ∀x(R(x, s) ∧R(x, x))

3. (∀xR(x, y) ∧R(x, x))x
t = ∀xR(x, y) ∧R(t, t)

4. (∀xR(x, x) → ∃yQ(x, y))x
t = ∀xR(x, x) → ∃yQ(t, y) !

The following example shows that some caution is needed when for a
variable we substitute a term that itself contains variables (or even is a

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

186 Introduction to Logic

variable). If such variables are “captured” by quantifiers already present,
there may be unexpected results:

Example 7.20
As mentioned in remark 7.12, renaming bound variables results in equiv-
alent formulae, e.g., the formulae ∀yR(x, y) and ∀zR(x, z) mean the same
thing. However, performing the same substitution on the two produces
formulae with (as we’ll see later) very different interpretations:

1. (∀yR(x, y))x
z = ∀yR(z, y) or, e.g. (∃y(x < y))x

z = ∃y(z < y)
2. (∀zR(x, z))x

z = ∀zR(z, z) or, e.g. (∃z(x < z))x
z = ∃z(z < z)

The variable z is free throughout the first example, but then gets captured
by ∀z in the second example. To guard against such behaviour we introduce
the next definition. Note that according to this definition, z is substitutable
for x in ∀yR(x, y) but not in ∀zR(x, z). !

Definition 7.21 Let A be a formula, x a variable and s a term. The property
“s is substitutable for x in A” is defined by induction on A as follows:

Atomic :: If A is atomic, then s is substitutable for x in A.
¬B :: s is substitutable for x in ¬B iff s is substitutable for x in B.

B → C :: s is substitutable for x in B → C iff s is substitutable for x
in both B and C.

∃xA :: s is substitutable for x in ∃xA.
(Since no substitution in fact takes place.)

∃yA :: If y '= x then s is substitutable for x in ∃yA iff either x does
not occur free in A, or both s does not contain the variable
y, and s is substitutable for x in A.

Simply put, s is substitutable for x in A (or the substitution Ax
s is legal)

iff there are no free occurrences of x in A inside the scope of any quantifier
that binds any variable occurring in s.

We may occasionally talk more generally about the replacement of an
arbitrary term by another term, rather than just substituting a term for a
variable.

3: The Proof System N
The proof system N for FOL uses the predicate CN ⊆ ℘(WFFFOL)×WFFFOL

and is an extension of the system N for PL.

Definition 7.22 The N system for FOL consists of:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 187

Axioms :: A0: Γ CN B, for all B ∈ Γ;
A1: Γ CN A → (B → A);
A2: Γ CN (A → (B → C)) → ((A → B) → (A → C));
A3: Γ CN (¬B → ¬A) → (A → B);
A4: Γ CN Ax

t → ∃xA if t is substitutable for x in A.

Rules :: MP:
Γ CN A ; Γ CN A → B

CN B
;

∃I:
Γ CN A → B

Γ CN ∃xA → B
if x has no free occurrence in B

Since we take with us all the axiom schemata and rules from definition 4.11,
every theorem in that earlier system has a counterpart in this system. Hence
for instance Lemmata 4.7 and 4.15 can be taken over directly. In other
words, the uppercase letters in the above rules and axioms stand now for
arbitrary FOL-formulae. For instance, ∃xA → (∃x¬∃yD → ∃xA) is an
instance of A1. Thus any operations (derivations) we performed using
propositional variables in PL, can be now performed in the same way, pro-
vided that the FOL-formulae involved are syntactically identical whenever
required (like in the above axiom instance).

Admissible rules are a different matter, but in most cases these also carry
over to the extended system. Thus the next lemma corresponds exactly to
Lemmata 4.9 and 4.12, and is proved in exactly the same way.

Lemma 7.23 The following rules are admissible in N :

(1)
Γ CN A → B ; Γ CN B → C

Γ CN A → C
(2)

Γ CN B

Γ CN A → B

The next lemma illustrates the use of the new elements, i.e., A4 and the
“∃ introduction” rule ∃I.

Lemma 7.24 Formula (1) is provable (from any Γ) and rules (2)-(5) are
admissible in N .

(1) Γ CN ∀xA → A

(2)
Γ CN A → B

Γ CN ∃xA → ∃xB

(3) ∀I :
Γ CN B → A

Γ CN B → ∀xA
if x has no free occurrence in B

(4) ∀G :
Γ CN A

Γ CN ∀xA

(5) SB:
Γ CN A

Γ CN Ax
t

if t is substitutable for x in A

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

188 Introduction to Logic

Proof. If something is provable using only A0–A3 and MP we write
just PL to the right – these parts have been proven earlier or are left as
exercises. (In view of the completeness theorem of PL, it is sufficient
to convince oneself that it corresponds to a tautology.)
(1) 1 : Γ 9N ¬A → ∃x¬A A4

2 : Γ 9N (¬A → ∃x¬A) → (¬∃x¬A → A) PL
3 : Γ 9N ¬∃x¬A → A MP (1, 2)

(2) 1 : Γ 9N A → B assumption
2 : Γ 9N B → ∃xB A4
3 : Γ 9N A → ∃xB L.7.23.1(1, 2)
4 : Γ 9N ∃xA → ∃xB ∃I (3)

(3) 1 : Γ 9N B → A assumption
2 : Γ 9N ¬A → ¬B MP (1, L.4.15)
3 : Γ 9N (∃x¬A) → ¬B ∃I (2) + x not free in B
4 : Γ 9N ((∃x¬A) → ¬B) → (B → ¬∃x¬A) PL
5 : Γ 9N B → ¬∃x¬A MP (3, 4)

(4) 1 : Γ 9N A assumption
2 : Γ 9N (∃x¬A) → A L.7.23.2(1)
3 : Γ 9N (∃x¬A) → ¬∃x¬A ∀I (2)
4 : Γ 9N ((∃x¬A) → ¬∃x¬A) → ¬∃x¬A PL
5 : Γ 9N ¬∃x¬A MP (3, 4)

(5) 1 : Γ 9N A assumption
2 : Γ 9N ¬∃x¬A L.7.24.4
3 : Γ 9N ¬Ax

t → ∃x¬A A4
4 : Γ 9N (¬∃x¬A) → Ax

t PL(3)
5 : Γ 9N Ax

t MP (2, 4) QED (7.24)

3.1: Deduction Theorem in FOL

Notice the difference between

i) the provability Γ CN A → B and

ii) the admissible rule
Γ CN A

Γ CN B
.

Point (1) of the above lemma, enables us to conclude, by a single aplication

of MP, that the rule inverse to the one in point (4), namely,
Γ CN ∀xA

Γ CN A
is admissible. In fact, quite generally, i) implies ii), for having i) and the
assumption of ii), single application of MP yields the conclusion of ii).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 189

Now, in the N system for PL, the opposite implication holds, too. For

assume ii), i.e., that the rule
Γ CN ∀xA

Γ CN A
is admissible. In particular, we

have Γ, A CN A by axiom A0, from which Γ, A CN B follows by ii), and then
Γ CN A → B by the Deduction Theorem.

In FOL, however, the implication from ii) to i) is not necessarily true, and
this is related to the limited validity of Deduction Theorem. For instance,
point (4) does not allow us to conclude that also Γ CN A → ∀xA. In fact, this
is not the case, but we have to postpone a precise argument showing that
until we have discussed semantics. At this point, let us only observe that
if this formula were provable, then we would also have Γ CN ∃xA → ∀xA
by a single application of ∃I. But this looks unsound: “if there exists an x
such that A, then for all x A”. (Sure, in case the assumption of the rule
(4) from lemma 7.24 is satisfied we can obtain: Γ CN A, Γ CN ∀xA, and
so, by lemma 7.23.(2) Γ CN A → ∀xA. But this is only a very special case
dependent on the assumption Γ CN A.)

Example 7.25
Let us consider the example with horse-heads and animal-heads from the

background story at the begining of this chapter. We design an alphabet
with two unary predicates {H,A} for ‘being a horse’ and ‘being an animal’,
respectively, and a binary relation Hd(x, y) for ‘x being a head of y’. The
argument was then captured in the following form:

CN ∀y(H(y) → A(y))
CN ∀x(∃y(H(y) ∧Hd(x, y)) → ∃y(A(y) ∧Hd(x, y)))

(7.26)

We show that it is provable, that is, the above (a bit strange and particular)
rule is admissible in N :

1 : Γ 9N ∀y(H(y) → A(y)) assumption
2 : Γ 9N H(y) → A(y) L.7.24.(1)
3 : Γ 9N H(y) ∧Hd(x, y) → A(y) ∧Hd(x, y) PL : 2.
4 : Γ 9N ∃y(H(y) ∧Hd(x, y)) → ∃y(A(y) ∧Hd(x, y)) L.7.24.(2) : 3.
5 : Γ 9N ∀x(∃y(H(y) ∧Hd(x, y)) → ∃y(A(y) ∧Hd(x, y))) ∀I : L.7.24.(4) : 4.

This shows the claim (admissibility of (7.26)) for arbitrary Γ. In particular,
if we take Γ = {∀y(H(y) → A(y))}, the first line (assumption) becomes
an instance of the axiom A0 and the last line becomes an uncoditional
statement:

∀y(H(y) → A(y)) CN
∀x(∃y(H(y) ∧Hd(x, y)) → ∃y(A(y) ∧Hd(x, y))).

(7.27)

As we observed before this example, admissibility of a rule ii), like (7.26),
does not necessarily mean that the corresponding implication i) is provable,

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

190 Introduction to Logic

i.e., we are not entitled to conclude from (7.27) that also the following
holds:

CN ∀y(H(y) → A(y)) →
∀x(∃y(H(y) ∧Hd(x, y)) → ∃y(A(y) ∧Hd(x, y))).

(7.28)

This could be obtained from (7.27) if we had Deduction Theorem for FOL–
we now turn to this issue. !

As a matter of fact, the unrestricted Deduction Theorem from PL is not
an admissible proof rule of FOL. It will be easier to see why when we turn
to the semantics. For now we just prove the weaker version that does hold.
Note the restriction on A.

Theorem 7.29 [Deduction Theorem for FOL] If Γ, A CN B, and A is
closed then Γ CN A → B.

Proof. By induction on the length of the proof Γ, A CN B. The cases
of axioms and MP are treated exactly as in the proof of the theorem
for PL, 4.13 (using Lemmata 4.7 and 7.23.2). We have to verify the
induction step for the last step of the proof using ∃I, i.e.:

Γ, A CN C → D

Γ, A CN ∃xC → D
x not free in D

By IH, we have the first line of the following proof:
1 : Γ 9N A → (C → D)
2 : Γ 9N C → (A → D) PL (C.4.17)
3 : Γ 9N ∃xC → (A → D) ∃I (2) + A closed and x not free in D
4 : Γ 9N A → (∃xC → D) PL (C.4.17) QED (7.29)

Revisiting (7.27) from Example 7.25, we see that the assumption of De-
duction Theorem is satisfied: ∀y(H(y) → A(y)) is closed. Thus, in this
particular case, we actually may conclude that also (7.28) holds. However,
due to the restriction in Deduction Theorem, such a transition will not be
possible in general.

Just like in the case of PL, MP is a kind of dual to this theorem and we
have the corollary corresponding to 4.16, with the same proof.

Corollary 7.30 If A is closed then: Γ, A CN B iff Γ CN A → B.

Notice that the assumption that A is closed is needed because of the
deduction theorem, i.e., only for the implication ⇒. The opposite ⇐ does
not require A to be closed and is valid for any A.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 191

4: Gentzen’s system for FOL
Recall, that G for PL worked with sequents Γ CG ∆, where both Γ,∆ are

(finite) sets of formulae. The axioms 1. and rules 2. through 5. and 2’.
through 5’. give a sound and complete Gentzen system for PL – with all
the connectives. Since the set {¬,→} is adequate we restricted earlier our
attention to these connectives and the rules 4.,4’.,5. and 5’. The current
rules may be easier to use in the presence of other connectives. It is easy to
see that treating, for instance, ∨ and ∧ as abbreviations, the corresponding
rules (2, 2′, 3, 3′) are derivable from the other rules (cf. 8.2 in Chapter
4.). Gentzen’s system for FOL is obtained by adding the quantifier rules 6.
through 7’.
1. Ax Γ CG ∆ where Γ ∩∆ '= ∅

2. C∨
Γ CG A,B,∆

Γ CG A ∨ B,∆
2′. ∨C

Γ, A CG ∆ ; Γ, B CG ∆
Γ, A ∨ B CG ∆

3. C ∧
Γ CG A,∆ ; Γ CG B,∆

Γ CG A ∧B,∆
3′. ∧ C

Γ, A, B CG ∆
Γ, A ∧B CG ∆

4. C¬
Γ, B CG ∆

Γ CG ¬B,∆
4′. ¬ C

Γ CG B,∆
Γ,¬B CG ∆

5. C→
Γ, A CG B,∆

Γ CG A → B,∆
5′. →C

Γ CG ∆, A ; Γ, B CG ∆
Γ, A → B CG ∆

6. C∃
Γ CG ∆,∃xA, Ax

t

Γ CG ∆,∃xA
Ax

t legal 6′. ∀ C
Ax

t ,∀xA, Γ CG ∆
∀xA,Γ CG ∆

Ax
t legal

7. C∀
Γ CG Ax

x′ ,∆
Γ,CG ∀xA, ∆

x′ fresh 7′. ∃ C
Γ, Ax

x′ CG ∆
Γ,∃xA CG ∆

x′ fresh

The requirement on a variable ‘x′ to be fresh’ means that it must be a new
variable not occurring in the sequent. (One may require only that it does
not occur freely in the sequent, but we will usually mean that it does not
occur at all.) This, in particular, means that its substitution for x is legal.

Notice the peculiar repetition of ∃xA, resp. ∀xA in rules 6., resp. 6’.
Semantically, they make the rules trivially invertible (Exercise 6.9). In
terms of building a bottom-up proof, they enable us to choose all the time
new witnesses until, eventually and hopefully, we arrive at an instance of
the axiom. In principle, however, and typically, there is infinitely many
terms t which might be substituted and so these rules do not solve the
problem of decidability. As an example of their application, the axiom A4
of N is proved as follows:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

192 Introduction to Logic

3. Ax
t 9G ∃xA, Ax

t 1. Ax
t legal by assumption

2. Ax
t 9G ∃xA 6.

1. 9G Ax
t → ∃xA 5. Ax

t legal
The point with these, apparently redundant, repetitions is that building

a proof in a somehow mechanical fashion, we may “try” various terms in
order. If we simply removed ∃xA and replaced it by a “wrong” Ax

t , we would
have to stop. For instance, if we have another term s which is substitutable
for x in A – and are “unlucky” – we might run the proof as follows:

4. Ax
t 9G ∃xA, Ax

s , Ax
t 1. Ax

t legal
3. Ax

t 9G ∃xA, Ax
s 6. Ax

s legal
2. Ax

t 9G ∃xA 6.
1. 9G Ax

t → ∃xA 5. Ax
t legal

Keeping ∃xA enables us (or a machine!) to continue building the proof
bottom-up past the “unlucky substitution” Ax

s in line 3. This indicates the
difficulties with treatment of the quantifiers. In general, a wrong choice
of a witness in 6. or 6′. may terminate the proof with an inappropriate
conclusion. On the other hand, even if the proof does not terminate, there
may be no mechanical way of ensuring that all possible witnesses will be
tried. These are the reasons for undecidability of G for FOL. As we will later
see, theoremhood and validity of FOL formulae is generally undecidable, so
this is no fault of the system G.

Observe also that the rule 5. is an unrestricted Deduction Theorem
(unlike 7.29). We will comment on this issue in the following chapter.

Example 7.31
Below, you find the proof of the formula from (7.28) in G. As in PL, we use
G for constructing the proof bottom-up.

All x, y, z, w ∈ V. In applications repeating a formula (C ∃ and ∀ C)
we have dropped these repetitions to make the proof more readable. Of
course, we have to choose the substituted terms in a way making the proof
go through, in particular, so that the respective substitutions are both
legal. The F , resp. G in the marking ‘F/Gj

i legal’, refer to the formula
where the substitution actually takes place – F to A(y) ∧ H(z, y), and G
to H(y) → A(y). The last (highest) three lines use abbreviation: H =
H(w), A = A(w),Hd = Hd(z, w).

Note that the rules requiring introduction of fresh variables in the as-
sumption are applied before (seen bottom-up) the rules performing arbi-
trary legal substitutions. This is a standard rule to observe when
constructing (bottom-up) proofs in G – one always tries first to in-
troduce fresh variable (rules C∀ or ∃ C), and only later the ones requiring

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 193

merely a legal substitution (i.e., the rules C ∃ or ∀ C). The latter allow,
namely, to choose substituted terms freely – one adjusts their choice, to the
other terms occurring already in the sequent, to easier obtain axioms.

H, Hd 9G A, H H, Hd, A 9G A
→9

H, Hd, H → A 9G A H, Hd, H → A 9G Hd
9∧

H, Hd, H → A 9G A ∧Hd
abbrv.:

H(w), Hd(z, w), H(w) → A(w) 9G A(w) ∧Hd(z, w)
∀ 9 Gy

w legal
H(w), Hd(z, w), ∀y(H(y) → A(y)) 9G A(w) ∧Hd(z, w)

∧ 9
H(w) ∧Hd(z, w), ∀y(H(y) → A(y)) 9G A(w) ∧Hd(z, w)

9∃y F y
w legal

H(w) ∧Hd(z, w), ∀y(H(y) → A(y)) 9G ∃y(A(y) ∧Hd(z, y))
∃y 9 w fresh∃y(H(y) ∧Hd(z, y)), ∀y(H(y) → A(y)) 9G ∃y(A(y) ∧Hd(z, y))
9→

∀y(H(y) → A(y)) 9G ∃y(H(y) ∧Hd(z, y)) → ∃y(A(y) ∧Hd(z, y))
9∀x z fresh∀y(H(y) → A(y)) 9G ∀x(∃y(H(y) ∧Hd(x, y)) → ∃y(A(y) ∧Hd(x, y)))
9→

9G ∀y(H(y) → A(y)) → ∀x(∃y(H(y) ∧Hd(x, y)) → ∃y(A(y) ∧Hd(x, y)))
!

Exercises 7.

exercise 7.1 Define inductively the function V : WFFΣ
FOL → ℘(V) return-

ing the set of variables occuring freely in a formula.
exercise 7.2 Prove the following:
(1) CN ∃y∃xA → ∃x∃yA

Hint: Complete the following proof by filling out appropriate things for ‘?’:

1. 9N A → ∃yA A4
2. ? A4
3. 9N A → ∃x∃yA L.7.23.1(1, 2)
4. 9N ∃xA → ∃x∃yA ? (3) (x not free in ∃x∃yA)
5. 9N ∃y∃xA → ∃x∃yA ? (4) (?)

(2) CN ∃yAx
y → ∃xA – if y is substitutable for x in A, and not free in A

(Hint: Two steps only! First an instance of A4, and then ∃I.)
(3) CN ∃x∀yA → ∀y∃xA

(Hint: Lemma 7.24, starting with point (1), then (2) and finally (3).)

(4) CN ∀xA → ∃xA
(Hint: Lemma 7.24.(1), A4, and then Lemma 7.23.(1).)

exercise 7.3 Is the following proof correct? If not, what is wrong?
1 : 9N ∀x(P (x) ∨ R(x)) → (P (x) ∨ R(x)) L.7.24.1
2 : 9N ∀x(P (x) ∨ R(x)) → (∀xP (x) ∨ R(x)) ∀I
3 : 9N ∀x(P (x) ∨ R(x)) → (∀xP (x) ∨ ∀xR(x)) ∀I

exercise 7.4 Re-wrok example 7.25 for the other argument from the back-

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

194 Introduction to Logic

ground story at the begining of this chapter, i.e.:

(1) Design an alphabet for expressing the argument:
Every man is mortal;

and Socrates is a man;
hence Socrates is mortal.

(2) Express it as a rule (analogous to (7.26)) and show its admissibility
in N .

(3) Write it now as a single formula (an implication analogous to (7.28))
– you have to decide which connective(s) to choose to join the two
premisses of the rule into antecedent of the implication! Use the
previous point (and restricted version of Deduction Theorem 7.29) to
show that this formula is provable in N .

(4) Prove now your formula from the previous point using G.

exercise 7.5 The following statement:
(1) CN (A → ∃xB) → ∃x(A → B)

can be proven as follows:
1. 9N B → (A → B) A1
2. 9N ∃xB → ∃x(A → B) L.7.24.2
3. 9N (A → B) → ∃x(A → B) A4
4. 9N ¬A → ∃x(A → B) PL(3)
5. 9N (A → ∃xB) → ∃x(A → B) PL(2, 4)
Verify that the lines 4. and 5. really are valid transitions according to

PL. (Hint: They correspond to provability (or validity!), for instance in G, of:

9((A → B) → Z) → (¬A → Z) and B → Z,¬A → Z 9(A → B) → Z.)

exercise 7.6 Assuming that x has no free occurrences in A, complete the
proofs of the following:
(1) CN ∃x(A → B) → (A → ∃xB)

1. 9N B → ∃xB A4
2. 9N A → (B → ∃xB) (?)
3. 9N (A → (B → ∃xB)) → ((A → B) → (A → ∃xB)) A2

. . .

(2) CN ∀x(B → A) → (∃xB → A)
1. 9N ∀x(B → A) → (B → A) (?)
2. 9N B → (∀x(B → A) → A) PL(?)

. . .

(3) CN ∃x(B → A) → (∀xB → A)
1. 9N (∀xB → B) → ((B → A) → (∀xB → A)) (?)
2. 9N ∀xB → B (?)

. . .

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.1. Syntax and Proof System 195

exercise 7.7 Prove now all the formulae from exercises 7.2 and 7.6 using
Gentzen’s system.
exercise 7.8 Using Gentzen’s system

(1) show provability of the formula:
CG ∀x(A → B) → (∀xA → ∀xB).

(2) Now try to construct a proof for the opposite implication, i.e.,
CG (∀xA → ∀xB) → ∀x(A → B).

Can you tell why this proof will not “succeed”?

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

196 Introduction to Logic

Chapter 8

Semantics
• Semantic Definitions
• Semantic Properties of FOL Formulae
• Deduction theorem for FOLin N and G

1: Semantics of FOL

Definition 8.1 [FOL Structure] A FOL structure M for an alphabet Σ
consists of

(1) a non-empty set M – the interpretation domain
(2) for each constant a ∈ I, an individual [[a]]M ∈ M
(3) for each function symbol f ∈ F with arity n, a function [[f]]M : Mn → M
(4) for each relation symbol P ∈ R with arity n, a subset [[P]]M ⊆ Mn

Thus, a structure is simply a set where all constant, function and relation
symbols have been interpreted arbitrarily. The only restriction concerns
the arities of the function and relation symbols which have to be respected
by their interpretation.

Notice that according to Definition 8.1, variables do not receive any
fixed interpretation. Thus, it does not provide sufficient means for assign-
ing meaning to all syntactic expressions of the language. The meaning of
variables, and expressions involving variables, will depend on the choice of
the assignment.

Definition 8.2 [Interpretation of terms] Any function v : V → M is
called a variable assignment or just an assignment. Given a structure M and
an assignment v, the interpretation of terms is defined inductively:

(1) For x ∈ V : [[x]]Mv = v(x)
(2) For a ∈ I : [[a]]Mv = [[a]]M
(3) For n-ary f ∈ F and t1, . . . , tn ∈ TΣ :

[[f(t1, . . . , tn)]]Mv = [[f]]M ([[t1]]Mv , . . . , [[tn]]Mv).

According to point (2), interpretation of constants does not depend on
variable assignment. Similarly, the interpretation of a function symbol in

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.2. Semantics 197

point (3) does not either. This means that interpretation of an arbitrary
ground term t ∈ GT is fixed in a given structure M , i.e., for any assignment
v : [[t]]Mv = [[t]]M .

Example 8.3
Let Σ contain the constant symbol L, one unary function symbol s and a
binary function symbol ⊕. Here are some examples of Σ-structures:
(1) A is the natural numbers N with [[L]]A = 0, [[s]]A = +1 and [[⊕]]A = +.

Here, we understand ssL⊕ sssL as 5, i.e., [[ssL⊕ sssL]]A = 2+3 = 5.
For an assignment v with v(x) = 2 and v(y) = 3, we get [[x⊕ y]]Av =
[[x]]Av [[⊕]]A [[y]]Av = 2 + 3 = 5.
For an assignment v with v(x) = 4 and v(y) = 7, we get [[x⊕ y]]Av =
[[x]]Av [[⊕]]A [[y]]Av = 4 + 7 = 11.

(2) B is the natural numbers N with [[L]]B = 0, [[s]]B = +1 and [[⊕]]B = ∗.
Here we will have : [[ssL⊕ sssL]]B = 2 ∗ 3 = 6.

(3) C is the integers Z with [[L]]C = 1, [[s]]C = +2 and [[⊕]]C = −.
Here we will have : [[ssL⊕ sssL]]C = 5− 7 = −2.
What will be the values of x⊕ y under the assignments from 1.?

(4) Given a non-empty set (say, e.g., S = {a, b, c}), we let the domain of
D be S∗ (the finite strings over S), with [[L]]D = ε (the empty string),
[[s]]D(ε) = ε and [[s]]D(wx) = w (where x is the last element in the string
wx), and [[⊕]]D(p, t) = pt (i.e., concatenation of strings). !

As we can see, the requirements on something being a Σ-structure are very
weak – a non-empty set with arbitrary interpretation of constant, function
and relation symbols respecting merely arity. Consequently, there is a huge
number of structures for any alphabet – in fact, so huge that it is not even
a set but a class. We will not, however, be concerned with this distinction.
If necessary, we will denote the collection of all Σ-structures by Str(Σ).

A Σ-structure M , together with an assignment, induces the inter-
pretation of WFFΣ

FOL. As for PL, such an interpretation is a function
[[]]Mv : WFFΣ

FOL → {1,0}.

Definition 8.4 [Interpretation of formulae] M determines a boolean
value for every formula relative to every variable assignment v, according to
the following rules:

(1) If P ∈ R is n-ary and t1, . . . , tn are terms, then
[[P (t1, . . . , tn)]]Mv = 1 ⇔ 〈[[t1]]Mv , . . . , [[tn]]Mv 〉 ∈ [[P]]M

(2) Propositional connectives are combined as in PL. For A,B ∈ WFFΣ
FOL :

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

198 Introduction to Logic

[[¬A]]Mv = 1 ⇔ [[A]]Mv = 0
[[A → B]]Mv = 1 ⇔ [[A]]Mv implies [[B]]Mv

⇔ [[A]]Mv = 0 or [[B]]Mv = 1
(3) Quantified formulae:

[[∃xA]]Mv = 1 ⇔ there is an a ∈ M : [[A]]Mv[x(→a] = 1

Recall from Remark 1.5 that the notation v[x D→ a] denotes the function
v modified at one point, namely so that now v(x) = a. Thus the definition
says that the value assigned to the bound variable x by valuation v is
inessential when determining the boolean value [[∃xA]]v – no matter what
v(x) is, it will be “modified” v[x D→ a] if an appropriate a can be found. We
will observe consequences of this fact for the rest of the current subsection.

The following fact justifies the reading of ∀x as “for all x”.

Fact 8.5 For any structure M and assignment v :
[[∀xA]]Mv = 1 ⇔ for all a ∈ M : [[A]]Mv[x(→a] = 1.

Proof. We only expand the Definition 7.7 of the abbreviation ∀x and
apply 8.4.

[[∀xA]]Mv = 1 7.7⇐⇒ [[¬∃x¬A]]Mv = 1 8.4⇐⇒ [[∃x¬A]]Mv = 0
8.4⇐⇒ [[¬A]]Mv[x(→a] = 1 for no a ∈ M
8.4⇐⇒ [[A]]Mv[x(→a] = 0 for no a ∈ M
8.4⇐⇒ [[A]]Mv[x(→a] = 1 for all a ∈ M QED (8.5)

Again, notice that to evaluate [[∀xA]]v, it does not matter what v(x) is –
we will have to check all possible modifications v[x D→ a] anyway.

Point (3) of definition 8.4 captures the crucial difference between free
and bound variables – the truth of a formula depends on the names of the
free variables but not of the bound ones. More precisely, a closed formula
(sentence) is either true or false in a given structure – its interpretation
according to the above definition will not depend on the assignment v. An
open formula is neither true nor false – since we do not know what objects
the free variables refer to. To determine the truth of an open formula, the
above definition requires us to provide an assignment to its free variables.

Example 8.6
Consider an alphabet with one binary relation R and a structure M with
three elements M = {a, b, c} and [[R]]M = {〈a, b〉}. Let A be the formula
∃xR(x, y) – we check whether [[A]]Mv = 1, resp. [[A]]Mw = 1 for the following

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.2. Semantics 199

assignments v, w :
v = {x D→ a, y D→ a}

[[∃xR(x, y)]]Mv = 1 ⇔ [[R(x, y)]]Mv[x(→x] = 1 for some x ∈ M

⇔ 〈v[x D→ x](x), v[x D→ x](y)〉 ∈ [[R]]M for some x ∈ M

⇔ 〈v[x D→ x](x), a〉 ∈ [[R]]M for some x ∈ M
(since v[x D→ x](y) = v(y) = a)

⇔ at least one of the following holds
(since v[x D→ x](x) = x)

v[x D→ a] v[x D→ b] v[x D→ c]
〈a, a〉 ∈ [[R]]M 〈b, a〉 ∈ [[R]]M 〈c, a〉 ∈ [[R]]M

but
〈a, a〉 '∈ [[R]]M 〈b, a〉 '∈ [[R]]M 〈c, a〉 '∈ [[R]]M

⇒ [[∃xR(x, y)]]Mv = 0

w = {x D→ a, y D→ b}
[[∃xR(x, y)]]Mw = 1 ⇔ [[R(x, y)]]Mw[x(→x] = 1 for some x ∈ M

⇔ 〈w[x D→ x](x), w[x D→ x](y)〉 ∈ [[R]]M for some x ∈ M

⇔ 〈w[x D→ x](x), b〉 ∈ [[R]]M for some x ∈ M
(since w[x D→ x](y) = w(y) = b)

⇔ at least one of the following holds
(since w[x D→ x](x) = x)

w[x D→ a] w[x D→ b] w[x D→ c]
〈a, b〉 ∈ [[R]]M 〈b, b〉 ∈ [[R]]M 〈c, b〉 ∈ [[R]]M

and
〈a, b〉 ∈ [[R]]M 〈b, b〉 '∈ [[R]]M 〈c, b〉 '∈ [[R]]M

⇒ [[∃xR(x, y)]]Mw = 1

Thus, [[A]]Mv = 0 while [[A]]Mw = 1. Notice that the values assigned to the
bound variable x by v and w do not matter at all – one has to consider
v[x D→ x], resp. w[x D→ x] for all possible cases of x. What made the
difference was the fact that v(y) = a – for which no x could be found with
〈x, a〉 ∈ [[R]]M , while w(y) = b – for which we found such an x, namely
〈a, b〉 ∈ [[R]]M .

Universal quantifier ∀x has an entirely analogous effect – with the
above two assignments, you may use Fact 8.5 directly to check that
[[∀x¬R(x, y)]]Mv = 1, while [[∀x¬R(x, y)]]Mw = 0. !

This influence of the names of free variables and irrelevance of the names

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

200 Introduction to Logic

of the bound ones on the truth of formulae is expressed in the following
lemma.

Lemma 8.7 Let M be a structure, A a formula and v and w two assignments
such that for every x ∈ V(A) : v(x) = w(x). Then [[A]]Mv = [[A]]Mw .

Proof. Induction on A. For atomic A, the claim is obvious (for terms
in A : [[t]]Mv = [[t]]Mw), and induction passes trivially through the con-
nectives. So let A be a quantified formula ∃yB

[[A]]Mv = 1 ⇔ for some a ∈ M : [[B]]Mv[y (→a] = 1
IH⇔ for some a ∈ M : [[B]]Mw[y (→a] = 1
⇔ [[A]]Mw = 1

By IH, [[B]]Mv[y (→a] = [[B]]Mw[y (→a], since v(x) = w(x) for all free variables
x ∈ V(A), and the modification [y D→ a] makes them agree on y as well,
and hence on all the free variables of B. QED (8.7)

Remark.
The interpretation of constants, function and relation symbols does not depend
on the assignment. Similarly, the interpretation of ground terms and ground
formulae is independent of the assignments. For formulae even more is true – by
Lemma 8.7, the boolean value of any closed formula A does not depend on the
assignment (since V(A) = ∅, for any assignments v, w, we will have that for all
x ∈ ∅ : v(x) = w(x).)

For this reason we may drop the subscript “v” in “[[A]]Mv ” and write simply
“[[A]]M” in case A is closed. Analogously, we may drop the “v” in “[[t]]Mv ” if t is
a ground term.

Example 8.8
Consider the alphabet ΣStack from Example 7.2. We design a ΣStack-

structure M as follows:
• the underlying set M = A 5 A∗ consists of a non-empty set A and all

finite strings A∗ of A-elements; below w, v ∈ M are arbitrary, while
a ∈ A:

• [[empty]]M = ε ∈ A∗ – the empty string
• [[pop]]M (wa) = w and [[pop]]M (ε) = ε
• [[top]]M (wa) = a and [[pop]]M (ε) = a0 for some a0 ∈ A
• [[push]]M (w, v) = wv – concatenation of strings: the string w with v

concatenated at the end
• finally, we let [[El]]M = A, [[St]]M = A∗ and [[≡]]M = {〈m,m〉 : m ∈ M},

i.e., the identity relation.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.2. Semantics 201

We have given an interpretation to all the symbols from ΣStack, so M is
a ΣStack-structure. Notice that all functions are total, i.e., defined for all
elements of M .

We now check the value of all the axioms from Example 7.14 in M .
We apply Definition 8.4, Fact 8.5 and Lemma 8.7 (its consequence from
the remark before this example, allowing us to drop assignments whenever
interpreting ground terms and closed formulae.).

(1) [[St(empty)]]M = [[empty]]M ∈ [[St]]M = ε ∈ A∗ = 1.
(2) [[∀x, s : El(x) ∧ St(s) → St(push(s, x))]]M = 1

⇔ for all c, d ∈ M : [[El(x) ∧ St(s) → St(push(s, x))]]M[x(→c,s(→d] = 1
⇔ for all c, d ∈ M : [[El(x) ∧ St(s)]]M[x(→c,s(→d] = 0

or [[St(push(s, x))]]M[x(→c,s (→d] = 1
⇔ for all c, d ∈ M : [[El(x)]]M[x(→c,s (→d] = 0 or [[St(s)]]M[x(→c,s(→d] = 0

or [[St(push(s, x))]]M[x(→c,s (→d] = 1
⇔ for all c, d ∈ M : c '∈ [[El]]M or d '∈ [[St]]M

or [[push(s, x)]]M[x(→c,s (→d] ∈ [[St]]M

⇔ for all c, d ∈ M : c '∈ A or d '∈ A∗ or dc ∈ A∗

⇔ true, since whenever c ∈ A and d ∈ A∗ then also dc ∈ A∗.
(3) We drop axioms 3.-4. and go directly to 5. and 6.
(5) [[pop(empty) ≡ empty]]M = 1

⇔ 〈[[pop(empty)]]M , [[empty]]M 〉 ∈ [[≡]]M

⇔ 〈[[pop]]M (ε), ε〉 ∈ [[≡]]M ⇔ 〈ε, ε〉 ∈ [[≡]]M ⇔ ε = ε ⇔ true.
(6) [[∀x, s : El(x) ∧ St(s) → pop(push(s, x)) ≡ s]]M = 1 ⇔

for all c, d ∈ M : [[El(x) ∧ St(s) → pop(push(s, x)) ≡ s]]M[x(→c,s(→d] = 1
⇔ for all c, d ∈ M : [[El(x) ∧ St(s)]]M[x(→c,s (→d] = 0

or [[pop(push(s, x)) ≡ s]]M[x(→c,s(→d] = 1
⇔ for all c, d ∈ M : c '∈ [[El]]M or d '∈ [[St]]M

or 〈[[pop]]M ([[push]]M (d, c)), d〉 ∈ [[≡]]M

⇔ for all c, d ∈ M : c '∈ A or d '∈ A∗ or [[pop]]M ([[push]]M (d, c)) = d
⇔ for all c, d ∈ M : if c ∈ A and d ∈ A∗ [[pop]]M (dc) = d
⇔ for all c, d ∈ M : if c ∈ A and d ∈ A∗ thend = d ⇔ true.
For the last transition it is essential that c ∈ A – if c is a non-empty
string, e.g. ab then [[pop]]M (dab) = da '= d. Axiom 7. can be verified
along the same lines. !

Typically, infinitely many formulae evaluate to 1 in a given structure.
In this example, for instance, also the following formula evaluates to 1 :
∀w, x : St(x) ∧ ¬(x ≡ empty) → pop(push(w, x)) ≡ push(w, pop(x)). It

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

202 Introduction to Logic

goes counter our intuitive understanding of stacks – we do not push stacks
on stacks, only elements. This, however, is an accident caused by the fact
that all functions must be total in any structure and, more importantly, by
the specific definition of our structure M . What in programming languages
are called types (or sorts) is expressed in FOL by additional predicates.
Thus, we do not have a ‘type’ stacks or elements (integers, etc.) which
would prevent one from applying the function top to the elements of the
latter type. We have predicates which describe a part of the whole domain.
The axioms, as in the example above, can be used to specify what should
hold provided that argumants come from the right parts of the domain
(types). But the requirement of totality on all functions forces them to yield
some results also when applied outside such intended definition domains.
Thus, the axioms from Example 7.14 do not describe uniquely the particular
data type stacks we might have in mind. They only define some minimal
properties which such data type whould satisfy.

The following result is crucial for proving the soundness of A4 (Ex-
ercise 8.4). A useful special case arises if t1 or t2 is x itself. In that
case the lemma says that the identity v(x) = [[t]]Mv implies the identity
[[A]]Mv = [[Ax

t]]Mv , provided t is substitutable for x in A.

Lemma 8.9 Let t1, t2 be both substitutable for x in A. If [[t1]]Mv = [[t2]]Mv
then [[Ax

t1]]
M
v = [[Ax

t2]]
M
v .

Proof. By induction on the complexity of A.

Basis :: It is easy to show (by induction on the complex-
ity of terms s) that the equality [[t1]]Mv = [[t2]]Mv
implies [[sx

t1]]
M
v = [[sx

t2]]
M
v . Hence, it implies also

[[R(s1, . . . , sn)x
t1]]

M
v = [[R(s1, . . . , sn)x

t2]]
M
v .

Ind. :: The induction steps for ¬ and→ are trivial, as is the case
for ∃x for the same variable x. Now suppose A is ∃yB and
y '= x. As t1 and t2 are substitutable for x in A, so either
(1) x does not occur free in B, in which case the proof is
trivial, or (2a) y does not occur in t1, t2 and (2b) t1, t2 are
both substitutable for x in B. Now (∃yB)x

ti
= ∃y(Bx

ti
)

and hence [[(∃yB)x
ti

]]Mv = 1 iff [[Bx
ti

]]Mv[y (→a] = 1 for some a.
By 2a we know that [[t1]]Mv[y (→a] = [[t2]]Mv[y (→a] for all a, so
by 2b and the IH we know that [[Bx

t1]]
M
v[y (→a] = 1 for some

a iff [[Bx
t2]]

M
v[y (→a] = 1 for some a. QED (8.9)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.2. Semantics 203

2: Semantic properties of formulae

Definition 8.10 The letters “A”, “M” and “v” range over formulae, struc-
tures, and variable-assignments into M , respectively.

A is iff condition holds notation:

true with respect to M and v iff [[A]]Mv = 1 M |=v A
false with respect to M and v iff [[A]]Mv = 0 M '|=v A

satisfied in M iff for all v : M |=v A M |= A
not satisfied in M iff there is a v : M '|=v A M '|= A

valid iff for all M : M |= A |= A
not valid iff there is an M : M '|= A '|= A

satisfiable iff there is an M : M |= A
unsatisfiable iff for all M : M '|= A

Notation.
Sometimes, instead of saying “A is satisfied (not satisfied) in M”, one says that
“A is true (false)”, or even that it is “valid (not valid) in M”.

Lemma 8.7 tells us that only a part of v is relevant in “M |=v A”, namely the
partial function that identifies the values for x ∈ V(A). If V(A) ⊆ {x1, . . . , xn}
and ai = v(xi), we may write just “M |={x1 '→a1,...,xn '→an} A.” We may even drop
the curly braces, since they only clutter up the expression.

Example 8.11
In Example 8.8 we have shown that the structure M models each axiom φ
of stacks, M |= φ, from Example 7.14.

Recall now Example 7.17 of an alphabet ΣSG for simple graphs contain-
ing only one binary relation symbol E. Any set U with a binary relation
R on it is an ΣSG-structure, i.e., we let [[E]]U = R ⊆ U × U .

We now want to make it to satisfy axiom 1 from 7.17: U |= ∀x, y :
E(x, y) → E(y, x), i.e., by Definition 8.10, we want

for all assignments v : [[∀x, y : E(x, y) → E(y, x)]]Uv = 1. (8.12)

Since the formula is closed, we may ignore assignments – by Fact 8.5 we
need:

for all a, b ∈ U : [[E(x, y) → E(y, x)]]U[x(→a,y (→b] = 1, (8.13)

By Definition 8.4.(2) this means:

for all a, b ∈ U : [[E(x, y)]]U[x(→a,y (→b] = 0 or [[E(y, x)]]U[x(→a,y (→b] = 1, (8.14)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

204 Introduction to Logic

i.e., by Definition 8.4.(1):

for all a, b ∈ U : 〈a, b〉 '∈ [[E]]U or 〈b, a〉 ∈ [[E]]U , (8.15)

and since [[E]]U = R:

for all a, b ∈ U : 〈a, b〉 '∈ R or 〈b, a〉 ∈ R. (8.16)

But this says just that for any pair of elements a, b ∈ U , if R(a, b) then also
R(b, a). Thus the axiom holds only in the structures where the relation
(here R) interpreting the symbol E is symmetric and does not hold in those
where it is not symmetric. Put a bit differently – and this is the way one
uses (non-logical) axioms – the axiom selects only those ΣSG-structures
where the relation interpreting E is symmetric – it narrows the relevant
structures to those satisfying the axiom.

Quite an anlogous procedure would show that the other axioms from
example 7.17, would narrow the possible interpretations to those where R
is transitive, resp. irreflexive. !

3: Open vs. closed formulae
Semantic properties of closed formulae bear some resemblance to the re-
spective properties of formulae of PL. However, this resemblance does not
apply with equal strength to open formulae. We start by a rough compar-
ison to PL.

Remark 8.17 [Comparing with PL]
Comparing the table from Definition 8.10 with Definition 5.8, we see that
the last three double rows correspond exactly to the definition for PL. The
first double row is new because now, in addition to formulae and structures,
we also have valuation of individual variables. As before, contradictions
are the unsatisfiable formulae, and the structure M is a model of A if A is
satisfied (valid) in M : M |= A. (Notice that if A is valid in an M , it is not
valid (in general) but only satisfiable.)

An important difference from PL concerns the relation between M '|= A
and M |= ¬A. In PL, we had that for any structure V and formula A

V '|= A ⇒ V |= ¬A (8.18)

simply because any V induced unique boolean value for all formulae. The
corresponding implication does not, in general, hold in FOL:

M '|= A '⇒ M |= ¬A (8.19)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.2. Semantics 205

In fact, we may have:

M '|= A and M '|= ¬A (8.20)
(Of course, we will never get M |= A and M |= ¬A.) To see (8.20),
consider a formula A = P (x) and a structure M with two elements {0, 1}
and [[P]]M = {1}. Then M '|= A ⇔ M '|=v A for some v ⇔ [[A]]Mv = 0 for
some v, and this is indeed the case for v(x) = 0 since 0 '∈ [[P]]M . On the
other hand, we also have M '|= ¬A since [[¬A]]Mw = 0 for w(x) = 1.

It is the presence of free variables which causes the implication in (8.19)
to fail because then the interpretation of a formula is not uniquely deter-
mined unless one specifies an assignment to the free variables. Given an
assignment, we do have

M '|=v A ⇒ M |=v ¬A (8.21)
Consequently, the implication (8.19) holds for closed formulae. !

Summarizing this remark, we can set up the following table which captures
some of the essential difference between free and bound variables in terms
of relations between negation of satisfaction of a formula, M '|= F , and
satisfaction of its negation, M |= ¬F – M is an arbitrary structure:

F closed (or PL) F open

M '|= F ⇔ M |= ¬F M '|= F '⇒ M |= ¬F
M '|= F ⇐ M |= ¬F

(8.22)

For closed formulae, we can say that “negation commutes with satisfaction”
(or else “satisfaction of negation is the same as negation of satisfaction”),
while this is not the case for open formulae.

The above remark leads to another important difference between FOL
and PL, which you should have noticed. The respective Deduction Theo-
rems 4.13 and 7.29 differ in that the latter has the additional restriction
of closedness. The reason for this is the semantic complications introduced
by the free variables. For PL we defined two notions B ⇒ A and B |= A
which, as a matter of fact, coincided. We had there the following picture:
for all V : V |= B → A

D.5.8⇔ |= B → A B |= A
D.6.11⇔ for all V : if V |= B

M C.6.26 C.6.26 M then V |= A

CN B → A
C.4.16⇐⇒ B CN A

The vertical equivalences follow from the soundness and completeness theo-
rems, while the horizontal one follows from Deduction Theorem 4.13. This
chain of equivalences is a roundabout way to verify that for PL : B |= A
iff B ⇒ A. This picture isn’t that simple in FOL. We preserve the two
definitions 5.8 and 6.11:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

206 Introduction to Logic

Definition 8.23 For FOL structures M and formulae A,B :
• B |= A iff for any structure M : if M |= B then M |= A.
• A is a logical consequence of B, written B ⇒ A, iff |= B → A.

However, M |= B means that M |=v B holds for all assignments v. Thus
the definitions read:

B |= A B ⇒ A

for all M : for all M :
if (for all v : M |=v B) then (for all u : M |=u A) for all v : M |=v B → A

It is not obvious that the two are equivalent – in fact, they are not, if there
are free variables involved (Exercise 8.7). If there are no free variables then,
by Lemma 8.7, each formula has a fixed boolean value in any structure (and
we can remove the quantification over v’s and u’s from the above table).
The difference is expressed in the restriction of Deduction Theorem 7.29
requiring the formula B to be closed. (Assuming soundness and complete-
ness (Chapter 10), this restriction leads to the same equivalences as above
for PL.) We write ‘A ⇔ B’ for ‘A ⇒ B and B ⇒ A’ which, by the above
remarks (and Exercise 8.7) is not the same as ‘A |= B and B |= A’.

Fact 8.24 For any formula A : ¬∀xA ⇔ ∃x¬A.

Proof. By Definition 7.7 of the abbreviation ∀xA, the left hand side
is the same as ¬¬∃x¬A, which is equivalent to the right-hand side.

QED (8.24)

Fact 8.25 ∀xA ⇒ A

Proof. We have to show |= ∀xA → A, that is, for arbitrary structure
M : M |= ∀xA → A, that is, for arbitrary assignment v : M |=v

∀xA → A. Let M,v be arbitrary. If [[∀xA]]Mv = 0 then we are done, so
assume [[∀xA]]Mv = 1.

[[∀xA]]Mv = 1 ⇔ [[¬∃x¬A]]Mv = 1 Def. 7.7
⇔ [[∃x¬A]]Mv = 0 Def. 8.4.2
⇔ for no a ∈ M : [[¬A]]Mv[x(→a] = 1 Def. 8.4.3

⇔ for all a ∈ M : [[¬A]]Mv[x(→a] = 0 same as above
⇒ [[¬A]]Mv[x(→v(x)] = 0 particular case for a = v(x)

⇔ [[¬A]]Mv = 0 since v = v[x D→ v(x)]
⇔ [[A]]Mv = 1 Def. 8.4.2

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.2. Semantics 207

Since M and v were arbitrary, the claim follows. QED (8.25)

For a closed formula A we have, obviously, equivalence of A and ∀xA, since
the latter does not modify the formula. For open formulae, however, the
implication opposite to this from fact 8.25 does not hold.

Fact 8.26 For open A with a free variable x : A '⇒ ∀xA.

Proof. Let A be P (x), where P is a predicate symbol. To see that '|=
P (x) → ∀xP (x), consider a structure M with M = {p, q}, [[P]]M = {p}
and an assignment v(x) = p. We have that M '|=v P (x) → ∀xP (x),
since [[P (x)]]Mv = 1 while [[∀xP (x)]]Mv = [[∀xP (x)]]M = 0. QED (8.26)

In spite of this fact, we have another close relation between satisfaction of A
and ∀xA. Given a (not necessarily closed) formula A, the universal closure
of A, written ∀(A), is the formula ∀x1 . . .∀xn A, where {x1, . . . , xn} =
V(A). The following fact shows that satisfaction of a – possibly open! –
formula in a given structure is, in fact, equivalent to the satisfaction of its
universal closure.

Fact 8.27 For any structure M and formula A, the following are equivalent:

(1) M |= A (2) M |= ∀(A)

Proof. Basically, we should proceed by induction on the number of
free variables in A but this does not change anything essential in the
proof. We therefore write the universal closure as ∀xA, where ‘∀x’
stands for ‘∀x1∀x2...∀xn’. We show both implications contrapositively.

(1) ⇐ (2)
M '|= A

8.4⇐⇒ M '|=v A for some v
8.10⇐⇒ [[A]]Mv = 0
8.4⇐⇒ [[¬A]]Mv = 1
8.4=⇒ [[∃x¬A]]Mv = 1
8.4⇐⇒ [[¬∃x¬A]]Mv = 0
8.10⇐⇒ M '|=v ¬∃x¬A
8.10=⇒ M '|= ¬∃x¬A
7.7⇐⇒ M '|= ∀xA

(2) ⇐ (1)
M '|= ∀xA

7.7⇐⇒ M '|= ¬∃x¬A
8.4⇐⇒ [[¬∃x¬A]]Mv = 0 for some v
8.4⇐⇒ [[∃x¬A]]Mv = 1 for same v
8.4⇐⇒ [[¬A]]Mv[x(→a] = 1 for some a ∈ M
8.4⇐⇒ [[A]]Mv[x(→a] = 0
8.10⇐⇒ M '|=v[x(→a] A
8.10=⇒ M '|= A

QED (8.27)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

208 Introduction to Logic

3.1: Deduction Theorem in G and N
Observe that Gentzen’s rules 2. and 3’. (Chapter 7, Section 4) indicate

the semantics of sequents. A1...An CG B1...Bm corresponds by rule 2 to
A1 ∧ ... ∧ An CG B1 ∨ ... ∨ Bm, and by rule 5. to CG (A1 ∧ ... ∧ An) →
(B1 ∨ ... ∨ Bm) which is a simple formula (not a proper sequent) with the
expected semantics corresponding to the semantics of the original sequent.

Now G for FOL, unlike N , is a truly natural deduction system. The rule
5. is the unrestricted Deduction Theorem built into G. Recall that it was
not so for N – Deduction Theorem 7.29 allowed us to use a restricted version

of the rule:
Γ, A CN B

Γ CN A → B
only if A is closed! Without this restriction, the

rule would be unsound, e.g.:
1. A 9N A A0
2. A 9N ∀xA L.7.24.4
3. 9N A → ∀xA DT !
4. 9N ∃xA → ∀xA ∃I

The conclusion of this proof is obviously invalid (verify this) and we could
derive it only using a wrong application of DT in line 3.

In G, such a proof cannot proceed beyond step 1. Rule 7. requires
replacement of x from ∀xA by a fresh x′, i.e., not occurring in the whole
sequent! Attempting this proof in G would lead to the following:

4. A(x′) 9G A(x) 7. x fresh (x)= x′)
3. A(x′) 9G ∀xA(x) 7′. x′ fresh
2. ∃xA(x) 9G ∀xA(x) 5.
1. 9G ∃xA(x) → ∀xA(x)

But A(x) '= A(x′) so line 4. is not an axiom. (If x does not occur in
A (i.e., quantification ∀xA is somehow redundant) then this would be an
axiom and everything would be fine.)

It is this, different than in N , treatement of variables (built into the
different quantifier rules) which enables G to use unrestricted Deduction
Theorem. It is reflected at the semantic level in that the semantics of CG is
different from CN . According to Definition 8.23, A |= B iff |= ∀(A) → ∀(B)
and this is reflected in N , e.g., in the fact that from A CN B we can deduce
that ∀(A) CN ∀(B) from which CN ∀(A) → ∀(B) follows now by Deduction
Theorem.

The semantics of A CG B is different – such a sequent is interpreted
as A ⇒ B, that is, |= ∀(A → B). The free variables occurring in both
A and B are now interpreted in the same way across the sign CG. Using
Definition 8.23, one translates easily between sequents and formulae of N

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.2. Semantics 209

(M is an arbitrary structure). The first line is the general form from which
the rest follows. The last line expresses perhaps most directly the difference
in treatement of free variables which we indicated above.

M |= (A1, .., An CG B1, .., Bm) ⇐⇒
M |= ∀((A1 ∧ .. ∧An) → (B1 ∨ .. ∨ Bm))

M |= (∅ CG B1, .., Bm) ⇐⇒ M |= ∀(B1 ∨ .. ∨ Bm)
M |= (A1, .., An CG ∅) ⇐⇒ M |= ∀(¬(A1 ∧ .. ∧An))

|= (∀(A1), ..,∀(An) CG B) ⇐⇒ {A1...An} |= B

Exercises 8.

exercise 8.1 Show that the follwing rule is admissible:
Γ CN A → B

Γ CN ∀xA → ∀xB
(where there are no side-conditions on x).
(Hint: Lemma 7.24.2, and two applications of some relevant result from PL.)

exercise 8.2 Translate each of the following sentences into a FOL lan-
guage (choose the needed relations yourself)
(1) Everybody loves somebody.
(2) If everybody is loved (by somebody) then somebody loves everybody.
(3) If everybody loves somebody and John does not love anybody then John

is nobody.

At least two of the obtained formulae are not valid. Which ones? Is the
third one valid?
exercise 8.3 Using the previous exercise, construct a structure where the
opposite implication to the one from exercise 7.2.3, i.e., ∀y∃xA → ∃x∀yA,
does not hold.
exercise 8.4 Verify the following facts (|= A ↔ B stands for |= A → B
and |= B → A)

(1) ∃xA ⇔ ∃yAx
y , when y does not occur in A.

(2) |= ∀xA ↔ ∀yAx
y , when y does not occur in A.

(3) Ax
t ⇒ ∃xA, when t is substitutable for x in A.

Show that the assumption about substitutability is necessary, i.e.,
give an example of a non-valid formula of the form Ax

t → ∃xA, when
t is not substitutable for x in A.

exercise 8.5 Show that (∀xA ∨ ∀xB) ⇒ ∀x(A ∨ B). Give a counterex-
ample demonstrating that the opposite implication (which you hopefully
did not manage to prove in exercise 7.3) does not hold.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

210 Introduction to Logic

exercise 8.6 Show that M |= ¬A implies M '|= A. Give a counterexample
demonstrating that the opposite implication need not hold, i.e. find an M
and A over appropriate alphabet such that M '|= A and M '|= ¬A. (Hint:

A must have free variables.)

exercise 8.7 Recall Remark 8.17 and discussion after Definition 8.23 (as
well as Exercise 7.8).

(1) Show that ∀(B → A) ⇒ (∀(B) → ∀(A)).
– Use this to show that: if B ⇒ A then B |= A.

(2) Give an argument (an example of A, B and structure) falsifying the
opposite implication, i.e., showing '|= (∀(B) → ∀(A)) → ∀(B → A).

– Use this to show that: if B |= A then it need not be the case that
B ⇒ A.

optional
exercise 8.8 Write the following sentences in FOL – choose appropriate
alphabet of non-logical symbols (lower case letters a, b, ... are individual
constants):

(1) Either a is small or both c and d are large.
(2) d and e are both in back of b and larger than it.
(3) Either e is not large or it is in back of a.
(4) Neither e nor a are to the right of c and to the left of b.

exercise 8.9 Use Fact 8.27 to show that the following two statements are
equivalent for any formulae A, B

(1) B |= A
(2) ∀(B) |= A

exercise 8.10 In Lemma 7.24.(5) we showed admissibility of the substi-
tution rule in N :

SB:
Γ CN A

Γ CN Ax
t

if t is substitutable for x in A

Show now that this rule is sound, i.e., for any FOL-structure M : if M |= A
then also M |= Ax

t when t is substitutable for x in A.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 211

Chapter 9

More Semantics
• Prenex NF
• A Bit of Model Theory
• Term structures

1: Prenex operations
We have seen (Corollary 6.6, 6.7) that every PL formula can be equivalently
written in DNF and CNF. A normal form which is particularly useful in
the study of FOL is Prenex Normal Form.

Definition 9.1 [PNF] A formula A is in Prenex Normal Form iff it has the
form Q1x1 . . .QnxnB, where Qi are quantifiers and B contains no quantifiers.

The quantifier part Q1x1 . . .Qnxn is called the prefix, and the quantifier
free part B the matrix of A.

To show that each formula is equivalent to some formula in PNF we
need the next lemma.

Lemma 9.2 Let A, B be formulae, F [A] be a formula with some occur-
rence(s) of A, and F [B] be the same formula with the occurrence(s) of A
replaced by B. If A ⇔ B then F [A] ⇔ F [B].

Proof. Exercise 5.9 showed the version for PL. The proof is by induc-
tion on the complexity of F [A], with a special case considered first:

F [A] is :
A :: This is a special case in which we have trivially F [A] =

A ⇔ B = F [B]. So assume that we are not in the
special case.

Atomic :: If F [A] is atomic then either we have the special case,
or no replacement is made, i.e., F [A] = F [B], since F
has no subformula A.

¬C[A] :: By IH C[A] ⇔ C[B]. So ¬C[A] ⇔ ¬C[B].

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

212 Introduction to Logic

C[A] → D[A] :: Again, IH gives C[A] ⇔ C[B] and D[A] ⇔ D[B], from
which the conclusion follows (Exercise 5.9).

∃xC[A] :: By IH, C[A] ⇔ C[B]. It means, that for all assign-
ments to the variables, including x, the two are equiv-
alent. Hence ∃xC[A] ⇔ ∃xC[B].

QED (9.2)

The following lemma identifies transformations of formulae allowing to con-
struct PNF by purely syntacitc manipulation. It also ensures that the result
of such transformations is equivalent to the original formula.

Lemma 9.3 The prenex operations are given by the following equivalences:

(1) Quantifier movement along →:

A → ∀xB ⇔ ∀x(A → B) A → ∃xB ⇔ ∃x(A → B)
if x not free in A

∀xA → B ⇔ ∃x(A → B) ∃xA → B ⇔ ∀x(A → B)
if x not free in B

(2) Quantifier movement along ¬: ¬∃xA ⇔ ∀x¬A, and ¬∀xA ⇔ ∃x¬A.
(3) Renaming of bound variables: ∃xA ⇔ ∃yAx

y , and ∀xA ⇔ ∀yAx
y , when y

does not occur in A.

Proof. (3) was proved in Exercise 8.4. We show the first and the third
equivalence of (1); the rest is left for Exercise 9.3.
Let M be an arbitrary structure and v an arbitrary assignment to the
free variables occurring in A and ∀xB. We have
M |=v A → ∀xB
1. ⇔ [[A → ∀xB]]Mv = 1
2. ⇔ [[A]]Mv = 0 or [[∀xB]]Mv = 1
3. ⇔ [[A]]Mv = 0 or for all a ∈ M : [[B]]Mv[x(→a] = 1
4. ⇔ for all a ∈ M ([[A]]Mv = 0 or [[B]]Mv[x(→a] = 1)
5. ⇔ for all a ∈ M ([[A]]Mv[x(→a] = 0 or [[B]]Mv[x(→a] = 1)
6. ⇔ [[∀x(A → B)]]Mv = 1
7. ⇔ M |=v ∀x(A → B)
The equivalence between lines 4 and 5 follows from Lemma 8.7 because
x is not free in A. Since M and v were arbitrary, we can conclude that,
when x is not free in A then (A → ∀xB) ⇒ ∀x(A → B).
For the third equivalence of (1), we have

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 213

M |=v ∀xA → B
1. ⇔ [[∀xA → B]]Mv = 1
2. ⇔ [[∀xA]]Mv = 0 or [[B]]Mv = 1
3. ⇔ [[¬∃x¬A]]Mv = 0 or [[B]]Mv = 1
4. ⇔ [[∃x¬A]]Mv = 1 or [[B]]Mv = 1
5. ⇔ (for some a ∈ M [[¬A]]Mv[x(→a] = 1) or [[B]]Mv = 1
6. ⇔ (for some a ∈ M [[A]]Mv[x(→a] = 0) or [[B]]Mv = 1
7. ⇔ for some a ∈ M ([[A]]Mv[x(→a] = 0 or [[B]]Mv[x(→a] = 1)
8. ⇔ for some a ∈ M [[A → B]]Mv[x(→a] = 1
9. ⇔ [[∃x(A → B)]]Mv = 1

10. ⇔ M |=v ∃x(A → B)

Again, the crucial equivalence of lines 6 and 7 follows from Lemma 8.7
because x is not free in B. QED (9.3)

Remark.
Notice the change of quantifier in the last two equivalences in point 1 of lemma 9.3.
The second one, ∃A → B ⇔ ∀x(A → B), assuming that x)∈ V(B), can be
illustrated as follows. Let R(x) stand for ‘x raises his voice’ and T for ‘there will
be trouble’ (which has no free variables). The sentence “If somebody raises his
voice there will be trouble” can be represented as

∃xR(x) → T. (9.4)

The intention here is to say that no matter who raises his voice, the trouble
will ensue. Thus, intuitively, it is equivalent to say: “If anyone raises his voice,
there will be trouble.” This latter sentence can be easier seen to correspond to
∀x(R(x) → T). The first equivalence from point (1) is not so natural. We would
like to read ∀xR(x) → T as “If everybody raises his voice, there will be trouble.”
This is equivalent to

∃x(R(x) → T) (9.5)

but it is not entirely clear what sentence in natural language should now corre-
spond to this formula. In fact, one is tempted to ignore the different scope of
the quantifier in (9.5) and in (9.4) and read both the same way. This is, again,
a remainder that one has to be careful with formalizing natural language expres-
sions. For the future, let us keep in mind the important difference induced by the
scope of quantifiers as the one between (9.4) and (9.5).

Theorem 9.6 Every formula B is equivalent to a formula BP in PNF.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

214 Introduction to Logic

Proof. By induction on the complexity of B. The IH gives us a PNF
for the subformulae and lemma 9.2 allows us to replace these subfor-
mulae by their PNF. The equivalences from Lemma 9.3 are appliede
from left to right.

B is :
Atomic :: Having no quantifiers, B is obviously in PNF.

¬A :: By IH, A has a PNF, and by Lemma 9.2, B ⇔ ¬AP .
Using (2) of Lemma 9.3, we can move ¬ inside changing
all the quantifiers. The result will be BP .

∃xA :: Replacing A with AP gives a PNF BP = ∃xAP .
A → C :: By IH and Lemma 9.2, this is equivalent to AP →

CP . First, use (3) of Lemma 9.3 to rename all bound
variables in AP so that they are distinct from all the
variables (bound or free) in CP . Then do the same with
CP . Use Lemma 9.3.(1) to move the quantifiers outside
the whole implication. (Because of the renaming, no
bound variable will at any stage occur freely in the
other formula.) The result is BP . QED (9.6)

Example 9.7
We obtain PNF using the prenex operations:

∀x∃yA(x, y) → ¬∃xB(x) ⇔ ∃x(∃yA(x, y) → ¬∃xB(x)) (1)
⇔ ∃x∀y(A(x, y) → ¬∃xB(x)) (1)
⇔ ∃x∀y(A(x, y) → ∀x¬B(x)) (2)
⇔ ∃x∀y(A(x, y) → ∀z¬B(z)) (3)
⇔ ∃x∀y∀z(A(x, y) → ¬B(z)) (1)

Formulae with abbreviated connectives may be first rewritten to the form
with ¬ and → only, before applying the prenex transformations:

∃xA(x, y) ∨ ∀yB(y) ⇔ ¬∃xA(x, y) → ∀yB(y)
⇔ ∀x¬A(x, y) → ∀yB(y) (2)
⇔ ∃x(¬A(x, y) → ∀yB(y)) (1)
⇔ ∃x(¬A(x, y) → ∀zB(z)) (3)
⇔ ∃x∀z(¬A(x, y) → B(z)) (1)
⇔ ∃x∀z(A(x, y) ∨ B(z))

Alternatively, we may use direct prenex operations which are derivable from
those given by Lemma 9.3:

(QxA ∨ B) ⇔ Qx(A ∨ B) provided x '∈ V(B)
(QxA ∧B) ⇔ Qx(A ∧B) provided x '∈ V(B)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 215

!

Notice that PNF is not unique, since the order in which we apply the
prenex operations may be chosen arbitrarily.

Example 9.8
Let B be (∀x x > 0) → (∃y y = 1). We can apply the prenex operations

in two ways:

(∀x x > 0) → (∃y y = 1)
⇔

∃x (x > 0 → (∃y y = 1)) ∃y ((∀x x > 0) → y = 1) ⇔
⇔ ∃x ∃y (x > 0 → y = 1) ∃y ∃x (x > 0 → y = 1)

Obviously, since the order of the quantifiers of the same kind does not mat-
ter (Exercise 7.2.(1)), the two resulting formulae are equivalent. However,
the quantifiers may also be of different kinds:

(∃x x > 0) → (∃y y = 1)
⇔

∀x (x > 0 → (∃y y = 1)) ∃y ((∃x x > 0) → y = 1) ⇔
⇔ ∀x ∃y (x > 0 → y = 1) ∃y ∀x (x > 0 → y = 1)

Although it is not true in general that ∀x∃yA ⇔ ∃y∀xA, the equivalence
preserving prenex operations ensure – due to renaming of bound variables
which avoids name clashes with variables in other subformulae – that the
results (like the two formulae above) are equivalent. !

2: A few bits of Model Theory
Roughly and approximately, model theory studies the properties of model
classes. Notice that a model class is not just an arbitrary collection K of
FOL-structures – it is a collection of models of some set Γ of formulae,
i.e., such that K = Mod(Γ) for some Γ. The important point is that
the syntactic form of the formulae in Γ may have a heavy influence on the
properties of its model class (as we illustrate in theorem 9.13). On the other
hand, knowing some properties of a given class of structures, model theory
may sometimes tell what syntactic forms of axioms are necessary/sufficient
for axiomatizing this class. In general, there exist non-axiomatizable classes
K, i.e., such that for no FOL-theory Γ, one can get K = Mod(Γ).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

216 Introduction to Logic

2.1: Substructures

As an elementary example of the property of a class of structures we will
consider (in Section 2.2) closure under substructures and superstructures.
Here we only define these notions.

Definition 9.9 Let Σ be a FOL alphabet and let M and N be Σ-structures:
N is a substructure of M (or M is a superstructure (or extension) of N),
written N N M , iff:

• N ⊆ M
• For all a ∈ I : [[a]]N = [[a]]M
• For all f ∈ F , and a1, . . . ,an ∈ N :

[[f]]N (a1, . . . ,an) = [[f]]M (a1, . . . ,an) ∈ N
• For all R ∈ R, and a1, . . . ,an ∈ N :

〈a1, . . . ,an〉 ∈ [[R]]N ⇔ 〈a1, . . . ,an〉 ∈ [[R]]M

For an arbitrary class of structures K, wee say that K is:

• closed under substructures if whenever M ∈ K and N N M , then also
N ∈ K, and

• closed under superstructures if whenever N ∈ K and N N M , then also
M ∈ K.

Thus N N M iff N has a more restricted interpretation domain than M ,
but all constants, function and relation symbols are interpreted identically
within this restricted domain. Obviously, every structure is its own sub-
structure, M N M . If N N M and N '= M , which means that N is a proper
subset of M , then we say that N is a proper substructure of M .

Example 9.10
Let Σ contain one individual constant c and one binary function symbol L.
The structure Z with Z = Z being the integers, [[c]]Z = 0 and [[L]]Z(x, y) =
x + y is a Σ-structure. The structure N with N = N being only the
natural numbers with zero, [[c]]N = 0 and [[L]]N (x, y) = x + y is obviously a
substructure N N Z.

Restricting furthermore the domain to the even numbers, i.e. taking
P with P being the even numbers greater or equal zero, [[c]]P = 0 and
[[L]]P (x, y) = x + y yields again a substructure P N N .

The class K = {Z,N, P} is not closed under substructures. One can eas-
ily find other Σ-substructures not belonging to K (for instance, all negative
numbers with zero and addition is a substructure of Z).

Notice that, in general, to obtain a substructure it is not enough to
select an arbitrary subset of the underlying set. If we restrict N to the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 217

set {0, 1, 2, 3} it will not yield a substructure of N – because, for instance,
[[L]]N (1, 3) = 4 and this element is not in our set. Any structure, and hence
a substructure in particular, must be “closed under all operations”, i.e.,
applying any operation to elements of the (underlying set of the) structure
must produce an element in the structure.

On the other hand, a subset of the underlying set may fail to be a
substructure if the operations are interpreted in different way. Let M be
like Z only that now we let [[L]]M (x, y) = x − y. Neither N nor P are
substructures of M since, in general, for x, y ∈ N (or ∈ P): [[L(x, y)]]N =
x+ y '= x− y = [[L(x, y)]]M . Modifying N so that [[L]]N

′
(x, y) = x− y does

not yield a substructure of M either, because this does not define [[L]]N
′

for x > y. No matter how we define this operation for such cases (for
instance, to return 0), we won’t obtain a substructure of M – the result
will be different than in M . !

Remark 9.11
Given an FOL alphabet Σ, we may consider all Σ-structures, Str(Σ). Obvi-

ously, this class is closed under Σ-substructures. With the substructure relation,
〈Str(Σ),A〉 forms a weak partial ordering (Definition 1.14), as the following prop-
erties of the relation A follow easily from Definition 9.9:

• A is obviously reflexive (any structure is its own substructure),

• transitive (substructure X of a substructure of Y is itself a substructure of
Y) and

• antisymmetric (if both X is a substructure of Y and Y is a substructure of
X then X = Y).

!

2.2: Σ-Π classification

A consequence of Theorem 9.6 is that any axiomatizable class K, can be
axiomatized by formulae in PNF. This fact has a model theoretic flavour,
but model theory studies, in general, more specific phenomena. Since it
is the relation between the classes of structures, on the one hand, and
the syntactic form of formulae, on the other, one often introduces various
syntactic classifications of formulae. We give here only one, central example.

The existence of PNF allows us to “measure the complexity” of formu-
lae. Comparing the prefixes, we would say that A1 = ∃x∀y∃zB is “more
complex” than A2 = ∃x∃y∃zB. Roughly, a formula is the more complex,
the more changes of quantifiers in its prefix.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

218 Introduction to Logic

Definition 9.12 A formula A is ∆0 iff it has no quantifiers. It is:

• Σ1 iff A ⇔ ∃x1 . . .∃xnB, where B is ∆0.
• Π1 iff A ⇔ ∀x1 . . .∀xnB, where B is ∆0.
• Σi+1 iff A ⇔ ∃x1 . . .∃xnB, where B is Πi.
• Πi+1 iff A ⇔ ∀x1 . . .∀xnB, where B is Σi.

Σ2

∀
Π2

∃

Σ1

∀AAAAAAAAA
AA

Π1

∃BBBBBBBBB
BB

∆0

∃$$
$$

∀##
##

Since PNF is not unique, a formula can belong to several levels and we
have to consider all possible PNFs for a formula in order to determine its
complexity. Typically, saying that a formula is Σi, resp. Πi, one means
that this is the least such i.

A formula may be both Σi and Πi – in Example 9.8 we saw (the second)
formula equivalent to both ∀x∃yB and to ∃y∀xB, i.e., one that is both Π2

and Σ2. Such formulae are called ∆i.
We only consider the following (simple) example of a model theoretic

result. Point 1 says that the validity of an existential formula is preserved
when passing to the superstructures – the model class of existential sen-
tences is closed under superstructures. Dually, 2 implies that model class
of universal sentences is closed under substructures.

Theorem 9.13 Let A,B be closed formulae over some alphabet Σ, and
assume A is Σ1 and B is Π1. Let M,N be Σ-structures and N N M . If

(1) N |= A then M |= A
(2) M |= B then N |= B.

Proof. (1) A is closed Σ1, i.e., it is (equivalent to) ∃x1 . . .∃xnA′

where A′ has no quantifiers nor variables other that x1, . . . ,xn.
If N |= A then there exist a1, . . . ,an ∈ N such that
N |=x1 (→a1,...,xn (→an

A′. Since N N M , we have N ⊆ M and
the interpretation of all symbols is the same in M as in N . Hence
M |=x1 (→a1,...,xn (→an

A′, i.e., M |= A.
(2) This is a dual argument. Since M |= ∀x1 . . .∀xnB′, B′ is true for

all elements of M and N ⊆ M , so B′ will be true for all element
of this subset as well. QED (9.13)

The theorem can be applied in at least two different ways which we illustrate
in the following two examples. We consider only case 2., i.e., when the
formulae of interest are Π1 (universal).

Example 9.14 [Constructing new structures for Π1 axioms]
First, given a set of Π1 axioms and an arbitrary structure satisfying them,

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 219

the theorem allows us to conclude that any substructure will also satisfy
the axioms.

Let Σ contain only one binary relation symbol R. Recall definition 1.14
– a strict partial ordering is axiomatized by two formulae
(1) ∀x∀y∀z : R(x, y) ∧R(y, z) → R(x, z) – transitivity, and
(2) ∀x : ¬R(x, x) – irreflexivity.

Let N be an arbitrary strict partial ordering, i.e., an arbitrary Σ-structure
satisfying these axioms. For instance, let N = 〈N, <〉 be the natural num-
bers with less-than relation. Since both axioms are Π1, the theorem tells
us that any substructure of N , i.e., any subset of N with the interpretation
of R restricted as in definition 9.9, will itself be a strict partial ordering.
For instance, any subset S ⊆ N with the same less-than relation restricted
to S is, by the theorem, a strict partial ordering. !

Example 9.15 [Non-axiomatizability by Π1 formulae]
Second, given some class of structures, the theorem may be used to show
that it is not Π1-axiomatizable.

Let Σ be as in the previous example. Call a (strict partial) ordering
“dense” if, in addition to the two axioms from the previous example, it also
has the following property:
(3) whenever R(x, y) then there exists a z such that R(x, z) and R(z, y).

For instance, the closed interval of all real numbers M = 〈[0, 1], <〉 is a
dense strict partial ordering. Now, remove all the numbers from the open
interval (0, 1) – this leaves us with just two elements {0, 1} ordered 0 < 1.
This is a Σ substructure of M (Σ contains no ground terms, so any elements
from the underlying set can be removed). But this is not a dense ordering!
The class of dense orderings over Σ is not closed under substructures and
so, by the theorem, is not axiomatizable using only Π1 formulae. !

3: “Syntactic” Semantics
Model theory classifies primarily structures, and formulae are only possible
means of doing that. As we have just seen, one can ask if a given class of
structures can be axiomatized by, say, Π1 formulae. But one can also ask
about the existence of finite models for a given theory, about the existence
of infinite models, countable models etc. One of such concepts, particularly
important in computer science, is presented below.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

220 Introduction to Logic

3.1: Reachable structures and Term structures

Definition 9.16 A Σ-structure T is reachable iff for each a ∈ T there is a
ground term t ∈ GT Σ with a = [[t]]T . A reachable model of a Σ-theory Γ is a
Σ-reachable structure M such that M |= Γ.

Intuitively, a reachable structure for a Σ contains only elements which can
be denoted (reached/pointed to) by some ground term.

Example 9.17
Let Σ contain only three constants a, b, c. Define a Σ-structure M by:

• M = N, and
• [[a]]M = 0, [[b]]M = 1, [[c]]M = 2.

M contains a lot of “junk” elements (all natural numbers greater than 2)
which are not required to be there in order for M to be a Σ-structure – M
is not a reachable Σ-structure. Define N by

• N = {0, 1, 2, 3, 4}, and
• [[a]]N = 0, [[b]]N = 1, [[c]]N = 2.

Obviously, N N M . Still N contains unreachable elements 3 and 4. Re-
stricting N to {0, 1, 2}, we obtain yet another substructure T N N . T is
the only reachable structure of the three.
Yet another structure is given by:

• S = {0, 1}, and
• [[a]]S = 0, [[b]]S = 1, [[c]]S = 1.

S is reachable too, but it is not a substructure of any previous one: although
S ⊂ T , we have that [[c]]S = 1 '= 2 = [[c]]T . !

Proposition 9.18 A reachable Σ-structure T has no proper substructure.

Proof. The claim is that there is no Σ-structure M with M N T and
M '= T , i.e., such that M ⊂ T . Indeed, since each element a ∈ T is the
(unique) interpretation of some ground term t ∈ GT Σ, a = [[t]]T , if we
remove a from T , t will have no interpretation in the resulting subset,
which could coincide with its interpretation [[t]]T in T . QED (9.18)

The proposition shows also a particular property of reachable structures
with respect to the partial ordering 〈Str(Σ),N 〉 defined in Remark 9.11.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 221

Corollary 9.19 A Σ-reachable structure T is a minimal element of
〈Str(Σ),N 〉.
The opposite, however, need not be the case. If Σ contains no ground

terms, the minimal Σ-structure, if they exist, will not be reachable.

Example 9.20
Let Σ contain only one binary function symbol ⊕. A Σ-structure M with
M = {•} and [[⊕]]M (•, •) = • has no proper Σ-substructure. If such a
structure N existed, it would require N = ∅, but this is forbidden by the
definition of Σ-structure (8.1 requires the underlying set of any structure
to be non-empty). However, M is not Σ-reachable, since GT Σ = ∅. !

Proposition 9.21 If Σ has at least 1 constant symbol, then any Σ-structure
M has a reachable substructure.

Proof. Since GT Σ '= ∅, we can take only the part of M consisting
of the interpretations of ground terms, keeping the interpretation of
relation and function symbols for these elements intact. QED (9.21)

By Corollary 9.19, such a reachable substructure (of any M) will be minimal
element of the partial ordering 〈Str(Σ),N 〉. One could feel tempted to
conclude that this shows that this ordering is well-founded but this is not
the case as the following example shows.

Example 9.22
Let Σ contain one constant symbol L and let N be a Σ-structure with
N = N = {0, 1, 2, 3...} and [[L]]N = 0. The structure N0 with N0 = {0}
is the reachable (and hence minimal) substructure of N . However, we
may also form the following chain of substructures: let Ni be given by the
underlying set Ni = N\{1, 2...i} for i > 0, and [[L]]Ni = 0 = [[L]]N . We thus
have that N O N1 O N2 O N3 O ..., i.e., we obtain an infinite descending
chain of substructures. Hence the relation N is not well-founded (even if
we restrict it to the set of substructures of N). !

It follows from Proposition 9.21 that for any Σ with at least one constant
symbol there is a Σ-reachable structure. A special type of reachable struc-
ture is of particular interest, namely the term structure. In a term structure
over Σ, the domain of interpretation is the set of ground terms over Σ, and
moreover every term is interpreted as itself:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

222 Introduction to Logic

Definition 9.23 Let Σ be an alphabet with at least one constant. A term
structure TΣ over Σ has the following properties:

• The domain of interpretation is the set of all ground Σ-terms: TΣ = GT Σ.
• For each constant symbol a ∈ I, we let a be its own interpretation:

[[a]]TΣ = a

• For each function symbol f ∈ F of arity n, and terms t1, . . . ,tn, we let

[[f]]TΣ(t1, . . . ,tn) = f(t1, . . . ,tn)
This may look a bit strange at first but is a perfectly legal specification of
(part of) a structure according to Definition 8.1 which requires an arbitrary
non-empty interpretation domain. The only specical thing is that, in a
sense, we look at terms from two different perspectives. On the one hand,
as terms – syntactic objects – to be interpreted, i.e., to be assigned meaning
by the operation [[]]M . Taking M to be TΣ, we now find the same terms also
on the right-hand sides of the equations above, as the elements – semantic
objects – interpreting the syntactic terms, i.e., [[t]]TΣ = t.

Such structures are interesting because they provide mechanic means of
constructing a semantic interpretation from the mere syntax defined by the
alphabet.

Example 9.24
Let Σ contain only two constant symbols a, b. The term structure TΣ will be
given by: TΣ = {a, b}, [[a]]TΣ = a, [[b]]TΣ = b. (If this still looks confusing,
you may think of TΣ with all symbols underlined, i.e. TΣ = {a, b}, [[a]]TΣ =
a, [[b]]TΣ = b.)

Now extend Σ with one unary function symbol s. The corresponding
term structure TΣ will be now:

TΣ = { a, s(a), s(s(a)), s(s(s(a))), . . .
b, s(b), s(s(b)), s(s(s(b))), . . . }

[[a]]TΣ = a
[[b]]TΣ = b

[[s]]TΣ(x) = s(x) for all x ∈ TΣ !

Thus every term structure is reachable. Note that nothing is said in def-
inition 9.23 about the interpretation of relation symbols. Thus a term
structure for a given Σ is not a full FOL-structure. However, for every Σ
with at least one constant there is at least one FOL term structure over Σ,
for instance the one where each relation symbol R ∈ R is interpreted as
the empty set:

[[R]]TΣ = ∅

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 223

Such a structure is, most probably, of little interest. Typically, one is
interested in obtaining a term model, i.e., to endow the term structure TΣ

with the interpretation of predicate symbols in such a way that one obtains
a model for some given theory.

Remark 9.25 [Term models, reachable models and other models]
Let Σ be given by I = {p, q}, F1 = {f} and R1 = {P,Q}. The term
structure is then

TΣ = {p, f(p), f(f(p)), f(f(f(p))), . . .
q, f(q), f(f(q)), f(f(f(q))), . . . }

Now, consider a theory Γ = {P (p), Q(q),∀x(P (x) → Q(f(x))),∀x(Q(x) →
P (f(x)))}. We may turn TΣ into a (reachable) model of Γ, so called term
model TΓ with TΓ = TΣ, by letting
• [[P]]TΓ = {f2n(p) : n ≥ 0} ∪ {f2n+1(q) : n ≥ 0} and
• [[Q]]TΓ = {f2n+1(p) : n ≥ 0} ∪ {f2n(q) : n ≥ 0}.

It is easy to verify that, indeed, TΓ |= Γ. We show that

TΓ |= ∀x(P (x) ∨Q(x)). (9.26)

We have to show that [[P (x) ∨Q(x)]]TΓ
v = 1 for all assignments v : {x} →

TΓ. But all such assignments assign a ground term to x, that is, we have
to show that TΓ |= P (t)∨Q(t) for all ground terms t ∈ GT Σ. We show this
by induction on the complexity of ground terms.

t ∈ I :: Since TΓ |= Γ we have TΓ |= P (p) and hence TΓ |= P (p)∨Q(p).
In the same way, TΓ |= Q(q) gives that TΓ |= P (q) ∨Q(q).

f(t) :: By IH, we have TΓ |= P (t) ∨ Q(t), i.e., either TΓ |= P (t) or
TΓ |= Q(t). But also TΓ |= Γ, so, in the first case, we obtain
that TΓ |= Q(f(t)), while in the second TΓ |= P (f(t)). Hence
TΓ |= P (f(t)) ∨Q(f(t)).

Thus the claim (9.26) is proved. As a matter of fact, we have proved more
than that. Inspecting the proof, we can see that the only assumption we
have used was that TΓ |= Γ. On the other hand, the inductive proof on
GT Σ was possible because any assignment v : {x} → TΓ assigned to x an
interpretation of some ground term, i.e., v(x) = [[t]]TΓ for some t ∈ GT Σ.
In other words, the only assumptions were that TΓ was a reachable model
of Γ, and what we have proved is:

for any reachable T : T |= Γ ⇒ T |= ∀x(P (x) ∨Q(x)). (9.27)

It is typical that proofs by induction on ground terms like the one above,
show us such more general statement like (9.27) and not merely (9.26).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

224 Introduction to Logic

The point now is that the qualification “reachable” is essential and
cannot be dropped – it is not the case that Γ |= ∀x(P (x)∨Q(x))! Consider
a structure M which is exactly like TΓ but has one additional element, i.e.,
M = TΣ ∪ {∗}, such that ∗ '∈ [[P]]M and ∗ '∈ [[Q]]M and [[f]]M (∗) = ∗. M is
still a model of Γ but not a reachable one due to the presence of ∗. We also
see that M '|= ∀x(P (x) ∨ Q(x)) since [[P (x)]]Mx(→∗ = 0 and [[Q(x)]]Mx(→∗ = 0.
In short, the proof that something holds for all ground terms, shows that
the statement holds for all reachable models but, typically, not that it holds
for arbitrary models. !

Example 9.28
Notice that although a reachable structure always exists (when GT Σ '= ∅),
there may be no reachable model for some Σ-theory Γ. Let Σ contain
only two constants a, b and one predicate R. TΣ is given by {a, b} and
[[R]]TΣ = ∅. Let Γ be {¬R(a),¬R(b),∃xR(x)}. It is impossible to construct
a model for Γ – i.e. interpret [[R]] so that all formulae in Γ are satisfied –
which is reachable over Σ.

But let us extend the alphabet to Σ′ with a new constant c. Let T ′

be TΣ′ but interpret R as [[R]]T
′

= {c}. Then, obviously, T ′ |= Γ. T ′ is
not a Σ-structure since it contains the interpretation of c which is not in
Σ. To turn T ′ into a Σ-structure satisfying Γ we only have to “forget” the
interpretation of c. The resulting structure T is identical to T ′, except that
T is a Σ-structure and the element c of T = T ′ has no corresponding term
in the alphabet. Thus:
• T ′ is a reachable Σ′-structure but it is not a Σ-structure
• T ′ is a Σ′-reachable model of Γ
• T is a Σ-structure but not a Σ′-structure
• T is a Σ-structure but not a Σ-reachable structure
• T is a model of Γ but it is not a Σ-reachable model !

As an important corollary of Theorem 9.13, we obtain the following suffi-
cient conditions for the existence of reachable models.

Corollary 9.29 Let Γ be a collection of Π1 formulae, over an alphabet Σ
with GT Σ '= ∅. If Mod(Γ) '= ∅ then Γ has a reachable model.

Simply, the existence of some model of Γ allows us, by Proposition 9.21, to
restrict it to its reachable substructure. By Theorem 9.13, this substructure
is also a model of Γ.

Term structures are used primarily as the basis for constructing the
domain of interpretation – namely, the ground terms – for some reachable

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 225

structure, which can, sometimes, be obtained from TΣ by imposing appro-
priate interpretation of the relation symbols. Such use is very common in
theoretical computer science for constructing cannonical models for speci-
fications (theories). This will also be the use we will make of it in the proof
of completeness of N for FOL in the next chapter.

“Syntactic” models have typically an important property of being can-
nonical representatives of the whole model class. When model class comes
equipped with the mappings between models (some form of homomor-
phisms) forming a category, the syntactically constructed models happen
typically to be initial ones. We won’t describe this concept in detail here
and take it simply as a vague synonym for being syntactically generated. In
addition to that, they have a close relationship to the possibility of carrying
out mechanic computations – they give often some possibility of defining a
computational strategy.

3.2: Herbrand’s theorem

In Exercise 11.6 we state the Herbrand theorem which is intimately related
to the so called Herbrand models. These models are, in fact, nothing else
but the term models we encounter in the proof of completeness for FOL.
But to avoid the need of “saturating” the theory, one makes additional
restrictions.

Suppose Σ contains at least one constant, and let Γ be a set of
quantifier free Σ-formulae. Then: Γ CFOL

N ⊥ ⇐⇒ GI(Γ) CPL
N ⊥.

Requirement on the formulae in Γ to be quantifier-free amounts to their
universal closure and is crucial for the reduction of FOL-inconsistency to PL-
inconsistency in the theorem. GI(Γ) is the set of all ground instances of the
formulae in Γ which, by the requirement on the alphabet Σ, is guaranteed to
be non-empty. The implication GI(Γ) CPL

N ⊥ ⇒ Γ CFOL
N ⊥ holds, of course,

always, since GI(Γ) is, in fact, a weaker theory than Γ – it axiomatizes
only ground instances which are also consequences of Γ. Consider, for
instance, language with one constant symbol a and Γ = {∀x.P (x)}. Then
GI(Γ) = {P (a)}. Obviously, GI(Γ) = P (a) 'CFOL

N ∀x.P (x) which, however,
is trivially a provable consequence of Γ itself.

The importance of Herbrand’s theorem lies in the indentification of the
form of Γ’s allowing also the opposite implication, namely, Γ CFOL

N ⊥ ⇒
GI(Γ) CPL

N ⊥. It amounts to a kind of reduction of the FOL-theory Γ to
all its “syntactically generated” instances. Using this reduction, one can

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

226 Introduction to Logic

attempt to check whether Γ CFOL
N φ by reducing ad absurdum – in PL!!! – the

assumption GI(Γ,¬φ). Such a proof strategy is refered to as “refutational
proof” or “proof by contradiction” and proceeds as follows.

Assume that φ is closed and quantifier free (i.e., ground). The
theorem says that then Γ,¬φ CFOL

N ⊥ ⇔ GI(Γ),¬φ CPL
N ⊥. Thus,

we have to check if some ground instances of (some formulae from)
Γ, together with ¬φ lead to a contradiction. This is not yet any ef-
fective algorithm but we can imagine that such a checking of some
formulae yielding an PL-contradiction can be, at least in princi-
ple and at least in some cases, performed. Having succeeded, i.e.,
showing GI(Γ),¬φ CPL

N ⊥, we obtain Γ,¬φ CFOL
N ⊥ which implies

Γ CFOL
N ¬φ → ⊥ and this, again, Γ CFOL

N φ.

(9.30)

The procedure is slightly generalized when φ contains variables (which are
then interpreted also in a specific way). Various computational mecha-
nisms utilizing this principle will thus restrict their theories to quantifier
free (i.e., universally quantified, according to Exercise 8.9) formulae and
alphabets with non-empty set of ground terms. In the following, we will
see a particular – and quite central – example.

3.3: Horn clauses and logic programming

An important issue with the utilization of Herbrand theorem concerns the
actual strategy to determine if GI(Γ) C ⊥. Various choices are possible
and we suggest only a typical restriction leading to one such possibility
(which, in fact, does not even bother to follow the strategy (9.30) of proof
by contradiction, but derives the consequences of a theory directly).

A clause is a formula of the form L1 ∨ ... ∨ Ln where each Li is a
literal – a positive or negated atom (i.e., formula of the form P (t) for a
sequence of some (not necessarily ground) terms t.) By the general fact
that M |= A ⇔ M |= ∀(A), one does not write the universal quantifiers
which are present implicitly. A Horn clause is a clause having exactly one
positive literal, i.e., ¬A1∨ ...∨¬An∨A, which therefore can also be writtem
as

A1 ∧A2 ∧ ... ∧An → A (9.31)

where all Ai’s are positive atoms. The particular case of a Horn clause with
n = 0 is called a “fact”. The conjunction of the assumptions is called the
“body” and the conclusion the “head” of the clause. (This terminology is
used only in the context of logic programming.)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 227

MP and the chaining rule 7.23.(1) can be generalized to the following
rule operating on and yielding only Horn clauses:

Γ CN A1 ∧ ... ∧Ak → Bi ; Γ CN B1 ∧ ... ∧Bi ∧ ... ∧Bn → C

Γ CN B1 ∧ ... ∧ (A1 ∧ ... ∧Ak) ∧ ... ∧Bn → C
(9.32)

(This is a special case of the general resolution rule which “joins” two
clauses removing from each a single literal – a variable occurring positively
in one clause and negatively in the other.) In particular, when Bi is a fact,
it can be simply removed from the body. When all atoms from the body
of a clause get thus removed, its conclusion becomes a new fact.

Suppose, we have the following theory, Γ:

1. Parent(Ben, Ada)
2. Parent(Cyril, Ben)
3. Parent(Cecilie, Ben)
4. Parent(David, Cyril)
5. Ancestor(Eve, x)
6. Parent(y, x) → Ancestor(y, x)
7. Ancestor(z, y) ∧Ancestor(y, x) → Ancestor(z, x)

(9.33)

The questions on the left have then the answers on the right, and you should
have no problems with convincing yourself about that:

Does Γ C...
? Ancestor(Eve,Ada) : Y es 1.
? Parent(David,Ada) : No 2.
? Ancestor(David,Ada) : Y es 3.
? Ancestor(Herod, Ben) : No 4.
? Ancestor(Cyril, x) : Ben, Ada 5.
? Ancestor(x, Ben) : Cecilie, Cyril,David,Eve 6.

(9.34)

The language of Horn clauses has some important properties. On the one
hand, it is the most general sublanguage of FOL which guarantees the ex-
istence of initial models. These are just the Herbrand models obtained by
collecting all positive ground atoms.

3.3.1: . [optional]

In more detail, we know that any universal theory (Π1) has model class closed
under substructures (Theorem 9.13). If the language has some ground terms
then, given any model, we can remove all “junk” elements and obtain a reachable
model. Herbrand model is a term model, i.e., one which does not identfy any
distinct terms but, in fact, interprets a ground term t as itself. In the above
example, a possible model would identify all the persons and made both Parent
and Ancestor reflexive (and consequently also transitive and symmetric). This

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

228 Introduction to Logic

would be a reachable model but not the intended one. Herbrand model will be
the one we actually intended writing the program.

To construct it, we start with the (ground instances of) all facts and iterate
the process of resolving the assumptions of conditional clauses to add more facts
(essentially, by applying the rule (9.32).) Given a Horn clause theory Γ, we define:

HUΓ : the Herbrand universe = the set of all ground terms. In the example (abbre-
viating the names by their first initials): {a,b, c1, c2,d, e}

HBΓ : the Herbrand base = the set of all ground atoms. The model will be obtained
as a subset of this set, namely, all ground atoms which must be true.

HΓ : The construction of the Herbrand model proceeds inductively as follows.
Write Γ = (F , C) as the pair of facts and clauses:

(1) H0 = GI(F) – all ground instances of all facts;

(2) Hi+1 = Hi ∪ {θ(C) : A1 ∧ ... ∧ An → C ∈ C & θ(A1), ..., θ(An) ∈ Hi} – with
θ ranging over all ground substitutions (to the assumed given and fixed set
of all variables X → HUΓ);

(3) HΓ =
⋃

i<ω

Hi.

In the above example, we would obtain the model:

• HUΓ = {a,b, c1, c2,d, e}
• HΓ : Parent = {〈b,a〉, 〈c1,b〉, 〈c2,b〉, 〈d, c1〉} and

Ancestor = {〈e, x〉 : x ∈ HUΓ}∪Parent+ (i.e., transitive closure of Parent)

It is trivial to see that HΓ |= Γ. Assignments to HUΓ amount actually to ground
substitutions so, for all facts, this holds by point (1). For a clause A1...An → C
and an assignment θ, assume that HΓ |=θ A1∧ ...∧An. By construction and point
3. this means that, at some step i, we obtained θ(Ak) ∈ Hi for all 1 ≤ k ≤ n.
But then, by point (2), θ(C) is also included in HΓ at the step Hi+1. In fact, we
have that

HΓ = {A ∈ HBΓ : Γ |= A}. (9.35)

This is the property of minimality – HΓ does not satisfy more atoms than those

which are satisfied in every model of the theory. [end optional]

3.3.2: Computing with Horn Clauses

The other crucial property of Horn clauses is the possibility of operational
interpretation of →, according to which A1 ∧ ... ∧ An → A means that, in
order to establish A, one has to establish A1, ..., An. This trivial chaining
mechanism must be coupled with the treatement of variables. For instance,
to establish Ancestor(e, a) one uses the given fact Ancestor(e, x) which,
however, requires unification of two terms: x and a. Here, it is trivial since
it amounts to a simple substitution. In general, unification may be more

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 229

invovled. For instance, to unify f(x, g(h, x)) and f(d(z), y) requires finding
the substitutions x D→ d(z) and y D→ g(h, d(z)), after which the two terms
become equal to f(d(z), g(h, d(z))).

The query Ancestor(David,Ada) is now processed as follows:

(9.33) goal justification unification
?Ancestor(d,a) ∼ Ancestor(e, x) fails : e '= d

6. ← Parent(d,a) no such fact
7. ← Ancestor(d, y) ∧Ancestor(y,a) ?

the search starts for y satisfying both literals in the body
?Ancestor(d, y) ∼ Ancestor(e, x) fails : e '= d

6. ← Parent(d, c1) y = c1

?Ancestor(c1,a) ∼ Ancestor(e, x) fails : e '= c1

6. ← Parent(c1,a) no such fact
7. ← Ancestor(c1, z) ∧Ancestor(z,a) ?

...
... z = b

Y ES

Thus, we can actually compute the facts provable in Horn theories by means
of the above mechanism based on the resolution rule (9.32) and unification
algorithm. Observe the kind of “backward” process of computing: one
starts with the query and performs a “backward chaining” along the avail-
able clauses until one manages to resolve all the assumptions by matching
them against available facts.
Unification . [optional]
In more detail, we use the (Horn clause) language defined as follows:

T (erms) := C(onstants) | V (ariables) | F (T...T)
C, V and Function symbols depend on the context/program;
and so do the P redicate symbols:
S(implegoal) := P (T...T)

G(oals) := S | S ∧G
C(lause) := G → S | S

P (rogram) := C∗

Q(uery) := ?S

One implements then the rule (9.32) by the following algorithm. Given Horn
clauses: A1 ∧ ... ∧ An → A and B1 ∧ ... ∧ Bm → B, when trying to establish A,
we will have to resolve all Ai. We attempt to replace them by facts, and if this
fails, by Bi’s (until we arrive at facts):

(1) select an atom Ai and

(2) try to unify it with B (see further down for unification)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

230 Introduction to Logic

(3) if unification succeeded, replace Ai by B1 ∧ ... ∧Bm

(4) apply to the resulting clause the unifying substitution from 2.

If unification in (2) fails, try the next Ai+1. If none can be unified with B, try
other clauses.

Unification of two atoms P (t1...tn) and R(s1...sn) requires first that P ≡ R
are syntactically identical (the same relation symbol) and then it amounts to
finding a unifier, namely, a substitution θ such that for each i : θ(ti) = θ(si).
If two terms have a unifier they also have a most general unifier, mgu. For
instance, a possible unifier of t1 = f(x, g(a, x)) and t2 = f(d(z), y) is α = {x -→
d(d(a)), y -→ g(a, d(d(a))), z -→ d(a)}, which yields the term α(t1) = α(t2) =
f(d(d(a)), g(a, d(d(a)))). However, the unifier θ = {x -→ d(z), y -→ g(a, d(z))} is
more general – it yields the term θ(t1) = θ(t2) = f(d(z), g(a, d(z))), from which
α(t1) can be obtained by further substitution β = {z -→ d(a)}. The most general
unifier of terms ti is a substitution θ such that for any other unifier α, there is a
substitution β such that α(ti) = β(θ(ti)).

The following algorithm finds the most general unifier solving a set of equa-
tions {s1 = t1...sn = tn} or reports the nonexistence of any unifier. It chooses
repeatedly and nondeterministically one of the equations in the set and, perform-
ing the associated action, transforms the set (or halts). ≡ stands here for the
syntactic identity.

if si = ti has the form then
1.f(s′1...s

′
k) = f(t′1...t

′
k) replace it by k equations s′i = t′i

2.f(s′1...s
′
k) = g(t′1...t

′
l) and f)≡ g terminate with failure

3. x = x delete it
4. t = x and t)∈ V replace it with x = t
5. x = t and t)≡ x and if x ∈ V(t) – terminate with failure

x occurs in the rest of equations – otherwise, substitute x -→ t
in all other equations

On successful termination, the set has the form {x1 = r1...xm = rm}, where xi’s

are distinct variables from the initial terms and ri’s determine the substitution

to be performed. (Variable x not occurring in this solution set is substituted by

itself.). [end optional]

Let us write Γ " A iff the ground atom A can be obtained from a set of
Horn clauses Γ using the above strategy. The following equivalences express
then the soundness and completeness of the strategy with respect to the
least Herbrand model as well as the whole model class (since the last two
are equivalent for ground atoms by (9.35)):

Γ " A ⇐⇒ HΓ |= A
⇐⇒ Γ |= A

(9.36)

Thus, we can say that our computational strategy is just a way of checking
if some fact holds in the least Herbrand model, HΓ, of a given Horn clause
theory Γ. Notice, however, that the equivalences hold here only for the

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 231

ground atoms (they hold a bit more generally, but it does not affect our
point here). We do have that HΓ |= A ⇒ Γ " A which says that every
valid atom will be generated by the strategy. Conversely, we have also that
HΓ '|= A ⇒ Γ '" A. This, however, says only that if an atom is not satisfied,
the strategy will not derive it. But there is no way to ensure derivability
in our strategy of ¬A, since such literals are not part of the Horn clause
language for which our results obtain.

3.3.3: Computational Completeness . [optional]

What is even more surprising than the operational interpretation of Horn clauses
sketched above, is that we can thus compute everything which can be computed
on a Turing machine:

The mechanism of unification and resolution of Horn clauses is
Turing complete.

(9.37)

Probably the simplest proof of this fact shows that register machine programs,
rmp’s, can be simulated by Horn clause programs. We have to take for granted the
result stating that the rmp’s as described below are computationally equivalent
to Turing machines.

A register machine operates with a memory consisting of a finite set of reg-
isters which can store natural numbers, and a program is a set of instructions
modifing the contents of the registers. More specifically, nn rmp for a register
machine over m registers x1...xm is a sequence I1...In of n numbered instructions,
each in one of the two forms:

(inc) xi := xi + 1 – increment register xi;

(cnd) if xi)= 0 then xi := xi − 1 and goto j – conditional decrement and jump.

If, on reaching the instruction of the second form, xi = 0, the program simply
proceeds to the next instruction. The program terminates on reaching the halt in-
struction, always implicitly present as the In+1-th instruction. Such an rmp is said
to compute a (partial) function f : Nl → N, l ≤ m if ∀n1...nl ∈ N the execution
starting with the register values n1...nl, 0...0m (the additional registeres xl+1...xm

which are not input are initialized to 0), terminates with x1 = f(n1...nl), when-
ever f(n1...nl) is defined, and does not terminate otherwise.

Such an rmp is simulated by a Horn clause program P as follows. For each
instruction Ik, 1 ≤ k ≤ n + 1, we have a predicate symbol Pk(x1...xm, y) – the
xi’s corresponding to the registeres and y to the result of the computation. Each
Ik is either (inc) or (cnd) and these are simulated, respectively, by:

(inc) Pk+1(x1...s(xi)...xm, y) → Pk(x1...xi...xm, y)

(cnd) Pk+1(x1...0...xm, y) → Pk(x1...0...xm, y) (I ′k)
Pj(x1...xi...xm, y) → Pk(x1...s(xi)...xm, y)

In addition, we also have the halt instruction transferring x1 to the result postion:

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

232 Introduction to Logic

(hlt) Pn+1(x1...xm, x1) (I ′n+1)
The query P1(n1...nl, 0...0m, y) will result in the computation simulating step by
step the execution of the corresponding rmp.

As a very simple corollary of the above fact (9.37), we obtain:

First order logic is undecidable. (9.38)

How does it follow? We have to take for granted yet another fact, namely, that
halting problem for the rmp’s (and hence also for Horn clause programs) is, just
as it is for Turing machines, undecidable. (It should not be all too difficult to
imagine that all these halting problems are, in fact, one and the same problem.)
But halting of an rmp is equivalent to the existence of a result for the initial query,
i.e., to the truth of the formula ∃yP1(n1...nl, 0...0m, y) under the assumptions
gathering all the clauses of the program P , in short, to the entailment

∀(I ′1), ..., ∀(I ′n), ∀(I ′n+1) |= ∃yP1(n1...nl, 0...0m, y). (9.39)

If this entailment could be decided, we could decide the problem if our rmp’s halt
or not. But such a procedure does not exist by the undecidability of the halting
problem for Turing machines (if only we have accepted the equivalence of the two
problems).

Prolog .
Fact (9.37), and the preceding computation strategy, underlie Prolog – the

programming language in which programs are sets of Horn clauses. It enables one
asking queries about single facts but also about the possible instances making up
facts, like the queries 6. or 5. in (9.34), about all x such that Ancestor(Cyril, x).
There are, of course, various operational details of not quite logical character
which, in some cases, yield unexpected and even unsound results. They have
mainly to do with the treatement of negation.

Wondering about the computational power of such a simple mechanism, one

should ask oneself, considering the fact (9.37): where does the undecidability en-

ter the stage here? The answer – suggested already in discussion after (9.36) – is:

with the treatement of negation. Obviously, any positive atom following from a

given set of clauses (and facts) can be computed in a finite time. In the above ex-

ample of family relations the universe of terms was finite so, at least in principle,

one can terminate the search for matching pairs of ancestors with the answer ‘no’

to the query ?Ancestor(Ada, Cyril). But in general, in the presence of function

symbols, this universe is potentially infinite. Negation turns thus out to be tricky

issue: one simply does not have a general rule for terminating a prolonged and

unsuccessful search for matching substitutions – which would guarantee that the

answer ‘no’ is always correct. (There is an extensive literature on the (im)possible

treatement of this issue in Prolog.). [end optional]

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.3. More Semantics 233

Exercises 9.

exercise 9.1 Give an example contradicting the opposite implication to
the one from Lemma 7.24.1, i.e., show that '|= A → ∀xA.
exercise 9.2 Find PNFs for the following formulae
(1) ∀x(f(g(x)) = x) → ∀x∃y(f(y) = x)
(2) ∃z∀xA(x, z) → ∀x∃zA(x, z)
(3) ∀x∃y(x + y = 0) ∧ ∀x∀y(x + y = 0 → y + x = 0)

Since the matrix of a formula in PNF contains no quantifiers, it is often
useful to assume that it is in DNF (or CNF). This can be obtained by the
same manipulations as for PL. Transform the matrix of the result of the
point 3 into DNF.
exercise 9.3 Verify that the remaining equivalences claimed in
Lemma 9.3 do hold.
exercise 9.4 Show that 〈Str(Σ),N 〉 is a weak partial ordering as claimed
in remark 9.11.
exercise 9.5 Show that all structures of example 8.3, except 4., are reach-
able.
exercise 9.6 Explain why, in point 1. of theorem 9.13 it is necessary to
assume that A is closed. Let, for instance, A = ∃xR(x, y). Is it a Σ1

formula? Could the statement be proved for this A? [Recall fact 8.27!]
optional

exercise 9.7 A more precise formulation of lemma 9.2 can be given along
the following lines:
We may assume that the language of FOL contains propositional vari-
ables – these can be viewed as nullary relation symbols. Moreover, it is
always possible to substitute a formula for such a propositional variable,
and obtain a new formula: F a

A is the formula obtained by substitution of
the formula A for the propositional variable a in the formula F . Now a
reformulation of lemma 9.2 says that A ⇔ B implies F a

A ⇔ F a
B .

Compare this result to lemma 8.9. Would it be possible to formulate also
a version saying that [[A]]Mv = [[B]]Mv implies [[F a

A]]Mv = [[F a
B]]Mv ?

exercise 9.8 Theorem 9.6 states logical (i.e., semantic) equivalence of
each formula A and its PNF AP . Now, show that we also have a corre-
sponding proof theoretic (syntactic) result: for each A, there is a formula
AP in PNF such that CN A ↔ AP .
exercise 9.9 [Skolem Normal Form]
This exercise involves some intricacies similar to those from Example 9.28.
Let A be the closed formula ∀x∃y∀zB(x, y, z), where B has no quantifiers.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

234 Introduction to Logic

(1) Let f be a new unary function symbol, and let AS be
∀x∀zB(x, f(x), z).

(2) Show that A is satisfiable if and only if AS is satisfiable.
(Hint: Show that a model for any one of the two formulae can be
transformed into a model for the other.)

(3) Show that A and AS are not logically equivalent.
(Hint: Find a structure which does not satisfy one of the implications
A → AS or AS → A.)

(4) Repeat the analogous steps 1 and 2 to the closed formula
∀x∀u∃y∀zB(x, u, y, z).

(5) By Theorem 9.6, each formula is equivalent to a PNF formula. Use
induction on the length of the prefix of PNF AP to show that for each
FOL formula A, there is a formula AS with only universal quantifiers
(but usually new function symbols) such that A is satisfiable if and
only if AS is satisfiable. [Such form AS of a formula A is called
“Skolem normal form”.]

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.4. Soundness, Completeness 235

Chapter 10

Soundness, Completeness

• Soundness of N
• Completeness of N
• Completeness of G

1: Soundness
We show the soundness and completeness theorems for the proof system N
for FOL. As in the case of PL, soundness is an easy task.

Theorem 10.1 [Soundness] For every Γ ⊆ WFFFOL and A ∈ WFFFOL:
if Γ CN A then Γ |= A.

Proof. Axioms A0-A3 and MP are the same as for PL and their va-
lidity follows from the proof of the soundness theorem 6.14 for PL.
Validity of A4 was shown in exercise 8.4.
It remains to show that ∃I preserves validity, i.e. that M |= B → C
implies M |= ∃xB → C for arbitrary models M , provided x is not free
in C. In fact, it is easier to show the contrapositive implication from
M '|= ∃xB → C to M '|= B → C. So suppose M '|= ∃xB → C, i.e.,
M '|=v ∃xB → C for some v. Then M |=v ∃xB and M '|=v C. Hence
M |=v[x(→a] B for some a. Since M '|=v C and x '∈ V(C), it follows
from Lemma 8.7 that also M '|=v[x(→a] C, hence M '|=v[x(→a] B → C,
i.e., M '|= B → C. QED (10.1)

By the same argument as in Corollary 6.15, every satisfiable FOL theory is
consistent or, equivalently, inconsistent FOL theory is unsatisfiable:

Corollary 10.2 Γ CN ⊥ ⇒ Mod(Γ) = ∅.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

236 Introduction to Logic

Proof. If Γ CN ⊥ then, by the theorem, Γ |= ⊥, i.e., for any M : M |=
Γ ⇒ M |= ⊥. But there is no M such that M |= ⊥, so Mod(Γ) = ∅.

QED (10.2)

Remark.
Remark 6.16 showed equivalence of the two soundness notions for PL. The equiv-
alence holds also for FOL but the proof of the opposite implication, namely,

Γ 9N ⊥ ⇒ Mod(Γ) = ∅ implies Γ 9N A ⇒ Γ |= A,

involves an additional subtelty concerning possible presence of free variables in
A. Assuming Γ 9N A we first observe that then we also have Γ 9N ∀(A) by
lemma 7.24.4. Hence Γ,¬∀(A) 9N ⊥ and, by i), it has no models: for any M , if
M |= Γ then M)|= ¬∀(A). From this last fact we can conclude that M |= ∀(A) –
because ∀(A) is closed (recall remark 8.17). By fact 8.25, we can now conclude
that M |= A and, since M was an arbitrary model of Γ, that Γ |= A.

2: Completeness
As in the case of PL, we prove the opposite of corollary 10.2, namely, that
every consistent FOL-theory is satisfiable. Starting with a consistent theory
Γ, we have to show that there is a model satisfying Γ. The procedure is
thus very similar to the one applied for PL (which you might repeat before
reading this section). Its main point was expressed in Lemma 6.17, which
has the following counterpart:

Lemma 10.3 The following two formulations of completeness are equiva-
lent:

(1) For any Γ ⊆ WFFFOL: Γ 'CN ⊥ ⇒ Mod(Γ) '= ∅
(2) For any Γ ⊆ WFFFOL: Γ |= A ⇒ Γ CN A

Proof. (1) ⇒ (2). Assume (1) and Γ |= A. Let us first consider special
case when A is closed. Then Γ,¬A is unsatisfiable and therefore, by (1),
inconsistent, i.e., Γ,¬A CN ⊥. By Deduction Theorem Γ CN ¬A → ⊥,
so Γ CN A by PL.
This result for closed A yields the general version: If Γ |= A then
Γ |= ∀(A) by Fact 8.27. By the argument above Γ CN ∀(A), and so
Γ CN A by Lemma 7.24.(1) and MP.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.4. Soundness, Completeness 237

(2) ⇒ (1). This is shown by exactly the same argument as for PL in
the proof of Lemma 6.17. QED (10.3)

Although the general procedure, based on the above lemma, is the same,
the details are now more involved as both the language and its semantics are
more complex. The model we will eventually construct will be a term model
for an appropriate extension of Γ. The following definitions characterize the
extension we will be looking for.

Definition 10.4 A theory Γ is said to be

• maximal consistent iff it is consistent and, for any closed formula A, Γ CN A
or Γ CN ¬A (cf. Definition 6.18);

• a Henkin-theory if for each closed formula of the type ∃xA there is an
individual constant c such that Γ CN ∃xA → Ax

c ;
• a complete Henkin-theory if it is both a Henkin-theory and maximal con-

sistent.

In particular, every complete Henkin-theory is consistent.
Remark.
The constant c in the definition above is called a witness – it witnesses to the truth
of the formula ∃xA by providing a ground term which validates the existential
quantifier. The precise definition of a Henkin-theory may vary somewhat in the
literature. The condition in the lemma below looks slightly weaker than the one
in the definition, but turns out to be equivalent. The proof is an easy exercise.

Lemma 10.5 Let Γ be a theory, and suppose that for every formula A with
exactly one variable x free, there is a constant cA such that Γ CN ∃xA → Ax

cA
.

Then Γ is a Henkin-theory.

The properties of a complete Henkin-theory make it easier to construct a
model for it. We prove first this special case of the completeness theorem:

Lemma 10.6 Every complete Henkin-theory is satisfiable.

Proof. The alphabet of any Henkin-theory will always contain an in-
dividual constant. Now consider the term structure TΓ (we index it
with Γ and not merely the alphabet, as in Definition 9.23, since we will
make it into a model of Γ) where:
• for each relation symbol R ∈ R of arity n, and ground terms

t1, . . . ,tn ∈ TΓ :

〈t1, . . . ,tn〉 ∈ [[R]]TΓ ⇔ Γ CN R(t1, . . . ,tn)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

238 Introduction to Logic

We show, by induction on the number of connectives and quantifiers in
a formula, that for any closed formula A we have TΓ |= A iff Γ CN A.
(From this it follows that TΓ is a model of Γ: if A ∈ Γ then Γ CN ∀(A),
so TΓ |= ∀(A), i.e., by Fact 8.27, TΓ |= A.)

A is :
Atomic :: Follows directly from the construction of TΓ.

TΓ |= R(t1, . . . ,tn) ⇔ 〈t1, . . . ,tn〉 ∈ [[R]]TΓ ⇔ Γ CN R(t1, . . . ,tn).

¬B :: We have the following equivalences:

TΓ |= ¬B ⇔ TΓ '|= B definition of |=, A closed
⇔ Γ 'CN B IH
⇔ Γ CN ¬B maximality of Γ

B → C :: Since TΓ |= A ⇔ TΓ '|= B or TΓ |= C, we have two cases.
Each one follows easily by IH and maximality of Γ.

∃xB :: As A is closed and Γ is Henkin, we have Γ CN ∃xB → Bx
c

for some c. Now if Γ CN A then also Γ CN Bx
c and, by IH,

TΓ |= Bx
c , hence TΓ |= ∃xB by soundness of A4.

For the converse, assume that TΓ |= ∃xB, i.e., there is
a t ∈ TΓ such that TΓ |=x(→t B. But then TΓ |= Bx

t by
Lemmata 8.9 and 8.7, so by IH, Γ CN Bx

t , and by A4 and
MP, Γ CN A.

QED (10.6)

The construction in the above proof is only guaranteed to work for complete
Henkin-theories. The following examples illustrate why.

Example 10.7
For Γ in general, TΓ may fail to satisfy some formulae from Γ (or Th(Γ))

because:

(1) Some (atomic) formulae are not provable from Γ:
Let Σ contain two constant symbols a and b and one binary relation
R. Let Γ be a theory over Σ with one axiom R(a, b) ∨ R(b, a). Each
model of Γ must satisfy at least one disjunct but, since Γ 'CN R(a, b)
and Γ 'CN R(b, a), none of these relations will hold in TΓ.

(2) The interpretation domain TΓ has too few elements:
It may happen that Γ CN ∃xR(x) but Γ 'CN R(t) for any ground term
t. Since only ground terms are in TΓ, this would again mean that
TΓ '|= ∃xR(x).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.4. Soundness, Completeness 239

!

A general assumption to be made in the following is that the alphabet
Σ under consideration is countable (i.e., has at most countably infinitely
many symbols). Although not necessary, it is seldom violated and makes
the arguments clearer.

We now strengthen Lemma 10.6 by successively removing the extra as-
sumptions about the theory. First we show that the assumption about
maximal consistency is superfluous; every consistent theory can be ex-
tended to a maximal consistent one. (Γ′ is an extension of Γ if Γ ⊆ Γ′.)

Lemma 10.8 Let Σ be a countable alphabet. Every consistent theory Γ
over Σ has a maximal consistent extension Γ̂ over the same Σ.

Proof. Since |Σ| ≤ ℵ0, there are at most ℵ0 Σ-formulae. Choose an
enumeration A0, A1, A2, . . . of all closed Σ-formulae and construct an
increasing sequence of theories as follows:

Basis :: Γ0 = Γ

Ind. :: Γn+1 =
{

Γn, An if it is consistent
Γn,¬An otherwise

Clsr. :: Γ̂ =
⋃

n∈N
Γn

We show by induction on n that for any n, Γn is consistent.

Basis :: Γ0 = Γ is consistent by assumption.
Ind. :: Suppose Γn is consistent. If Γn+1 is inconsistent, then

from the definition of Γn+1 we know that both Γn, An and
Γn,¬An are inconsistent, hence by Deduction Theorem
both An → ⊥ and ¬An → ⊥ are provable from Γn. By
Exercise 4.1.(4), Γn proves then both An and ¬An, which
contradicts its consistency by Exercise 4.5.

By Theorem 4.29 (holding for FOL by the same argument as in PL), Γ̂
is consistent iff each of its finite subtheories is. Any finite subtheory
of Γ̂ is included in some Γn, so Γ̂ is consistent. From the definition of
Γ̂ it now follows that Γ̂ is also maximal consistent. QED (10.8)

Corollary 10.9 Let Σ be a countable alphabet. Every consistent Henkin-
theory over Σ is satisfiable.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

240 Introduction to Logic

Proof. If Γ is a consistent Henkin-theory, it has an extension Γ̂ which
is maximal consistent. Now since Γ ⊆ Γ̂ and both are theories over the
same alphabet Σ, it follows that Γ̂ is a Henkin-theory if Γ is. Hence Γ̂
is a complete Henkin-theory and so has a model, which is also a model
of Γ. QED (10.9)

To bridge the gap between this result and completeness Theorem 10.15 we
need to show that every consistent theory has a consistent Henkin extension
– we shall make use of the following auxiliary notion.

Definition 10.10 Let Σ and Σ′ be two alphabets, and assume Σ ⊆ Σ′.
Moreover, let Γ be a Σ-theory and let Γ′ be a Σ′-theory. Then Γ′ is said to be
a conservative extension of Γ, written Γ 8 Γ′, if Γ ⊆ Γ′ and for all Σ-formulae
A: if Γ′ CN A then Γ CN A.

A conservative extension Γ′ of Γ may prove more formulae over the ex-
tended alphabet but any formula over the alphabet of Γ provable from Γ′,
must be provable already from Γ itself. The next lemma records a few
useful facts about conservative extensions. The proof is left as an exercise.

Lemma 10.11 The conservative extension relation 8:

(1) preserves consistency: if Γ1 8 Γ2 and Γ1 is consistent, then so is Γ2.
(2) is transitive: if Γ1 8 Γ2 and Γ2 8 Γ3 then Γ1 8 Γ3.
(3) is preserved in limits: if Γ1 8 Γ2 8 Γ3 8 . . . is an infinite sequence with

each theory being a conservative extension of the previous, then
⋃

n∈N Γn

is a conservative extension of Γ1.

We shall make use of these facts in a moment, but first we record the
following important lemma, stating that adding a single Henkin witness
and formula to a theory yields its conservative extension.

Lemma 10.12 Let Γ be a Σ-theory, A a Σ-formula with at most x free, c
an individual constant that does not occur in Σ and let Σ′ = Σ ∪ {c}. Then
the Σ′-theory Γ ∪ {∃xA → Ax

c} is a conservative extension of Γ.

Proof. Let B be an arbitrary Σ-formula, which is provable from the
extended theory, i.e.,
1 : Γ, ∃xA → Ax

c 9N B

2 : Γ 9N (∃xA → Ax
c) → B DT + at most x free in A

This means that Γ, with axioms not involving any occurrences of
c, proves the indicated formula which has such occurrences. Thus we

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.4. Soundness, Completeness 241

may choose a fresh variable y (not occurring in this proof) and replace
all occurrences of c in this proof by y. We then obtain
3 : Γ 9N (∃xA → Ax

y) → B

4 : Γ 9N ∃y(∃xA → Ax
y) → B ∃I +y not free in B

5 : Γ 9N ∃y(∃xA → Ax
y) Exc. 7.2.(2) + 7.5

6 : Γ 9N B MP (5, 4) QED (10.12)

Lemma 10.13 Let Σ be a countable alphabet, and let Γ be a Σ-theory.
Then there exists a countable alphabet ΣH and a ΣH -theory ΓH such that
Σ ⊆ ΣH , Γ 8 ΓH , and ΓH is a Henkin-theory over ΣH .

Proof. Let Γ be a Σ-theory. Extend the alphabet Σ to H(Σ) by
adding, for each Σ-formula A with exactly one variable free, a new
constant cA. Let H(Γ) be the H(Σ)-theory obtained by adding to Γ,
for each such A, the new axiom

∃xA → Ax
cA

,

where x is the free variable of A.
In particular, H(Γ) can be obtained by the following iterated con-
struction: we enumerate all formulae A with exactly one variable free,
getting A0, A1, A2, A3, For any n, let xn be the free variable of An.
We take

Basis :: Γ0 = Γ and Σ0 = Σ
Ind. :: Γn+1 = Γn,∃xnAn → (An)xn

cAn
, and

Σn+1 = Σn ∪ {cAn}
Clsr. :: H(Γ) =

⋃

n∈N
Γn and H(Σ) =

⋃

n∈N
Σn.

(10.14)

By Lemma 10.12, each theory Γn+1 is a conservative extension of Γn,
and hence by Lemma 10.11 H(Γ) is a conservative extension of Γ. It
is also clear that H(Σ) is countable, since only countably many new
constants are added.
H(Γ) is however not a Henkin-theory, since we have not ensured the
provability of appropriate formulae ∃xA → Ax

c for H(Σ)-formulae A
that are not Σ-formulae. For instance, for R ∈ Σ

H(Γ) CN ∃x∃yR(x, y) → ∃yR(c∃yR(x,y), y),

but there may be no c such that

H(Γ) CN ∃yR(c∃yR(x,y), y) → R(c∃yR(x,y), c).

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

242 Introduction to Logic

To obtain a Henkin-theory, the construction (10.14) has to be iterated,
i.e, the sequence of theories Γ,H(Γ),H2(Γ),H3(Γ), . . . is constructed
(where Hn+1(Γ) is obtained by starting (10.14) with Γ0 = Hn(Γ)),
and ΓH is defined as the union of them all

⋃
n∈N Hn(Γ).

The sequence of corresponding alphabets Σ,H(Σ),H2(Σ),H3(Σ), . . .
are collected into a corresponding union ΣH . ΓH is a ΣH -theory and
ΣH , being the union of countably many countable sets, is itself count-
able.
Since each theory Hn+1(Γ) is a conservative extension of Hn(Γ), it
follows by Lemma 10.11 that ΓH is a conservative extension of Γ.
Finally we check that ΓH is a Henkin-theory over ΣH : let A be any ΣH -
formula with exactly x free. A contains only finitely many symbols,
so A is also a Hn(Σ)-formula for some n. But then ∃xA → Ax

cA
is

contained in Hn+1(Γ), and hence in ΓH . By Lemma 10.5, this proves
that ΓH is a Henkin-theory. QED (10.13)

Gathering all the pieces we thus obtain the main result.

Theorem 10.15 Let Σ be a countable alphabet. Every consistent theory
over Σ is satisfiable.

Proof. Let Σ be countable. Suppose Γ is a consistent Σ-theory. Then
there exist ΓH and ΣH with the properties described in Lemma 10.13.
Since Γ is consistent, ΓH , being a conservative extension, must be con-
sistent as well. By Corollary 10.9, ΓH (and hence Γ) has a ΣH -model.
This can be converted to a Σ-model by “forgetting” the interpretation
of symbols in ΣH \ Σ. QED (10.15)

This is the strongest version that we prove here. The assumption about
countability is however unnecessary, and the following version is also true.

Theorem 10.16 Every consistent theory is satisfiable.

Lemma 10.3 and soundness yield then the final result:

Corollary 10.17 For any Γ ⊆ WFFFOL, A ∈ WFFFOL we have the follow-
ing.

(1) Γ |= A iff Γ CN A.
(2) Mod(Γ) '= ∅ iff Γ 'CN ⊥, i.e. Γ is satisfiable iff it is consistent.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.4. Soundness, Completeness 243

2.1: Some Applications

We list here some typical questions, the answers to which may be signifi-
cantly simplified by using soundness and completeness theorem. These are
the same questions as we listed earlier in Subsection 4.1 after the respective
theorems for statement logic. The schemata of the arguments are also the
same as before, because they are based exclusively on the soundness and
completeness of the respective axiomatic system. The differences concern,
of course, the semantic definitions which are more complicated for FOL,
than they were for PL.

1. Is a formula provable?
If it is, it may be worth trying to construct a syntactic proof of it. Gentzen’s
system is easiest to use, so it can be most naturally used for this purpose.
However, one should first try to make a “justified guess”. To make a guess,
we first try to see if we can easily construct a counter example, i.e., a
structure which falsifies the formula. For instance, is it the case that:

CN (∃xP (x) → ∃xQ(x)) → ∀x(P (x) → Q(x)) ? (10.18)

Instead of starting to look for a syntactic proof, we better think first. Can
we falsify this formula, i.e., find a structure M such that

(i) M |= ∃xP (x) → ∃xQ(x) and (ii) M '|= ∀x(P (x) → Q(x)) ?
(10.19)

More explicitly, (i) requires that

either : for all m1 ∈ M : [[P (x)]]Mx(→m1
= 0

or : for some m2 ∈ M : [[Q(x)]]Mx(→m2
= 1

(10.20)

while (ii) that

for some m ∈ M : [[P (x)]]Mx(→m = 1 and [[Q(x)]]Mx(→m = 0. (10.21)

But this should be easy to do. Let M = {m1,m2} with [[P]]M = {m1} and
[[Q]]M = {m2}. This makes (10.20) true since [[Q(x)]]Mx(→m2

= 1. On the
other hand (10.21) holds for m1 : [[P (x)]]Mx(→m1

= 1 and [[Q(x)]]Mx(→m1
= 0.

Thus, the formula in (10.18) is not valid and, by soundness of N , is not
provable.

This is, in fact, the only general means of showing that a formula is
not provable in a sound system which is not decidable (and since FOL
is undecidable (9.38), so sound and complete N can not be) – to find a
structure providing a counter example to validity of the formula.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

244 Introduction to Logic

If such an analysis fails, i.e., if we are unable to find a counter example,
it may indicate that we should rather try to construct a proof of the formula
in our system. By completeness of this system, such a proof will exist,
if the formula is valid.

2. Is a formula valid?
For instance, is it the case that

|= ∀x(P (x) → Q(x)) → (∃xP (x) → ∃Q(x))? (10.22)
We may first try to see if we can find a counter example. In this
case, we need a structure M such that M |= ∀x(P (x) → Q(x)) and
M '|= ∃xP (x) → ∃xQ(x) – since both (sub)formulae are closed we need
not consider particular assignments. Thus, M should be such that

for all m ∈ M : [[P (x) → Q(x)]]Mx(→m = 1. (10.23)
To falsify the other formula we have to find an

m1 ∈ M such that [[P (x)]]Mx(→m1
= 1 (10.24)

and such that
for all m2 ∈ M : [[Q(x)]]Mx(→m2

= 0. (10.25)
Assume that m1 is as required by (10.24). Then (10.23) implies that we
also have [[Q(x)]]Mx(→m1

= 1. But this means that (10.25) cannot be forced,
m1 being a witness contradicting this statement. Thus, the formula from
(10.22) cannot be falsified in any structure, i.e., it is valid. This is sufficient
argument – direct, semantic proof of validity of the formula.

However, such semantic arguments involve complicating subtelities
which may easily confuse us when we are using them. If we have a strong
conviction that the formula indeed is valid, we may instead attempt a syn-
tactic proof. Below, we are doing it in Gentzen’s system – soundness and
completeness theorems hold for this system as well. (Notice that we first
eliminate the quantifier from ∃xP (x) since this requires a fresh variable y;
the subsequent substitutions must be legal but need not introduce fresh
variables.)

P (y) CG Q(y), P (y) ; Q(y), P (y) CG Q(y)
P (y) → Q(y), P (y) CG Q(y)

∀x(P (x) → Q(x)), P (y) CG ∃xQ(x)
∀x(P (x) → Q(x)),∃xP (x) CG ∃xQ(x)

∀x(P (x) → Q(x)) CG ∃xP (x) → ∃xQ(x)
CG ∀x(P (x) → Q(x)) → (∃xP (x) → ∃xQ(x))

Having this proof we conclude, by soundness of CG, that the formula is
indeed valid.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.4. Soundness, Completeness 245

Summarising these two points.
In most axiomatic systems the relation X CY is semi-decidable: to establish
that it holds, it is enough to generate all the proofs until we encounter one
which proves Y from X. Therefore, if this actually holds, it may be natural
to try to construct a syntactic proof (provided that the axiomatic system
is easy to use, like CG) – completeness of the system guarantees that there
exists a proof of a valid formula. If, however, the relation does not hold, it
is always easier to find a semantic counter example. If it is found, and the
system is sound, it allows us to conclude that the relation X CY does not
hold. That is, in order to know what is easier to do, we have to know what
the answer is! This is, indeed, a vicious circle, and the best one can do is to
“guess” the right answer before proving it. The quality of such “guesses”
increases only with exercise and work with the system itself and cannot be
given in the form of a ready-made recipe.

3. Is a rule admissible?

Suppose that we have an axiomatic system and a rule R :
Γ CA1 . . .Γ CAn

Γ CC
The question whether R is admissible can be answered by trying to verify by
purely proof theoretic means that any given proofs for the premises entitle
the existence of a proof for the conclusion C. This, however, is typically a
cumbersome task.

If the system is sound and complete, there is a much better way to do
that. The schema of the proof is as follows. For the first, we verify if the
rule is sound. If it isn’t, we can immediately conclude, by soundness of
our system, that it is not admissible. If, on the otehr hand, the rule is
sound, the following schematic argument allows us to conclude that it is
admissible:

Γ CA1 . . .Γ CAn
soundness=⇒ Γ |= A1 . . .Γ |= An

⇓ soundness of R

Γ CC
completeness⇐= Γ |= C

For instance, are the following rules admissible in CN :

i)
CN ∃x(P (x) → Q(x)) ; CN ∀xP (x)

CN ∃xQ(x)

ii)
CN ∃x(P (x) → Q(x)) ; CN ∃xP (x)

CN ∃xQ(x)
?

The first thing to check is whether the rules are sound, that is, assume that
M is an arbitrary structure which satisfies the premises. For the rule i),

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

246 Introduction to Logic

this means
M |= ∃x(P (x) → Q(x)) and M |= ∀xP (x)

i.e. for some m ∈ M : and for all n ∈ M :
[[P (x) → Q(x)]]Mx(→m = 1 [[P (x)]]Mx(→n = 1

(10.26)

Will M satisfy the conclusion? Let m be a witness making the first as-
sumption true, i.e., either [[P (x)]]Mx(→m = 0 or [[Q(x)]]Mx(→m = 1. But from
the second premise, we know that for all n, in particular for the chosen
m : [[P (x)]]Mx(→m = 1. Thus, it must be the case that [[Q(x)]]Mx(→m = 1. But
then m is also a witness to the fact that [[∃xQ(x)]]M = 1, i.e., the rule is
sound. By the above argument, i.e., by soundness and completeness
of CN , the rule i) is admissible.

For the second rule ii), we check first its soundness. Let M be an
arbitrary structure satisfying the premises, i.e.:

M |= ∃x(P (x) → Q(x)) and M |= ∃xP (x)

i.e. for some m ∈ M : and for some n ∈ M :
[[P (x) → Q(x)]]Mx(→m = 1 [[P (x)]]Mx(→n = 1

(10.27)

Here it is possible that m '= n and we can utilize this fact to construct an
M which does not satisfy the conlcusion. Let M = {m,n} with [[P]]M =
{n} and [[Q]]M = ∅. Both assumtptions from (10.27) are now satisfied.
However, [[Q]]M = ∅, and so M '|= ∃xQ(x). Thus the rule is not sound and,
by soundness of CN , can not be admissible there.

2.2: Completeness of Gentzen’s system . [optional]

Recall Exercise 6.9 and the discussion just after the introduction of Gentzen’s
system for FOL in Section 7.4. Also, recall from Subsection 3.1 that the semantics
of 9G does not correspond to |= but to ⇒. We thus want to show that whenever∧

Γ ⇒
∨

∆ then Γ 9G ∆, where Γ, ∆ are finite sets of formulae.

(A) We assume that the new rules added in the FOL system are invertible in
the same sense as are the propositional rules (Exercise 6.9). More precisely, for

any rule
Γi 9G ∆i

Γ 9G ∆
, if the conclusion is valid,

∧
Γ ⇒

∨
∆, then so are all the

assumptions,
∧

Γi ⇒
∨

∆i. We can strengthen this, since this implication holds
also when validity is replaced by truth in an arbitrary structure. I.e., for any
structure M , if M |=

∧
Γ →

∨
∆ then likewise M |=

∧
Γi →

∨
∆i for each

assumption i. Verification of this fact is left as Exercise 10.6.

(B) We proceed as we did in Exercise 6.9, constructing a counter-model for any
unprovable seuquent. But now we have to handle the additional complications of
possibly non-terminating derivations. To do this, we specify the following strategy
for an exhaustive bottom-up proof search. (It refines the strategy suggested in
the proof of Theorem 4.30 showing decidability of G for PL.)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.4. Soundness, Completeness 247

(B.1) First, we have to ensure that even if a branch of a (bottom-up) proof does
not terminate, all formulae in the sequent are processed. Let us therefore view a
sequent as a pair of (finite) sequences Γ = G1, ..., Ga and ∆ = D1, ..., Dc. Such
a sequent is processed by applying bottom-up the appropriate rule first to G1,
then to G2, to G3, etc. until Ga, and followed by D1 through Dc. If no rule is
applicable to a formula, it is skipped and one continues with the next formula.
New formulae arising from rule applications are always placed at the start of the
appropriate sequence (on the left or on the right of 9G). These restrictions are
particularly important for the quantifier rules which introduce new formulae, i.e.:

6. 9∃
Γ 9G Ax

t . . . ∃xA . . .

Γ 9G . . . ∃xA . . .
Ax

t legal 6′. ∀ 9
Ax

t . . . ∀xA . . . 9G ∆

. . . ∀xA . . . 9G ∆
Ax

t legal

These two rules might start a non-terminating, repetitive process introducing
new substitution instances of A without ever considering the remaining formulae.
Processing formulae from left to right, and placing new formulae to the left of
the actually processed ones, makes sure that all formulae in a sequent will be
processed, before starting the processing of the newly introduced formulae.

(B.2) We must also ensure that all possible substitution instances of quantified
formulae are attempted in search for axioms. To do this, we assume an enumer-
ation of all terms and require that the formula Ax

t , introduced in the premiss of
rule 6 or 6’, is the smallest which (uses the smallest term t, so that Ax

t) does not
already occur in the sequence to which it is introduced.

(C) Let now Γ 9G ∆ be an arbitrary sequent for which the above strategy does
not yield a proof. There are two cases.

(C.1) If every branch in the obtained proof tree is finite, then all its leafs
contain irreducible sequents, some of which are non-axiomatic. Select such a non-
axiomatic leaf, say, with Φ 9G Ψ. Irreducibility means that no rule can be applied
to this sequent, i.e., all its formulae are atomic. That it is non-axiomatic means
that Φ ∩ Ψ = ∅. Construct a counter-model M by taking all terms occurring
in the atoms of Φ, Ψ as the intepretation domain M . (In particular, if there are
open atomic formulae, their variables are treated as elements on line with ground
terms.) Interpret the predicates over these elements by making all atoms in Φ
true and all atoms in Ψ false. This is possible since Φ ∩ Ψ = ∅. (E.g., a leaf
P (x) 9G P (t) gives the structure with M = {x, t} where t)∈ [[P]]M = {x}.)

Invertibility of the rules implies now that this is also a counter-model to the
initial sequent, i.e.,

∧
Γ)⇒

∨
∆.

(C.2) In the other case, the resulting tree has an infinite branch. We then select
an arbitrary infinite branch B and construct a counter-model M from all the
terms occurring in the atomic formulae on B. (Again, variables occurring in such
formulae are taken as elements on line with ground terms.) The predicates are
defined by

t ∈ [[P]]M iff there is a node on B with P (t) on the left of 9G (*)

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

248 Introduction to Logic

The claim is now that M is a counter-model to every sequent on the whole B. We
show, by induction on the complexity of the formulae, that all those occurring on
B on the left of 9G are true and all those on the right false. The claim is obvious
for the atomic formulae by the definition (*). In particular, since atomic formulae
remain unchanged once they appear on B, and since no node is axiomatic, no
formula occurring on the left of 9G in B occurs also on the right. The claim is easily
verified for the propositional connectives by the invertibility of the propositional
rules. Consider now any quantified formula occurring on the left. Due to fairness
strategy (B.1), it has been processed. If it is universal, it has been processed by
the rule:

6′. ∀ 9 Ax
t . . . ∀xA . . . 9G ∆

. . . ∀xA . . . 9G ∆
Ax

t legal.

Then [[Ax
t]]M = 1 by IH and, moreover, since by (B.2) all such substitution

instances are tried on every infinite branch, so [[Ax
ti

]]M = 1 for all terms ti. But
this means that M |= ∀xA. If the formula is existential, it is processed by the
rule:

7′. ∃ 9 Γ, Ax
x′ 9G ∆

Γ, ∃xA 9G ∆
x′ fresh.

Then x′ occurs in the atomic subformula(e) of A and is an element of M . By IH,
[[Ax

x′]]M = 1 and hence also [[∃xA]]M = 1.
Similarly, by (B.1) every quantified formula on the right of 9G has been pro-

cessed. Universal one was processed by the rule

7. 9∀ Γ 9G Ax
x′ , ∆

Γ,9G ∀xA, ∆
x′ fresh

Then x′ ∈ M and, by IH, [[Ax
x′]]M = 0. Hence also [[∀xA]]M = 0. An existential

formula on the right is processd by the rule

6. 9∃ Γ 9G Ax
t . . . ∃xA . . .

Γ 9G . . . ∃xA . . .
Ax

t legal

and, by the exhaustive fairness strategy (B.2), all such substitution instances Ax
ti

appear on the right of 9G in B. By IH, [[Ax
ti

]]M = 0 for all ti, which means that
[[∃xA]]M = 0.

(D) Since the sequent Γ 9G ∆ is itself on the branch B, being the root of the

whole tree, (C.1) and (C.2) together show that M)|=
∧

Γ →
∨

∆., i.e., that

unprovability of a sequent, Γ)9G ∆, implies the existence of a counter-model for

it,
∧

Γ)⇒
∨

∆. Formulated contrapositively, if a sequent is valid (has no counter-

model),
∧

Γ ⇒
∨

∆, then it is provable, Γ 9G ∆. [end optional]

Exercises 10.

exercise 10.1 Show the inductive step for the case B → C, which was
omitted in the proof of Lemma 10.6.
exercise 10.2 Let Σ contain one constant L and one unary function s.

January 19, 2011 14:20 World Scientific Book - 9in x 6in book

IV.4. Soundness, Completeness 249

Let TΣ denote its term structure. Show that
(1) TΣ is set-isomorphic to the set N of natural numbers,
(2) TΣ with the ordering of terms induced by their inductive definition is

order-isomorphic (Definition 1.17) to N with <.

exercise 10.3 Show that the formula (1) from Lemma 7.24 is provable,
i.e., that Γ CN ∀xA → A, without constructing the actual syntactic proof.
exercise 10.4 Show that the rules (2), (3) and (4) from Lemma 7.24 are
admissible in N without constructing any syntactic proofs (like in the
proof of that lemma).
exercise 10.5 Prove the three statements of Lemma 10.11.
(Hint: In the proof of the last point, you will need (a form of) compactness, i.e.,

if Γ 9N A, then there is a finite subtheory ∆ ⊆ Γ such that ∆ 9N A.)

exercise 10.6 Show that the quantifer rules of Gentzen’s system for FOL,
6, 6’, 7 and 7’ are invertible, i.e., that every structure M in which the
conclusion of the rule is satisfied, then so is its premise.
exercise 10.7 Suppose Definition 10.4 of a maximal consistent theory is
strengthened to the requirement that Γ CN A or Γ CN ¬A for all formulae,
not only the closed ones. In this case Lemma 10.8 would no longer be
true. Explain why.
(Hint: Let P be a unary predicate, a, b two constants and Γ = {P (a),¬P (b)}. Γ

is consistent, but what if you add to it open formula P (x), resp. ¬P (x)? Recall

discussion from Remark 8.17, in particular, Fact (8.20).)

optional
exercise 10.8 [(Downward) Löwenheim-Skolem theorem]
Prove that every consistent theory over a countable alphabet has a count-
able model.
(Hint: You need only find the relevant lemmata. Essentially, you repeat the

proof of completeness verifying that each step preserves countability and, fi-

nally, that this leads to a countable model (in the proof of lemma 10.6). Specify

only the places which need adjustments – and, of course, which adjustments.)

