
1

Universitetet i Bergen
Det matematisk-naturvitenskapelige fakultet

English
Examination in : I-120 Algorithms, Data Structures og Programing
Date : 11 December 2002
Time : 9:00 – 15:00
No. pages : 3 (+ appendix)
Auxiliary materials : All printed and written

• You may use all interfaces and data strucutres from the syllabus – use preferably interfaces
and avoid unnecessary use of concrete data types.

(The appendix contains some interfaces which may be useful in the solutions.)
• You may assume availability of implementations of the interfaces used in your programs.
• Formulate explicitly all additional assumptions which you make and which are not specified
in the problem description.
• If you do not have enough time for writing a full program, you can get almost full credit for
pseudo-code with sufficient comments.
• If you can’t solve a (sub)problem, you may nevertheless continue and assume that its result
is available in later solutions.
• Percentages at each (sub)problem suggest approximate weight at evaluation (not necessarily
the expected time/workload needed for producing an answer).

1 Stack (10%)

We have some implementation(s) of interface BlackWhite { boolean isWhite();}. Write a
method boolean equalNumber(ObjectIterator I, Stack S) which uses only one stack (the
actual parameter S at the method call is assumed to be an empty stack) and which returns true if
and only if the parameter iterator I contains the same number of objects with isWhite()==true as
with isWhite()==false. (I contains a series (of unknown length) of only such objects, appearing
in an arbitrary order).

2 Binary trees (50%)

You are given (an implementation of) the interface Binary Tree (see appendix) which, in
addition, satisfies some data invariant – in subproblem 2.1 the invariant for binary search trees,
while in 2.2 the invariant for heap.

We assume that keys are integers with the usual ordering/comparison and are stored in the
element() attribute of the tree’s Positions. If necessary, you may assume that int k is given as
an appropriate key-object, e.g., Integer K.

2.1 Search trees (25%)

1. Formulate the invariant/condition which a binary tree must satisfy to be a search tree, BST.

2. Draw the BST resulting from the insertions of elements with the keys: 5, 3, 8, 6, 9, 7, 1, 4
(in this order, i.e., first 5, then 3, then 8, etc.). The insertion is assumed to respect only the
search invariant and does not perform any additional balancing of the tree.

3. Draw the BST resulting from the removal of the element with key 5 from the above tree.

4. Program a method void less(BinaryTree T, int x) which prints out all keys (integers)
collected in the search tree T and which are less than or equal to x (all k such that k<=x).

2

5. Which numbers – and in which order – will be printed when we call your method less(T,7),
with the tree T which you obtained in point 2?

6. What is the worst-case complexity of your method (expressed as a function of n – the number
of object in the tree)?

2.2 Heap (25%)

1. Formulate the invariant/condition which a binary tree must satisfy to be a heap.

2. Draw the heap which will result from inserting the elements with the keys: 7, 5, 9, 3, 8, 7,
1 (in the given order, i.e., first 7, then 5, then 9, etc.).

3. Draw so the heap which one obtains after the removal of the least element from the heap
you drew in point 2.

4. Program a method void less(BinaryTree T, int x) which prints out all keys (integers)
collected in the binary tree T – which is a heap – and which are less than or equal to x (all
k such that k<=x).
The method shall have the complexity O(m), where m is the number of printed elements,
i.e., those with key k<=x.

5. Which numbers – and in which order – wil be printed when we call your method less(T,7),
where T is the tree you obtained in point 2 of this subproblem?

3 Graphs and generic programming (40%)

We work with directed graphs, and consider three variants of such graphs:

i. Edges have no attributes

ii. Edges have an integer attribute, weight – weight ≥ 0;

iii. Edges have an integer attribute, color – 1 ≤ color ≤ F , where F is the total number of
possible colors.

Given a directed graph G = (V, E), and vertices a, b ∈ V , depending on the graph variant, we can
ask essentially the same question in three different versions:

i. What is (the path with) the minimal number of edges from a to b?

ii. What is (the path with) the least total weight from a to b?

iii. What is (the path with) the least number of colors from a to b?

Below there is an example of three variants of the graph – i. without any attributes, ii. with
weights and iii. with colors – together with the correct answer (marked with the double arrows
and the number below) to the respective question for the vertices a = 0, b = 6:

1

���
��

��
6

0

������� ��

��
��

��
�

��
��

� 3 �� 4 �� 5

��

2

������������������

����������������

1
12

���
��

��
6

0

23
������� 2 ��

8 ���
��

��
3

2 �� 4
4 �� 5

5

��

2
11

������������������

1
3

��
��

��
�

��
��

� 6

0

2
		�����

����� 1 ��

1 ���
��

��
3

2 �� 4
3 �� 5

3

��

2
2

������������������

i. : 3 ii. : 13 iii. : 2

The problem is to program one generic method with appropriate parameter(s) which allows one
to answer all these questions when called with the respective graph variant and an adequate
implementation of the parameter interface. (One can use an algorithm which has been presented
at the lectures – see the Hint after the last subproblem.)

3

3.1 (30%)

1. Declare first an appropriate interface Cp which abstracts away the common features of
the first two cases, i.e., i. directed graphs without any attributes on edges, and ii. directed
graphs with weights. Explain briefly the intension of each method. (Preferably, Cp shall be
used also for the third case, iii., but here you will get full credit even if it can not be used
there.)

2. Program so the generic method

int SSSP(Graph G, Node a, Node b, Cp V)

which shall give answers to these two questions. As a result we do not require the actual
path, but only the corresponding number (3 for the graph i. and 13 for the graph ii.).

[You do not have to worry so much about efficiency here (nor in 3.2 below). The primary
issue is correctness and genericity.]

3. Give two implementations:

i. class NoEdgeCp implements Cp, and

ii. class WeightCp implements Cp

such that the call

i. SSSP(G,a,b,new NoEdgeCp()) with a given graph G without weights, gives the correct
answer to the question i. – number of edges on the shortest path from a to b, while

ii. SSSP(G,a,b,new WeightCp()) with a given graph G with weights on edges, gives the
correct answer to the question ii. – the weight/length of the shortest path from a to b.

You will have to mark vertices/edges in the graph with some extra values and will therefore
utilize the fact that they extend interface Decorable. You can assume that objects identifying
appropriate attributes are given (e.g., DD, weight, etc.) but make such assumptions explicit in
your answer.

3.2 (10%)

Program whatever is needed to handle the third case iii. of graphs with colored edges. Your
method from point 2 in subproblem 3.1 should work unchanged – the answer shall now be the
minimal number of colors on the edges forming a path from a to b. The main problem will be
an appropriate implementation of class ColorCp implements Cp. Explain first the main idea
of your solution. (Precise and well explained pseudo-code may give approximately the same as a
detailed program-code.)

[Hint: Notice that, in the example iii. above, we can not assume that the solution is constructed
incrementally, as it is done for instance in Dijkstra’s algorithm. A solution for veritces 0-5 could
be 0-2-5, but the solution for the vertices 0-6 is not a atraightforward extension of that.

One has to collect, for each vertex, all possible paths leading to it from the start vertex, and in
each iteration the algorithm has to take into account (the relevant among) all such possibilities.

If needed, you may make some simplifying assumptions, e.g., that you have available methods
which convert uniquely between vertices/edges and some integers. Whatever your additional
assumptions are, state them clearly in the answer.]

MichaHl Walicki Arild Waaler

4

Solution – prob. 1

We push new object (from the iterator) on the stack if either the stack is empty or else the top
object is of the same kind as the one we are trying to push (isWhite()==true for both or for
neither). If the two are of different kind, we merely pop the top of the stack. The answer is ‘equal’
if on termination the stack is empty. The idea is as follows:

boolean equalNumber(ObjectIterator I, Stack S) {
BlackWhite o; // sorry, need this extra variable
while (I.hasMore()) {
o = (BlackWhite)I.nextObject();
if (S.isEmpty()) S.push(o);
else if (((BlackWhite)S.top()).isWhite()) {
if (o.isWhite()) S.push(o);
else S.pop(); }

else {
if (!o.isWhite()) S.push(o);
else S.pop(); }

return S.isEmpty();
}
To avoid using any extra variables (i.e., o), we utilze the method object() from the ObjectIterator
which observes the most recent object returned by nextObject():

boolean equalNumber(ObjectIterator I, Stack S) {
while (I.hasMore()) {
if (S.isEmpty()) S.push(I.nextObject());
else if (((BlackWhite)S.top()).isWhite()) {
S.push(I.nextObject());
if (!((BlackWhite)I.object()).isWhite()) {
S.pop(); S.pop(); } //remove both the current black and previous white

} else { // top object on S is Black
S.push(I.nextObject());
if (((BlackWhite)I.object()).isWhite()) {
S.pop(); S.pop(); } //remove both the current white and previous black

} }
return S.isEmpty();

}

5

Solution – prob. 2

2.1. BST

1. for each node: all keys in the left subtree are not-greater, and all in the right subtree are
not-smaller than the node’s key

2.-3. The tree for 5, 3, 8, 6, 9, 7, 1, 4 will be as on the left, and after removal of 5 as on the right:

5

3

������ 8

������

1
��

4
��

6
��

9
��

7
��

6

3

������ 8

������

1
��

4
��

7
��

9
��

4. void less(BinaryTree T, int x) { less(T, T.root(), x); }
void less(BinaryTree T, Position v, int x) {

if (v != nil) {
if (((Integer)v.element()).intValue() <= x) {

print(v.element());
less(T, T.leftChild(v), x);
less(T, T.rightChild(v), x); }

else less(T, T.leftchild(v), x);
} }

5. This question concerns in-, pre- or post-order. We made it pre-order, so our result will be:
5,3,1,4,6,7.

6. O(n), when the tree is unbalanced, essentially a linear structure.

2.2. Heap

1. each node ≤ all its children

2.-3. the tree will be as on the left, and after removal as on the right:

1

5

������ 3

������

7
��

8
��

9
��

7
��

3

5

������ 7

������

7
��

8
��

9
��

4. void less(BinaryTree T, int x) { less(T, T.root(), x); }
void less(BinaryTree T, Position v, int x) {

if (v != nil) {
if (((Integer)v.element()).intValue() <= x) {

print(v.element());
less(T, T.leftChild(v), x);
less(T, T.rightChild(v), x); }

} }
Here we can terminate the recursion at once we find something bigger than x, since in a
heap everything below will be biger, too. We get O(m), since we write everything until we
reach this condition, as all smaller than... is stored in the “upper part” of the heap.

5. Again, this is pre-order, so we will get: 1,5,7,3,7.

6

Solution – prob. 3

The first part could be obtained by a generalization of Dijkstra but, as sugggested in the hint, the
second could not. We use Ford-Bellmann from start.

3.1. Number of edges and Length

1. public interface Sml {
/* for initializing the X-attribute in the node v with MAX VALUE */
void initMax(Vertex v,Object X);
/* for initializing (the starting) v with minimal value */
void initMin(Vertex v,Object X);
/* returns the value of the test for update,
wrt. the X-atribute, e.g. X[c]+e.weight<X[d] */

boolean less(Vertex c,Vertex d,Edge e,Object X);
/* performs the update, if the test was true */
void update(Vertex c,Vertex d,Edge e,Object X);
/* converts the value stored in the X-atribute of v to int */
int intValue(Decorable v,Object X); }

2. Assume DD is a globally available Object identifying the respective atribute in the Vertex
(which extends Decorable interface). Ignored all the exceptions which the metods from the
given interface may rise.

int SSSP(Graph G, Node a, Node b, Sml V) {
EdgeIterator edges; Vertex v,c,d; Edge e;
int n= G.numVertices();
VertexIterator nodes= G.vertices();
while (nodes.hasNext()) {
v= nodes.nextVertex();
V.initMax(v,DD); }

V.initMin(a,DD);
for (int i=1;i<n;i++) {
edges= G.directedEdges(); // .edges() should be the same as G is directed
while (edges.hasNext()) {

e= edges.nextEdge();
c= G.origin(e); d= G.destination(e);
if (V.less(c,d,e,DD)) V.update(c,d,e,DD);

}
}
return V.intValue(b,DD);

}
3. class AntallSml implements Sml {

public void initMax(Vertex v,Object X) {v.set(X,new Integer(Integer.MAX VALUE);}
public void initMin(Vertex v,Object X) { v.set(X,new Integer(0)); }
public boolean less(Vertex c,Vertex d,Edge e,Object X) {
if (intValue(c,X)==Integer.MAX VALUE) return false;
// this case is necessary to avoid overflow (wrap around for int in Java)
else return intValue(c,X)+1 < intValue(d,X) ; }

public void update(Vertex c,Vertex d,Edge e,Object X) {
d.set(X, new Integer(intValue(c,X)+1); }

public int intValue(Decorable v,Object X) {
return (Integer(v.get(X))).intValue(); }

}

7

Assume that also Edge uses the DD-atribute for storing weight:
class VektSml implements Sml {

public void initMax(Vertex v,Object X) {
v.set(X,new Integer(Integer.MAX VALUE)); }

public void initMin(Vertex v,Object X) { v.set(X,new Integer(0)); }
public boolean less(Vertex c,Vertex d,Edge e,Object X) {
if (intValue(c,X)==Integer.MAX VALUE) return false;
else return (intValue(c,X)+intValue(e,X) < intValue(d,X)); }

public void update(Vertex c,Vertex d,Edge e,Object X) {
d.set(DD, new Integer(intValue(c,X)+intValue(e,X)); }

public int intValue(Decorable v,Object X) {
return (Integer(v.get(X))).intValue(); }

}

8

3.2. Colors

We do what the Hint suggests. The DD for a node v will hold the array From, with indices
corresponding to the incoming edges. I.e., we assume given 1-1 functions between

edgeNo : G.incidentEdges(v, EdgeDirection.IN) −→ [0...k]
G.incidentEdges(v, EdgeDirection.IN) ←− [0...k]× v : edgeOf

(1)

where k + 1 is the number of incoming edges. Then, From[i] is a sequence with objects corre-
sponding to all the paths leading to v with the last edge being i− v.

Each path to v is identified with the colors it uses, i.e., is itself a set (sequence) of numbers
≤ F . We represent it by, first, associating each color 1 ≤ f ≤ F , with the (f +1)-th prime number
prim(f), and then the set of colors S = {f1, f2, ..., fn} (with fi �= fj for i �= j) is simply the
number prim(S) = prim(f1) · prim(f2) · ... · prim(fn). (We take (f +1)-th prime number to avoid
using 1, i.e., the first color f = 1 gets the number 2, the second 3, the third 5, etc.) Membership
is then given by:

f ∈ S ⇐⇒ prim(S) mod prim(f) = 0. (2)
For convenience, we also let each v keep the sequence paths of all paths leading to it, i.e., a kind
of flattening of the whole From. (This is the invariant which makes a lot things simpler.)

The initial value (corresponding also to the MAX VALUE), for each node, is array where
From[i].isEmpty() for all i, i.e., paths.isEmpty(). Filling in happens when, considering the edge
i− v, the From array in i is less than MAX VALUE (has some paths) and From[i] in v has fewer
elements than the total number of paths in From in i, i.e.,

!i.paths.isEmpty() && v.From[i].size() < i.paths.size() (3)

The latter means that some new paths leading to i have appeared since we considered the edge
i − v last time. We keep also the invariant that later appearing paths are put at the end of the
paths. Copying the new paths to i and extending them with i− v color for putting in v.From[i],
will thus concern only the i.paths.size()− v.From[i].size() number of the paths from the end of
i.paths.
We assume that in the environment where the following class is defined, we have access to the
Graph G, the attribute Object DD, and the number of colors used by the G as well as the corre-
sponding prim-function (other functions come from class Info on the following page):

class FargerSml implements Sml {
private Graph G; private Object Attr; private int noF;
public FargerSml(Graph Gr,Object X,int F) { G=Gr; Attr=X; noF=F;}
public void initMax(Vertex v,Object X) {
int no= 0;
EdgeIterator ei= G.incidentEdges(v,EdgeDirection.IN);
while (ei.hasNext()) { ei.nextEdge(); no= no+1; }
v.set(X,new Info(no,v,Attr,noF)); }

// Assume that initMin is called on v after initMax and before any other updates
// i.e., v.From[i].isEmpty() for all i and v.paths.isEmpty()

public void initMin(Vertex v,Object X) { of(v,X).initOne(); }
public boolean less(Vertex c,Vertex d,Edge e,Object X) {
return (!of(c,X).isEmpty() &&

of(c,X).paths.size() > of(d,X).sizeOf(edgeNo(e))); }
// Assume that e:c->d and the conversion function edgeNo, as explained in (1).

public void update(Vertex c,Vertex d,Edge e,Object X) {
of(d,X).add(edgeNo(e),of(c,X).paths); }

public int intValue(Decorable v,Object X) { return of((Vertex)v,X).intValue();}
private Info of(Vertex v, Object X) { return (Info)v.get(X); }

} // end FargerSml

9

public class Info { // objects to be stored in the DD-attribute for each node v
private Vertex v; // vertex for which this is the Info
private int k; // number of incoming edges to v
private int noF; // number of colors (assume given prim-function)
private Sequence[] From; // will have k entries
private Object Attr; // the attribute to work on (could be more dynamic)
protected Sequence paths= new SequenceImpl();

public Info(int i,Vertex u,Object X,int F) {
k= i; From= new Sequence[k]; v= u; Attr= X; noF= f;
for (int z=0;z<k;z++) From[z]= new SequenceImpl(); }

private int intValue(Decorable d,Object X) {
return ((Integer)d.get(X)).intValue(); }

private int intObj(Object d) { return ((Integer)d).intValue(); }
public void add(int i,Sequence pth) {

// extend From[i] with ‘‘last’’ elements from pth (adding i-v);
// assuming: pth.size() >= From[i].size(), and !pth.isEmpty()

int seq; Position q,p;
q= pth.first();
if (!From[i].isEmpty()) { //iterate its size through pth
p= From[i].first();
while (p != From[i].last()) { p= From[i].after(p); q= pth.after(q); }
q= pth.after(q); }

// now copy and extend the rest of pth: add the color of i-v, if needed
int col= prim(color(i)); // color gives int stored in Attr
while (!pth.isLast(q)) { // each element/int in pth represents a set of colors
seq= intObj(q.element()); // the set stored at q
if (seq%col != 0) seq= seq*col; // add col if not in seq
From[i].insertLast(new Integer(seq));
paths.insertLast(new Integer(seq));
q= pth.after(q); }

seq= intObj(q.element()); // the sequence stored at the last Position
if (seq% col != 0) seq= seq*col;
From[i].insertLast(new Integer(seq));
paths.insertLast(new Integer(seq));

} // end add(...)

public int intValue() { // the minimal number of colors at any From[i]
int mi= 0; int seq,no;
for (int i=0;i<k;i++) {
ObjectIterator ith= From[i].elements();
while (ith.hasNext()) {
seq= intObj(ith.nextObject()); no= 0;
for (int k=1;k<=noF;k++) { if (seq%prim(k) != 0) no= no+1; }
if (no<mi) mi= no;

} }
return mi;

} // end intValue()

public int sizeOf(int i) { return From[i].size(); }
public boolean isEmpty() { return paths.isEmpty(); }
public void initOne() { paths.insertFirst(new Integer(1)) }
private int color(int i) { // Edge stores color in Attr; edgeOf - see (1)
return ((Integer)edgeOf(i,v).get(Attr)).intValue(); }

} // end Info

