
1Strings and Pattern Matching

STRINGS AND PATTERN
MATCHING

• Brute Force,Rabin-Karp, Knuth-Morris-Pratt

• Regular Expressions

What’s up?

I’m looking for some string.

That’s quite a trick considering
that you have no eyes.

Oh yeah? Have you seen your writing?
It looks like an EKG!

2Strings and Pattern Matching

String Searching
• The previous slide is not a great example of what is

meant by “String Searching.” Nor is it meant to
ridicule people without eyes....

• The object ofstring searching is to find the location
of a specific text pattern within a larger body of text
(e.g., a sentence, a paragraph, a book, etc.).

• As with most algorithms, the main considerations
for string searching are speed and efficiency.

• There are a number of string searching algorithms in
existence today, but the three we shall review are
Brute Force,Rabin-Karp,and Knuth-Morris-Pratt.

3Strings and Pattern Matching

Brute Force
• TheBrute Force algorithm compares the pattern to

the text, one character at a time, until unmatching
characters are found:

- Compared characters are italicized.
- Correct matches are in boldface type.

• The algorithm can be designed to stop on either the
first occurrence of the pattern, or upon reaching the
end of the text.

TWO ROADS DIVERGED IN A YELLOW WOOD
ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS
TWO ROADS DIVERGED IN A YELLOW WOOD

ROADS
TWOROADS DIVERGED IN A YELLOW WOOD

ROADS

4Strings and Pattern Matching

Brute Force Pseudo-Code
• Here’s the pseudo-code

do
if (text letter == pattern letter)

compare next letter of pattern to next
letter of text

else
move pattern down text by one letter

while (entire pattern found or end of text)

cool cat Rolo went over the fence
cat
cool cat Rolo went over the fence

cat
co ol cat Rolo went over the fence

cat
coo l cat Rolo went over the fence

cat
cool _cat Rolo went over the fence

cat
cool cat Rolo went over the fence

cat

5Strings and Pattern Matching

Brute Force-Complexity
• Given a pattern M characters in length, and a text N

characters in length...

• Worst case: compares pattern to each substring of
text of length M. For example, M=5.

• This kind of case can occur for image data.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAH 5 comparisons made

....
N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH

5 comparisons made AAAAH

• Total number of comparisons: M (N-M+1)

• Worst case time complexity:Ο(MN)

6Strings and Pattern Matching

Brute Force-Complexity(cont.)
• Given a pattern M characters in length, and a text N

characters in length...

• Best case if pattern found: Finds pattern in first M
positions of text. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
AAAAA 5 comparisons made

• Total number of comparisons: M

• Best case time complexity:Ο(M)

7Strings and Pattern Matching

Brute Force-Complexity(cont.)
• Given a pattern M characters in length, and a text N

characters in length...

• Best case if pattern not found: Always mismatch
on first character. For example, M=5.

1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

3) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

4) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

5) AAAAAAAAAAAAAAAAAAAAAAAAAAAH
OOOOH 1 comparison made

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
1 comparison made OOOOH

• Total number of comparisons: N

• Best case time complexity:Ο(N)

8Strings and Pattern Matching

Rabin-Karp
• The Rabin-Karp string searching algorithm

calculates ahash valuefor the pattern, and for each
M-character subsequence of text to be compared.

• If the hash values are unequal, the algorithm will
calculate the hash value for next M-character
sequence.

• If the hash values are equal, the algorithm will do a
Brute Force comparisonbetween the pattern and the
M-character sequence.

• In this way, there is only one comparison per text
subsequence, and Brute Force is only needed when
hash values match.

• Perhaps an example will clarify some things...

9Strings and Pattern Matching

Rabin-Karp Example
Hash value of “AAAAA” is 37

Hash value of “AAAAH” is 100

1) AAAAA AAAAAAAAAAAAAAAAAAAAAAH
AAAAH
37≠100 1 comparison made

2) AAAAAA AAAAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparison made
3) AAAAAAA AAAAAAAAAAAAAAAAAAAAH

AAAAH
37≠100 1 comparison made

4) AAAAAAAA AAAAAAAAAAAAAAAAAAAH
AAAAH

37≠100 1 comparison made

...

N) AAAAAAAAAAAAAAAAAAAAAAA AAAAH
AAAAH

5 comparisons made 100=100

10Strings and Pattern Matching

Rabin-Karp Algorithm
pattern is M characters long

hash_p=hash value of pattern
hash_t=hash value of first M letters in

body of text

do
if (hash_p == hash_t)

brute force comparison of pattern
and selected section of text

hash_t = hash value of next section of
 text, one character over

while (end of textor
 brute force comparison == true)

11Strings and Pattern Matching

Rabin-Karp
• Common Rabin-Karp questions:

“What is the hash function used to calculate
values for character sequences?”

“Isn’t it time consuming to hash
every one of the M-character
sequences in the text body?”

“Is this going to be on the final?”

• To answer some of these questions, we’ll have to get
mathematical.

12Strings and Pattern Matching

Rabin-Karp Math
• Consider an M-character sequence as an M-digit

number inbaseb, whereb is the number of letters in
the alphabet. The text subsequence t[i .. i+M-1] is
mapped to the number

x(i) = t[i] ⋅bM-1 + t[i+1] ⋅bM-2 +...+ t[i+M-1]

• Furthermore, given x(i) we can compute x(i+1) for
the next subsequence t[i+1 .. i+M] in constant time,
as follows:

x(i+1) = t[i+1] ⋅bM-1 + t[i+2] ⋅bM-2 +...+ t[i+M]

x(i+1) = x(i)⋅b Shift left one digit

- t[i] ⋅b M Subtract leftmost digit

+ t[i+M] Add new rightmost digit

• In this way, we never explicitly compute a new
value. We simply adjust the existing value as we
move over one character.

13Strings and Pattern Matching

Rabin-Karp Math Example
• Let’s say that our alphabet consists of 10 letters.

• our alphabet = a, b, c, d, e, f, g, h, i, j

• Let’s say that “a” corresponds to 1, “b” corresponds
to 2 and so on.

The hash value for string “cah” would be ...

3*100 + 1*10 + 8*1 = 318

14Strings and Pattern Matching

Rabin-Karp Mods
• If M is large, then the resulting value (~bM) will be

enormous. For this reason, we hash the value by
taking itmod aprime numberq.

• Themod function (% in Java) is particularly useful
in this case due to several of its inherent properties:
- [(x mod q) + (y mod q)] mod q = (x+y) mod q
- (x mod q) mod q = x mod q

• For these reasons:

h(i) = ((t[i] ⋅ bM-1 modq) +
(t[i+1] ⋅ bM-2 modq) + ... +
(t[i+M-1] mod q)) modq

h(i+1) =(h(i)⋅ b modq
Shift left one digit

-t[i] ⋅ bM modq
Subtract leftmost digit

+t[i+M] mod q)
Add new rightmost digit

modq

15Strings and Pattern Matching

Rabin-Karp Complexity
• If a sufficiently large prime number is used for the

hash function, the hashed values of two different
patterns will usually be distinct.

• If this is the case, searching takes O(N) time, where
N is the number of characters in the larger body of
text.

• It is always possible to construct a scenario with a
worst case complexity ofO(MN). This, however, is
likely to happen only if the prime number used for
hashing is small.

16Strings and Pattern Matching

The Knuth-Morris-Pratt
Algorithm

• TheKnuth-Morris-Pratt (KMP) string searching
algorithm differs from the brute-force algorithm by
keeping track of information gained from previous
comparisons.

• A failure function(f) is computed that indicates how
much of the last comparison can be reused if it fails.

• Specifically, f is defined to be the longest prefix of
the pattern P[0,..,j] that is also a suffix of P[1,..,j]
- Note:not a suffix of P[0,..,j]

• Example:
- value of the KMP failure function:

• This shows how much of the beginning of the string
matches up to the portion immediately preceding a
failed comparison.
- if the comparison fails at (4), we know the a,b in

positions 2,3 is identical to positions 0,1

j 0 1 2 3 4 5

P[j] a b a b a c

f(j) 0 0 1 2 3 0

17Strings and Pattern Matching

The KMP Algorithm (contd.)
• the KMP string matching algorithm: Pseudo-Code

Algorithm KMPMatch(T,P)
Input:StringsT (text) withn characters andP

(pattern) withm characters.
Output:Starting index of the first substring ofT

matchingP, or an indication thatP is not a
substring ofT.

f ← KMPFailureFunction(P) {build failure function}
i ← 0
j ← 0
while i < n do

if P[j] = T[i] then
if j = m - 1 then

returni - m - 1 {a match}
i ← i + 1
j ← j + 1

else if j > 0 then{no match, but we have advanced}
j ← f(j-1) {j indexes just after matching prefix in P}

else
i ← i + 1

return “There is no substring ofT matchingP”

18Strings and Pattern Matching

The KMP Algorithm (contd.)
• The KMP failure function: Pseudo-Code

Algorithm KMPFailureFunction(P);
Input:StringP (pattern) withm characters
Ouput:The faliure functionf for P, which mapsj to

the length of the longest prefix ofP that is a suffix
of P[1,..,j]

i ← 1
j ← 0
while i ≤ m-1 do

if P[j] = T[j] then
{we have matchedj + 1 characters}
f(i) ← j + 1
i ← i + 1
j ← j + 1

else ifj > 0 then
{ j indexes just after a prefix ofP that matches}
j ← f(j-1)

else
{there is no match}
f(i) ← 0
i ← i + 1

19Strings and Pattern Matching

The KMP Algorithm (contd.)
• A graphical representation of the KMP string

searching algorithm

baaa b c

aaaaaaaa bbbb cccc aa

1 2 3 4 5 6

7

8 9 10 11 12

13

14 15 16 17 18

baaa b c

baaa b c

baaa b c

baaa b c
19

no comparison
needed here

20Strings and Pattern Matching

The KMP Algorithm (contd.)
• Time Complexity Analysis

• definek = i - j

• In every iteration through the while loop, one of
three things happens.
- 1) if T[i] = P[j], theni increases by 1, as doesj

k remains the same.
- 2) if T[i] != P[j] andj > 0, theni does not change

andk increases by at least 1, sincek changes
from i - j to i - f(j-1)

- 3) if T[i] != P[j] andj = 0, theni increases by 1 and
k increases by 1 sincej remains the same.

• Thus, each time through the loop, eitheri or k
increases by at least 1, so the greatest possible
number of loops is 2n

• This of course assumes thatf has already been
computed.

• However,f is computed in much the same manner as
KMPMatch so the time complexity argument is
analogous. KMPFailureFunction isO(m)

• Total Time Complexity:O(n + m)

21Strings and Pattern Matching

Regular Expressions
• notation for describing a set of strings, possibly of

infinite size

• ε denotes the empty string

• ab + c denotes the set {ab, c}

• a* denotes the set {ε, a, aa, aaa, ...}

• Examples
- (a+b)* all the strings from the alphabet {a,b}
- b*(ab*a)*b* strings with an even number of a’s
- (a+b)*sun(a+b)* strings containing the pattern

“sun”
- (a+b)(a+b)(a+b)a 4-letter strings ending in a

	Strings and Pattern Matching
	• Brute Force,Rabin-Karp, Knuth-Morris-Pratt
	• Regular Expressions
	String Searching
	• The previous slide is not a great example of what is meant by “String Searching.” Nor is it mea...
	• The object of string searching is to find the location of a specific text pattern within a larg...
	• As with most algorithms, the main considerations for string searching are speed and efficiency.
	• There are a number of string searching algorithms in existence today, but the three we shall re...

	Brute Force
	• The Brute Force algorithm compares the pattern to the text, one character at a time, until unma...
	- Compared characters are italicized.
	- Correct matches are in boldface type.

	• The algorithm can be designed to stop on either the first occurrence of the pattern, or upon re...

	Brute Force Pseudo-Code
	• Here’s the pseudo-code
	do
	if (text letter == pattern letter)
	compare next letter of pattern to next
	letter of text
	else
	move pattern down text by one letter
	while (entire pattern found or end of text)

	Brute Force-Complexity
	• Given a pattern M characters in length, and a text N characters in length...
	• Worst case: compares pattern to each substring of text of length M. For example, M=5.
	• This kind of case can occur for image data.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 ...
	• Total numbe r of comparisons: M (N-M+1)
	• Worst case time complexity: O(MN)

	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern found: Finds pattern in first M positions of text. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAA 5 comparisons made
	• Total number of comparisons: M
	• Best case time complexity: O(M)

	Brute Force-Complexity(cont.)
	• Given a pattern M characters in length, and a text N characters in length...
	• Best case if pattern not found: Always mismatch on first character. For example, M=5.
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH OOOOH 1 c...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH 1 comparison made OOOOH
	• Total number of comparisons: N
	• Best case time complexity: O(N)

	Rabin-Karp
	• The Rabin-Karp string searching algorithm calculates a hash value for the pattern, and for each...
	• If the hash values are unequal, the algorithm will calculate the hash value for next M-characte...
	• If the hash values are equal, the algorithm will do a Brute Force comparison between the patter...
	• In this way, there is only one comparison per text subsequence, and Brute Force is only needed ...
	• Perhaps an example will clarify some things...

	Rabin-Karp Example
	Hash value of “AAAAA” is 37
	Hash value of “AAAAH” is 100
	1) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 37¹100 1 comparison made 2) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AA...
	...
	N) AAAAAAAAAAAAAAAAAAAAAAAAAAAH AAAAH 5 comparisons made 100=100

	Rabin-Karp Algorithm
	pattern is M characters long
	hash_p = hash value of pattern hash_t = hash value of first M letters in body of text
	do
	if (hash_p == hash_t)
	brute force comparison of pattern
	and selected section of text
	hash_t = hash value of next section of
	text, one character over
	while (end of text or
	brute force comparison == true)

	Rabin-Karp
	• Com mon Rabin-Karp questions:
	“What is the hash function used to calculate valu es for character sequences?”
	“Isn’t it time consuming to hash e very one of the M-character sequences in the text body?”
	“Is this going to be on the final?”
	• To answer some of these questions, we’ll have to get mathematical.

	Rabin-Karp Math
	• Consider an M-character sequence as an M-digit number in base b, where b is the number of lette...
	x(i) = t[i]×bM-1 + t[i+1]×bM-2 +...+ t[i+M-1]
	• Furthermore, given x(i) we can compute x(i+1) for the next subsequence t[i+1 .. i+M] in constan...

	x(i+1) = t[i+1]×bM-1 + t[i+2]×bM-2 +...+ t[i+M]
	x(i+1) = x(i)×b Shift left one digit
	- t[i]×b M Subtract leftmost digit
	+ t[i+M] Add new rightmost digit
	• In this way, we never explicitly compute a new value. We simply adjust the existing value as we...

	Rabin-Karp Math Example
	• Let’s say that our alphabet consists of 10 letters.
	• our alphabet = a, b, c, d, e, f, g, h, i, j
	• Let’s say that “a” corresponds to 1, “b” corresponds to 2 and so on.

	The hash value for string “cah” would be ... 3*100 + 1*10 + 8*1 = 318
	Rabin-Karp Mods
	• If M is large, then the resulting value (~bM) will be enormous. For this reason, we hash the va...
	• The mod function (% in Java) is particularly useful in this case due to several of its inherent...
	- [(x mod q) + (y mod q)] mod q = (x+y) mod q
	- (x mod q) mod q = x mod q

	• For these reasons:
	h(i) = ((t[i]× bM-1 mod q) + (t[i+1]× bM-2 mod q) + ... + (t[i+M-1] mod q)) mod q
	h(i+1) = (h(i)× b mod q Shift left one digit -t[i]× bM mod q Subtract leftmost digit +t[i+M] mod...

	Rabin-Karp Complexity
	• If a sufficiently large prime number is used for the hash function, the hashed values of two di...
	• If this is the case, searching takes O(N) time, where N is the number of characters in the larg...
	• It is always possible to construct a scenario with a worst case complexity of O(MN). This, howe...

	The Knuth-Morris-Pratt Algorithm
	• The Knuth-Morris-Pratt (KMP) string searching algorithm differs from the brute-force algorithm ...
	• A failure function (f) is computed that indicates how much of the last comparison can be reused...
	• Specifically, f is defined to be the longest prefix of the pattern P[0,..,j] that is also a suf...
	- Note: not a suffix of P[0,..,j]

	• Example:
	- value of the KMP failure function:

	• This shows how much of the beginning of the string matches up to the portion immediately preced...
	- if the comparison fails at (4), we know the a,b in positions 2,3 is identical to positions 0,1

	The KMP Algorithm (contd.)
	• the KMP string matching algorithm: Pseudo-Code
	Algorithm KMPMatch(T,P)
	Input: Strings T (text) with n characters and P (pattern) with m characters.
	Output: Starting index of the first substring of T matching P, or an indication that P is not a s...
	f ¨ KMPFailureFunction(P) {build failure function}
	i ¨ 0
	j ¨ 0
	while i < n do
	if P[j] = T[i] then
	if j = m - 1 then
	return i - m - 1 {a match}
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then {no match, but we have advanced}
	j ¨ f(j-1) {j indexes just after matching prefix in P}
	else
	i ¨ i + 1
	return “There is no substring of T matching P”

	The KMP Algorithm (contd.)
	• The KMP failure function: Pseudo-Code
	Algorithm KMPFailureFunction(P);
	Input: String P (pattern) with m characters
	Ouput: The faliure function f for P, which maps j to the length of the longest prefix of P that i...
	i ¨ 1
	j ¨ 0
	while i £ m-1 do
	if P[j] = T[j] then
	{we have matched j + 1 characters}
	f(i) ¨ j + 1
	i ¨ i + 1
	j ¨ j + 1
	else if j > 0 then
	{j indexes just after a prefix of P that matches}
	j ¨ f(j-1)
	else
	{there is no match}
	f(i) ¨ 0
	i ¨ i + 1

	The KMP Algorithm (contd.)
	• A graphical representation of the KMP string searching algorithm

	The KMP Algorithm (contd.)
	• Time Complexity Analysis
	• define k = i - j
	• In every iteration through the while loop, one of three things happens.
	- 1) if T[i] = P[j], then i increases by 1, as does j k remains the same.
	- 2) if T[i] != P[j] and j > 0, then i does not change and k increases by at least 1, since k cha...
	- 3) if T[i] != P[j] and j = 0, then i increases by 1 and k increases by 1 since j remains the same.

	• Thus, each time through the loop, either i or k increases by at least 1, so the greatest possib...
	• This of course assumes that f has already been computed.
	• However, f is computed in much the same manner as KMPMatch so the time complexity argument is a...
	• Total Time Complexity: O(n + m)

	Regular Expressions
	• notation for describing a set of strings, possibly of infinite size
	• e denotes the empty string
	• ab + c denotes the set {ab, c}
	• a* denotes the set {e, a, aa, aaa, ...}
	• Examples
	- (a+b)* all the strings from the alphabet {a,b}
	- b*(ab*a)*b* strings with an even number of a’s
	- (a+b)*sun(a+b)* strings containing the pattern “sun”
	- (a+b)(a+b)(a+b)a 4-letter strings ending in a

