
2.1Stacks, Queues, and Linked Lists

STACKS, QUEUES, AND
LINKED LISTS

• Abstract Data Types (ADTs)

• Stacks

• Example: Stock Analysis

• Queues

• Linked Lists

• Double-Ended Queues

2.2Stacks, Queues, and Linked Lists

Abstract Data Types (ADTs)
• An Abstract Data Type is an abstraction of a data

structure: no coding is involved.

• TheADT specifies:
- what can be stored in the ADT
- what operations can be done on/by the ADT

• For example, if we are going to model a bag of
marbles as an ADT, we could specify that
- this ADT stores marbles
- this ADT supports putting in a marble and getting

out a marble.

• There are lots of formalized and standard ADTs. A
bag of marbles is not one of them.

• In this course we are going to learn a lot of different
standard ADTs. (stacks, queues, trees...)

nd

ast
ed.
Stacks
• A stackis a container of objects that are inserted a

removed according to thelast-in-first-out (LIFO)
principle.

• Objects can be inserted at any time, but only the l
(the most-recently inserted) object can be remov

• Inserting an item is known as “pushing” onto the
stack. “Popping” off the stack is synonymous with
removing an item.

• A PEZ® dispenser as an analogy:
2.3Stacks, Queues, and Linked Lists

rs

ck

s

The Stack Abstract Data Type
• A stack is anabstract data type (ADT) that supports

two main methods:

- push(o): Inserts objecto onto top of stack

- pop(): Removes the top object of stack and
returns it; if stack is empty an error occu

• The following support methods should also be
defined:

- size(): Returns the number of objects in sta

- isEmpty(): Return a boolean indicating if stack i
empty.

- top(): return the top object of the stack,
without removing it; if the stack is
empty an error occurs.
2.4Stacks, Queues, and Linked Lists

2.5Stacks, Queues, and Linked Lists

Example
• Thespanof a stock’s price on a certain day,d, is the

maximum number of consecutive days (up to the
current day) the price of the stock has been less than
or equal to its price ond.

s6=6

s5=4

s2=1

s3=2

0 1 2 3 4 5 6

s1=1

s0=1

s4=1

2.6Stacks, Queues, and Linked Lists

An Inefficient Algorithm
• There is a straightforward way to compute the span

of a stock on a given day forn days:

Algorithm computeSpans1(P):
Input: Ann-element arrayP of numbers
Output: Ann-element arrayS of numbers such that

S[i] is the span of the stock on dayi.
Let S be an array ofn numbers
for i=0 to n−1 do

k ←0
done←false
repeat

if P[i-k] ≤P[i] then
k←k+1

else
done←true

until (k=i) or done
S[i]←k

return arrayS

• The running time of this algorithm is (ugh!)O(n2).
Why?

2.7Stacks, Queues, and Linked Lists

A Stack Can Help
• We see thatsi on dayi can be easily computed if we

know the closest day precedingi, such that the price
is greater than on that day than the price on day i. If
such a day exists let’s call ithi.

• The span is now defined assi = i - hi

We use astack to keep track ofhi

0 1 2 3 4 5 6

2.8Stacks, Queues, and Linked Lists

A Case Study: A Stock Analysis
Applet (cont.)

• The code for our new algorithm:

Algorithm computeSpan2(P):
Input: Ann-element arrayP of numbers
Output: Ann-element arrayS of numbers such that

S[i] is the span of the stock on dayi.
Let S be an array ofn numbers andD an empty stack
for i=0 to n-1 do

done←false
while not(D.isEmpty()or done) do

if P[i]≥P[D.top()] then
D.pop()

else
done←true

if D.isEmpty()then
h← -1

else
h←D.top()

S[i]←i-h
D.push(i)

return arrayS

• Let’s analysizecomputeSpan2’s run time...

2.9Stacks, Queues, and Linked Lists

Java Stuff
• Given the stack ADT, we need to code the ADT in

order to use it in the programs.

• You need to understand two program constructs:
interfaces andexceptions.

• An interfaceis a way to declare what a class is to do.
It does not mention how to do it.

• For aninterface, you just write down themethod
names and theparameters. When specifying
parameters, what really matters is theirtypes.

• Later, when you write aclass for that interface, you
actually code the content of the methods.

• Separatinginterface andimplementation is a useful
programming technique.

• Interface example:

public interface radio {

public void play();

public void stop();

}

2.10Stacks, Queues, and Linked Lists

A Stack Interface in Java
• While, the stack data structure is a “built-in” class of

Java’sjava.util package, it is possible, and sometimes
preferable to define your own specific one, like this:

• public interface Stack {

// accessor methods

public int size(); // return the number of
// elements in the stack

public boolean isEmpty(); // see if the stack
// is empty

public Object top() // return the top element

throws StackEmptyException; // if called on
// an empty stack

// update methods

public void push (Object element); // push an
// element onto the stack. Note that
// the type of the parameter is
// specified as an Object

public Object pop() // return and remove the
// top element of the stack

throws StackEmptyException; // if called on
// an empty stack

}

2.11Stacks, Queues, and Linked Lists

Exceptions
• Exceptions are yet another useful programming

construct.

• This is useful for handling errors. When you find an
error (or anexceptional case), you justthrow an
exception.

• Example
public void eatPizza() throws StomachAcheException

{

...

if (ateTooMuch)

throw new StomachAcheException(“Ouch”);

...

}

• As soon as the exception is thrown, the flow of
control exits from the current method.

• So whenStomachAcheException is thrown, we exit
from methodeatPizza() and go to where that method
was called from.

2.12Stacks, Queues, and Linked Lists

More Exceptions
• Say the following code fragment called the method

eatPizza() in the first place.

private void simulateMeeting()

{

...

try

{

aStupidTA.eatPizza();

}

catch(StomachAcheException e)

{

System.out.println(“somebody has a stomach
ache”);

}

...

}

2.13Stacks, Queues, and Linked Lists

Even More Exceptions
• We will get back toaStupidTA.eatPizza(); because,

remember,eatPizza() threw an exception.

• The try block and thecatch block means that we are
listening for exceptions that are specified in thecatch
parameter.

• Becausecatch is listening forStomachAcheException,
the flow of control will now go to thecatch block.
And System.out.println will get executed.

• Note that acatch block can contain anything. It does
not have to do onlySystem.out.println. You can
handle the caught error in any way you like; you can
eventhrow them again.

• Note that if somewhere in your method, you throw
an exception, you need to add athrows clause next to
your method name.

• What is the point of using exceptions? You can
delegate upwards the responsibility of handling an
error. Delegating upwards means letting the code
who called the current code deal with the problem.

2.14Stacks, Queues, and Linked Lists

Even More Exceptions
• If you never catch an exception, it will propagate

upwards and upwards along the chain of method
calls until the user sees it.

eatPizza()

goToParty()

takeBreak()

do16Asgn()

takecs16()

goToBrown()

stomachAcheException
thrown

to console

none of these
classes catch
stomachAche
Exceptions

2.15Stacks, Queues, and Linked Lists

Final Exceptions
• OK, so we threw and caught exceptions. But what

exactly are they in Java? Classes.

• Check out the StomachAcheException.

public class StomachAcheException extends
RuntimeException {

public StomachAcheException(String err)

{

super(err);

}

}

An Array-Based Stack
• Create a stack using an array by specifying a

maximum sizeN for our stack, e.g.N = 1,024.

• The stack consists of anN-element arrayS and an
integer variablet, the index of the top element in
arrayS.

• Array indices start at 0, so we initializet to -1

• Pseudo-code

Algorithm size():
return t +1

Algorithm isEmpty():
return (t < 0)

Algorithm top():
if isEmpty()then

throw a StackEmptyException
return S[t]

...

S
0 1 2 N−1t

...
2.16Stacks, Queues, and Linked Lists

.

An Array-Based Stack (contd.)
• Pseudo-Code (contd.)

Algorithm push(o):
if size() =N then

throw a StackFullException
t ← t + 1
S[t] ← o

Algorithm pop():
if isEmpty()then

throw a StackEmptyException
e←S[t]
S[t]←null
t←t-1
return e

• Each of the above method runs in constant time
(O(1))

• The array implementation is simple and efficient.

• There is an upper bound,N, on the size of the stack
The arbitrary value N may be too small for a given
application, or a waste of memory.
2.17Stacks, Queues, and Linked Lists

2.18Stacks, Queues, and Linked Lists

Array-Based Stack: a Java
Implementation

public class ArrayStack implements Stack {
 // Implementation of the Stack interface

// using an array.

public static final int CAPACITY = 1000; // default
// capacity of the stack

private int capacity; // maximum capacity of the
// stack.

private Object S[]; // S holds the elements of
 // the stack

private int top = -1; // the top element of the
// stack.

public ArrayStack() { // Initialize the stack
this (CAPACITY);// with default capacity

}

public ArrayStack(int cap) { // Initialize the
// stack with given capacity

capacity = cap;
S = new Object[capacity];

}

2.19Stacks, Queues, and Linked Lists

Array-Based Stack in Java
(contd.)

public int size() { //Return the current stack
// size

return (top + 1);
}

public boolean isEmpty() { // Return true iff
// the stack is empty

return (top < 0);
}

public void push(Object obj) { // Push a new
// object on the stack

if (size() == capacity) {
throw new StackFullException(“Stack overflow.”);

}
S[++top] = obj;

}

public Object top() // Return the top stack
 // element

throws StackEmptyException {
if (isEmpty()) {

throw new StackEmptyException(“Stack is
empty.”);

}
return S[top];

}

2.20Stacks, Queues, and Linked Lists

Array-Based Stack in Java
(contd.)

public Object pop() // Pop off the stack element

throws StackEmptyException {

 Object elem;

if (isEmpty()) {

throw new StackEmptyException(“Stack is Empty.”);

 elem = S[top];

 S[top--] = null ; // Dereference S[top] and

// decrement top

return elem;

 }

}

2.21Stacks, Queues, and Linked Lists

A Growable Array-Based Stack
• Instead of giving up with aStackFullException, we

can replace the arrayS with a larger one and
continue processing push operations.

Algorithm push(o):
if size()= N then

A ← new array of length f(N)
for i ← 0 to N − 1

A[i] ← S[i]
S← A
t ← t + 1
S[t] ← o

• How large should the new array be?
- tight strategy (add a constant):f(N) = N + c
- growth strategy (double up):f(N) = 2N

• To compare the two strategies, we use the following
cost model

regular push operation: add one element 1

special push operation: create an array of
sizef(N), copyN elements, and add one
element

f(N) + N + 1

2.22Stacks, Queues, and Linked Lists

Tight Strategy (c=4)
• start with an array of size 0

• the cost of a special push is 2N + 5

push phase n N cost

1 1 0 0 5

2 1 1 4 1

3 1 2 4 1

4 1 3 4 1

5 2 4 4 13

6 2 5 8 1

7 2 6 8 1

8 2 7 8 1

9 3 8 8 21

10 3 9 12 1

11 3 10 12 1

12 3 11 12 1

13 4 12 12 29

2.23Stacks, Queues, and Linked Lists

Performance of the Tight
Strategy

• We considerk phases, wherek = n/c

• Each phase corresponds to a new array size

• The cost of phasei is 2ci

• The total cost ofn push operations is the total cost of
k phases, withk = n/c:

2c (1 + 2 + 3 + ... +k),

which is O(k2) andO(n2).

2.24Stacks, Queues, and Linked Lists

Growth Strategy
• start with an array of size 0, then 1, 2, 4, 8, ...

• the cost of a special push is 3N + 1 forN > 0

push phase n N cost

1 0 0 0 2

2 1 1 1 4

3 2 2 2 7

4 2 3 4 1

5 3 4 4 13

6 3 5 8 1

7 3 6 8 1

8 3 7 8 1

9 4 8 8 25

10 4 9 16 1

11 4 10 16 1

12 4 11 16 1

...

16 4 15 16 1

17 5 16 16 49

2.25Stacks, Queues, and Linked Lists

Performace of the Growth
Strategy

• We considerk phases, wherek = log n

• Each phase corresponds to a new array size

• The cost of phasei is 2i + 1

• The total cost ofn push operations is the total cost of
k phases, withk = logn

2 + 4 + 8 + ... + 2log n + 1 =

2n + n + n/2 + n/4 + ... + 8 + 4 + 2= 4n − 1

• The growth strategy wins!

2.26Stacks, Queues, and Linked Lists

Amortized Analysis
• Theamortized running time of an operation within a

series of operations is the worst-case running time of
the entire series of operations divided by the number
of operations

• Theaccounting method determines the amortized
running time with a system of credits and debits

• We view the computer as a coin-operated appliance
that requires one cyber-dollar for a constant amount
of computing time.

• We set up a scheme for charging operations. This is
known as anamortization scheme.

• We may overcharge some operations and
undercharge other operations. For example, we may
charge each operation the same amount.

• The scheme must give us always enough money to
pay for the actual cost of the operation.

• The total cost of the series of operations is no more
than the total amount charged.

• (amortized time)≤ (total $ charged)/ (# operations)

2.27Stacks, Queues, and Linked Lists

Amortization Scheme for the
Growth Strategy

• At the end of a phase we must have saved enough to
pay for the special push of the next phase.

• At the end of phase 3 we want to have saved $24.

• The amount saved pays for growing the array.

• We charge$7 for a push. The$6saved for a regular
push are “stored” in the second half of the array.

0 2 4 5 6 731

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

$ $ $ $

0 2 4 5 6 7 8 9 113 10 12 13 14 151

$

$

$

$

$

$

2.28Stacks, Queues, and Linked Lists

Amortized Analysis of the
Growth Strategy

• We charge$5 (introductory special offer) for the
first push and$7 for the remaining ones

push n N balance charge cost

1 0 0 $0 $5 $2

2 1 1 $3 $7 $4

3 2 2 $6 $7 $7

4 3 4 $6 $7 $1

5 4 4 $12 $7 $13

6 5 8 $6 $7 $1

7 6 8 $12 $7 $1

8 7 8 $18 $7 $1

9 8 8 $24 $7 $25

10 9 16 $6 $7 $1

11 10 16 $12 $7 $1

12 11 16 $18 $7 $1

...

16 15 16 $42 $7 $1

17 16 16 $48 $7 $49

Casting With a Generic Stack
• Have an ArrayStack that can store only Integer

objects or Student objects.

• In order to do so using a generic stack, the return
objects must be cast to the correct data type.

• A Java code example:

public static Integer[] reverse (Integer[] a) {

ArrayStack S = new ArrayStack(a.length);

Integer[] b = new Integer[a.length];

for (int i = 0; i < a.length; i++)

S.push(a[i]);

for (int i = 0; i < a.length; i++)

b[i] = (Integer)(S.pop()); // the popping
// operation gave us an Object, and we
// casted it to an Integer before
// assigning it to b[i].

return b;

}

2.29Stacks, Queues, and Linked Lists

wn

e

va

d to
Stacks in the Java Virtual
Machine

• Each process running in a Java program has its o
Java Method Stack.

• Each time a method is called, it is pushed onto th
stack.

• The choice of a stack for this operation allows Ja
to do several useful things:
- Perform recursive method calls
- Print stack traces to locate an error

• Java also includes an operand stack which is use
evaluate arithmetic instructions, i.e.

Integer add(a, b):
OperandStack Op
Op.push(a)
Op.push(b)
temp1← Op.pop()
temp2← Op.pop()
Op.push(temp1 + temp2)
return Op.pop()
2.30Stacks, Queues, and Linked Lists

2.31Stacks, Queues, and Linked Lists

Java Method Stack

Java Program

main () {

cool(i);

int i=5;

}

cool (int j) {

fool(k);

}

14

216

int k=7;

fool:
PC = 320

fool (int m) {

}

320

m = 7

cool:
PC = 216
j = 5
k = 7

main:
PC = 14
i = 5

Java Stack

2.32Stacks, Queues, and Linked Lists

Queues
• A queue differs from a stack in that its insertion and

removal routines follows thefirst-in-first-out(FIFO)
principle.

• Elements may be inserted at any time, but only the
element which has been in the queue the longest
may be removed.

• Elements are inserted at therear (enqueued) and
removed from thefront (dequeued)

a0 a1 a2 an-1

front rear

. . .

2.33Stacks, Queues, and Linked Lists

The Queue Abstract Data Type
• The queue supports two fundamental methods:

- enqueue(o): Insert objecto at the rear of the queue

- dequeue(): Remove the object from the front of
the queue and return it; an error
occurs if the queue is empty

• These support methods should also be defined:

- size(): Return the number of objects in the
queue

- isEmpty(): Return a boolean value that indicates
whether the queue is empty

- front(): Return, but do not remove, the front
object in the queue; an error occurs if
the queue is empty

2.34Stacks, Queues, and Linked Lists

An Array-Based Queue
• Create a queue using an array in a circular fashion

• A maximum sizeN is specified, e.g.N = 1,000.

• The queue consists of anN-element arrayQ and two
integer variables:
- f, index of the front element
- r, index of the element after the rear one

• “normal configuration”

• “wrapped around” configuration

• what doesf=r mean?

N−10 1 2

Q ...

rf

...Q

N−10 1 2 fr

2.35Stacks, Queues, and Linked Lists

An Array-Based Queue (contd.)
• Pseudo-Code (contd.)

Algorithm size():
return (N - f + r) mod N

Algorithm isEmpty():
return (f = r)

Algorithm front():
if isEmpty()then

throw a QueueEmptyException
return Q[f]

Algorithm dequeue():
if isEmpty()then

throw a QueueEmptyException
temp← Q[f]
Q[f] ← null
f ← (f + 1) modN
return temp

Algorithm enqueue(o):
if size =N - 1 then

throw a QueueFullException
Q[r] ← o

2.36Stacks, Queues, and Linked Lists

Implementing a Queue with a
Singly Linked List

• nodes connected in a chain by links

• the head of the list is the front of the queue, the tail
of the list is the rear of the queue

• why not the opposite?

head

Rome Seattle Toronto

∅

tail

2.37Stacks, Queues, and Linked Lists

Removing at the Head

• advance head reference

• inserting at the head is just as easy

head

Baltimore Rome Seattle Toronto

∅

tail

head

Baltimore Rome Seattle Toronto

∅

tail

2.38Stacks, Queues, and Linked Lists

Inserting at the Tail
• create a new node

• chain it and move the tail reference

• how about removing at the tail?

head

Rome Seattle Toronto

∅

tail

Zurich

∅

head

Rome Seattle Toronto Zurich

∅

tail

2.39Stacks, Queues, and Linked Lists

Double-Ended Queues
• A double-ended queue, ordeque, supports insertion

and deletion from the front and back.

• The Deque Abstract Data Type
- insertFirst(e): Insert e at the deginning of deque.

- insertLast(e): Insert e at end of deque

- removeFirst(): Removes and returns first element

- removeLast(): Removes and returns last element

• Additionally supported methods include:
- first()
- last()
- size()
- isEmpty()

2.40Stacks, Queues, and Linked Lists

Implementing Stacks and
Queues with Deques

• Stacks with Deques:

• Queues with Deques:

Stack Method
Deque

Implementation

size()
isEmpty()
top()
push(e)
pop()

size()
isEmpty()
last()
insertLast(e)
removeLast()

Queue Method
Deque

Implementation

size()
isEmpty()
front()
enqueue()
dequeue()

size()
isEmpty()
first()
insertLast(e)
removeFirst()

2.41Stacks, Queues, and Linked Lists

The Adaptor Pattern
• Using a deque to implement a stack or queue is an

example of theadaptor pattern. Adaptor patterns
implement a class by using methods of another class

• In general, adaptor classes specialize general classes

• Two such applications:
- Specialize a general class by changing some

methods.
Ex: implementing a stack with a deque.

- Specialize the types of objects used by a general
class.

Ex: Defining anIntegerArrayStack class that
adaptsArrayStack to only store integers.

2.42Stacks, Queues, and Linked Lists

Implementing Deques with
Doubly Linked Lists

• Deletions at the tail of a singly linked list cannot be
done in constant time.

• To implement a deque, we use adoubly linked list.
with special header and trailer nodes.

• A node of a doubly linked list has anextand aprev
link. It supports the following methods:
- setElement(Object e)
- setNext(Object newNext)
- setPrev(Object newPrev)
- getElement()
- getNext()
- getPrev()

• By using a doubly linked list to, all the methods of a
deque have constant (that is, O(1)) running time.

header trailer

New York ProvidenceBaltimore

2.43Stacks, Queues, and Linked Lists

Implementing Deques with
Doubly Linked Lists (cont.)

• When implementing a doubly linked lists, we add
two special nodes to the ends of the lists: theheader
andtrailer nodes.
- The header node goes before the first list element.

It has a valid next link but a null prev link.
- The trailer node goes after the last element. It has a

valid prev reference but a null next reference.

• The header and trailer nodes are sentinel or
“dummy” nodes because they do not store elements.

• Here’s a diagram of our doubly linked list:

header trailer

New York ProvidenceBaltimore

2.44Stacks, Queues, and Linked Lists

Implementing Deques with
Doubly Linked Lists (cont.)

• Here’s a visualization of the code forremoveLast().

header trailer

New York Providence San FranciscoBaltimore

header trailer

New York ProvidenceBaltimore

secondtolast

last

header trailer

New York Providence San FranciscoBaltimore

secondtolast last

	Stacks, Queues, and Linked Lists
	• Abstract Data Types (ADTs)
	• Stacks
	• Example: Stock Analysis
	• Queues
	• Linked Lists
	• Double-Ended Queues
	•
	Abstract Data Types (ADTs)
	• An Abstract Data Type is an abstraction of a data structure: no coding is involved.
	• The ADT specifies:
	- what can be stored in the ADT
	- what operations can be done on/by the ADT

	• For example, if we are going to model a bag of marbles as an ADT, we could specify that
	- this ADT stores marbles
	- this ADT supports putting in a marble and getting out a marble.

	• There are lots of formalized and standard ADTs. A bag of marbles is not one of them.
	• In this course we are going to learn a lot of different standard ADTs. (stacks, queues, trees...)

	Stacks
	• A stack is a container of objects that are inserted and removed according to the last-in-first-...
	• Objects can be inserted at any time, but only the last (the most-recently inserted) object can ...
	• Inserting an item is known as “pushing” onto the stack. “Popping” off the stack is synonymous w...
	• A PEZ® dispenser as an analogy:

	The Stack Abstract Data Type
	• A stack is an abstract data type (ADT) that supports two main methods:
	- push(o): Inserts object o onto top of stack
	- pop(): Removes the top object of stack and returns it; if stack is empty an error occurs

	• The following support methods should also be defined:
	- size(): Returns the number of objects in stack
	- isEmpty(): Return a boolean indicating if stack is empty.
	- top(): return the top object of the stack, without removing it; if the stack is empty an error ...

	An Array-Based Stack
	• Create a stack using an array by specifying a maximum size N for our stack, e.g. N = 1,024.
	• The stack consists of an N-element array S and an integer variable t, the index of the top elem...
	• Array indices start at 0, so we initialize t to -1
	• Pseudo-code
	Algorithm size():
	return t +1
	Algorithm isEmpty():
	return (t < 0)
	Algorithm top():
	if isEmpty() then
	throw a StackEmptyException
	return S[t]
	...

	An Array-Based Stack (contd.)
	• Pseudo-Code (contd.)
	Algorithm push(o):
	if size() = N then
	throw a StackFullException
	t ¨ t + 1
	S[t] ¨ o
	Algorithm pop():
	if isEmpty() then
	throw a StackEmptyException
	e¨S[t]
	S[t]¨null
	t¨t-1
	return e

	• Each of the above method runs in constant time (O(1))
	• The array implementation is simple and efficient.
	• There is an upper bound, N, on the size of the stack. The arbitrary value N may be too small fo...

	Casting With a Generic Stack
	• Have an ArrayStack that can store only Integer objects or Student objects.
	• In order to do so using a generic stack, the return objects must be cast to the correct data type.
	• A Java code example:
	public static Integer[] reverse(Integer[] a) {
	ArrayStack S = new ArrayStack(a.length);
	Integer[] b = new Integer[a.length];
	for (int i = 0; i < a.length; i++)
	S.push(a[i]);
	for (int i = 0; i < a.length; i++)
	b[i] = (Integer)(S.pop()); // the popping // operation gave us an Object, and we // casted it to ...
	return b;
	}

	Stacks in the Java Virtual Machine
	• Each process running in a Java program has its own Java Method Stack.
	• Each time a method is called, it is pushed onto the stack.
	• The choice of a stack for this operation allows Java to do several useful things:
	- Perform recursive method calls
	- Print stack traces to locate an error

	• Java also includes an operand stack which is used to evaluate arithmetic instructions, i.e.
	Integer add(a, b):
	OperandStack Op
	Op.push(a)
	Op.push(b)
	temp1 ¨ Op.pop()
	temp2 ¨ Op.pop()
	Op.push(temp1 + temp2)
	return Op.pop()

	Example
	• The span of a stock’s price on a certain day, d, is the maximum number of consecutive days (up ...

	An Inefficient Algorithm
	• There is a straightforward way to compute the span of a stock on a given day for n days:
	Algorithm computeSpans1(P):
	Input: An n-element array P of numbers
	Output: An n-element array S of numbers such that S[i] is the span of the stock on day i.
	Let S be an array of n numbers
	for i=0 to n-1 do
	k ¨0
	done¨false
	repeat
	if P[i-k] £P[i] then
	k¨k+1
	else
	done¨true
	until (k=i) or done
	S[i]¨k
	return array S

	• The running time of this algorithm is (ugh!) O(n2). Why?

	A Stack Can Help
	• We see that si on day i can be easily computed if we know the closest day preceding i, such tha...
	• The span is now defined as si = i - hi We use a stack to keep track of hi

	A Case Study: A Stock Analysis Applet (cont.)
	• The code for our new algorithm:
	Algorithm computeSpan2(P):
	Input: An n-element array P of numbers
	Output: An n-element array S of numbers such that S[i] is the span of the stock on day i.
	Let S be an array of n numbers and D an empty stack
	for i=0 to n-1 do
	done¨false
	while not(D.isEmpty() or done) do
	if P[i]³P[D.top()] then
	D.pop()
	else
	done¨true
	if D.isEmpty() then
	h¨ -1
	else
	h¨D.top()
	S[i]¨i-h
	D.push(i)
	return array S

	• Let’s analysize computeSpan2’s run time...

	Java Stuff
	• Given the stack ADT, we need to code the ADT in order to use it in the programs.
	• You need to understand two program constructs: interfaces and exceptions.
	• An interface is a way to declare what a class is to do. It does not mention how to do it.
	• For an interface, you just write down the method names and the parameters. When specifying para...
	• Later, when you write a class for that interface, you actually code the content of the methods.
	• Separating interface and implementation is a useful programming technique.
	• Interface example:
	public interface radio {
	public void play();
	public void stop();
	}

	A Stack Interface in Java
	• While, the stack data structure is a “built-in” class of Java’s java.util package, it is possib...
	• public interface Stack {
	// accessor methods
	public int size(); // return the number of // elements in the stack
	public boolean isEmpty(); // see if the stack // is empty
	public Object top() // return the top element
	throws StackEmptyException; // if called on // an empty stack
	// update methods
	public void push (Object element); // push an // element onto the stack. Note that // the type of...
	public Object pop() // return and remove the // top element of the stack throws StackEmptyExcepti...
	}

	Exception s
	• Exceptions are yet another useful programming construct.
	• This is useful for handling errors. When you find an error (or an exceptional case), you just t...
	• Example
	public void eatPizza() throws StomachAcheException
	{
	...
	if (ateTooMuch)
	throw new StomachAcheException(“Ouch”);
	...
	}

	• As soon as the exception is thrown, the flow of control exits from the current method.
	• So when StomachAcheException is thrown, we exit from method eatPizza() and go to where that met...

	More Exceptions
	• Say the following code fragment called the method eatPizza() in the first place.
	private void simulateMeeting()
	{
	...
	try
	{
	aS tupidTA.eatPizza();
	}
	catch(StomachAcheException e)
	{
	System.out.println(“somebody has a stomach ache”);
	}
	...
	}

	Even More Exceptions
	• We will get back to aStupidTA.eatPizza(); because, remember, eatPizza() threw an exception.
	• The try block and the catch block means that we are listening for exceptions that are specified...
	• Because catch is listening for StomachAcheException, the flow of control will now go to the cat...
	• Note that a catch block can contain anything. It does not have to do only System.out.println. Y...
	• Note that if somewhere in your method, you throw an exception, you need to add a throws clause ...
	• What is the point of using exceptions? You can delegate upwards the responsibility of handling ...

	Even More Exceptions
	• If you never catch an exception, it will propagate upwards and upwards along the chain of metho...

	Final Exceptions
	• OK, so we threw and caught exceptions. But what exactly are they in Java? Classes.
	• Check out the StomachAcheException.
	public class StomachAcheException extends RuntimeException {
	public StomachAcheException(String err)
	{
	super(err);
	}
	}

	Array-Based Stack: a Java Implementation
	public class ArrayStack implements Stack {
	// Implementation of the Stack interface // using an array.

	public static final int CAPACITY = 1000; // default // capacity of the stack
	private int capacity; // maximum capacity of the // stack.
	private Object S[]; // S holds the elements of // the stack
	private int top = -1; // the top element of the // stack.
	public ArrayStack() { // Initialize the stack this(CAPACITY); // with default capacity }
	public ArrayStack(int cap) { // Initialize the // stack with given capacity capacity = cap; S = n...

	Array-Based Stack in Java (contd.)
	public int size() { //Return the current stack // size return (top + 1); }
	public boolean isEmpty() { // Return true iff // the stack is empty return (top < 0); }
	public void push(Object obj) { // Push a new // object on the stack if (size() == capacity) { thr...
	public Object top() // Return the top stack // element throws StackEmptyException { if (isEmpty(...

	Array-Based Stack in Java (contd.)
	public Object pop() // Pop off the stack element
	throws StackEmptyException {
	Object elem;
	if (isEmpty()) {
	throw new StackEmptyException(“Stack is Empty.”);
	elem = S[top];
	S[top--] = null; // Dereference S[top] and
	// decrement top
	return elem;
	}
	}

	A Growable Array-Based Stack
	• Instead of giving up with a StackFullException, we can replace the array S with a larger one an...
	Algorithm push(o):
	if size() = N then
	A ¨ new array of length f(N)
	for i ¨ 0 to N - 1
	A[i] ¨ S[i]
	S ¨ A
	t ¨ t + 1
	S[t] ¨ o

	• How large should the new array be?
	- tight strategy (add a constant): f(N) = N + c
	- growth strategy (double up): f(N) = 2N

	• To compare the two strategies, we use the following cost model
	regular push operation: add one element

	Tight Strategy (c=4)
	• start with an array of size 0
	• the cost of a special push is 2N + 5
	push
	phase
	n
	N

	Performance of the Tight Strategy
	• We consider k phases, where k = n/c
	• Each phase corresponds to a new array size
	• The cost of phase i is 2ci
	• The total cost of n push operations is the total cost of k phases, with k = n/c: 2c (1 + 2 + 3 ...

	Growth Strategy
	• start with an array of size 0, then 1, 2, 4, 8, ...
	• the cost of a special push is 3N + 1 for N > 0
	push
	phase
	n
	N

	Performace of the Growth Strategy
	• We consider k phases, where k = log n
	• Each phase corresponds to a new array size
	• The cost of phase i is 2i + 1
	• The total cost of n push operations is the total cost of k phases, with k = log n 2 + 4 + 8 +
	• The growth strategy wins!

	Amortized Analysis
	• The amortized running time of an operation within a series of operations is the worst-case runn...
	• The accounting method determines the amortized running time with a system of credits and debits
	• We view the computer as a coin-operated appliance that requires one cyber-dollar for a constant...
	• We set up a scheme for charging operations. This is known as an amortization scheme.
	• We may overcharge some operations and undercharge other operations. For example, we may charge ...
	• The scheme must give us always enough money to pay for the actual cost of the operation.
	• The total cost of the series of operations is no more than the total amount charged.
	• (amortized time) £ (total $ charged) / (# operations)

	Amortization Scheme for the Growth Strategy
	• At the end of a phase we must have saved enough to pay for the special push of the next phase.
	• At the end of phase 3 we want to have saved $24.
	• The amount saved pays for growing the array.
	• We charge $7 for a push. The $6 saved for a regular push are “stored” in the second half of the...

	Amortized Analysis of the Growth Strategy
	• We charge $5 (introductory special offer) for the first push and $7 for the remaining ones
	push
	n
	N
	balance
	charge

	Java Method Stack
	Queues
	• A queue differs from a stack in that its insertion and removal routines follows the first-in-fi...
	• Elements may be inserted at any time, but only the element which has been in the queue the long...
	• Elements are inserted at the rear (enqueued) and removed from the front (dequeued)
	a0

	The Queue Abstract Data Type
	• The queue supports two fundamental methods:
	- enqueue(o): Insert object o at the rear of the queue
	- dequeue(): Remove the object from the front of the queue and return it; an error occurs if the ...

	• These support methods should also be defined:
	- size(): Return the number of objects in the queue
	- isEmpty(): Return a boolean value that indicates whether the queue is empty
	- front(): Return, but do not remove, the front object in the queue; an error occurs if the queue...

	An Array-Based Queue
	• Create a queue using an array in a circular fashion
	• A maximum size N is specified, e.g. N = 1,000.
	• The queue consists of an N-element array Q and two integer variables:
	- f, index of the front element
	- r, index of the element after the rear one

	• “normal configuration”
	• “wrapped around” configuration
	• what does f=r mean?

	An Array-Based Queue (contd.)
	• Pseudo-Code (contd.)
	Algorithm size():
	return (N - f + r) mod N
	Algorithm isEmpty():
	return (f = r)
	Algorithm front():
	if isEmpty() then
	throw a QueueEmptyException
	return Q[f]
	Algorithm dequeue():
	if isEmpty() then
	throw a QueueEmptyException
	temp ¨ Q[f]
	Q[f] ¨ null
	f ¨ (f + 1) mod N
	return temp
	Algorithm enqueue(o):
	if size = N - 1 then
	throw a QueueFullException
	Q[r] ¨ o
	r ¨ (r +1) mod N

	Implementing a Queue with a Singly Linked List
	• nodes connected in a chain by links
	• the head of the list is the front of the queue, the tail of the list is the rear of the queue
	• why not the opposite?

	Removing at the Head
	• advance head reference
	• inserting at the head is just as easy

	Inserting at the Tail
	• create a new node
	• chain it and move the tail reference
	• how about removing at the tail?

	Double-Ended Queues
	• A double-ended queue, or deque, supports insertion and deletion from the front and back.
	• The Deque Abstract Data Type
	- insertFirst(e): Insert e at the deginning of deque.
	- insertLast(e): Insert e at end of deque
	- removeFirst(): Removes and returns first element
	- removeLast(): Removes and returns last element

	• Additionally supported methods include:
	- first()
	- last()
	- size()
	- isEmpty()

	Implementing Stacks and Queues with Deques
	• Stacks with Deques:
	• Queues with Deques:

	The Adaptor Pattern
	• Using a deque to implement a stack or queue is an example of the adaptor pattern. Adaptor patte...
	• In general, adaptor classes specialize general classes
	• Two such applications:
	- Specialize a general class by changing some methods. Ex: implementing a stack with a deque.
	- Specialize the types of objects used by a general class. Ex: Defining an IntegerArrayStack clas...

	Implementing Deques with Doubly Linked Lists
	• Deletions at the tail of a singly linked list cannot be done in constant time.
	• To implement a deque, we use a doubly linked list. with special header and trailer nodes.
	• A node of a doubly linked list has a next and a prev link. It supports the following methods:
	- setElement(Object e)
	- setNext(Object newNext)
	- setPrev(Object newPrev)
	- getElement()
	- getNext()
	- getPrev()

	• By using a doubly linked list to, all the methods of a deque have constant (that is, O(1)) runn...

	Implementing Deques with Doubly Linked Lists (cont.)
	• When implementing a doubly linked lists, we add two special nodes to the ends of the lists: the...
	- The header node goes before the first list element. It has a valid next link but a null prev link.
	- The trailer node goes after the last element. It has a valid prev reference but a null next ref...

	• The header and trailer nodes are sentinel or “dummy” nodes because they do not store elements.
	• Here’s a diagram of our doubly linked list:

	Implementing Deques with Doubly Linked Lists (cont.)
	• Here’s a visualization of the code for removeLast().

