
8.1More Sorting

More Sorting

• radix sort
• bucket sort
• in-place sorting
• how fast can we sort?

8.2More Sorting

Radix Sort

• Unlike other sorting methods, radix sort
considers the structure of the keys

• Assume keys are represented in a base M
number system (M= radix), i.e., if M= 2,
the keys are represented in binary

• Sorting is done by comparing bits in the
same position

• Extension to keys that are alphanumeric
strings

1 0 0 19 =
8 4 2 1 weight

(b = 4)

3 2 1 0 bit #

8.3More Sorting

Radix Exchange Sort
Examine bits fromleft to right:

1. Sort array with respect to leftmost bit

1
1
0
1
0

0
0
1
1
1

2. Partition array

0
0
1
1
1

0
0

1
1
1

3. Recursion
• recursively sort top subarray,

ignoring leftmost bit
• recursively sort bottom subarray,

ignoring leftmost bit

Time to sortn b-bit numbers: O(b n)

(top
subarray)

(bottom
subarray)

8.4More Sorting

Radix Exchange Sort
How do we do the sort from the previous page?
Same idea aspartition inQuicksort.

repeat
scan top-down to find key starting with 1;
scan bottom-up to find key starting with 0;
exchange keys;

until scan indices cross;

0
1

1
0
1

scan from top

scan from bottom
first

0

1

0

1
1

second
exchange

exchange

1
1

0

0

1

1

0
1 0

1

scan from top

scan from bottom

8.5More Sorting

Radix Exchange Sort

array before sort

array after sort
on leftmost bit

array after recursive
sort on second from

leftmost bit

2b-1

8.6More Sorting

Radix Exchange Sort vs.
Quicksort

Similarities
• both partition array
• both recursively sort sub-arrays

Differences
• Method of partitioning

• radix exchange divides array based on
greater than or less than 2b-1

• quicksort partitions based on greater
than or less than some element of the ar-
ray

• Time complexity
• Radix exchange O (bn)
• Quicksort average case O (n log n)

8.7More Sorting

Straight Radix Sort

for k := 0 to b−1
sort the array in a stable way,
looking only at bit k

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

Examines bits fromright to left

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

First,
sort
these

Next, sort
these digits

Last, sort
these.

Note order of these bits after sort.

8.8More Sorting

I forgot what it means to “sort
in a stable way”!!!

In a stable sort, the initial relative order of equal
keys is unchanged.

For example, observe the first step of the sort
from the previous page:

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

Note that the relative order of those keys ending
with 0 is unchanged, and the same is true for ele-
ments ending in 1

8.9More Sorting

The Algorithm is Correct
(right?)

• We show that any two keys are in the cor-
rect relative order at the end of the algo-
rithm

• Given two keys, let k be the leftmost bit-
position where they differ

0 1 0 1 1

0 1 1 0 1

k

• At stepk the two keys are put in the correct
relative order

• Because ofstability, the successive steps do
not change the relative order of the two
keys

8.10More Sorting

For Instance,

Consider a sort on an array with these two keys:

0 1 0 1 1

0 1 1 0 1

k

It makes no difference what order
they are in when the sort begins.

0 1 0 1 1

0 1 1 0 1

0 1 1 0 1

0 1 0 1 1
When the sort visits bitk,
the keys are put in the cor-
rect relative order.

0 1 1 0 1

0 1 0 1 1 Because the sort is stable, the
order of the two keys will not
be changed when bits >k are
compared.

8.11More Sorting

Voila!

Radix sorting can be applied
to decimal numbers

First, sort
these digits

Next, sort
these digits

Last, sort
these.

Note order of these bits after sort.

0 1 5
0 1 6
0 3 1
0 3 2
1 2 3
1 6 9
2 2 4
2 5 2

0 3 2
2 2 4
0 1 6
0 1 5
0 3 1
1 6 9
1 2 3
2 5 2

0 3 1
0 3 2
2 5 2
1 2 3
2 2 4
0 1 5
0 1 6
1 6 9

0 1 6
1 2 3
2 2 4
0 3 1
0 3 2
2 5 2
1 6 9

0 1 5

8.12More Sorting

Straight Radix Sort

Time Complexity

for k = 0 to b - 1
sort the array in astableway,
looking only at bitk

Suppose we can perform the stable sort above in
O(n) time. The total time complexity would be

O(bn)
As you might have guessed, we can perform a
stable sort based on the keys’kth digit in O(n)
time.

The method, you ask? Why it’sBucket Sort, of
course.

8.13More Sorting

Bucket Sort

• n numbers
• Each number∈ {1, 2, 3, ... m}
• Stable
• Time: O (n + m)

For example,m = 3 and our array is:

2 1 3 1 2

(note that there are two “2”s and two “1”s)

First, we create M “buckets”

1

2

3m =

8.14More Sorting

Each element of the array is put in one of them
“buckets”

2 1 3 1 2

Bucket Sort

1

2

3

1

1

2

3

1 3 1 2

2

2

3

1

2

3

1 2

2

1

3

1

2

4

5

1

2

3

2

1

3

1

2

Now each element is
in the proper bucket:

8.15More Sorting

Bucket Sort

1

2

3

2

1

3

1

2

Now, pull the elements from the buckets into the
array

1 1 2 2 3

1

1

2

3

2

3

1

2

1

2
3 4

5

At last, the sorted array (sorted in astable way):

8.16More Sorting

In-Place Sorting
• A sorting algorithm is said to bein-place if

• it usesno auxiliary data structures (however,
O(1) auxiliary variables are allowed)

• it updates the input sequence only by means of
operationsreplaceElement andswapElements

• Which sorting algorithms seen so far can be made
to work in place?

bubble-sort Y

selection-sort

insertion-sort

heap-sort

merge-sort

quick-sort

radix-sort

bucket-sort

8.17More Sorting

Decision Tree for Comparison
Based Sorting

• internal node: comparison
• external node: permutation
• algorithm execution:root-to-leaf path

s1 s2

s1 s3

s1 sns1 sn

s1 s3

s1 sn s1 sn

. . .

. . .
sn-1 sn sn-1 sn sn-1 sn sn-1 sn

yes no

nono

no nono

no no no no

yes yes

yes yes yes yes
no

yes yes yes yes

. . .

8.18More Sorting

How Fast Can We Sort?
• Proposition: The running time of any comparison-

based algorithm for sorting ann-element sequence S
is Ω(n log n).

• Justification:

• The running time of a comparison-based sorting
algorithm must be equal to or greater than the depth
of the decision treeT associated with this algorithm.

• Each internal node ofT is associated with a
comparison that establishes the ordering of two
elements of S.

• Each external node ofT represents a distinct
permutation of the elements of S.

• HenceT must have at leastn! external nodes which
again impliesT has a height of at least log(n!)

• Sincen! has at leastn/2 terms that are greater than or
equal ton/2, we have:
 log(n!) (n/2) log(n/2)

• Total Time Complexity: Ω(n log n).

	More Sorting
	• radix sort
	• bucket sort
	• in-place sorting
	• how fast can we sort?

	Radix Sort
	• Unlike other sorting methods, radix sort considers the structure of the keys
	• Assume keys are represented in a base M number system (M = radix), i.e., if M = 2, the keys are...
	• Sorting is done by comparing bits in the same position
	• Extension to keys that are alphanumeric strings

	Radix Exchange Sort
	Examine bits from left to right:
	1. Sort array with respect to leftmost bit
	2. Partition array
	3. Recursion
	• recursively sort top subarray, ignoring leftmost bit
	• recursively sort bottom subarray, ignoring leftmost bit

	Time to sort n b-bit numbers: O(b n)
	Radix Exchange Sort
	How do we do the sort from the previous page? Same idea as partition in Quicksort.
	repeat
	scan top-down to find key starting with 1; scan bottom-up to find key starting with 0;
	exchange keys;
	until scan indices cross;

	Radix Exchange Sort
	array before sort
	array after sort on leftmost bit
	array after recursive sort on second from leftmost bit
	Radix Exchange Sort vs. Quicksort
	Similarities
	• both partition array
	• both recursively sort sub-arrays

	Differences
	• Method of partitioning
	• radix exchange divides array based on greater than or less than 2b-1
	• quicksort partitions based on greater than or less than some element of the array

	• Time complexity
	• Radix exchange O (bn)
	• Quicksort average case O (n log n)
	• Quicksort worst case O (n2)

	Straight Radix Sort
	for k := 0 to b-1
	sort the array in a stable way,
	looking only at bit k

	Examines bits from right to left
	First, sort these
	Next, sort these digits
	Last, sort these.
	Note order of these bits after sort.
	I forgot what it means to “sort in a stable way”!!!
	In a stable sort, the initial relative order of equal keys is unchanged.
	For example, observe the first step of the sort from the previous page:
	Note that the relative order of those keys ending with 0 is unchanged, and the same is true for e...
	The Algorithm is Correct (right?)
	• We show that any two keys are in the correct relative order at the end of the algorithm
	• Given two keys, let k be the leftmost bit- position where they differ
	• At step k the two keys are put in the correct relative order
	• Because of stability, the successive steps do not change the relative order of the two keys

	Given two keys, let k be the largest bit-position where they differ
	For Instance,
	Consider a sort on an array with these two keys:
	It makes no difference what order they are in when the sort begins.
	When the sort visits bit k, the keys are put in the correct relative order.
	Because the sort is stable, the order of the two keys will not be changed when bits > k are compa...
	Radix sorting can be applied to decimal numbers
	First, sort these digits
	Next, sort these digits
	Last, sort these.
	Note order of these bits after sort.
	Straight Radix Sort
	Time Complexity
	for k = 0 to b - 1
	sort the array in a stable way,
	looking only at bit k

	Suppose we can perform the stable sort above in O(n) time. The total time complexity would be
	O(bn)
	As you might have guessed, we can perform a stable sort based on the keys’ kth digit in O(n) time.
	The method, you ask? Why it’s Bucket Sort, of course.
	Bucket Sort
	• n numbers
	• Each number Œ {1, 2, 3, ... m}
	• Stable
	• Time: O (n + m)

	For example, m = 3 and our array is:
	(note that there are two “2”s and two “1”s)
	First, we create M “buckets”
	Each element of the array is put in one of the m “buckets”
	Bucket Sort
	Bucket Sort
	Now, pull the elements from the buckets into the array
	At last, the sorted array (sorted in a stable way):
	In-Place Sorting
	• A sorting algorithm is said to be in-place if
	• it uses no auxiliary data structures (however, O(1) auxiliary variables are allowed)
	• it updates the input sequence only by means of operations replaceElement and swapElements

	• Which sorting algorithms seen so far can be made to work in place?

	Decision Tree for Comparison Based Sorting
	• internal node: comparison
	• external node: permutation
	• algorithm execution: root-to-leaf path

	How Fast Can We Sort?

