More Sorting

- radix sort
- bucket sort
- in-place sorting
- how fast can we sort?

Radix Sort

- Unlike other sorting methods, radix sort considers the structure of the keys
- Assume keys are represented in a base M number system ($M=$ radix), i.e., if $M=2$, the keys are represented in binary

$$
\mathbf{9}=\begin{array}{|c|c|c|c|c}
\begin{array}{c}
8 \\
\mathbf{1}
\end{array} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\
\hline 3 & 2 & 1 & 0
\end{array} \quad \begin{gathered}
\text { weight } \\
(b=4) \\
\text { bit \# }
\end{gathered}
$$

- Sorting is done by comparing bits in the same position
- Extension to keys that are alphanumeric strings

Radix Exchange Sort

Examine bits from left to right:

1. Sort array with respect to leftmost bit

2. Partition array

3. Recursion

- recursively sort top subarray, ignoring leftmost bit
- recursively sort bottom subarray, ignoring leftmost bit
Time to sort $n b$-bit numbers: $O(b n)$

Radix Exchange Sort

How do we do the sort from the previous page?
Same idea as partition in Quicksort. repeat scan top-down to find key starting with 1; scan bottom-up to find key starting with 0; exchange keys;
until scan indices cross;
scan from to
scan from bottom
 scan from top

scan from bottom

Radix Exchange Sort

Radix Exchange Sort vs. Quicksort

Similarities

- both partition array
- both recursively sort sub-arrays

Differences

- Method of partitioning
- radix exchange divides array based on greater than or less than $2^{\text {b- }}$
- quicksort partitions based on greater than or less than some element of the array
- Time complexity
- Radix exchange $O(b n)$
- Quicksort average case $\mathrm{O}(n \log n)$

Straight Radix Sort

Examines bits from right to left

$$
\begin{aligned}
& \text { for } \mathrm{k}:=0 \text { to } \mathrm{b}-1 \\
& \text { sort the array in a stable way, } \\
& \text { looking only at bit } \mathrm{k}
\end{aligned}
$$

I forgot what it means to "sort in a stable way"!!!

In a stable sort, the initial relative order of equal keys is unchanged.

For example, observe the first step of the sort from the previous page:

0	1	0
0	0	0
1	0	1
0	0	1
1	1	1
0	1	1
1	0	0
1	1	0

0	1	0
0	0	0
1	0	0
1	1	0
1	0	1
0	0	1
1	1	1
0	1	1

Note that the relative order of those keys ending with 0 is unchanged, and the same is true for elements ending in 1

The Algorithm is Correct (right?)

- We show that any two keys are in the correct relative order at the end of the algorithm
- Given two keys, let k be the leftmost bitposition where they differ

- At step k the two keys are put in the correct relative order
- Because of stability, the successive steps do not change the relative order of the two keys

For Instance,

Consider a sort on an array with these two keys:

k

When the sort visits bit k, the keys are put in the correct relative order.

| 0 | 1 | 0 | 1 | 1 | Because the sort is stable, the |
| :--- | :--- | :--- | :--- | :--- | :--- | order of the two keys will not be changed when bits $>k$ are | 0 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| compared. | | | | |

Radix sorting can be applied to decimal numbers

First, sort
these digits
Next, sort these digits Last, sort these.

0 1 5 0 1 6 0 3 1 0 3 2 1 2 3 1 6 9 2 2 4 2 5 2	

0	3	2
2	2	4
0	1	6
0	1	5
0	3	1
1	6	9
1	2	3
2	5	2

0	3	1
0	3	2
2	5	2
1	2	3
2	2	4
0	1	5
0	1	6
1	6	9

0	1	5
0	1	6
1	2	3
2	2	4
0	3	1
0	3	2
2	5	2
1	6	9

\uparrow
\uparrow

Note order of these bits after sort.

Straight Radix Sort Time Complexity

for $k=0$ to $b-1$ sort the array in a stable way, looking only at bit k

Suppose we can perform the stable sort above in $\mathrm{O}(n)$ time. The total time complexity would be $O(b n)$

As you might have guessed, we can perform a stable sort based on the keys' $\boldsymbol{k}^{\text {th }}$ digit in $\mathrm{O}(n)$ time.

The method, you ask? Why it's Bucket Sort, of course.

Bucket Sort

- n numbers
- Each number $\in\{1,2,3, \ldots \mathrm{~m}\}$
- Stable
- Time: O $(n+m)$

For example, $m=3$ and our array is:

2	1	3	1	2

(note that there are two " 2 "s and two " 1 "s)

First, we create M "buckets"

$$
\begin{array}{r}
1 \square \\
2 \square \\
m=3 \square
\end{array}
$$

Bucket Sort

Each element of the array is put in one of the m "buckets"

Bucket Sort

Now, pull the elements from the buckets into the array

$2 \square \rightarrow 2$

At last, the sorted array (sorted in a stable way):

In-Place Sorting

- A sorting algorithm is said to be in-place if
- it uses no auxiliary data structures (however, $\mathrm{O}(1)$ auxiliary variables are allowed)
- it updates the input sequence only by means of operations replaceElement and swapElements
- Which sorting algorithms seen so far can be made to work in place?

bubble-sort	Y
selection-sort	
insertion-sort	
heap-sort	
merge-sort	
quick-sort	
radix-sort	
bucket-sort	

Decision Tree for Comparison Based Sorting

- internal node: comparison
- external node: permutation
- algorithm execution: root-to-leaf path

How Fast Can We Sort?

- Proposition: The running time of any comparisonbased algorithm for sorting an n-element sequence S is $\Omega(n \log n)$.

- Justification:

- The running time of a comparison-based sorting algorithm must be equal to or greater than the depth of the decision tree T associated with this algorithm.
- Each internal node of T is associated with a comparison that establishes the ordering of two elements of S.
- Each external node of T represents a distinct permutation of the elements of S.
- Hence T must have at least n ! external nodes which again implies T has a height of at least $\log (n!)$
- Since n ! has at least $n / 2$ terms that are greater than or equal to $n / 2$, we have:

$$
\log (n!) \quad(n / 2) \log (n / 2)
$$

- Total Time Complexity: $\Omega(n \log n)$.

