
8.1More Sorting

More Sorting

• radix sort
• bucket sort
• in-place sorting
• how fast can we sort?



8.2More Sorting

Radix Sort

• Unlike other sorting methods, radix sort
considers the structure of the keys

• Assume keys are represented in a base M
number system (M= radix), i.e., if M= 2,
the keys are represented in binary

• Sorting is done by comparing bits in the
same position

• Extension to keys that are alphanumeric
strings

1 0 0 19 =
8 4 2 1 weight

(b = 4)

3 2 1 0 bit #



8.3More Sorting

Radix Exchange Sort
Examine bits fromleft to right:

1.  Sort array with respect to leftmost bit

1
1
0
1
0

0
0
1
1
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2.  Partition array

0
0
1
1
1

0
0

1
1
1

3. Recursion
• recursively sort top subarray,

ignoring leftmost bit
• recursively sort bottom subarray,

ignoring leftmost bit

Time to sortn b-bit numbers: O(b n)

(top
subarray)

(bottom
subarray)
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Radix Exchange Sort
How do we do the sort from the previous page?
Same idea aspartition inQuicksort.

repeat
scan top-down to find key starting with 1;
scan bottom-up to find key starting with 0;
exchange keys;

until  scan indices cross;
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Radix Exchange Sort

array before sort

array after sort
on leftmost bit

array after recursive
sort on second from

leftmost bit

2b-1
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Radix Exchange Sort vs.
Quicksort

Similarities
• both partition array
• both recursively sort sub-arrays

Differences
• Method of partitioning

• radix exchange divides array based on
greater than or less than 2b-1

• quicksort partitions based on greater
than or less than some element of the ar-
ray

• Time complexity
• Radix exchange              O (bn)
• Quicksort average case   O (n log n)
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Straight Radix Sort

for  k := 0  to  b−1
sort the array in a stable way,
looking only at bit k

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

Examines bits fromright to left

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

0 0 0
1 0 0
1 0 1
0 0 1
0 1 0
1 1 0
1 1 1
0 1 1

First,
sort
these

Next, sort
these digits

Last, sort
these.

Note order of these bits after sort.



8.8More Sorting

I forgot what it means to “sort
in a stable way”!!!

In a stable sort, the initial relative order of equal
keys is unchanged.

For example, observe the first step of the sort
from the previous page:

0 1 0
0 0 0
1 0 1
0 0 1
1 1 1
0 1 1
1 0 0
1 1 0

0 1 0
0 0 0
1 0 0
1 1 0
1 0 1
0 0 1
1 1 1
0 1 1

Note that the relative order of those keys ending
with 0 is unchanged, and the same is true for ele-
ments ending in 1



8.9More Sorting

The Algorithm is Correct
(right?)

• We show that any two keys are in the cor-
rect relative order at the end of the algo-
rithm

• Given two keys, let k be the leftmost bit-
position where they differ

0 1 0 1 1

0 1 1 0 1

k

• At stepk the two keys are put in the correct
relative order

• Because ofstability, the successive steps do
not change the relative order of the two
keys
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For Instance,

Consider a sort on an array with these two keys:

0 1 0 1 1

0 1 1 0 1

k

It makes no difference what order
they are in when the sort begins.

0 1 0 1 1

0 1 1 0 1

0 1 1 0 1

0 1 0 1 1
When the sort visits bitk,
the keys are put in the cor-
rect relative order.

0 1 1 0 1

0 1 0 1 1 Because the sort is stable, the
order of the two keys will not
be changed when bits >k are
compared.
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Voila!

Radix sorting can be applied
to decimal numbers

First, sort
these digits

Next, sort
these digits

Last, sort
these.

Note order of these bits after sort.

0 1 5
0 1 6
0 3 1
0 3 2
1 2 3
1 6 9
2 2 4
2 5 2

0 3 2
2 2 4
0 1 6
0 1 5
0 3 1
1 6 9
1 2 3
2 5 2

0 3 1
0 3 2
2 5 2
1 2 3
2 2 4
0 1 5
0 1 6
1 6 9

0 1 6
1 2 3
2 2 4
0 3 1
0 3 2
2 5 2
1 6 9

0 1 5
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Straight Radix Sort

Time Complexity

for k = 0  to b - 1
sort the array in astableway,
looking only at bitk

Suppose we can perform the stable sort above in
O(n) time.  The total time complexity would be

O(bn)
As you might have guessed, we can perform a
stable sort based on the keys’kth digit in O(n)
time.

The method, you ask?  Why it’sBucket Sort, of
course.
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Bucket Sort

• n numbers
• Each number∈ {1, 2, 3, ... m}
• Stable
• Time:  O (n + m)

For example,m = 3 and our array is:

2 1 3 1 2

(note that there are two “2”s and two “1”s)

First, we create M “buckets”

1

2

3m =
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Each element of the array is put in one of them
“buckets”

2 1 3 1 2

Bucket Sort

1

2

3

1

1

2

3

1 3 1 2

2
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1

2

3

1 2

2

1

3

1

2

4

5

1

2

3

2

1

3

1

2

Now each element is
in the proper bucket:
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Bucket Sort

1

2

3

2

1

3

1

2

Now, pull the elements from the buckets into the
array

1 1 2 2 3

1

1

2

3

2

3

1

2

1

2
3 4

5

At last, the sorted array (sorted in astable way):
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In-Place Sorting
• A sorting algorithm is said to bein-place if

•  it usesno auxiliary data structures (however,
O(1) auxiliary variables are allowed)

• it updates the input sequence only by means of
operationsreplaceElement andswapElements

• Which sorting algorithms seen so far can be made
to work in place?

bubble-sort Y

selection-sort

insertion-sort

heap-sort

merge-sort

quick-sort

radix-sort

bucket-sort
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Decision Tree for Comparison
Based Sorting

• internal node: comparison
• external node: permutation
• algorithm execution:root-to-leaf path

s1  s2

s1  s3

s1  sns1  sn

s1  s3

s1  sn s1  sn

. . .

. . .
sn-1  sn sn-1  sn sn-1  sn sn-1  sn

yes no

nono

no nono

no no no no

yes yes

yes yes yes yes
no

yes yes yes yes

. . .
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How Fast Can We Sort?
• Proposition: The running time of any comparison-

based algorithm for sorting ann-element sequence S
is Ω(n log n).

• Justification:

• The running time of a comparison-based sorting
algorithm must be equal to or greater than the depth
of the decision treeT associated with this algorithm.

• Each internal node ofT is associated with a
comparison that establishes the ordering of two
elements of S.

• Each external node ofT represents a distinct
permutation of the elements of S.

• HenceT must have at leastn! external nodes which
again impliesT has a height of at least log(n!)

• Sincen! has at leastn/2 terms that are greater than or
equal ton/2, we have:
                    log(n!)  (n/2) log(n/2)

• Total Time Complexity: Ω(n log n).
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