
7.1advanced sorting

ADVANCED SORTING

• Review of Sorting

• Merge Sort

• Sets

• Quick Sort

• How Fast Can We Sort?

7.2advanced sorting

Sorting Algorithms
• Selection Sort uses a priority queue P implemented

with an unsorted sequence:
- Phase 1: the insertion of an item into P takesO(1)

time; overallO(n)
- Phase 2: removing an item takes time proportional

to the number of elements in PO(n): overallO(n2)
- Time Complexity: O(n2)

7.3advanced sorting

Sorting Algorithms (cont.)
• Insertion Sort is performed on a priority queue P

which is a sorted sequence:
- Phase 1: the firstinsertItem takesO(1), the second

O(2), until the lastinsertItem takesO(n): overall
O(n2)

- Phase 2: removing an item takesO(1) time;
overallO(n).

- Time Complexity: O(n2)

• Heap Sort uses a priority queue K which is a heap.
- insertItem andremoveMin each take

O(log k), k being the number of elements in the
heap at a given time.

- Phase 1: n elements inserted:O(nlog n) time
- Phase 2: n elements removed:O(n log n) time.
- Time Complexity: O(nlog n)

7.4advanced sorting

Divide-and-Conquer
• Divide and Conquer is more than just a military

strategy, it is also a method of algorithm design that
has created such efficient algorithms asMerge Sort.

• In terms or algorithms, this method has three distinct
steps:

- Divide: If the input size is too large to deal with in
a straightforward manner, divide the data into two
or more disjoint subsets.

- Recur: Use divide and conquer to solve the
subproblems associated with the data subsets.

- Conquer: Take the solutions to the subproblems
and “merge” these solutions into a solution for the
original problem.

7.5advanced sorting

Merge-Sort
• Algorithm:

- Divide: If S has at leas two elements (nothing
needs to be done ifS has zero or one elements),
remove all the elements fromS and put them into
two sequences,S1 andS2, each containing about
half of the elements of S. (i.e.S1 contains the first
n/2 elements andS2 contains the remaining
n/2 elements.

- Recur: Recursive sort sequencesS1 andS2.
- Conquer: Put back the elements intoSby merging

the sorted sequencesS1 andS2 into a unique sorted
sequence.

• Merge Sort Tree:

- Take a binary treeT
- Each node ofT represents a recursive call of the

merge sort algorithm.
- We assocoate with each nodev of T a the set of

input passed to the invocationv represents.
- The external nodes are associated with individual

elements ofS, upon which no recursion is called.

7.6advanced sorting

Merge-Sort
85 24 63 45 17 31 96 50

85 24 63 45 17 31 96 50

7.7advanced sorting

Merge-Sort(cont.)

85 24 63 45

17 31 96 50

85 24

63 45

17 31 96 50

7.8advanced sorting

Merge-Sort (cont.)

85

24

63 45

17 31 96 50

85

24

63 45

17 31 96 50

7.9advanced sorting

Merge-Sort (cont.)

85 24 63 45

17 31 96 50

24 85 63 45

17 31 96 50

7.10advanced sorting

Merge-Sort (cont.)

24 85

63 45

17 31 96 50

24 85

63 45

17 31 96 50

7.11advanced sorting

Merge-Sort (cont.)

24 85

63 45

17 31 96 50

24 85

63

45

17 31 96 50

7.12advanced sorting

Merge-Sort (cont.)

24 85

63

45

17 31 96 50

24 85

63 45

17 31 96 50

7.13advanced sorting

Merge-Sort(cont.)

24 85 17 31 96 50

45 63

24 85 17 31 96 5045 63

7.14advanced sorting

Merge-Sort (cont.)

24 45 17 31 96 5063 85

24 45

17 31 96 50

63 85

7.15advanced sorting

Merge-Sort (cont.)
24 45

17 31 96 50

63 85

24 45

17 31 50 96

63 85

7.16advanced sorting

Merge-Sort (cont.)
24 45 17 31 50 9663 85

17 24 31 45 50 63 85 96

7.17advanced sorting

Merging Two Sequences
• Pseudo-code for merging two sorted sequences into

a unique sorted sequence
Algorithm merge (S1, S2, S):

Input : SequenceS1 andS2 (on whose elements a
total order relation is defined) sorted in nondecreas
ing order, and an empty sequenceS.
Ouput: SequenceS containing the union of the ele
ments fromS1 andS2 sorted in nondecreasing order;
sequenceS1 andS2 become empty at the end of the
execution
while S1is not emptyand S2 is not emptydo

if S1.first().element()≤ S2.first().element()then
{move the first element ofS1 at the end ofS}
S.insertLast(S1.remove(S1.first()))

else
{ move the first element ofS2at the end ofS}
S.insertLast(S2.remove(S2.first()))

while S1 is not emptydo
S.insertLast(S1.remove(S1.first()))
{move the remaining elements ofS2 to S}

while S2is not emptydo
S.insertLast(S2.remove(S2.first()))

7.18advanced sorting

Merging Two Sequences (cont.)
• Some pictures:

a)

b)

24 45 63 85S1

17 31 50 96S2

S

24 45 63 85S1

17

31 50 96S2

S

7.19advanced sorting

Merging Two Sequences (cont.)
c)

d)

24

45 63 85S1

17

31 50 96S2

S

24

45 63 85S1

17

50 96S2

S 31

7.20advanced sorting

Merging Two Sequences (cont.)
e)

f)

24

63 85S1

17

50 96S2

S 31 45

24

63 85S1

17

96S2

S 31 45 50

7.21advanced sorting

Merging Two Sequences (cont.)
g)

h)

24

85S1

17

96S2

S 31 45 50 63

24

S1

17

96S2

S 31 45 50 63 85

7.22advanced sorting

Merging Two Sequences (cont.)
i)

24

S1

17

S2

S 31 45 50 63 85 96

7.23advanced sorting

Java Implementation of
Merge-Sort

• Interface SortObject

public interface SortObject {

//sort sequence S in nondecreasing order
using compartor c

public void sort (Sequence S, Comparator c);

}

7.24advanced sorting

Java Implementation
of Merge-Sort(cont.)

public class ListMergeSort implements SortObject {

public void sort(Sequence S, Comparator c) {

int n = S.size();

if (n < 2) return ; // a sequence with 0 or
1 element is already sorted.

// divide

Sequence S1 = (Sequence)S.newContainer();

// put the first half of S into S1

for (int i=1; i <= (n+1)/2; i++) {

S1.insertLast(S.remove(S.first()));

}

Sequence S2 = (Sequence)S.newContainer();

// put the second half of S into S2

for (int i=1; i <= n/2; i++) {

S2.insertLast(S.remove(S.first()));

}

sort(S1,c); // recur

sort(S2,c);

merge(S1,S2,c,S); // conquer

 }

7.25advanced sorting

Java Implementation
of Merge-Sort(cont.)

public void merge(Sequence S1, Sequence S2,
Comparator c, Sequence S) {

while (!S1.isEmpty() && !S2.isEmpty()) {

if (c.isLessThanOrEqualTo(S1.first().element(),
S2.first().element())) {
// S1’s 1st elt <= S2’s 1st elt
S.insertLast(S1.remove(S1.first()));

}

else { // S2’s 1st elt is the smaller one
S.insertLast(S2.remove(S2.first()));

}
}

if (S1.isEmpty()) {
while (!S2.isEmpty()) {

S.insertLast(S2.remove(S2.first()));
}

}
if (S2.isEmpty()) {

whil e(!S1.isEmpty()) {
S.insertLast(S1.remove(S1.first()));

}
}

}

7.26advanced sorting

Running Time of Merge-Sort
• Proposition 1: The merge-sort tree associated with

the execution of a merge-sort on a sequence ofn
elements has a height oflogn

• Proposition 2: A merge sort algorithm sorts a
sequence of sizen in O(nlog n) time

• We assume only that the input sequenceS and each
of the sub-sequences created by each recursive call
of the algorithm can access, insert to, and delete
from the first and last nodes inO(1) time.

• We call the time spent at nodev of merge-sort treeT
the running time of the recusive call associated with
v, excluding the recursive calls sent tov’s children.

7.27advanced sorting

Running Time of Merge-Sort
(cont.)

• If we let i represent the depth of nodev in the merge-
sort tree, the time spent at nodev is O(n/2i) since the
size of the sequence associated withv is n/2i.

• Observe thatT has exactly 2i nodes at depth i. The
total time spent at depthi in the tree is then
O(2in/2i), which isO(n). We know the tree has
heightlogn

Therefore, the time complexity isO(nlog n)

7.28advanced sorting

Set ADT
• A Set is a data structure modeled after the

mathematical notation of a set. The fundamaental set
operations areunion, intersection, andsubtraction.

• A brief aside on mathemeatical set notation:
- A ∪ B = { x: x ∈ A or x ∈ B }
- A ∩ B = { x: x ∈ A andx ∈ B }
- A − B = { x: x ∈ A andx ∉ B }

• The specific methods for a Set A include the
following:

- union(B):
Set A equal to A∪ B.

- intersect(B):
Set A equal to A∩ B.

- subtract(B):
Set A equal to A− B.

7.29advanced sorting

Generic Merging
Algorithm genericMerge(A, B):

Input : Sorted sequencesA andB
Output : Sorted sequenceC
let A’ be a copy ofA { We won’t destroyA andB}
let B’ be a copy ofB
while A’ andB’ are not emptydo

a←A’.first()
b←B’.first()
if a<b then

aIsLess(a, C)
A’.removeFirst()

else ifa=b then
bothAreEqual(a, b, C)
A’.removeFirst()
B’.removeFirst()

else
bIsLess(b, C)
B’.removeFirst()

while A’ is not emptydo
a←A’.first()
aIsLess(a, C)
A’.removeFirst()

while B’ is not emptydo
b←B’.first()
bIsLess(b, C)
B’.removeFirst()

7.30advanced sorting

Set Operations
• We can specialize the generic merge algorithm to

perform set operations like union, intersection, and
subtraction.

• The generic merge algorithm examines and compare
the current elements ofA andB.

• Based upon the outcome of the comparision, it
determines if it should copy one or none of the
elementsa andb into C.

• This decision is based upon the particular operation
we are performing, i.e. union, intersection or
subtraction.

• For example, if our operation is union, we copy the
smaller ofa andb to C and ifa=b then it copies
either one (saya).

• We define our copy actions inaIsLess,
bothAreEqual, andbIsLess.

• Let’s see how this is done ...

7.31advanced sorting

Set Operations (cont.)
• For union

public class UnionMerger extends Merger {
protected void aIsLess(Object a, Object b, Sequence C) {

C.insertLast(a);
}
protected void bothAreEqual(Object a, Object b,

Sequence C) {
C.insertLast(a);

}
protected void bIsLess(Object b, Sequence C) {

C.insertLast(b);
}

• For intersect
public class IntersectMerger extends Merger {

protected void aIsLess(Object a, Object b, SequenceC) {
}
protected void bothAreEqual(Object a, Object b,

 Sequence C) {
C.insertLast(a);

}
protected void bIsLess(Object b, Sequence C) { }

}

7.32advanced sorting

Set Operations (cont.)
• For subtraction

public class SubtractMerger extends Merger {

protected void aIsLess(Object a, Object b,
 Sequence C) {

C.insertLast(a);
}

protected void bothAreEqual(Object a, Object b,
Sequence C) {

}

protected void bIsLess(Object b, Sequence C) {
}

}

7.33advanced sorting

Thank goodness! It’s
Quicksort Man! Help me!

I’m on my way,
Bubble Sort Man.

Quicksort

7.34advanced sorting

Quick-Sort
• To understand quick-sort, let’s look at a high-level

description of the algorithm

• 1) Divide : If the sequenceShas 2 or more elements,
select an elementx from S to be yourpivot. Any
arbitrary element, like the last, will do. Remove all
the elements ofS and divide them into 3 sequences:
- L, holdsS’s elements less thanx
- E, holdsS’s elements equal tox
- G, holdsS’s elements greater thanx

• 2) Recurse: Recursively sortL andG

• 3) Conquer: Finally, to put elements back intoS in
order, first inserts the elements ofL, then those ofE,
and those ofG.

• Here are some pretty diagrams....

7.35advanced sorting

Idea of Quick Sort

1. Select
pick anelement

2.Devide
rearrange elements
so that
• x goes to itsfinal

 position E

3. Recurse and Conquer
recursively sort

x

x

x

L E G

7.36advanced sorting

Quick-Sort Tree
7 6 2 10 4 5 9 8

7 8 10 96 2 4 5

7.37advanced sorting

Quick-Sort Tree
8 10 9

7 6 2 4 5

8 10 9

2 4 5 7 6

7.38advanced sorting

Quick-Sort Tree
8 10 9

5 7 6

2 4

8 10 9

5 7 6

2 4

7.39advanced sorting

Quick-Sort Tree
8 10 9

5 7 6

4

2

8 10 9

5 7 6

2 4

7.40advanced sorting

Quick-Sort Tree
8 10 9

5 7 6

2 4

8 10 9

5 7 6

2 4

7.41advanced sorting

Quick-Sort Tree
8 10 9

5 7 6

2 4

8 10 9

5 7 62 4

7.42advanced sorting

Quick-Sort Tree
8 10 9

52 4

7 6

8 10 9

52 4

76

7.43advanced sorting

Quick-Sort Tree
8 10 9

52 4

76

8 10 9

52 4

76

7.44advanced sorting

Quick-Sort Tree
8 10 9

52 4

6

7

8 10 9

52 4

6 7

7.45advanced sorting

Quick-Sort Tree
8 10 9

52 4

6 7

8 10 9

52 4 6 7

7.46advanced sorting

Quick-Sort Tree
8 10 92 4 5 6 7

82 4 5 6 7

10 9

7.47advanced sorting

Quick-Sort Tree
8 10 92 4 5 6 7

9 10

82 4 5 6 7

9 10

7.48advanced sorting

Quick-Sort Tree
82 4 5 6 7

9 10

82 4 5 6 7

9

10

7.49advanced sorting

Quick-Sort Tree
82 4 5 6 7

9 10

82 4 5 6 7

9 10

7.50advanced sorting

Quick-Sort Tree
8 9 102 4 5 6 7

2 4 5 6 7 9 108

7.51advanced sorting

In-Place Quick-Sort
• Divide step: l scans the sequence from the left, andr

from the right.

• A swap is performed whenl is at an element larger
than the pivot andr is at one smaller than the pivot.

85 24 63 45 17 31 96 50

rl

85 24 63 45 17 31 96 50

rl

31 24 63 45 17 85 96 50

rl

7.52advanced sorting

In Place Quick Sort (contd.)

• A final swap with the pivot completes the divide step

31 24 63 45 17 85 96 50

rl

31 24 17 45 63 85 96 50

rl

31 24 17 45 63 85 96 50

lr

31 24 17 45 50 85 96 63

lr

7.53advanced sorting

In Place Quick Sort code
public class ArrayQuickSort implements SortObject {

public void sort(Sequence S, Comparator c){
quicksort(S, C, 0, S.size()-1);

}

private void quicksort (Sequence S, Comparator c,
int leftBound,
int rightBound) {

// left and rightmost ranks of
// sorting range

if (S.size() < 2) return; //a sequence with 0 or
// 1 elements is already

sorted

if (leftBound >= rightBound) return; //terminate
//recursion

// pick the pivot as the current last
// element in range

Object pivot = S.atRank(rightBound).element();

// indices used to scan the sorting range

int leftIndex = leftBound; // will scan
// rightward

int rightIndex = rightBound - 1; //will scan
// leftward

7.54advanced sorting

In Place Quick Sort code
(contd.)

// outer loop

while (leftIndex <= rightIndex) {

//scan rightward until an element larger than
//the pivot is found or the indices cross

while ((leftIndex <= rightIndex) &&
(c.isLessThanOrEqualTo
(S.atRank(leftIndex).element(),pivot))

leftIndex++;

//scan leftward until an element smaller than
//the pivot is found or the indices cross

while (rightIndex >= leftIndex) &&
(c.isGreaterThanOrEqualTo
(S.atRank(rightIndex).element(),pivot))

rightIndex--;

//if an element larger than the pivot and an
//element smaller than the pivot have been
//found, swap them

if (leftIndex < rightIndex)
S.swap(S.atRank(leftIndex),S.atRank(rightIndex));

} // the outer loop continues until
// the indices cross. End of outer loop.

7.55advanced sorting

In Place Quick Sort code
(contd.)

//put the pivot in its place by swapping it
//with the element at leftIndex

S.swap(S.atRank(leftIndex),S.atRank(rightBound));

// the pivot is now at leftIndex, so recur
// on both sides

quicksort (S, c, leftBound, leftIndex-1);

quickSort (S, c, leftIndex+1, rightBound);

} // end quicksort method

} // end ArrayQuickSort class

7.56advanced sorting

Analysis of Running Time
• Consider a quick-sort treeT:

- Let si(n) denote the sum of the input sizes of the
nodes at depth i in T.

• We know that s0(n) = n since the root ofT is
associated with the entire input set.

• Also, s1(n) = n - 1 since the pivot is not propagated.

• Thus: either s2(n) = n - 3, orn - 2 (if one of the nodes
has a zero input size).

• The worst case running time of a quick-sort is then:

Which reduces to:

• Thus quick-sort runs in timeO(n2) in the worst case.

O si n()
i 0=

n 1–
∑

 
 
 

O n i–()
i 0=

n 1–
∑

 
 
 

O i
i 1=

n
∑

 
 
 

O n2()= =

7.57advanced sorting

Analysis of Running Time
(contd.)

• Now to look at the best case running time:

• We can see that quicksort behaves optimally if,
whenever a sequence S is divided into subsequences
L and G, they are of equal size.

• More precisely:
- s0(n) = n
- s1(n) = n - 1
- s2(n) = n - (1 + 2) =n - 3
- s3(n) = n - (1 + 2 + 22) = n - 7

...
- si(n) = n - (1 + 2 + 22 + ... + 2i-1) = n - 2i + 1

...

• This implies thatT has heightO(log n)

• Best Case Time Complexity:O(nlog n)

7.58advanced sorting

Randomized Quick-Sort
• Select the pivot as arandom element of the sequence

• The expected running time of randomized quick-sort
on a sequence of sizen is O(n log n)

• The time spent at a level of the quick-sort tree is O(n)

• We show that theexpected height of the quick-sort
tree isO(logn)

• good vs. bad pivots

- good: 1/4≤ nL/n ≤ 3/4
- bad: nL/n < 1/4 or nL/n > 3/4

• the probability of a good pivot is 1/2, thus we expect
k/2 good pivots out ofk pivots

• after a good pivot the size of each child sequence is at
most 3/4 the size of the parent sequence

• After h pivots, we expect (3/4)h/2 n elements

• the expected heighth of the quick-sort tree is at most:
 2 log4/3 n

nL

0 n/4 n3n/4

	advanced sorting
	• Review of Sorting
	• Merge Sort
	• Sets
	• Quick Sort
	• How Fast Can We Sort?
	Sorting Algorithms
	• Selection Sort uses a priority queue P implemented with an unsorted sequence:
	- Phase 1: the insertion of an item into P takes O(1) time; overall O(n)
	- Phase 2: removing an item takes time proportional to the number of elements in P O(n): overall ...
	- Time Complexity: O(n2)

	Sorting Algorithms (cont.)
	• Insertion Sort is performed on a priority queue P which is a sorted sequence:
	- Phase 1: the first insertItem takes O(1), the second O(2), until the last insertItem takes O(n)...
	- Phase 2: removing an item takes O(1) time; overall O(n).
	- Time Complexity: O(n2)

	• Heap Sort uses a priority queue K which is a heap.
	- insertItem and removeMin each take O(log k), k being the number of elements in the heap at a gi...
	- Phase 1: n elements inserted: O(nlog n) time
	- Phase 2: n elements removed: O(n log n) time.
	- Time Complexity: O(nlog n)

	Divide-and-Conquer
	• Divide and Conquer is more than just a military strategy, it is also a method of algorithm desi...
	• In terms or algorithms, this method has three distinct steps:
	- Div ide: If the input size is too large to deal with in a straightforward manner, divide the da...
	- Recur: Use divide and conquer to solve the subproblems associated with the data subsets.
	- Conquer: Take the solutions to the subproblems and “merge” these solutions into a solution for ...

	Merge-Sort
	• Algorithm:
	- Divide: If S has at leas two elements (nothing needs to be done if S has zero or one elements),...
	- Recur: Recursive sort sequences S1 and S2.
	- Conquer: Put back the elements into S by merging the sorted sequences S1 and S2 into a unique s...

	• Merge Sort Tree:
	- Take a binary tree T
	- Each node of T represents a recursive call of the merge sort algorithm.
	- We assocoate with each node v of T a the set of input passed to the invocation v represents.
	- The external nodes are associated with individual elements of S, upon which no recursion is cal...

	Merge-Sort
	Merge-Sort(cont.)
	Merge-Sort (cont.)
	Merge-Sort (cont.)
	Merge-Sort (cont.)
	Merge-Sort (cont.)
	Merge-Sort (cont.)
	Merge-Sort(cont.)
	Merge-Sort (cont.)
	Merge-Sort (cont.)
	Merge-Sort (cont.)
	Merging Two Sequences
	• Pseudo-code for merging two sorted sequences into a unique sorted sequence
	Algorithm merge (S1, S2, S):
	Input: Sequence S1 and S2 (on whose elements a total order relation is defined) sorted in nondecr...
	Ouput: Sequence S containing the union of the ele ments from S1 and S2 sorted in nondecreasing or...
	while S1 is not empty and S2 is not empty do
	if S1.first().element() £ S2.first().element() then
	{move the first element of S1 at the end of S}
	S.insertLast(S1.remove(S1.first()))
	else
	{ move the first element of S2 at the end of S}
	S.insertLast(S2.remove(S2.first()))
	while S1 is not empty do
	S.insertLast(S1.remove(S1.first()))
	{move the remaining elements of S2 to S}
	while S2 is not empty do
	S.insertLast(S2.remove(S2.first()))

	Merging Two Sequences (cont.)
	• Some pictures: a) b)

	Merging Two Sequences (cont.)
	c)
	d)

	Merging Two Sequences (cont.)
	e)
	f)

	Merging Two Sequences (cont.)
	g)
	h)

	Merging Two Sequences (cont.)
	i)

	Java Implementation of Merge-Sort
	• Interface SortObject
	public interface SortObject {
	//sort sequence S in nondecreasing order using compartor c

	public void sort (Sequence S, Comparator c);
	}

	Java Implementation of Merge-Sort(cont.)
	public class ListMergeSort implements SortObject {
	public void sort(Sequence S, Comparator c) {
	int n = S.size();
	if (n < 2) return; // a sequence with 0 or 1 element is already sorted.

	// divide
	Sequence S1 = (Sequence)S.newContainer();
	// put the first half of S into S1
	for (int i=1; i <= (n+1)/2; i++) {
	S1.insertLast(S.remove(S.first()));
	}
	Sequence S2 = (Sequence)S.newContainer();
	// put the second half of S into S2
	for (int i=1; i <= n/2; i++) {
	S2.insertLast(S.remove(S.first()));
	}
	sort(S1,c); // recur

	sort(S2,c);
	merge(S1,S2,c,S); // conquer

	}

	Java Implementation of Merge-Sort(cont.)
	public void merge(Sequence S1, Sequence S2, Comparator c, Sequence S) {
	while(!S1.isEmpty() && !S2.isEmpty()) {
	if(c.isLessThanOrEqualTo(S1.first().element(), S2.first().el ement())) { // S1’s 1st elt <= S2’s ...
	else { // S2’s 1st elt is the smaller one S.insertLast(S2.remove(S2.first())); } }
	if(S1.isEmpty()) { while(!S2.isEmpty()) { S.insertLast(S2.remove(S2.first())); } } if(S2.isEmpty(...

	Running Time of Merge-Sort
	• Proposition 1: The merge-sort tree associated with the execution of a merge-sort on a sequence ...
	• Proposition 2: A merge sort algorithm sorts a sequence of size n in O(nlog n) time
	• We assume only that the input sequence S and each of the sub-sequences created by each recursiv...
	• We call the time spent at node v of merge-sort tree T the running time of the recusive call ass...

	Running Time of Merge-Sort (cont.)
	• If we let i represent the depth of node v in the merge- sort tree, the time spent at node v is ...
	• Observe that T has exactly 2i nodes at depth i. The total time spent at depth i in the tree is ...

	Therefore, the time complexity is O(nlog n)
	Set ADT
	• A Set is a data structure modeled after the mathematical notation of a set. The fundamaental se...
	• A brief aside on mathemeatical set notation:
	- A » B = { x: x Œ A or x Œ B }
	- A « B = { x: x Œ A and x Œ B }
	- A - B = { x: x Œ A and x œ B }

	• The specific methods for a Set A include the following:
	- union(B): Set A equal to A » B.
	- intersect(B): Set A equal to A « B.
	- subtract(B): Set A equal to A - B.

	Generic Merging
	Algorithm genericMerge(A, B):
	Input: Sorted sequences A and B
	Output: Sorted sequence C
	let A’ be a copy of A { We won’t destroy A and B}
	let B’ be a copy of B
	while A’ and B’ are not empty do
	a¨A’.first()
	b¨B’.first()
	if a<b then
	aIsLess(a, C)
	A’.removeFirst()
	else if a=b then
	bothAreEqual(a, b, C)
	A’.removeFirst()
	B’.removeFirst()
	else
	bIsLess(b, C)
	B’.removeFirst()
	while A’ is not empty do
	a¨A’.first()
	aIsLess(a, C)
	A’.removeFirst()
	while B’ is not empty do
	b¨B’.first()
	bIsLess(b, C)
	B’.removeFirst()

	Set Operations
	• We can specialize the generic merge algorithm to perform set operations like union, intersectio...
	• The generic merge algorithm examines and compare the current elements of A and B.
	• Based upon the outcome of the comparision, it determines if it should copy one or none of the e...
	• This decision is based upon the particular operation we are performing, i.e. union, intersectio...
	• For example, if our operation is union, we copy the smaller of a and b to C and if a=b then it ...
	• We define our copy actions in aIsLess, bothAreEqual, and bIsLess.
	• Let’s see how this is done ...

	Set Operations (cont.)
	• For union
	public class UnionMerger extends Merger {
	protected void aIsLess(Object a, Object b, Sequence C) {
	C.insertLast(a);
	}
	protected void bothAreEqual(Object a, Object b,
	Sequence C) {
	C.insertLast(a);
	}
	protected void bIsLess(Object b, Sequence C) {
	C.insertLast(b);
	}

	• For intersect
	public class IntersectMerger extends Merger {
	protected void aIsLess(Object a, Object b, Sequence C) { }
	protected void bothAreEqual(Object a, Object b, Sequence C) { C.insertLast(a); }
	protected void bIsLess(Object b, Sequence C) { } }

	Set Operations (cont.)
	• For subtraction
	public class SubtractMerger extends Merger {
	protected void aIsLess(Object a, Object b, Sequence C) { C.insertLast(a); }
	protected void bothAreEqual(Object a, Object b, Sequence C) {
	}
	protected void bIsLess(Object b, Sequence C) { }
	}

	Quick-Sort
	• To understand quick-sort, let’s look at a high-level description of the algorithm
	• 1) Divide : If the sequence S has 2 or more elements, select an element x from S to be your piv...
	- L, holds S’s elements less than x
	- E, holds S’s elements equal to x
	- G, holds S’s elements greater than x

	• 2) Recurse: Recursively sort L and G
	• 3) Conquer: Finally, to put elements back into S in order, first inserts the elements of L, the...
	• Here are some pretty diagrams....

	Idea of Quick Sort
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	Quick-Sort Tree
	In-Place Quick-Sort
	• Divide step: l scans the sequence from the left, and r from the right.
	• A swap is performed when l is at an element larger than the pivot and r is at one smaller than ...

	In Place Quick Sort (contd.)
	• A final swap with the pivot completes the divide step

	In Place Quick Sort code
	public class ArrayQuickSort implements SortObject {
	public void sort(Sequence S, Comparator c){ quicksort(S, C, 0, S.size()-1); }
	private void quicksort (Sequence S, Comparator c, int leftBound, int rightBound) { // left and ri...
	if (S.size() < 2) return; //a sequence with 0 or // 1 elements is already sorted
	if (leftBound >= rightBound) return; //terminate // recursion
	// pick the pivot as the current last // element in range
	Object pivot = S.atRank(rightBound).element();
	// indices used to scan the sorting range
	int leftIndex = leftBound; // will scan // rightward
	int rightIndex = rightBound - 1; //will scan // leftward

	In Place Quick Sort code (contd.)
	// outer loop
	while (leftIndex <= rightIndex) {
	//scan rightward until an element larger than //the pivot is found or the indices cross
	while ((leftIndex <= rightIndex) &&
	(c.isLessThanOrEqualTo
	(S.atRank(leftIndex).element(),pivot))
	leftIndex++;
	//scan leftward until an element smaller than //the pivot is found or the indices cross
	while (rightIndex >= leftIndex) &&
	(c.isGreaterThanOrEqualTo
	(S.atRank(rightIndex).element(),pivot))
	rightIndex--;
	//if an element larger than the pivot and an //element smaller than the pivot have been //found, ...
	if (leftIndex < rightIndex)
	S.swap(S.atRank(leftIndex),S.atRank(rightIndex));
	} // the outer loop continues until // the indices cross. End of outer loop.

	In Place Quick Sort code (contd.)
	//put the pivot in its place by swapping it //with the element at leftIndex
	S.swap(S.atRank(leftIndex),S.atRank(rightBound));
	// the pivot is now at leftIndex, so recur // on both sides
	quicksort (S, c, leftBound, leftIndex-1);
	quickSort (S, c, leftIndex+1, rightBound);
	} // end quicksort method
	} // end ArrayQuickSort class

	Analysis of Running Time
	• Consider a quick-sort tree T:
	- Let si(n) denote the sum of the input sizes of the nodes at depth i in T.

	• We know that s0(n) = n since the root of T is associated with the entire input set.
	• Also, s1(n) = n - 1 since the pivot is not propagated.
	• Thus: either s2(n) = n - 3, or n - 2 (if one of the nodes has a zero input size).
	• The worst case running time of a quick-sort is then: Which reduces to:
	• Thus quick-sort runs in time O(n2) in the worst case.

	Analysis of Running Time (contd.)
	• Now to look at the best case running time:
	• We can see that quicksort behaves optimally if, whenever a sequence S is divided into subsequen...
	• More precisely:
	- s0(n) = n
	- s1(n) = n - 1
	- s2(n) = n - (1 + 2) = n - 3
	- s3(n) = n - (1 + 2 + 22) = n - 7 ...
	- si(n) = n - (1 + 2 + 22 + ... + 2i-1) = n - 2i + 1 ...

	• This implies that T has height O(log n)
	• Best Case Time Complexity: O(nlog n)

	Randomized Quick-Sort
	• Select the pivot as a random element of the sequence
	• The expected running time of randomized quick-sort on a sequence of size n is O(n log n)
	• The time spent at a level of the quick-sort tree is O(n)
	• We show that the expected height of the quick-sort tree is O(log n)
	• good vs. bad pivots
	- good: 1/4 £ nL/n £ 3/4
	- bad: nL/n < 1/4 or nL/n > 3/4

	• the probability of a good pivot is 1/2, thus we expect k/2 good pivots out of k pivots
	• after a good pivot the size of each child sequence is at most 3/4 the size of the parent sequence
	• After h pivots, we expect (3/4)h/2 n elements
	• the expected height h of the quick-sort tree is at most: 2 log4/3 n

