ADVANCED SORTING

* Review of Sorting

 Merge Sort

e Sets

e Quick Sort

e How Fast Can We Sort?
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Sorting Algorithms

o Selection Sortises a priority queue P implemented
with an unsorted sequence:

- Phase 1the insertion of an item into P tak€x1)
time; overallO(n)

- Phase 2removing an item takes time proportional
to the number of elements ind¥n): overallO(n°)

- Time Complexity O(n®)
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Sorting Algorithms (cont.)

 Insertion Soris performed on a priority queue P
which is a sorted sequence:

- Phase 1the firstinsertitem takesO(1), the second
O(Z%, until the lastnsertitem takesO(n): overall
O(n)

- Phase 2removing an item take3(1) time;
overallO(n).

- Time Complexity O(n°)

 Heap Soruses a priority queue K which is a heap|

- insertltem andremoveMin each take
O(log k), k being the number of elements in the
heap at a given time.

- Phase 1n elements inserted(nlog n) time
- Phase 2n elements remove®@(n log n) time.
- Time Complexity O(nlog n)
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Divide-and-Conquer

e Divide and Conqueis more than just a military
strategy, it is also a method of algorithm design tha
has created such efficient algorithmdveesge Sort

* Interms or algorithms, this method has three distirci
steps:

- Divide: If the input size is too large to deal with In
a straightforward manner, divide the data into two
or more disjoint subsets.

- Recur: Use divide and conquer to solve the
subproblems associated with the data subsets.

- Conquer: Take the solutions to the subproblems
and “merge” these solutions into a solution for the
original problem.
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Merge-Sort
 Algorithm:

- Divide: If Shas at leas two elements (nothing
needs to be done¥has zero or one elements),
remove all the elements froBand put them into
two sequencesy; andS,, each containing about
half of the elements of S. (i.8; contains the first
(/20 lelements an&, contains the remaining
[h/20elements.

- Recur: Recursive sort sequencgsandsS,.

- Conquer: Put back the elements in&by merging
the sorted sequenc&gsandS; into a unique sorted
sequence.

 Merge Sort Tree:

- Take a binary treé&

- Each node of represents a recursive call of the
merge sort algorithm.

- We assocoate with each nodef T a the set of
Input passed to the invocatigmepresents.

- The external nodes are associated with individual
elements of, upon which no recursion is called.
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Merge-Sort
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Merge-Sort(cont.)
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Merge-Sort (cont.)
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Merge-Sort (cont.)
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Merge-Sort (cont.)
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Merge-Sort (cont.)
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Merge-Sort (cont.)

-~ == = == - -~ == == == -

advanced sorting 7.12




Merge-Sort(cont.)
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Merge-Sort (cont.)
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Merge-Sort (cont.)
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Merging Two Sequences

* Pseudo-code for merging two sorted sequences |

a unigue sorted sequence
Algorithm merge(S1, S2, S).

Input : Sequenc&landS2(on whose elements a
total order relation is defined) sorted in nondecrea
Ing order, and an empty sequeixe

Ouput: Sequencé containing the union of the ele

ments fromSlandS2sorted in nondecreasing ordet;

sequenc&landS2become empty at the end of the
execution
while S1is not emptyand S2is not emptydo
If S1first().element(x S2first().element(hen
{move the first element ddlat the end o&}
SinsertLastElremove§1first()))
else
{ move the first element @2at the end o0&}
SinsertLastt2removeS2first()))
while S1is not emptydo
SinsertLastSlremovegLlfirst()))
{move the remaining elements 82to S}
while S2is not emptydo
SinsertLastG2removeg2first()))

Nt

~

D
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Merging Two Sequences (cont.)

e Some pictures:
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Merging Two Sequences (cont.)
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Merging Two Sequences (cont.)
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Merging Two Sequences (cont.)
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Merging Two Sequences (cont.)
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Java Implementation of
Merge-Sort

 Interface SortObject

public interface SortObject {

/[sort sequence S in nondecreasing order
using compartor c

public void sort (Sequence S, Comparator c);

}
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Java Implementation
of Merge-Sort(cont.)

public class ListMergeSort implements SortObject {
public void sort(Sequence S, Comparator ¢) {
Int n= S.size();

if (n < 2) return; // a sequence with O or
1 element is already sorted.

// divide

Sequence S1 = (Sequence)S.newContainer();

// put the first half of S into S1

for (int =1; i<=(n+1)/2; i++) {

Sl.insertLast(S.remove(S.first()));

}

Sequence S2 = (Seqguence)S.newContainer();

// put the second half of S into S2

for (int =1; i<=n/2; i++) {
S2.insertLast(S.remove(S.first()));

}

sort(S1,c); // recur

sort(S2,¢);

merge(S1,52,c,S); // conquer
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Java Implementation
of Merge-Sort(cont.)

public void merge(Sequence S1, Sequence S2,
Comparator ¢, Sequence S) {

while (!S1.isEmpty() && !S2.isEmpty()) {

iIf(c.isLessThanOrEqualTo(S1.first().element(),

S2first().element())) {
/[l S1's 1st elt <= S2’s 1st elt
S.insertLast(S1.remove(S1.first()));

}

else {// S2’s 1st elt is the smaller one
S.insertLast(S2.remove(SZ2.first()));

}
}

If (S1.isEmpty()) {
while (1S2.isEmpty()) {
S.insertLast(S2.remove(S2.first()));

}

}
if (S2.isEmpty()) {

whil e(!S1.iIsEmpty()) {
S.insertLast(S1.remove(S1.first()));

}
}
}

advanced sorting
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Running Time of Merge-Sort

e Proposition 1: The merge-sort tree associated with
the execution of a merge-sort on a sequence of
elements has a height dogn(]

* Proposition 2 A merge sort algorithm sorts a
sequence of sizein O(nlog n) time

* \We assume only that the input sequefead each
of the sub-sequences created by each recursive ¢a
of the algorithm can access, insert to, and delete
from the first and last nodes@(1) time.

* We call the time spent at nodaf merge-sort tre@
the running time of the recusive call associated with
v, excluding the recursive calls senwit® children.
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Running Time of Merge-Sort
(cont.)

o If we leti represent the depth of noden the merge-
sort tree, the time spent at nodis O(n/2') since the
size of the sequence associated withn/2'.

e Observe thal has exactly “nodes at depth The
total time spent at depthn the tree is then
O(2'n/2"), which isO(n). We know the tree has

heightogn(]
Therefore, the time complexity (nlog n)
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Set ADT

e A Setis a data structure modeled after the
mathematical notation of a set. The fundamaental se¢
operations are@nion, intersection andsubtraction

* A brief aside on mathemeatical set notation:
-AUOB={xxUOAorxdB}
-AnB={xxOAandxB}

-A-B = {xxUOAandxB}

e The specific methods for a Set A include the
following:

- union(B):
Set A equal to AJ B.

- Intersect(B):
Set A equal to An B.

- subtract(B):
Set A equal to A- B.
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Generic Merging

Algorithm genericMerg@A, B):
Input : Sorted sequencésandB
Output: Sorted sequende
let A’ be a copy oA { We won’t destroyA andB}
let B’ be a copy oB
while A’ andB’ are not emptylo

a— A .first()

b~ B’.first()

If a<b then
alsLesga, C)
A’.removeFirst()

else ifa=b then
bothAreEquéda, b, C)
A’.removeFirst()
B’.removeFirst()

else
blsLesghb, C)
B’.removeFirst()

while A'is not emptydo
a— A.first()
alsLesga, C)
A.removeFirst()

while B’ is not emptydo
b~ B.first()
blsLesgb, C)
B’.removeFirst()
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Set Operations

e WWe can specialize the generic merge algorithm to
perform set operations like union, intersection, and
subtraction.

* The generic merge algorithm examines and compar
the current elements éfandB.

e Based upon the outcome of the comparision, it
determines Iif it should copy one or none of the
elementsa andb into C.

* This decision is based upon the particular operatiol
we are performing, i.e. union, intersection or
subtraction.

* For example, if our operation is union, we copy the
smaller ofa andb to C and ifa=b then it copies
either one (sag).

» \We define our copy actions @isLess
bothAreEqualandbislLess

e Let's see how this is done ...
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Set Operations (cont.)

e FOr union

public class UnionMerger extends Merger {
protected void alsLess(Object a, Object b, Sequence C) {
C.insertLast(a);
}
protected void bothAreEqual(Object a, Object b,
Sequence CO) {

C.insertLast(a);

}
protected void blsLess(Object b, Sequence C) {

C.insertLast(b);
}

e For intersect

public class IntersectMerger extends Merger {

protected void alsLess(Object a, Object b, SequenceC) {

}

protected void bothAreEqual(Object a, Object b,
Sequence CO) {

C.insertLast(a);
}
protected void blsLess(Object b, Sequence C) { }

}
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Set Operations (cont.)

e For subtraction
public class SubtractMerger extends Merger {

protected void alsLess(Object a, Object b,
Sequence C) {
C.insertLast(a);

}

protected void bothAreEqual(Object a, Object b,
Sequence C) {

}

protected void blisLess(Object b, Sequence C) {
}
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Quicksort

\_

" Thank goodness! It's
Quicksort Man! Help me!

I'm on my way,
Bubble Sort Man.

\
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Quick-Sort

e To understand quick-sort, let’s look at a high-leve
description of the algorithm

e 1)Divide : If the sequenc&has 2 or more elements
select an elementfrom Sto be youmpivot. Any
arbitrary element, like the last, will do. Remove al

the elements dband divide them into 3 sequences:

- L, holdsSs elements less than
- E, holdsSs elements equal to
- G, holdsSs elements greater than

» 2) Recurse Recursively sort. andG

« 3) Conguer: Finally, to put elements back in&in
order, first inserts the elementslafthen those oE,
and those of.

e Here are some pretty diagrams....

\%4
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ldea of Quick Sort

1. Select

pick anelement |‘ |
Lills |"
X

2.Devide

rearrange elements
so that

e X goestoits I
|I|ﬂ
X
L E

3. Recurse and Conquer G

recursively sort

|I||"

X
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Quick-Sort Tree
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Quick-Sort Tree
( < 10 9)
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Quick-Sort Tree
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Quick-Sort Tree
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Quick-Sort Tree
( 10 9)

— e -y,

\—_,__‘__I
N\ 7/ \
\ /7 \
\ 7/ \
\ 7/ \
—_—— = —
’ DR AN VAN
o0 TRy O
\N—' ————— 7/ \~_/ \N—/
Y 4 )
V4 Y
Y 4 \Y

advanced sorting 7.40




Quick-Sort Tree
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Quick-Sort Tree
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Quick-Sort Tree
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Quick-Sort Tree
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Quick-Sort Tree
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Quick-Sort Tree
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Quick-Sort Tree

/ N\
/ N\
/ N
/ N

N

7
5666

(L))

) <
N
\
\
\
/A‘\
| I
\ 7/

/)
558 S




Quick-Sort Tree

7 (8)

AN

5588




Quick-Sort Tree

7 (8)

PREEED

Tellte

N

C

/

0009

)

advanced sorting




Quick-Sort Tree




In-Place Quick-Sort

 Divide step | scans the sequence from the left, and
from the right.

(:85 24 63 45 17 31 96 5@)
I r

o A swap is performed whdns at an element larger
than the pivot andis at one smaller than the pivot

N

(s 24 63 45 17 31 96  50)
I r

(:31 4 63 45 17 8 96 5@)
I r
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In Place Quick Sort (contd.)

O\

(31 24 63 45 17 85 96 50)
I r

(31 2 17 45 63 8 96 5@
I r

N\

(31 24 17 45 63 8 9 50)
r |

« A final swap with the pivot completes the divide ste

(31 24 17 45 50 85 96 @

| =4

r |
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In Place Quick Sort code

public class ArrayQuickSort implements SortObject {

public void sort(Sequence S, Comparator c){
quicksort(S, C, 0, S.size()-1);
}

private void quicksort (Sequence S, Comparator c,
Int leftBound,
Int rightBound) {
Il left and rightmost ranks of
/] sorting range

If (S.size() < 2) return; //a sequence with 0 or
/[ 1 elements is already
sorted

If (leftBound >= rightBound) return; //terminate
/lrecursion

I/ pick the pivot as the current last
/[ element in range

Object pivot = S.atRank(rightBound).element();
// indices used to scan the sorting range

Int leftindex = leftBound; // will scan
/l rightward

Int rightindex = rightBound - 1; //will scan
/I leftward
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In Place Quick Sort code
(contd.)

/[ outer loop
while (leftindex <= rightindex) {

//scan rightward until an element larger than
/lthe pivot is found or the indices cross

while ((leftindex <= rightIndex) &&
(c.isLessThanOrEqualTo
(S.atRank(leftindex).element(),pivot))
leftindex++;

/[scan leftward until an element smaller than
/lthe pivot is found or the indices cross

while (rightindex >= leftindex) &&
(c.isGreaterThanOrEqualTo
(S.atRank(rightindex).element(),pivot))
rightindex--;

/lif an element larger than the pivot and an
/lelement smaller than the pivot have been
/[found, swap them

if (leftindex < rightindex)
S.swap(S.atRank(leftindex),S.atRank(rightindex));

} /I the outer loop continues until

/l the indices cross. End of outer loop.
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In Place Quick Sort code
(contd.)

/l/put the pivot in its place by swapping it
/Iwith the element at leftindex

S.swap(S.atRank(leftindex),S.atRank(rightBound));

/l the pivot is now at leftindex, so recur
// on both sides

guicksort (S, c, leftBound, leftindex-1);
guickSort (S, c, leftindex+1, rightBound);
} Il end quicksort method
} Il end ArrayQuickSort class
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Analysis of Running Time

e Consider a quick-sort trele

- Let 5(n) denote the sum of the input sizes of the
nodes at depthin T.

* We know that §n) = n since the root of Is
associated with the entire input set.

 Also, 5(n) =n- 1 since the pivot is not propagated.

e Thus: either gn) =n- 3, orn- 2 (if one of the nodes
has a zero input size).

e The worst case running time of a quick-sort is the

m-1 O
OO0 v s(n)O
4=o0 U

Which reduces to:

e Thus quick-sort runs in tim&(n?) in the worst case.

—

n.
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Analysis of Running Time
(contd.)

 Now to look at the best case running time:

* We can see that quicksort behaves optimally if,
whenever a sequence S is divided into subsequen
L and G, they are of equal size.

* More precisely:

- () =n

- s(n)=n-1
-S(nN)=n-(1+2)=n-3
-s(N)=n-(1+2+%)=n-7

g =n-(+2+ 2+ +21)=n-2+1

e This implies thafl has heighO(log n)

» Best Case Time Complexit@2(nlog n)
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Randomized Quick-Sort

« Select the pivot asr@andom element of the sequence

e The expected running time of randomized quick-sort
on a sequence of simas O(n log n)

 The time spent at a level of the quick-sort tree 50

)

* We show that thexpected heighof the quick-sort
tree isO(log n)

e good vs. bad pivots

o

0 n/4 3n/4 N

- good 1/4<n/n<3/4
- bad n/n<1/4 or n/n>3/4

 the probability of a good pivot is 1/2, thus we expect
k/2 good pivots out ok pivots

e after a good pivot the size of each child sequence I$ ¢
most 3/4 the size of the parent sequence

 After h pivots, we expect (3/13!)2 nelements

 the expected heiglfitof the quick-sort tree is at most:
2 lggn
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	• We assume only that the input sequence S and each of the sub-sequences created by each recursiv...
	• We call the time spent at node v of merge-sort tree T the running time of the recusive call ass...

	Running Time of Merge-Sort (cont.)
	• If we let i represent the depth of node v in the merge- sort tree, the time spent at node v is ...
	• Observe that T has exactly 2i nodes at depth i. The total time spent at depth i in the tree is ...

	Therefore, the time complexity is O(nlog n)
	Set ADT
	• A Set is a data structure modeled after the mathematical notation of a set. The fundamaental se...
	• A brief aside on mathemeatical set notation:
	- A » B = { x: x Œ A or x Œ B }
	- A « B = { x: x Œ A and x Œ B }
	- A - B = { x: x Œ A and x œ B }

	• The specific methods for a Set A include the following:
	- union(B): Set A equal to A » B.
	- intersect(B): Set A equal to A « B.
	- subtract(B): Set A equal to A - B.


	Generic Merging
	Algorithm genericMerge(A, B):
	Input: Sorted sequences A and B
	Output: Sorted sequence C
	let A’ be a copy of A { We won’t destroy A and B}
	let B’ be a copy of B
	while A’ and B’ are not empty do
	a¨A’.first()
	b¨B’.first()
	if a<b then
	aIsLess(a, C)
	A’.removeFirst()
	else if a=b then
	bothAreEqual(a, b, C)
	A’.removeFirst()
	B’.removeFirst()
	else
	bIsLess(b, C)
	B’.removeFirst()
	while A’ is not empty do
	a¨A’.first()
	aIsLess(a, C)
	A’.removeFirst()
	while B’ is not empty do
	b¨B’.first()
	bIsLess(b, C)
	B’.removeFirst()

	Set Operations
	• We can specialize the generic merge algorithm to perform set operations like union, intersectio...
	• The generic merge algorithm examines and compare the current elements of A and B.
	• Based upon the outcome of the comparision, it determines if it should copy one or none of the e...
	• This decision is based upon the particular operation we are performing, i.e. union, intersectio...
	• For example, if our operation is union, we copy the smaller of a and b to C and if a=b then it ...
	• We define our copy actions in aIsLess, bothAreEqual, and bIsLess.
	• Let’s see how this is done ...

	Set Operations (cont.)
	• For union
	public class UnionMerger extends Merger {
	protected void aIsLess(Object a, Object b, Sequence C) {
	C.insertLast(a);
	}
	protected void bothAreEqual(Object a, Object b,
	Sequence C) {
	C.insertLast(a);
	}
	protected void bIsLess(Object b, Sequence C) {
	C.insertLast(b);
	}

	• For intersect
	public class IntersectMerger extends Merger {
	protected void aIsLess(Object a, Object b, Sequence C) { }
	protected void bothAreEqual(Object a, Object b, Sequence C) { C.insertLast(a); }
	protected void bIsLess(Object b, Sequence C) { } }


	Set Operations (cont.)
	• For subtraction
	public class SubtractMerger extends Merger {
	protected void aIsLess(Object a, Object b, Sequence C) { C.insertLast(a); }
	protected void bothAreEqual(Object a, Object b, Sequence C) {
	}
	protected void bIsLess(Object b, Sequence C) { }
	}


	Quick-Sort
	• To understand quick-sort, let’s look at a high-level description of the algorithm
	• 1) Divide : If the sequence S has 2 or more elements, select an element x from S to be your piv...
	- L, holds S’s elements less than x
	- E, holds S’s elements equal to x
	- G, holds S’s elements greater than x

	• 2) Recurse: Recursively sort L and G
	• 3) Conquer: Finally, to put elements back into S in order, first inserts the elements of L, the...
	• Here are some pretty diagrams....

	Idea of Quick Sort
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	In-Place Quick-Sort
	• Divide step: l scans the sequence from the left, and r from the right.
	• A swap is performed when l is at an element larger than the pivot and r is at one smaller than ...

	In Place Quick Sort (contd.)
	• A final swap with the pivot completes the divide step

	In Place Quick Sort code
	public class ArrayQuickSort implements SortObject {
	public void sort(Sequence S, Comparator c){ quicksort(S, C, 0, S.size()-1); }
	private void quicksort (Sequence S, Comparator c, int leftBound, int rightBound) { // left and ri...
	if (S.size() < 2) return; //a sequence with 0 or // 1 elements is already sorted
	if (leftBound >= rightBound) return; //terminate // recursion
	// pick the pivot as the current last // element in range
	Object pivot = S.atRank(rightBound).element();
	// indices used to scan the sorting range
	int leftIndex = leftBound; // will scan // rightward
	int rightIndex = rightBound - 1; //will scan // leftward

	In Place Quick Sort code (contd.)
	// outer loop
	while (leftIndex <= rightIndex) {
	//scan rightward until an element larger than //the pivot is found or the indices cross
	while ((leftIndex <= rightIndex) &&
	(c.isLessThanOrEqualTo
	(S.atRank(leftIndex).element(),pivot))
	leftIndex++;
	//scan leftward until an element smaller than //the pivot is found or the indices cross
	while (rightIndex >= leftIndex) &&
	(c.isGreaterThanOrEqualTo
	(S.atRank(rightIndex).element(),pivot))
	rightIndex--;
	//if an element larger than the pivot and an //element smaller than the pivot have been //found, ...
	if (leftIndex < rightIndex)
	S.swap(S.atRank(leftIndex),S.atRank(rightIndex));
	} // the outer loop continues until // the indices cross. End of outer loop.

	In Place Quick Sort code (contd.)
	//put the pivot in its place by swapping it //with the element at leftIndex
	S.swap(S.atRank(leftIndex),S.atRank(rightBound));
	// the pivot is now at leftIndex, so recur // on both sides
	quicksort (S, c, leftBound, leftIndex-1);
	quickSort (S, c, leftIndex+1, rightBound);
	} // end quicksort method
	} // end ArrayQuickSort class

	Analysis of Running Time
	• Consider a quick-sort tree T:
	- Let si(n) denote the sum of the input sizes of the nodes at depth i in T.

	• We know that s0(n) = n since the root of T is associated with the entire input set.
	• Also, s1(n) = n - 1 since the pivot is not propagated.
	• Thus: either s2(n) = n - 3, or n - 2 (if one of the nodes has a zero input size).
	• The worst case running time of a quick-sort is then: Which reduces to:
	• Thus quick-sort runs in time O(n2) in the worst case.

	Analysis of Running Time (contd.)
	• Now to look at the best case running time:
	• We can see that quicksort behaves optimally if, whenever a sequence S is divided into subsequen...
	• More precisely:
	- s0(n) = n
	- s1(n) = n - 1
	- s2(n) = n - (1 + 2) = n - 3
	- s3(n) = n - (1 + 2 + 22) = n - 7 ...
	- si(n) = n - (1 + 2 + 22 + ... + 2i-1) = n - 2i + 1 ...

	• This implies that T has height O(log n)
	• Best Case Time Complexity: O(nlog n)

	Randomized Quick-Sort
	• Select the pivot as a random element of the sequence
	• The expected running time of randomized quick-sort on a sequence of size n is O(n log n)
	• The time spent at a level of the quick-sort tree is O(n)
	• We show that the expected height of the quick-sort tree is O(log n)
	• good vs. bad pivots
	- good: 1/4 £ nL/n £ 3/4
	- bad: nL/n < 1/4 or nL/n > 3/4

	• the probability of a good pivot is 1/2, thus we expect k/2 good pivots out of k pivots
	• after a good pivot the size of each child sequence is at most 3/4 the size of the parent sequence
	• After h pivots, we expect (3/4)h/2 n elements
	• the expected height h of the quick-sort tree is at most: 2 log4/3 n



