SHORTEST PATHS

- Weighted Digraphs
- Shortest paths

Weighted Graphs

- weights on the edges of a graph represent distances, costs, etc.
- An example of an undirected weighted graph:

Shortest Path

- BFS finds paths with the minimum number of edges from the start vertex
- Hencs, BFS finds shortest paths assuming that each edge has the same weight
- In many applications, e.g., transportation networks, the edges of a graph have different weights.
- How can we find paths of minimum total weight?
- Example - Boston to Los Angeles:

Dijkstra's Algorithm

- Dijkstra's algorithm finds shortest paths from a start vertex v to all the other vertices in a graph with
- undirected edges
- nonnegative edge weights
- the algorithm computes for each vertex u the distance of u from the start vertex v, that is, the weight of a shortest path between v and u.
- the algorithm keeps track of the set of vertices for which the distance has been computed, called the cloud C
- Every vertex has a label D associated with it. For any vertex u, we can refer to its D label as $\mathrm{D}[u]$. $\mathrm{D}[u]$ stores an approximation of the distance between v and u. The algorithm will update a $\mathrm{D}[u]$ value when it finds a shorter path from v to u.
- When a vertex u is added to the cloud, its label $\mathrm{D}[u]$ is equal to the actual (final) distance between the starting vertex v and vertex u.
- initially, we set
- $\mathrm{D}[\mathrm{v}]=0$...the distance from v to itself is $0 . .$.
$-\mathrm{D}[\mathrm{u}]=\infty$ for $\mathrm{u} \neq \mathrm{v}$...these will change...

The Algorithm: Expanding the Cloud

- Repeat until all vertices have been put in the cloud:
- let u be a vertex not in the cloud that has smallest label $\mathrm{D}[\mathrm{u}]$. (On the first iteration, naturally the starting vertex will be chosen.)
- we add u to the cloud C
- we update the labels of the adjacent vertices of u as follows
for each vertex z adjacent to u do
if z is not in the cloud C then

$$
\begin{gathered}
\text { if } \mathrm{D}[\mathrm{u}]+\text { + weight }(\mathrm{u}, \mathrm{z})<\mathrm{D}[\mathrm{z}] \text { then } \\
\mathrm{D}[\mathrm{z}]=\mathrm{D}[\mathrm{u}]+\text { weight }(\mathrm{u}, \mathrm{z})
\end{gathered}
$$

- the above step is called a relaxation of edge (u, z)

v was put in the cloud first. Then this u . Then this u .

Pseudocode

- we use a priority queue Q to store the vertices not in the cloud, where $D[v]$ the key of a vertex v in Q

Algorithm ShortestPath (G, v):
Input: A weighted graph G and a distinguished vertex v of G.
Output: A label $D[u]$, for each vertex that u of G, such that $D[u]$ is the length of a shortest path from v to u in G.
initialize $D[v] \leftarrow 0$ and $D[u] \leftarrow+\infty$ for each vertex $v \neq u$
let Q be a priority queue that contains all of the vertices of G using the D lables as keys.
while $Q \neq \varnothing$ do
\{pull u into the cloud C\}
$u \leftarrow Q$.removeMinElement()
for each vertex z adjacent to u such that z is in Q do \{perform the relaxation operation on edge (u, z) \}
if $D[u]+w((u, z))<D[z]$ then
$D[z] \leftarrow D[u]+w((u, z))$
change the key value of z in Q to $D[z]$
return the label $D[u]$ of each vertex u.

Example: shortest paths starting from BWI

	parent	distance
BOS		∞
BWI		0
DFW		∞
JFK	BWI	184
LAX		∞
MIA	BWI	946
ORD	BWI	621
PVD		∞
SFO		∞

- JFK is the nearest...

	parent	distance
BOS	JFK	371
BWI		0
DFW	JFK	1575
JFK	BWI	184
LAX		∞
MIA	BWI	946
ORD	BWI	621
PVD	JFK	328
SFO		∞

- followed by sunny PVD.

- BOS is just a little further.

	parent	distanc
BOS	JFK	371
BWI		0
DFW	JFK	1575
JFK	BWI	184
LAX		∞
MIA	BWI	946
ORD	BWI	621
PVD	JFK	328
SFO	BOS	3075

- ORD: Chicago is my kind of town.

	parent	distance	note that
BOS	JFK	371	/ D for DWF
BWI		0	was adjusted
DFW	ORD	1423	on this turn
JFK	BWI	184	
LAX		∞	
MIA	BWI	946	
ORD	BWI	621	SF
PVD	JFK	328	
SFO	ORD	2467	

- MIA, just after Spring Break.

	parent	distanc
BOS	JFK	371
BWI		0
DFW	JFK	1423
JFK	BWI	184
LAX	MIA	3288
MIA	BWI	946
ORD	BWI	621
PVD	JFK	328
SFO	BOS	2467

- DFW is huge like Texas.

	parent	distance
BOS	JFK	371
BWI		0
DFW	JFK	1423
JFK	BWI	184
LAX	DFW	2658
MIA	BWI	946
ORD	BWI	621
PVD	JFK	328
SFO	BOS	2467

- SFO: the 49 'ers will take the prize next year.

	parent	distanc
BOS	JFK	371
BWI		0
DFW	ORD	1423
JFK	BWI	184
LAX	MIA	2658
MIA	BWI	946
ORD	BWI	621
PVD	JFK	328
SFO	BOS	2467

- LAX is the last stop on the journey.

	parent	distance
BOS	JFK	371
BWI		0
DFW	ORD	1423
JFK	BWI	184
LAX	MIA	2658
MIA	BWI	946
ORD	BWI	621
PVD	JFK	328
SFO	BOS	2467

Running Time

- Let's assume that we represent G with an adjacency list. We can then step through all the vertices adjacent to u in time proportional to their number (i.e. $\mathbf{O}(j)$ where j in the number of vertices adjacent to u)
- The priority queue Q - we have a choice:
- A Heap: Implementing Q with a heap allows for efficient extraction of vertices with the smallest D label $(\mathbf{O}(\log N))$. If Q is implented with locators, key updates can be performed in $\mathbf{O}(\log N)$ time. The total run time is $\mathbf{O}((n+m) \log n)$ where n is the number of vertices in G and m in the number of edges. In terms of n , worst case time is $\mathbf{O}\left(n^{2} \log n\right)$ - An Unsorted Sequence: $\mathbf{O}(n)$ when we extract minimum elements, but fast key updates $(\mathbf{O}(1))$. There are only $n-1$ extractions and m relaxations. The running time is $\mathbf{O}\left(n^{2}+m\right)$
- In terms of worst case time, heap is good for small data sets and sequence for larger.

Running Time (cont)

- The average case is a slightly different story. Consider this:
- If priority queue Q is implemented with a heap, the bottleneck step is updating the key of a vertex in Q . In the worst case, we would need to perform an update for every edge in the graph.
- For most graphs, though, this would not happen. Using the random neighbor-order assumption, we can observe that for each vertex, its neighbor vertices will be pulled into the cloud in essentially random order. So here are only $\mathbf{O}(\log n)$ updates to the key of a vertex.
- Under this assumption, the run time of the heap implementation is $\mathbf{O}(n \log n+m)$, which is always $\mathbf{O}\left(n^{2}\right)$. The heap implementation is thus preferable for all but degenerate cases.

Dijkstra's Algorithm, some things to think about...

- In our example, the weight is the geographical distance. However, the weight could just as easily represent the cost or time to fly the given route.
- We can easily modify Dijkstra's algorithm for different needs, for instance:
- If we just want to know the shortest path from vertex v to a single vertex u, we can stop the algorithm as soon as u is pulled into the cloud.
- Or, we could have the algorithm output a tree T rooted at v such that the path in T from v to a vertex u is a shortest path from v to u.
- How to keep track of weights and distances? Edges and vertices do not "know" their weights/ distances. Take advantage of the fact that $\mathrm{D}[\mathrm{u}]$ is the key for vertex u in the priority queue, and thus $\mathrm{D}[\mathrm{u}]$ can be retrieved if we know the locator of u in Q.
- Need some way of:
- associating PQ locators with the vertices
- storing and retrieving the edge weights
- returning the final vertex distances

