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SHORTEST PATHS

• Weighted Digraphs

• Shortest paths
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Weighted Graphs
• weights on the edges of a graph represent distances,

costs, etc.

• An example of an undirected weighted graph:
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Shortest Path
• BFS finds paths with the minimum number of edges

from the start vertex

• Hencs, BFS finds shortest paths assuming that each
edge has the same weight

• In many applications, e.g., transportation networks,
the edges of a graph have different weights.

• How can we find paths of minimum total weight?

• Example - Boston to Los Angeles:
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Dijkstra’s Algorithm
• Dijkstra’s algorithm finds shortest paths from a start

vertexv to all the other vertices in a graph with
- undirected edges
- nonnegative edge weights

• the algorithm computes for each vertexu the
distance of u from the start vertexv, that is, the
weight of a shortest path betweenv andu.

• the algorithm keeps track of the set of vertices for
which the distance has been computed, called the
cloud C

• Every vertex has a label D associated with it. For
any vertexu, we can refer to its D label as D[u].
D[u] stores an approximation of the distance
betweenv andu. The algorithm will update a D[u]
value when it finds a shorter path fromv to u.

• When a vertexu is added to the cloud, its label D[u]
is equal to the actual (final) distance between the
starting vertexv and vertexu.

• initially, we set
- D[v] = 0 ...the distance from v to itself is 0...
- D[u] = ∞ for u ≠ v ...these will change...
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The Algorithm:
Expanding the Cloud

• Repeat until all vertices have been put in the cloud:
- let u be a vertex not in the cloud that has smallest

label D[u]. (On the first iteration, naturally the
starting vertex will be chosen.)

- we addu to the cloud C
- we update the labels of the adjacent vertices ofu

as follows
for  each vertex z adjacent tou do

if  z is not in the cloud Cthen
if D[u] + weight(u,z) < D[z] then

D[z] = D[u] + weight(u,z)

• the above step is called arelaxation of edge (u,z)
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v was put in the cloud first. Then this u. Then this u.
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Pseudocode
• we use a priority queueQ to store the vertices not in

the cloud, whereD[v] the key of a vertexv in Q

Algorithm ShortestPath(G, v):
Input:A weighted graphG and a distinguished vertex

v of G.
Output:A labelD[u], for each vertex thatu of G,

such thatD[u] is the length of a shortest path
from v to u in G.

initialize D[v] ← 0 andD[u] ← +∞ for each
vertexv ≠ u

let Q be a priority queue that contains all of the
vertices ofG using theD lables as keys.

while Q ≠ ∅ do
{pull u into the cloud C}
u ← Q.removeMinElement()
for each vertexzadjacent tou such thatz is in Q do

{perform the relaxation operation on edge (u, z) }
if D[u] + w((u, z)) < D[z] then

D[z] ←D[u] + w((u, z))
change the key value ofz in Q to D[z]

return the labelD[u] of each vertexu.
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Example: shortest paths starting from BWI

JFK

BOS

MIA

ORD

LAX
DFW

SFO BWI

PVD

867
2704

187

1258

849

144740

1391

184

946

1090

1121

2342

1846 621

802

1464

1235

337

BWI

PVD
ORD
MIA
LAX
JFK
DFW
BWI
BOS

SFO

parent distance

0
∞
184
∞
946
621
∞
∞

∞

BWI

BWI



8Shortest Paths

• JFK is the nearest...
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• followed by sunny PVD.
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• BOS is just a little further.
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• ORD: Chicago is my kind of town.
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• MIA, just after Spring Break.
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• DFW is huge like Texas.
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• SFO: the 49’ers will take the prize next year.
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• LAX is the last stop on the journey.
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Running Time
• Let’s assume that we represent G with an adjacency

list. We can then step through all the vertices
adjacent to u in time proportional to their number
(i.e.O(j) where j in the number of vertices adjacent
to u)

• The priority queue Q - we have a choice:
- A Heap: Implementing Q with a heap allows for

efficient extraction of vertices with the smallest D
label(O(logN)). If Q is implented with locators,
key updates can be performed inO(logN) time.
The total run time isO((n+m)logn) where n is the
number of vertices in G and m in the number of
edges. In terms of n, worst case time isO(n2logn)

- An Unsorted Sequence: O(n) when we extract
minimum elements, but fast key updates (O(1)).
There are only n-1 extractions and m relaxations.
The running time isO(n2+m)

• In terms ofworst case time, heap is good for small
data sets and sequence for larger.
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Running Time (cont)
• Theaverage caseis a slightly different story.

Consider this:
- If priority queue Q is implemented with a heap,

the bottleneck step is updating the key of a vertex
in Q. In the worst case, we would need to perform
an update for every edge in the graph.

- For most graphs, though, this would not happen.
Using therandom neighbor-order assumption,
we can observe that for each vertex, its neighbor
vertices will be pulled into the cloud in essentially
random order. So here are onlyO(logn) updates to
the key of a vertex.

- Under this assumption, the run time of the heap
implementation isO(nlogn+m), which is always
O(n2). The heap implementation is thus
preferable for all but degenerate cases.
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Dijkstra’s Algorithm,
some things to think about...

• In our example, theweight is the geographical
distance. However, the weight could just as easily
represent the cost or time to fly the given route.

• We can easilymodify Dijkstra’s algorithm for
different needs, for instance:
- If we just want to know the shortest path from

vertex v to a single vertex u, we can stop the
algorithm as soon as u is pulled into the cloud.

- Or, we could have the algorithm output a tree T
rooted at v such that the path in T from v to a
vertex u is a shortest path from v to u.

• How to keep track of weights and distances?
Edges and vertices do not “know” their weights/
distances. Take advantage of the fact that D[u] is the
key for vertex u in the priority queue, and thus D[u]
can be retrieved if we know the locator of u in Q.

• Need some way of:
- associating PQ locators with the vertices
- storing and retrieving the edge weights
- returning the final vertex distances
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